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a b s t r a c t

Recently, fuzzy n-ary sub-polygroups were introduced and studied by Davvaz, Corsini
and Leoreanu-Fotea [B. Davvaz, P. Corsini, V. Leoreanu-Fotea, Fuzzy n-ary sub-polygroups,
Comput. Math. Appl. 57 (2008) 141–152]. Now, in this paper, the concept of (∈,∈ ∨q)-
fuzzy n-ary sub-polygroups, (∈,∈ ∨ q)-fuzzy n-ary sub-polygroups and fuzzy n-ary
sub-polygroup with thresholds of an n-ary polygroup are introduced and some
characterizations are described. Also, we give the definition of implication-based fuzzy
n-ary sub-polygroups in an n-ary polygroup, in particular, the implication operators in
Łukasiewicz system of continuous-valued logic are discussed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hypergroup which is based on the notion of hyperoperation was introduced by Marty in [1] and studied extensively by
manymathematicians. Hypergroup theory both extends somewell-known group results and introduced new topics, leading
thus to a wide variety of applications, as well as to a broadening of the investigation fields, see [2–5]. A recent book [3]
contains a wealth of applications. There are applications in the following subjects: geometry, hypergraphs, binary relations,
lattices, fuzzy sets and rough sets, automata, cryptography, combinatorics, codes, artificial intelligence, and probability.
Applications of hypergroups havemainly appeared in special subclasses. For example, polygroups which form an important
subclass of hypergroups are studied by Comer [6–8]. Quasi-canonical hypergroups (called ‘‘polygroups’’ by Comer) were
introduced for the first time in [9], as a generalization of canonical hypergroups, introduced in [10]. Zahedi, Bolurian
and Hasankhani in 1995 [11] introduced the concept of a fuzzy subpolygroup of a polygroup. Davvaz and Poursalavati in
1999 [12] introducedmatrix representations of polygroups over hyperrings. Also, they introduced the notion of a polygroup
hyperring generalizing the notion of a group ring. In [13], Davvaz considered the factor polygroup and interpreted the
lower and upper approximations as subsets of the factor polygroup, and then he introduced the concept of a factor rough
subpolygroup. Using the concept of a fuzzy set, he introduced and discussed the concept of a fuzzy rough polygroup in [14].
Also, applications of the γ ∗-relation to polygroups was given in [15].
The notion of an n-ary group is a natural generalization of the notion of a group and has many applications in different

branches. The idea of investigations of such groups seems to be going back to E. Kasner’s lecture at the fifty-third annual
meeting of the American Association for the Advancement of Science in 1904 [16]. But the first paper concerning the theory
of n-ary groups was written (under inspiration of Emmy Noether) by W. Dörnte in 1928 (see [17]).

∗ Corresponding author.
E-mail addresses: kazancio@yahoo.com, okazanci@ktu.edu.tr (O. Kazancı), davvaz@yazduni.ac.ir (B. Davvaz), syamak@ktu.edu.tr (S. Yamak).

0898-1221/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.07.044

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82145653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:kazancio@yahoo.com
mailto:okazanci@ktu.edu.tr
mailto:davvaz@yazduni.ac.ir
mailto:syamak@ktu.edu.tr
http://dx.doi.org/10.1016/j.camwa.2009.07.044


O. Kazancı et al. / Computers and Mathematics with Applications 58 (2009) 1466–1474 1467

n-ary generalizations of algebraic structures is themost naturalway for further development and a deeper understanding
of their fundamental properties. Ameri and Zahedi in [18] studied algebraic hypersystems. In [19], Davvaz and Vougiouklis
introduced the concept of n-ary hypergroups as a generalization of hypergroups in the sense of Marty. Leoreanu-Fotea
and Davvaz in [20] introduced and studied the notion of a partial n-hypergroupoid, associated with a binary relation.
Some important results, concerning Rosenberg partial hypergroupoids, induced by relations, are generalized to the case
of n-hypergroupoids. Ghadiri and Waphare [21] defined n-ary polygroups, as a subclass of n-ary hypergroups and as a
generalization of polygroups.
After the introduction of fuzzy sets by Zadeh [22], reconsideration of the concept of classical mathematics began. On the

other hand, because of the importance of group theory in mathematics, as well as its many areas of application, the notion
of fuzzy subgroups was defined by Rosenfeld [23] and its structure was investigated. A new type of fuzzy subgroup (viz,
(∈,∈ ∨q)-fuzzy subgroup) was introduced in an earlier paper of Bhakat and Das [24,25] by using the combined notions of
‘‘belongingness’’ and ‘‘quasi-coincidence’’ of fuzzy points and fuzzy sets. In fact, (∈,∈ ∨q)-fuzzy subgroup is an important
and useful generalization of Rosenfeld’s fuzzy subgroup. This concept was studied further in [26–31]. Also, a generalization
of Rosenfeld’s fuzzy subgroup, and Bhakat and Das’s fuzzy subgroup is given in [32].
Fuzzy sets and hyperstructures introduced by Zadeh and Marty, respectively, are now used in the real world, both from

a theoretical point of view and for their many applications. The relations between fuzzy sets and hyperstructures have been
already considered by Corsini, Davvaz, Leoreanu, Zahedi and others, for instance see [33–38]. In [35], Davvaz applied the
concept of fuzzy sets to the theory of algebraic hyperstructures and defined fuzzy sub-hypergroup (resp. Hv-subgroup) of
a hypergroup (resp. Hv-group) which is a generalization of the concept of Rosenfeld’s fuzzy subgroup of a group. In [36],
Davvaz and Corsini introduced the notion of a fuzzy and anti fuzzy n-ary subhypergroup of an n-ary hypergroup and to
extend the fuzzy results of fundamental equivalence relations to n-ary hypergroups. In [37], the notion of a fuzzy n-ary
subpolygroup of an n-ary polygroup is defined. In [28], using the notion of ‘‘belongingness (∈)’’ and ‘‘quasi-coincidence
(q)’’ of fuzzy points with fuzzy sets, the concept of (∈,∈ ∨q)-fuzzy sub-hyperquasigroups is introduced. Recently, the
characterization of generalized fuzzy bi-ideals in semigroups were introduced by Kazancıand Yamak [39].
This paper is organized as follows. In Section 2, we first recall some basic definitions and results of n-ary hyperoperations.

Since the concepts of (∈,∈ ∨q)-fuzzy n-ary sub-polygroups are important and useful generalizations of ordinary fuzzy n-ary
sub-polygroups of n-ary polygroup, some fundamental aspects of (∈,∈ ∨q)-fuzzy n-ary sub-polygroups of n-ary polygroups
will be discussed in Section 3. Finally, in Section 4,we consider the concepts of implication-based fuzzy n-ary sub-polygroups
and some interesting properties are investigated.

2. Preliminaries

We start by giving some known and useful definitions and notations. Let H be a non-empty set and f be a mapping
f : H ×H → P∗(H), where P∗(H) is the set of all non-empty subsets of H . Then f is called a binary hyperoperation on H . We
denote byHn the Cartesian productH×· · ·×H , whereH appears n times. An element ofHn will be denoted by (x1, . . . , xn),
where xi ∈ H for any 1 ≤ i ≤ n. In general, a mapping f : Hn → P∗(H) is called an n-ary hyperoperation and n is called the
arity of the hyperoperation f . Let f be an n-ary hyperoperation on H and A1, . . . , An be nonempty subsets of H . We define

f (A1, . . . , An) =
⋃
{f (x1, . . . , xn) | xi ∈ Ai, i = 1, . . . , n}.

We shall use the following abbreviated notation: The sequence xi, xi+1, . . . , xj will be denoted by x
j
i. For j < i, x

j
i is the empty

set. Thus

f (x1, . . . , xi, yi+1, . . . , yj, zj+1, . . . , zn)

will be written as f (xi1, y
j
i+1, z

n
j+1).

Also, f (ai1, x∗)mean f (a
i
1, x, . . . , x︸ ︷︷ ︸

n−i

) for a1, . . . , ai, x ∈ P and 1 ≤ i ≤ n− 1.

A non-empty set H with an n-ary hyperoperation f : Hn → P∗(H) will be called an n-ary hypergroupoid and
will be denoted by (H, f ). An n-ary hypergroupoid (H, f ) will be called an n-ary semihypergroup if and only if the
following associative axiom holds: f (xi−11 , f (xn+i−1i ), x2n−1n+i ) = f (x

i−1
1 , f (xn+j−1j ), x2n−1n+j ) for every i, j ∈ {1, 2, . . . , n} and

x1, x2, . . . , x2n−1 ∈ H . If for all (a1, a2, . . . , an) ∈ Hn, the set f (a1, a2, . . . , an) is singleton, then f is called an n-ary operation
and (H, f ) is called an n-ary groupoid (resp. n-ary semigroup).

Definition 2.1 ([36]). An n-ary semihypergroup (H, f ) in which the equation

b ∈ f (ai−11 , xi, ani+1)

has a solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤ n, is called an n-ary hypergroup. If f is n-ary
operation then the equation becomes

b = f (ai−11 , xi, ani+1).

In this case (H, f ) is an n-ary group.
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Let (H, f )be ann-ary hypergroup and Bbe a non-empty subset ofH . Then B is ann-ary sub-hypergroup ofH if the following
conditions hold:
(i) B is closed under the n-ary hyperoperation f , i.e., for every (xn1) ∈ B

n we have f (xn1) ⊆ B.
(ii) Equation b ∈ f (bi−11 , xi, bni+1) has a solution xi ∈ B for every b1, . . . , bi−1, bi+1, . . ., bn, b ∈ B and 1 ≤ i ≤ n.

Definition 2.2 ([21]). An n-ary polygroup is a multivalued system 〈P, f , e ,−1〉, where e ∈ P ,−1 is a unitary operation on P ,
f is an n-ary hyperoperation on P , and the following axioms hold for all i, j ∈ {1, . . . , n} and x1, . . . , x2n−1, x ∈ P:

(i) f (xi−11 , f (xn+i−1i ), x2n−1n+i ) = f (x
i−1
1 , f (xn+j−1j ), x2n−1n+j ),

(ii) e is a unique element such that f

e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

 = x,
(iii) x ∈ f (xn1) implies xi ∈ f

(
x−1i−1, . . . , x

−1
1 , x, x

−1
n , . . . , x

−1
i+1

)
.

It is clear that every 2-ary polygroup is a polygroup. Every n-ary polygroup is an n-ary hypergroup.
A non-empty subset S of an n-ary polygroup P is an n-ary sub-polygroup if 〈S, f , e ,−1〉 is an n-ary polygroup, i.e., if it

is closed under the hyperoperation f , e ∈ S and x ∈ S implies that x−1 ∈ S. The following elementary facts about n-ary
polygroups follow easily from the axioms,

(1) e ∈ f

e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
j−1−i

, x−1, e, . . . , e︸ ︷︷ ︸
n−j

where i, j ∈ {1, 2, . . . , n}, i 6= j,
(2) (x−1)−1 = x,

(3) f (xi1, e∗) = f

xi−11 , e, . . . , e︸ ︷︷ ︸
k

, xi, e∗

 for 0 6= k < n− i,
(4) f (xn1)

−1
= f (x−1n , . . . , x

−1
1 ).

Now, we recall some structures commonly used in fuzzy set. In 1965, Zadeh [22] introduced the notion of a fuzzy subset
A of a non-empty set X as a membership function µA : X → [0, 1] which associates with each point x ∈ X its ‘‘degree
of membership’’ µA(x) ∈ [0, 1]. The complement of A, denoted by Ac , is the fuzzy subset given by µAc (x) = 1 − µA(x) for
all x ∈ X . In 1971, Rosenfeld [23] applied the concept of fuzzy sets to the theory of groups and studied fuzzy subgroups
of a group. Davvaz [35] applied fuzzy sets to the theory of algebraic hyperstructures and defined the concept of fuzzy sub-
hypergroups. Davvaz and Corsini [36] introduced the notion of a fuzzy n-ary sub-hypergroup of an n-ary hypergroup and
then Davvaz and et al. [37] defined the notion of a fuzzy n-ary sub-polygroup of an n-ary polygroup. We shall use the
following abbreviated notation: the sequence µ(ai), µ(ai+1), . . . , µ(aj)will be denoted by µ

aj
ai .

Definition 2.3 ([36]). Let(H, f ) be an n-ary hypergroup and µ be a fuzzy subset of H . Then µ is called a fuzzy n-ary sub-
hypergroup of H if the following axioms hold:
(i) min{µxnx1} ≤

∧
z∈f (xn1)

{µ(z)} for all xn1 ∈ H ,
(ii) for all ai−11 , ani+1, b ∈ H and 1 ≤ i ≤ n, there exists xi ∈ H such that b ∈ f (a

i−1
1 , xi, ani+1) and min{µ

ai−1
a1 , µanai+1 , µ(b)} ≤

µ(xi).

Definition 2.4 ([37]). Let P be an n-ary polygroup andµ be a fuzzy subset of P . Thenµ is called a fuzzy n-ary sub-polygroup
of P if the following axioms hold:
(i) min{µxnx1} ≤

∧
z∈f (xn1)

{µ(z)} for all xn1 ∈ P ,
(ii) µ(x) ≤ µ(x−1) for all x ∈ P .
Let P be an n-ary polygroup and B ⊆ P . Then the characteristic function χB is a fuzzy n-ary sub-polygroup of P if and only

if B is an n-ary sub-polygroup of P .
For any fuzzy subset A of a non-empty set X and any t ∈ (0, 1], we define the set µt = {x ∈ X | µ(x) ≥ t}, which is

called a t-level cut of µ.

Theorem 2.5 ([37]). Let P be an n-ary polygroup and µ a fuzzy subset of P. Then µ is a fuzzy n-ary sub-polygroup of P if and
only if for every t ∈ (0, 1], µt (6= ∅) is an n-ary sub-polygroup of P.

3. Fuzzy n-ary sub-polygroups with thresholds

A fuzzy subset µ of P of the form

µ(y) =
{
t 6= 0 if y = x,
0 if y 6= x
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is called a fuzzy point with support x and value t and is denoted xt [40]. A fuzzy point xt is said to be belong to (resp. be
quasi-coincident with) a fuzz set µ, written as xt ∈ µ (resp. xtqµ) if µ(x) ≥ t(resp. µ(x) + t > 1). If xt ∈ µ or xtqµ, then
we write xt ∈ ∨qµ. The symbol ∈ ∨qmeans neither ∈ nor q hold. Based on [25], we can extend the concept of (∈,∈ ∨q)-
fuzzy subgroups to the concept of (∈,∈ ∨q)-fuzzy n-ary sub-polygroups in the following way:

Definition 3.1. A fuzzy subset µ of an n-ary polygroup P is called an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup of P if for all
t, tn1 ∈ (0, 1] and x, x

n
1 ∈ P ,

(i) (x1)t1 , (x2)t2 , . . . , (xn)tn ∈ µ implies zt1∧t2∧···∧tn ∈ ∨qµ for all z ∈ f (x
n
1),

(ii) xt ∈ µ implies x−1t ∈ µ.

Proposition 3.2. Conditions (i) and (ii) in Definition 3.1 are equivalent,respectively, to the following conditions.
(1) min{min{µxnx1}, 0.5} ≤

∧
z∈f (xn1)

µ(z) for all xn1 ∈ P,
(2) µ(x) ∧ 0.5 ≤ µ(x−1) for all x ∈ P.

Proof. (i⇒ 1): Suppose that xn1 ∈ P . We consider the following cases:
(a) min{µxnx1} < 0.5
(b) min{µxnx1} ≥ 0.5.

Case a: Assume that there exists z ∈ f (xn1) such thatµ(z) < min{µ
xn
x1} ∧ 0.5, which implies thatµ(z) < min{µ

xn
x1}. Choose t

such that µ(z) < t < min{µxnx1}. Then (x1)t , (x2)t , . . . , (xn)t ∈ µ, but zt∈ ∨qµ, which contradicts (i).
Case b: Assume that µ(z) < 0.5 for some z ∈ f (xn1). Then

(x1)0.5, (x2)0.5, . . . , (xn)0.5 ∈ µ,

but z0.5∈ ∨qµ, which is a contradiction. Therefore (1) holds.
(ii⇒ 2): Suppose that x ∈ P . We consider the following cases:

(a) µ(x) < 0.5,
(b) µ(x) ≥ 0.5.

Case a: Assume that µ(x) = t < 0.5 and µ(x−1) = r < µ(x). Choose s such that r < s < t and r + s < 1. Then xs ∈ µ, but
(x−1)s∈ ∨qµwhich contradicts (ii). So µ(x−1) ≥ µ(x) = µ(x) ∧ 0.5.
Case b: Letµ(x) ≥ 0.5. Ifµ(x−1) < µ(x)∧0.5, then x0.5 ∈ µ, but (x−1)0.5∈ ∨qµ, which contradicts (ii). Hence the conditions
(2) holds.
(1⇒ i): Let (x1)t1 , (x2)t2 , . . . , (xn)tn ∈ µ. Then

µ(x1) ≥ t1, µ(x2) ≥ t2, . . . , µ(xn) ≥ tn.

For every z ∈ f (xn1), we have

µ(z) ≥ min{µxnx1} ∧ 0.5 ≥ t1 ∧ t2 ∧ · · · ∧ tn ∧ 0.5.

If t1 ∧ t2 ∧ · · · ∧ tn > 0.5, then µ(z) ≥ 0.5 which implies that µ(z) + (t1 ∧ t2 ∧ · · · ∧ tn) > 1. If t1 ∧ t2 ∧ · · · ∧ tn ≤ 0.5,
then µ(z) ≥ t1 ∧ t2 ∧ · · · ∧ tn. Therefore zt1∧t2∧···∧tn ∈ ∨qµ for all z ∈ f (x

n
1).

(2⇒ ii): Let xt ∈ µ, then µ(x) ≥ t . Now, we have µ(x−1) ≥ µ(x) ∧ 0.5 ≥ t ∧ 0.5, which implies that µ(x−1) ≥ t or
µ(x−1) ≥ 0.5 according to t ≤ 0.5 or t > 0.5. Therefore x−1t ∈ ∨qµ. Hence (ii) holds. �

By Definition 3.1 and Proposition 3.2, we obtain immediately:

Corollary 3.3. A fuzzy subset µ of an n-ary polygroup P is an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup of P if and only if the
conditions (1) and (2) in Proposition 3.2 hold.
We notice that if µ is a fuzzy n-ary sub-polygroup of P according to Definition 2.4, then µ is an (∈,∈ ∨q)-fuzzy n-ary

sub-polygroup of P according to Definition 3.1. However, as the following example shows, the converse is not true.

Example 3.4. Let P = {e, x, y} be a set with a 3-ary hyperoperation f as follows:

f (e, e, e) = e f (x, x, e) = {e, y} f (y, e, e) = y
f (e, e, x) = x f (x, x, x) = {x, y} f (y, e, x) = {x, y}
f (e, e, y) = y f (x, x, y) = P f (y, e, y) = {e, x}
f (e, x, e) = x f (x, e, e) = x f (y, x, e) = {x, y}
f (e, x, x) = {e, y} f (x, e, x) = {e, y} f (y, x, x) = P
f (e, x, y) = {x, y} f (x, e, y) = {x, y} f (y, x, y) = P
f (e, y, e) = y f (x, y, e) = {x, y} f (y, y, e) = {e, x}
f (e, y, x) = {x, y} f (x, y, x) = P f (y, y, x) = P
f (e, y, y) = {e, x} f (x, y, y) = P f (y, y, y) = {x, y}.
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For every xi ∈ P (i = 1, . . . , 5), we have

f (f (x1, x2, x3), x4, x5) = f (x1, f (x2, x3, x4), x5) = f (x1, x2, f (x3, x4, x5)),

i.e., f is associative. We suppose that −1 : P → P is the identity function on P . We have x−1 = x, y−1 = y, e−1 = e, and
it is easy to see that t ∈ f (x1, x2, x3) implies x1 ∈ f (t, x−13 , x

−1
2 ), x2 ∈ f (x

−1
1 , t, x

−1
3 ), x3 ∈ f (x

−1
2 , x

−1
1 , t) for every

xi ∈ P, i = 1, 2, 3. Therefore 〈P, f , e ,−1〉 is a 3-ary polygroup.
Let µ : P → [0, 1] be defined by

µ(a) =
{
0.5 if a = e,
α if a = x or a = y,

where α ∈ [0, 1], 0.5 < α. Thenµ is an (∈,∈ ∨q)-fuzzy 3-ary sub-polygroup of P . But it is not a fuzzy 3-ary sub-polygroup
of P . �

Theorem 3.5. A non-empty subset I of P is an n-ary sub-polygroup of P if and only if χI is an (∈,∈ ∨q)-fuzzy n-ary sub-
polygroup of P.

Proof. Assume that I is an n-ary sub-polygroup of P . Then χI is a fuzzy n-ary sub-polygroup in the sense of Definition 2.4
and so it is an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup.
Conversely, assume that χI is an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup of P . Then for every xn1 ∈ I , we have∧

z∈f (xn1)

χI(z) ≥ min{χI xnx1} ∧ 0.5 = 0.5

and so f (xn1) ⊆ I . Now, let x ∈ I . χI(x
−1) ≥ χI(x) ∧ 0.5 = 0.5 which implies that x−1 ∈ I . Therefore I is an n-ary sub-

polygroup of P . �

Definition 3.6. A fuzzy subset µ of an n-ary polygroup P is called an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup of P if for all
t, tn1 ∈ (0, 1] and x, x

n
1 ∈ P ,

(i) zt1∧t2∧···∧tn∈µ implies there exists 1 ≤ i ≤ n such that (xi)ti∈ ∨ qµ for all z ∈ f (x
n
1),

(ii) x−1t ∈µ implies xt∈ ∨ qµ.

Theorem 3.7. A fuzzy subset µ of an n-ary polygroup P is an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup of P iff for all x, xn1 ∈ P, it
satisfies:
(1) min{µxnx1} ≤

∧
z∈f (xn1)

(µ(z) ∨ 0.5),
(2) µ(x) ≤ µ(x−1) ∨ 0.5.

Proof. We only prove (i)⇐⇒(1). The proofs of (ii)⇐⇒(2) is similar.
(i)⇒ (1): If there exist xn1, z ∈ P with z ∈ f (x

n
1) such that µ(z) ∨ 0.5 < t = min{µ

xn
x1}, then t ∈ (0.5, 1], zt∈µ and

(xi)t ∈ µ. By (i), we have (xi)tqµ. Then t ≤ µ(xi) and t + µ(xi) ≤ 1. Thus t ≤ 0.5.This is a a contradiction with t > 0.5. So
µ(z) ∨ 0.5 ≥ min{µxnx1} for all z ∈ f (x

n
1).

(1)⇒(i): Let xn1 ∈ P such that zt1∧t2∧···∧tn∈µ for some z ∈ f (x
n
1). Thenµ(z) < min{t1, . . . tn}. Thenwe have the following.

(a) If min{µxnx1} ≤
∧
z∈f (xn1)

µ(z), then min{µxnx1} < min{t1, . . . , tn}, and consequently there exists 1 ≤ i ≤ n such that
µ(xi) < ti. It follows that (xi)ti∈µwhich implies that (xi)ti∈ ∨ qµ.

(b) If min{µxnx1} >
∧
z∈f (xn1)

µ(z), then by (1), we have 0.5 ≥ min{µxnx1}. Hence there exist 1 ≤ i ≤ n such that µ(xi) ≤ 0.5
Putting (xi)ti ∈ µ, then ti ≤ µ(xi) ≤ 0.5, 1 ≤ i ≤ n. it follows that (xi)ti∈µ and thus for 1 ≤ i ≤ n, (xi)ti∈ ∨ qµ. So (i)
holds. �

In [32], Yuan, Zhang and Ren gave the definition of fuzzy subgroup with thresholds which is a generalization Rosenfeld’s
fuzzy subgroup, and Bhakat and Das’s fuzzy subgroup. Based on [32], we can extend the concept of a fuzzy subgroup with
thresholds to the concept of fuzzy n-ary sub-polygroup with thresholds in the following way:

Definition 3.8. Let α, β ∈ [0, 1] and α < β . Let µ be a fuzzy subset of an n-ary polygroup P . Then µ is called a fuzzy n-ary
sub-polygroup with thresholds of P , if for all x, xn1 ∈ P
(i) min{µxnx1} ∧ β ≤

∧
z∈f (xn1)

(µ(z) ∨ α),
(ii) µ(x) ∧ β ≤ µ(x−1) ∨ α.

Remark 3.9. If µ is a fuzzy n-ary sub-polygroup with thresholds (α, β], then by Definition 3.8, we can conclude that
(1) µ is ordinary fuzzy n-ary sub-polygroup when α = 0, β = 1 (Definition 2.4);
(2) µ is an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup when α = 0, β = 0.5 (Proposition 3.2);
(3) µ is an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup when α = 0.5, β = 1 (Theorem 3.7).
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Now, we give a characterization of fuzzy n-ary sub-polygroups with thresholds by using their level sub-polygroups.

Theorem 3.10. A fuzzy subset µ of an n-ary polygroup P is a fuzzy n-ary sub-polygroup with thresholds (α, β) of P if and only
if µt(6= ∅) is an n-ary sub-polygroup of P for all t ∈ (α, β].

Proof. Let µ be a fuzzy n-ary sub-polygroup with thresholds of P and t ∈ (α, β]. Let xn1 ∈ µt . Then µ(x1) ≥ t , µ(x2) ≥ t ,
. . . , µ(xn) ≥ t . Now

α < t = t ∧ β ≤ min{µxnx1} ∧ β ≤
∧
z∈f (xn1)

(µ(z) ∨ α).

So for every z ∈ f (xn1)we have µ(z) ∨ α ≥ t > α which implies that µ(z) ≥ t and z ∈ µt . Hence f (xn1) ⊆ µt .
Now, let x ∈ µt , then µ(x) ≥ t and so

α < t = t ∧ β ≤ µ(x) ∧ β ≤ µ(x−1) ∨ α.

which implies that µ(x−1) ≥ t and so x−1 ∈ µt . This prove that µt is an n-ary sub-polygroup of P for all t ∈ (α, β].
Conversely, let µ be a fuzzy subset of P such that µt(6= ∅) is an n-ary sub-polygroup of P for all α < t ≤ β . If there

exist xn1, z ∈ P with z ∈ f (x
n
1) such that µ(z) ∨ α < min{µ

xn
x1} ∧ β = t, then t ∈ (α, β], µ(z) < t , x

n
1 ∈ µt . Since µt is an

n-ary sub-polygroup of P so f (xn1) ⊆ µt . Hence µ(z) ≥ t for all z ∈ f (x
n
1). This is a contradiction with µ(z) < t . Therefore

min{µxnx1} ∧ β ≤ µ(z) ∨ α for all x
n
1, z ∈ P which implies that

min{µxnx1} ∧ β ≤
∧
z∈f (xn1)

(µ(z) ∨ α)

for all xn1 ∈ P . Hence the condition (1) of Definition 3.8 holds.
Now, assume that there exists x0 ∈ P such that µ(x−10 ) ∨ α < µ(x0) ∧ β = t. Then t ∈ (α, β], x0 ∈ µt and µ(x−10 ) < t .

Since µt is an n-ary sub-polygruop, x−10 ∈ µt , we obtain µ(x
−1
0 ) ≥ t . This is a contradiction with µ(x

−1
0 ) < t . Hence

µ(x) ∧ β ≤ µ(x−1) ∨ α. Hence condition (2) of Definition 3.8 holds. �

By Theorem 3.10 and Remark 3.9, we have the following Corollary:

Corollary 3.11. Let µ be a fuzzy subset of an n-ary polygroup P. Then
(i) µ is an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup of P if and only if the set µt(6= ∅) is an n-ary sub-polygroup of P for all
t ∈ (0, 0.5].

(ii) µ is an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup of P if and only if the set µt(6= ∅) is an n-ary sub-polygroup of P for all
t ∈ (0.5, 1].

Remark 3.12. (1) By Definition 3.8, we can define other fuzzy n-ary sub-polygroup of P , such as n-ary sub-polygroup with
thresholds (0.3, 0.9], with thresholds (0.4,0,7] of P , etc.

(2) However, the fuzzy n-ary sub-polygroup with thresholds of P may not be an ordinary fuzzy n-ary sub-polygroup, may
not be an (∈,∈ ∨q)-fuzzy n-ary sub-polygroup, and may not be an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup, respectively,
as shown by the following example.

Example 3.13. Consider the 3-ary polygroup P as defined in Example 3.4. Let us define a fuzzy subset µ : P → [0, 1] as
follows:

µ(x) = 0.3, µ(e) = 0.6, µ(y) = 0.7.

We have

µt =


P if 0 ≤ t ≤ 0.3,
{e, y} if 0.3 < t ≤ 0.6,
{y} if 0.6 < t ≤ 0.7,
∅ if 0.7 < t ≤ 1.

Then µ is a fuzzy 3-ary sub-polygroup with thresholds for (α = 0, β = 0.3). But µ
• is not a fuzzy 3-ary sub-polygroup,
• is not an (∈,∈ ∨q)-fuzzy 3-ary sub-polygroup of P ,
• is not an (∈,∈ ∨ q)-fuzzy n-ary sub-polygroup of P .

4. Applications of fuzzy implications

Fuzzy logic is an extension of set theoretic variables in terms of the linguistic variable truth. Some operators, like
∧,∨,¬,→ in fuzzy logic are also defined by using truth tables, the extension principle can be applied to derive definitions
of the operators.
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In the fuzzy logic, truth value of fuzzy proposition P is denoted by [P]. In the following, we display the fuzzy logical and
corresponding set-theoretical notions used in this paper:

[x ∈ A] = A(x),
[x 6∈ A] = 1− A(x),
[P ∧ Q ] = min{[P], [Q ]},
[P → Q ] = min{1, 1− [P] + [Q ]},
[∀xP(x)] = inf[P(x)],
|H P if and only if [P] = 1.

A function I : [0, 1] × [0, 1] −→ [0, 1] is called fuzzy implication if it is monotonic with respect to both variables
(separately) and fulfils the binary implication truth table:

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.
By monotonicity

I(0, x) = I(x, 1) = 1 for all x ∈ [0, 1],
where I is decreasing with respect to the first variable (I(1, 0) < I(0, 0)) and I is increasing with respect to the second
variable (I(1, 0) < I(1, 1)).
Of course, various implication operators have been defined.We only show a selection of themost importantmulti-valued

implications in the next table, α denotes the degree of truth (or degree of membership) of the premise, β the respective
values for the consequence, and I the resulting degree of truth for the implication:

Name Definition of implication operators

Early Zadeh Im(α, β) = max{1− α,min{α, β}}
Łukasiewicz Ia(α, β) = min{1, 1− α + β}

Standard star(Gödel) Ig(α, β) =
{
1 if α ≤ β
β if α > β

Contraposition of Gödel Icg(α, β) =
{
1 if α ≤ β
1− α if α > β

Gaines–Rescher Igr(α, β) =
{
1 if α ≤ β
0 if α > β

Kleene–Dienes Ib(α, β) = max{1− α, β}

Goguen Igg(α, β) =

{
1 if α ≤ β
β

α
if α > β

In the following definition, we consider the definition of implication operator in the Łukasiewicz system of continuous-
valued logic.

Definition 4.1. A fuzzy subset µ of an n-ary polygroup P is called a fuzzifying n-ary sub-polygroup of P if and only if it
satisfies:
(i) For any xn1 ∈ P ,

|H [[x1 ∈ µ] ∧ [x2 ∈ µ] ∧ ... ∧ [xn ∈ µ] −→ [∀z ∈ f (xn1), z ∈ µ]],
(ii) For any x ∈ P ,

|H [[x ∈ µ] −→ [x−1 ∈ µ]].

Clearly Definition 4.1 is equivalent to Definition 3.1. Therefore, a fuzzyfying n-ary sub-polygroup is an ordinary fuzzy
n-ary sub-polygroup.
In [40], the concept of t- tautology is used, i.e.,
|Ht T if and only if [T ] ≥ t for all valuations.
Now, we can extend the concept of implication-based fuzzy subgroup to the concept of implication-based fuzzy n-ary

sub-polygroups in the following way.

Definition 4.2. A fuzzy subset µ of an n-ary polygroup P is called a t-implication-based fuzzy n-ary sub-polygroup of P with
respect to implication−→ if and only if satisfies:
(i) For any xn1 ∈ P

|Ht [[x1 ∈ µ] ∧ [x2 ∈ µ] ∧ · · · ∧ [xn ∈ µ] −→ [∀z ∈ f (x
n
1), z ∈ µ]]

(ii) For any x ∈ P ,

|Ht [[x ∈ µ] −→ [x
−1
∈ µ]].
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Corollary 4.3. A fuzzy subset µ of an n-ary polygroup P is a t-implication-based fuzzy n-ary sub-polygroup of P with respect to
implication I if and only if

(i) I(min{µxnx1},
∧
z∈f (xn1)

µ(z)) ≥ t for all xn1 ∈ P,
(ii) for x ∈ P, I(µ(x), µ(x−1)) ≥ t.

Example 4.4. Consider the 3-ary polygroup P as defined in Example 3.4. Let us define a fuzzy subset µ : P → [0, 1] as
follows:

µ(e) = 0.4, µ(x) = 1, µ(y) = 0.2.

Thenµ is a t-implication-based fuzzy 3-ary sub-polygroup of P with respect to Łukasiewicz implication, for all 0 < t ≤ 0.2.
But µ

• is not a t-implication-based fuzzy 3-ary sub-polygroup of P with respect to Contraposition of Gödel implication, for all
t ∈ (0, 1],
• is not an (∈,∈ ∨q)-fuzzy 3-ary sub-polygroup of P .

Theorem 4.5. Let µ be fuzzy subset of an n-ary polygroup P.

(i) Let I = Igr . Thenµ is a 0.5-implication-based fuzzy n-ary sub-polygroup of P if and only if µ is a fuzzy n-ary sub-polygroup
with thresholds α = 0 and β = 1 of P.

(ii) Let I = Ig . Then µ is a 0.5-implication-based fuzzy n-ary sub-polygroup of P if and only if µ is a fuzzy n-ary sub-polygroup
with thresholds α = 0 and β = 0.5 of P.

(iii) Let I = Icg . Then µ is a 0.5-implication-based fuzzy n-ary sub-polygroup with thresholds if and only if µ is a fuzzy n-ary
sub-polygroup with thresholds α = 0.5 and β = 1 of P.

Proof. We prove only (ii) and the proof of (i) and (iii) are similar. Suppose that µ is a 0.5-implication-based fuzzy n-ary
sub-polygroup of P . Then by Corollary 4.3(i), we have

(1) I(min{µxnx1},
∧
z∈f (xn1)

µ(z)) ≥ 0.5 for all xn1 ∈ P ,
(2) for x ∈ P , I(µ(x), µ(x−1)) ≥ 0.5.

From (1), we have

min{µxnx1} ≤
∧
z∈f (xn1)

µ(z) or 0.5 ≤
∧
z∈f (xn1)

µ(z) < min{µxnx1}.

Then min{min{µxnx1}, 0.5} ≤
∧
z∈f (xn1)

µ(z)which implies that

min{min{µxnx1}, 0.5} ≤

 ∧
z∈f (xn1)

µ(z) ∨ 0

 .
From (2), we have µ(x) ≤ µ(x−1) or 0.5 ≤ µ(x−1) < µ(x). Thus min{µ(x), 0.5} ≤ µ(x−1) which implies that

µ(x) ∧ 0.5 ≤ µ(x−1 ∨ 0).
The converse is clear. �
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