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Given a braided tensor V-category C with conjugate (dual) objects and
irreducible unit together with a full symmetric subcategory S we define a crossed
product C < S. This construction yields a tensor V -category with conjugates and an
irreducible unit. (A V -category is a category enriched over VectC with positive
V -operation.) A Galois correspondence is established between intermediate
categories sitting between C and C < S and closed subgroups of the Galois group
Gal(C < S�C)=AutC(C < S) of C, the latter being isomorphic to the compact
group associated with S by the duality theorem of Doplicher and Roberts. Denot-
ing by D/C the full subcategory of degenerate objects, i.e., objects which have tri-
vial monodromy with all objects of C, the braiding of C extends to a braiding of
C < S iff S/D. Under this condition, C < S has no non-trivial degenerate objects
iff S=D. If the original category C is rational (i.e., has only finitely many
isomorphism classes of irreducible objects) then the same holds for the new one.
The category C�� #C < D is called the modular closure of C since in the rational case
it is modular, i.e., gives rise to a unitary representation of the modular group
SL(2, Z). If all simple objects of S have dimension one the structure of the
category C < S can be clarified quite explicitly in terms of group cohomology.
� 2000 Academic Press

1. INTRODUCTION

Since in this paper we are concerned with symmetric and braided tensor
(or monoidal) categories [20] it may be useful to sketch the origin of some
of the pertinent ideas. Symmetric tensor categories were formalized in the
early sixties, but they are implicit in the earlier Tannaka�Krein duality
theory for compact groups. Further motivation for their analysis came
from Grothendieck's theory of motives and led to Saaveda Rivano's work
[28], which was corrected and extended in [4]. These formalisms
reconstruct a group (compact topological in the first, algebraic in the
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second case) from the category of its representations, the latter being con-
crete, i.e., consisting of vector (Hilbert) spaces and linear maps between
these.

In the operator algebraic approach to quantum field theory it was
realized around 1970 that the category of localized superselection sectors
($ physically relevant representations of the C*-algebra A of observ-
ables) is symmetric monoidal, cf. [26]. This category being a category of
endomorphisms of A��not of vector spaces��the existing duality theorems
did not apply. This led Doplicher and Roberts to develop their charac-
terization [6] of representation categories of compact groups as abstract
symmetric tensor categories satisfying certain additional axioms. This result
allowed the solution [7] of the longstanding problem of (re-)constructing
a net of charged field algebras F which intertwine the inequivalent
representations of A and have nice properties like Bose�Fermi commuta-
tion relations. (In fact, assuming the duality theorem for abstract symmetric
categories such a reconstruction result existed much earlier [25].) At the
same time and independently Deligne extended [5] the earlier works
[28, 4] by identifying a necessary and sufficient condition for an abstract
symmetric tensor category to be the representation category of an algebraic
group. The crucial property is that all objects in the given category have
integer dimension. (For symmetric C*-tensor categories this is automatic
[6, Corollary 2.15] as a consequence of Hilbert space positivity.)

Braided tensor categories without the symmetry requirement entered the
scene only in the eighties. From a theoretical point of view braided tensor
categories are most naturally ``explained'' by identifying [14] them as
2-categories with tensor product and only one object, which in turn are just
3-categories with only one object and one 1-morphism. (All these notions
are easiest to deal with in the strict case, which for (symmetric, braided)
tensor categories does not imply a loss of generality in view of the
coherence theorems [20, 14].) But the main reason for their recent
prominence is their relation to certain algebraic structures arising in
physics (Yang�Baxter equation, quantum groups) and to topological
invariants of knots, links, and 3-manifolds. The latter subject was boosted
by V. Jones' construction of a new knot invariant which was soon dis-
covered to be related to the quantum group SUq(2) where q is a root of
unity, and subsequently invariants of 3-manifolds were constructed for all
quantum groups at roots of unity. The theory reached a certain state of
maturity when it was understood that the crucial ingredient underlying
these invariants of 3-manifolds is a certain class of braided tensor
categories which are called modular [29]. A modular category is a braided
tensor category which (i) has a twist [29] or balancing [14], (ii) is
rational��i.e., has only finitely many isomorphism classes of irreducible
objects��and (iii) is non-degenerate. Here non-degeneracy means that an
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irreducible object \ for which =(\, _) b =(_, \)=id_\ \_ is equivalent to the
unit object @. (The designation of such categories as modular is owed to the
fact that they give rise to a finite dimensional representation of the modular
group SL(2, Z) [29]; see also [23].) The role of the quantum groups then
reduces just to providing several infinite families of modular categories
(roughly, one for every pair (root of unity, classical Lie algebra)). Another
construction of modular categories starts from link invariants, cf. [29,
Chap. XII; 30]. Finally, braided tensor categories appear naturally also in
the superselection theory of quantum field theories in low dimensional
spacetimes, cf., e.g., [17]. In many cases, as for the WZW and orbifold
models, these categories actually turn out to be modular. Let A be a quan-
tum field theory in 1 + 1 dimensions and let C be the braided category of
superselection sectors with finite statistics. Since the full subcategory D/C

of degenerate sectors is symmetric, the Doplicher�Roberts construction can
be applied to A and D and yields new theory F. In [23] Rehren conjec-
tured that the representation category of F is nondegenerate. Under the
assumption that A has only finitely many irreducible degenerate sectors
this was proved by the author in [21]. The aim of the present paper is to
give a purely categorical analogue of this construction (without the finite-
ness restriction).

More precisely, given a braided tensor category C which is enriched over
VectC , has a positive V -operation, conjugate (dual) objects, direct sums
and subobjects, and an irreducible unit object together with a symmetric
subcategory S satisfying the same properties, we define a crossed product
C < S. (The existence of direct sums and subobjects (in the sense of [10])
is no serious restriction since it can always be achieved by embedding the
category in a bigger one [19, Appendix].) This construction proceeds in
two steps. First we define a tensor category C <0 S which has the same
objects and tensor product as C but bigger spaces of arrows, i.e.,

HomC < 0 S(\, _)#HomC(\, _) \\, _ # C. (1.1)

Of course, we have to prove that C <0 S satisfies all axioms of a tensor
V-category. The new category inherits the braiding = from C iff S contains
only degenerate objects, thus iff S/D where D/C is the full subcategory
of degenerate objects as above. (If this condition is not fulfilled naturality
of = fails for some of the new morphisms of C <0 S). Now, C <0 S will be
closed under direct sums, but usually not under subobjects. Thus we apply
the abovementioned procedure of [19] in order to obtain a category
C <0 S which is closed under direct sums and subobjects. Then the braiding
of C <0 S��if it exists��extends to C < S. The result of this construction is
again a tensor category with positive V-operation and conjugates, direct
sums, subobjects, and irreducible unit. C < S is braided if S/D. Under
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this condition we prove that C < S has no degenerate objects iff S=D.
The category C�� =C < S is called the modular closure of C since in the
rational case (where there are only finitely many isomorphism classes of
irreducible objects) it is modular. (In particular, C�� is rational if C is.) The
modular closure C�� is non-trivial, i.e., has irreducible objects which are not
equivalent to the unit, iff C is not symmetric, thus not completely
degenerate. Define the absolute Galois group Gal(C) of a braided tensor
category C to be the compact group associated to the symmetric tensor
category D(C) by the duality theorem of Doplicher and Roberts. For every
symmetric category S/C we establish a Galois correspondence between
subcategories E of C < S containing C and closed subgroups H of the
relative Galois group G=AutC(C < S)$Gal(S), given by E=(C < S)H

and H=AutE(C < S). The normal subgroups H correspond to the sub-
extensions C < T where T/S and Gal(T)$G�H. If S/D then C < S

is a braided subextension of C�� =C < D, the absolute Galois group
Gal(C < S) being isomorphic to H=AutC < S(C�� ). Giving an explicit
description of the (isomorphism classes of) irreducible objects of C < S is
difficult in general, but if all irreducible objects of S have dimension one,
corresponding to abelian Gal(S), the structure of the category C < S can
be clarified quite explicitly in terms of group cohomology.

We briefly describe the organization of the paper. In Section 2 we give
precise definitions and several preparatory results on braided C*-tensor
categories. In particular we prove that they are automatically ribbon
categories, i.e., have a twist. In Section 3 the crossed product C < S is
defined and proved to be a C*-tensor category. Then, in Section 4 we
prove that C < D is non-degenerate and establish the Galois corre-
spondence. In Section 5 we enlarge on abelian extensions, the case of super-
groups, and make some further remarks on the case S/3 D.

2. DEFINITIONS AND PREPARATIONS

2.1. Some Results on C*-Tensor Categories

We begin by establishing our notation concerning tensor categories.
Objects will be denoted by small Greek letters \, _, etc. The set of arrows
(morphisms) between \ and _ in the category C is HomC(\, _), where the
subscript C is omitted when there is no danger of confusion. The identity
arrow of \ is id\ , and composition of arrows is denoted by b . The tensor
product \�_ of objects will abbreviated by \_. All tensor categories in
this paper are supposed small and strict, thus when we mention these
conditions it is only for emphasis. (A tensor category is strict if the
tensor product satisfies associativity \(_')=(\_) ' ``on the nose'' and
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there is a unit object @ satisfying \@=@\=\ \\.) Given two arrows
R # Hom(\, _), R$ # Hom(\$, _$) there is an arrow R_R$ # Hom(\\$, __$).
The mapping (R, R$) [ R_R$ is associative, satisfies id@ _R=R_id@=R,
and the interchange law

(S b R)_(S$ b R$)=S_S$ b R_R$ (2.1)

if S # Hom(_, {), S$ # Hom(_$, {$). A tensor category C is braided if there is
a family of invertible arrows [=(\, _) # Hom(\_, _\), \, _ # C], natural in
both variables and satisfying

=(\, _1_2)=id_1
_=(\, _2) b =(\, _1)_id_2

, (2.2)

=(\1\2 , _)==(\1 , _)_id\2
b id\1

_=(\2 , _) (2.3)

for all \i , _i . A braided tensor category is symmetric if the braiding satisfies
=(\, _) b =(_, \)=id_\ \\, _.

All categories in this paper will be enriched over VectC , but we do not
presuppose familiarity with this notion. A complex tensor category is a ten-
sor category, for which the sets Hom(\, _) of arrows are complex vector
spaces and the composition b and tensor product _ of arrows are bilinear.
A V -operation on a complex tensor category is a map which assigns to an
arrow X # Hom(\, _) another arrow X* # Hom(_, \). This map has to be
antilinear, involutive (X**=X ), contravariant ((S b T )*=T* b S*), and
monoidal ((S_T )*=S*_T*). A V -operation is positive iff X* b X=0
implies X=0. A tensor V -category is a complex tensor category with a
positive V -operation. For such categories we admit only unitary braidings.

An object \ is called irreducible or simple if Hom(\, \)=C id\ . As
usual, two objects \, _ are equivalent (or isomorphic) iff Hom(_, \) con-
tains an invertible arrow. In W*-categories Hom(_, \) then contains a
unitary by polar decomposition of morphisms [10, Corollary 2.7]. An
object _ is a subobject of \, denoted _O\, iff Hom(_, \) contains an
isometry. Note that this notion of subobjects differs from the standard one
of category theory [20], cf. also the remarks in [10, p. 98]. A tensor
V-category is closed under subobjects (or, has subobjects) if for every
orthogonal projection E # Hom(\, \) there is an object _ and an isometry
V # Hom(_, \) such that V b V*=E. A tensor V -category has (finite) direct
sums iff for every pair \1 , \2 there are { and isometries Vi # Hom(\ i , {)
such that V1 b V1*+V2 b V 2*=id{ . Then we write {$\1 �\2 . Note that
every {$${ is a direct sum of \1 , \2 , too. A tensor V -category can always
canonically be extended to a tensor V-category with direct sums and
subobjects [19, Appendix].

From now on all categories are tensor V -categories. In the present setting
it is convenient to define conjugate (dual) objects in a way which differs
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slightly from the one for rigid (autonomous) tensor categories [14, 29].
We give only the main definitions and facts and refer to [19] for the
details. An object \� is said to be conjugate to \ if there are R # Hom(@, \� \),
R� # Hom(@, \\� ) satisfying the conjugate equations

R� *_id\ b id\_R=id\ , R*_id\� b id\� _R� =id\� . (2.4)

A category C has conjugates if every object \ # C has a conjugate \� # C. If
\ is irreducible, then an irreducible conjugate \� is unique up to
isomorphism and (upon proper normalization of R, R� ) R* b R=R� * b R� #
Hom(@, @) is independent of the choice of R, R� . Then the dimension defined
via d(\) id@=R* b R is in [1, �) and satisfies d(\)=d(\� ). For reducible \
we admit only standard solutions [19] of (2.4). This means that R\=
�i W� i_W i b Ri where \$�i \ i is a decomposition into irreducibles effected
by the isometries Wi and Ri is (part of) a normalized solution of (2.4) for
\i . Then the definition d(\)=R*\ b R\ extends to reducible objects and
yields a multiplicative dimension function. (This dimension is subject to the
same restriction as the square root of the Jones index of an inclusion of
factors, cf. [19]. Note that the braiding does not play a role here, yet the
categorical dimension coincides with the q-dimension for representation
categories of quantum groups [27].)

The more specific notion of C*-tensor categories will not be needed
explicitly in this paper. But since we wish to make use of results of
[10, 6, 19] we will prove that many tensor V -categories are automatically
C*-tensor categories. Now, a C*-tensor category is a complex tensor
category with a V-operation. Furthermore, the spaces Hom(\, _), \, _ # C

are Banach spaces and the norms satisfy

&Y b X&�&X& &Y&, (2.5)

&X* b X&=&X&2 (2.6)

for X # Hom(\, _), Y # Hom(_, '). (Then the algebras Hom(\, \), \ # C are
C*-algebras.) See the cited references for examples.

It is known [19] that in a C*-tensor category with conjugates and an
irreducible unit, i.e., Hom(@, @)=C id@ , all spaces of arrows are finite
dimensional. The following result is a converse, which generalizes a
well-known fact on finite dimensional C-algebras.

Proposition 2.1. Let C be a Vect fin
C -category, i.e., a category where

Hom(\, _) is a finite dimensional C-vector space for every pair \, _ # C, the
composition b being bilinear. Then C is a C*-category iff there is a positive
V-operation.
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Proof. If C is a C*-category there is a V -operation by definition.
Positivity follows from (2.6). Assume conversely the existence of a positive
V-operation. In particular, V gives rise to a positive involution on the
algebras Hom(\, \), \ # C. The latter being finite dimensional C-algebras,
this implies semisimplicity and the existence of unique C*-norms. Now we
consider the V -algebras M(\1 , ..., \n) [10, p. 86] associated with n objects
(which, roughly speaking, are the algebras generated by the arrows
between the objects \1 , ..., \n). For an element X� =(Xij) of M(\1 , ..., \n),
X� *X� =0 is equivalent to X*ij b Xij=0 \i, j=1, ..., n. Since by assumption
this holds only if all Xij vanish, the V -involution of M(\1 , ..., \n) is positive
and also M(\1 , ..., \n) is a C*-algebra. Now we define the norm on
Hom(\, _) by

&X&=- &X* b X&, X # Hom(\, _), (2.7)

where the norm on the right hand side is the one of M(\, _). Since the
algebras M form a directed system the norm of X* b X is the same in, say,
M(\, _, ') and thus well defined. As an immediate consequence we have
&X&=&X*&, and the submultiplicativity of the norms

&Y b X&�&X& &Y& (2.8)

for X # Hom(\, _), Y # Hom(_, ') required of a C*-category follows from
submultiplicativity in M(\, _, '). The C*-condition (2.6) follows from the
C*-property of M(\, _). K

Remark. This result is probably well known among experts, but to the
best of the author's knowledge it never appeared in print. Yet it is used
implicitly in [32] where certain categories are proved to have a positive
V-operation and concluded to be C*-categories.

In the above result we did not assume irreducibility of the unit @, viz.
Hom(@, @)=C id @ . From now on all categories in this paper will be assumed
to have this property, which has been called connectedness [2]. We will
remark on the disconnected case in the outlook.

We summarize the properties of the categories we will study.

Definition 2.2. A TC* is a small strict tensor V -category with con-
jugates, direct sums, subobjects, finite dimensional spaces of arrows, and an
irreducible unit object. A BTC* is a TC* with a unitary braiding. A STC*
is a symmetric BTC*.

Remark. All concepts in this definition which are not standard category
theory are from [10, 6, 19]. That they were arrived at independently under
the name ``unitary categories'' [29, Sect. II.5] underlines their naturality.
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In the literature on braided tensor categories additional pieces of struc-
ture have been considered, mostly motivated by the study of topological
invariants of 3-manifolds.

Definition 2.3. A twist [29] or balancing [14] for a braided tensor
category C is a family [}(\) # Hom(\, \), \ # C] of invertible arrows
satisfying naturality

T b }(\)=}(_) b T \T # Hom(\, _) (2.9)

and the conditions

}(\1 \2)=}(\1)_}(\1) b =(\2 , \1) b =(\1 , \2) \\1 , \2 (2.10)

}(\� )_id\ b R=id\� _}(\) b R (2.11)

for every standard solution (\, \� , R, R� ) of the conjugate equations. In a
tensor V -category }(\) is required to be unitary.

Remarks. (1) The condition (2.9) is equivalent to saying the } is a
natural transformation of the identity functor to itself. (The set of these was
called the center of C in [10].)

(2) In [14] the definition of a twist does not include (2.11). There a
category with conjugates and a twist satisfying (2.11) is called tortile.

(3) If \ is irreducible then we define |(\) # C via }(\)=|(\) id\ .

A remarkable feature of the BTC*'s is that they automatically possess a
canonically defined twist. It is defined and studied in [19, Theorem 4.2],
where, however, the property (2.11) was not proved.

Proposition 2.4. BTC* are ribbon categories, i.e., have a twist.

Proof. In [19, Sect. 4] for every BTC* C a family [}(\) # Hom(\, \),
\ # C] satisfying (2.9), (2.10) was defined, the }'s being unitary whenever
the braiding = is unitary. (Recall that we assume this throughout.) Thus it
only remains to prove (2.11) and in view of the naturality of the twist it is
sufficient to consider only irreducible \, where (2.11) reduces to |(\)=
|(\� ). This is done in Fig. 1. In the first and last equalities we have used
that for \ irreducible and Hom(\, \) % T=C id\ we have

R* b id\� _T b R=R� * b T_id\ b R� =C d(\). (2.12)

158 MICHAEL MU� GER



FIG. 1. Proof of |(\)=|(\� ).

(Here we use d(\)=R* b R=R� * b R� =d(\� ), cf. [19].) That the two ways of
closing the loop in (2.12) yield the same result is used in the fifth equality
of the above calculation. The other steps use nothing more than the
interchange law. K

Remark. This argument has been adapted from algebraic quantum field
theory, cf. [17, Lemma II.5.14]. L. Tuset independently arrived at essen-
tially the same proof. The proposition appears already in J. Fro� hlich and
T. Kerler, ``Quantum groups, quantum categories and quantum field theory,''
though without proof. In a slightly different setting it is proven in [2].
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2.2. The Galois Group of a Braided Tensor Category

Definition 2.5. The monodromy of two objects of a braided tensor
category C is

=M(\, _)#=(_, \) b =(\, _) # Hom(\_, \_). (2.13)

An object _ # C is degenerate iff

=M(\, ')=id\' \' # C. (2.14)

A braided tensor category is degenerate if there is an irreducible degenerate
object which is not isomorphic to the unit object @.

Remark. Clearly, a braided tensor category is symmetric iff all objects
are degenerate.

Definition 2.6. Let C be a BTC*. Then D(C) is the full subcategory
whose objects are the degenerate objects of C.

Proposition 2.7. D(C) is a symmetric tensor category with V-operation,
conjugates, direct sums, subobjects, and finite dimensional spaces of
morphisms.

Proof. For \, _, ' # C we have

=M(\_, ')==(', \_) b =(\_, ')

=id\_=(', _) b =(', \)_id_ b =(\, ')_id_ b id\_=(_, '). (2.15)

It is easily seen that this reduces to id\_' if \ and _ have trivial monodromy
with '. Thus the set of degenerate objects is closed under multiplication.
Now let \$�i # I \ i , i.e., there are morphisms Vi # Hom(\ i , \) such that
V i* b Vj=$i, j id\i

and � i Vi b V i*=id\ . Then by naturality of the braiding
we have

=M(\, ')=:
i

Vi_id' b =M(_ i , ') b V i*_id' , (2.16)

which implies that \ is degenerate iff all \i O\ are degenerate. Thus the set
of degenerate objects is closed under direct sums and subobjects. In order
to show that the conjugate of a degenerate object is degenerate, it is suf-
ficient to consider irreducible objects. The following equality is proved by
the same argument as already employed in the proof of Proposition 2.4:
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Using this we see that =M(\, _)=id\_ for all _ implies =M(\� , _)=id\� _ \_.
D(C) is a STC*, since the braiding of C is symmetric in restriction to the
degenerate objects. K

Remark. From the above it is clear that D(C) is the correct object to
be denoted as the center of C. This is the analogue for braided tensor
categories of the usual center of a monoid (=tensor 0-category), but it
must not be confused with yet another definition of a ``center,'' namely the
quantum double Z(C ) (which is a braided tensor category) of a tensor
category C (not necessarily braided).

By the above result and Proposition 2.1, D(C) satisfies the assumptions
of the duality theorem of [6]. We briefly summarize the principal results
of [6]. Since every object of a symmetric tensor category S satisfies
=(\, \)2=id\2 , the twist in a STC* takes only the values \1. (In physics,
objects with twist +1 and &1 are called bosons and fermions, respectively.)
For irreducible \1 , \2 , (2.10) reduces to }(\1\2)=|(\1) |(\2) id\1 \2

, thus
all subobjects of \1\2 have the same twist. Therefore the objects with twist
+1 generate a full subcategory S+ which is again a BTC*. We assume for
a moment that S is even, thus S=S+. By [6, Theorem 6.1] there is a
compact group G unique up to isomorphism such that S$U(G) where
U(G) is a category of finite dimensional unitary representations of G con-
taining representers for all isomorphism (unitary equivalence) classes of
irreducible representations of G. (Conceptually, the proof of this may be
considered to be composed of two steps. First one shows that for a
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category with the above properties there is a symmetric C*-tensor functor
F, the embedding functor, into the category H of Hilbert spaces. F is
unique up to a natural transformation. In the second step the Tannaka�
Krein reconstruction theorem is applied to the category F(S) and shows
that F(S) is isomorphic to a category of representations of a uniquely
defined compact group G. But observe that the proof in [6] is independent
of the Tannaka�Krein theory in that the group G is constructed
simultaneously with the embedding.)

Since all objects in a category U(G) have twist +1 the above result
cannot hold if S contains fermionic objects. Yet in this case the braiding
in S can be modified (``bosonized'') such as to obtain an even BTC* S$
and a compact supergroup (G, k). Here G is the compact group associated
to S$ and k is an element of order two in the center of G such that the
twist of an irreducible object in S is the value of k in the associated
representation of G. The group G+ corresponding to S+ is just the
quotient G+=G�[e, k].

Definition 2.8. Let C be a BTC*. Then the absolute Galois group
Gal(C) is the compact group associated by Doplicher and Roberts to the
center D(C) of C.

Remark. Strictly speaking, Gal(C) is not a group but an isomorphism
class of groups. As soon as a representation functor F : D(C) � H has
been chosen we have a concrete group GalF (C), the group of natural
transformations from F to itself as first considered in [28].

The following discussion serves only to motivate the terminology
``modular closure'' of Section 4 and may be ignored.

Given two irreducible objects \, _ the number Y\, _ defined by

depends only on the isomorphism classes of \, _.

Definition 2.9. A category is rational if the number of isomorphism
classes of irreducible objects is finite.

In a rational category Y gives rise to a (finite) matrix indexed by the
isomorphism classes of irreducible objects.
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Definition 2.10. A rational BTC* is modular if the matrix Y is
invertible.

Remark. Recall that the existence of a twist which is usually required
from a modular category [29] is automatic in BTC*'s.

Proposition 2.11. A rational BTC* is modular iff it is non-degenerate.
In the non-degenerate case Y is proportional to a unitary matrix S which together
with a certain matrix T B diag(|i) gives rises to a unitary representation of
SL(2, Z).

Proof. The statement is the categorical version of a result from [23]
and can be proved by straightforward adaption of the arguments of [23,
Sect. 5] to the framework of BTC*'s. (The factor di dj in [23, (5.11)] is
accounted for by the different normalizations of the R's in [23] and the
present paper.) We refrain from giving details since that would use too
much space and will not be used in this paper. The claimed fact will be
contained as a special case in a more general result, proved in [22]. K

3. CROSSED PRODUCT OF BRAIDED TENSOR V-CATEGORIES
BY SYMMETRIC SUBCATEGORIES

3.1. Definition of the Crossed Product

We assume that C has direct sums and subobjects, which can be inter-
preted by saying that reducible objects are always completely reducible, or
C is semisimple. This does not constitute a loss of generality since it can
always be achieved by the canonical construction given in [19, Appendix].
We assume Hom(@, @)=C id@ , i.e., the unit object @ is irreducible.

In this work we will frequently deal with subcategories S/C. All such
subcategories will be assumed replete full. (A subcategory S/C is full iff
HomS(\, _)=HomC(\, _) \\, _ # S, thus it is determined by Obj S.
A subcategory is replete iff \ # S implies _ # S for all _ # C isomorphic
to \.) The replete full subcategories of C form a lattice under inclusion,
where S1 /S2 means Obj S1 /Obj S2 .

Let now S/C be a (replete full) symmetric subcategory closed under
conjugates, direct sums, and subobjects, the standard example being D(C)
by Proposition 2.7. We do not assume S/D(C) but we require that S is
even and refer to Subsection 5.3 for the supergroup case. By the duality
theorem of Doplicher, and Roberts we have a unique compact group G
and an invertible functor F : S � U(G). Here U(G) is a category of finite
dimensional continuous unitary representations of G, which is closed under
subrepresentations and direct sums and which contains members of each
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isomorphism class of irreducible representations. (Note that we did not
specify the cardinalities of isomorphism classes in U(G), since they depend
on the cardinalities in the given category S!) The identity object of the
category U(G), viz. the space H0 $C on which the trivial representation of
G ``acts,'' contains a unit vector 0 such that the following identifications
hold:

0 g_ �=� g_ 0=� \H # Obj U(G), � # H. (3.1)

In order to avoid confusion with a later use of � , the tensor product of
objects in F(S)=U(G), which are Hilbert spaces, will be denoted by g_ (as
already done above) and the product of objects \, _ in C by simple
juxtaposition \_. The composition and tensor product of arrows will be
denoted by b and _, respectively, in both categories. Let G� be the set of
all isomorphism classes of irreducible objects in S or, equivalently by the
duality theorem, of irreducible representations of G. Let [#k , k # G� ] be a
section of objects in S such that #0=@ and let Hk=F(#k) be the images
under the functor F. For every triple k, l, m # G� we choose an orthonormal
basis

[V m, :
k, l , :=1, ..., N m

k, l] (3.2)

in the space Hom(#m , #k# l). (The latter space of arrows is in fact a Hilbert
space, but it should not be confused with the spaces Hk , k # G� .)

The set G� has an involution k [ k� which associates to every
isomorphism class of representations of G the conjugate class. By the
isomorphism between S$U(G) this implies for our chosen section that #k�

is conjugate to #k . Thus there are intertwiners Rk # Hom(@, #k� #k),
R� k # Hom(@, #k#k� ) such that

R� k*_id#k
b id#k

_Rk=id#k
, Rk*_id#k�

b id#k�
_R� k=id#k�

. (3.3)

Since this is symmetric under k W k� , R W R� one can choose
Rk� =R� k , R� k� =Rk for conjugate pairs of non-selfconjugate objects. For
selfconjugate objects it is known that one can achieve either R� k=Rk or
R� k=&Rk depending on whether #k is real or pseudo-real. The above
choices will be assumed in the sequel.

Now we define a new category C <0 S in terms of the data C, S, F, G� .

Definition 3.1. The category C <0 S has the same objects as C with
the same tensor product. The arrows in C <0 S are defined by

HomC <0 S(\, _)= �
k # G�

HomC(#k \, _)�Hk (3.4)
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with the obvious complex vector space structure. In order to economize on
brackets we declare the precedence of products to be � >_> b >},
where � , } are different symbols for the tensor product in (3.4).

Let k, l # G� , T # Hom(#l\, _), S # Hom(#k_, $), and �k # Hk , �l # Hl .
Then the composition of arrows in C <0 S is defined by

HomC < 0 S(\, $) % S��k b T��l

= �
m # G�

:

N m
k, l

:=1

S b id#k
_T b V m, :

k, l _id\}F (V m, :
k, l )* (�k g_ �l) (3.5)

and linear extension. Here F is the embedding functor, thus F (V m, :
k, l )* is a

partial isometry from Hk g_ Hl onto Hm .
Let k, l # G� , S # Hom(#k \1 , _1), T # Hom(#1 \2 , _2), and �k # Hk , �l # Hl .

Then the tensor product of arrows in C <0 S is defined by

HomC < 0 S(\1 \2 , _1_2) % S��k_T��l

= �
m # G�

:

Nm
k, l

:=1

S_T b id#k
_=(#l , \1)_id\2

b V m, :
k, l _id\1 \2

}F (V m, :
k, l )*(�k g_ �l). (3.6)

Finally, the V-operation of C <0 S on the arrows S��k # HomC < 0 S(\, _)
with S # Hom(#k \, _), � # Hk is defined by

(S��k)*=Rk*_id\ b id#k�
_S*}(�k g_ }, F (R� k) 0). (3.7)

Remarks. (1) Tangle diagrams corresponding to the first tensor factor
(which lives in the category C) in the definitions of b , _, and V are given
in Figs. 2 and 3.

FIG. 2. Composition (left) and tensor product (right) of arrows in C <0 S.
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FIG. 3. The V-operation on arrows.

(2) A different choice for the orthonormal bases [V m, :
k, l ,

:=1, ..., N m
k, l] in Hom(#m , #k#l) does not affect the definition of b , _,

since the unitary matrices effecting the base change drop out.

(3) The left tensor factor of (3.7) is in Hom(#k� _, \), and F (R� #k
) 0 is

in Hk g_ Hk� such that contraction with �k yields a vector in Hk� . Thus the
entire expression is in HomC < 0 S(_, \) as it must be.

(4) For every pair \, _ there is an embedding of HomC(\, _) into
HomC < 0 S(\, _) via S [ S�0. Looking at the definitions of b , _ in
C <0 S it is obvious that this gives rise to a faithful functor from C to
C <0 S, thus C can and will be considered as a subcategory of C <0 S.
Arrows in C <0 S will be denoted S� , T� , ..., but often we do not distinguish
between S # HomC(\, _) and S�0 # HomC < 0 S(\, _).

(5) By Frobenius reciprocity we have dim Hom(#k\, _)=dim Hom
(#k , _\� )<� and only finitely many k # G� contribute, thus HomC < 0 S(\, _)
is finite dimensional. As a consequence of Hom(#k , @)=[0] for k{e we
obtain

HomC < 0 S(@, @)=Hom(@, @)=C id@ . (3.8)

(6) A special case of (3.4) is

HomC < 0 S(@, #k)=Hom(#k , #k) } Hk (3.9)

for #k # S. Since the dimension dk # N of #k equals the dimension of
Hk=F (#k), this implies #k $dk@ in C <0 S. Thus #k ``disappears without a
trace'' in C <0 S as far as the irreducible objects are concerned. Further-
more, the spaces Hk and HomC < 0 S(@, #k) can be identified via � [
id#k

��. This allows us to consider �k # Hk also as a morphism in
HomC < 0 S(@, #k), which leads to notational simplification. With S #
Hom(#k \, _), �k # Hk it is an easy consequence of (3.5, 3.6) that HomC <0 S

(\, _) % S��k=S�0 b id#k
��k_id\ �0. With the above identifications

this can also be written as S b �k_id\ . In a sense, the new morphisms �k #
HomC < 0 S(@, #k) are the crucial point of Definition 3.1 and (3.4) simply

166 MICHAEL MU� GER



reflects the fact that arrows can be composed. It must of course still be
proved that Definition 3.1 yields a BTC*.

(7) If S/3 D then =(#, \) b =(\, #){id\# for some # # S, \ # C. Thus
there is another possible definition of _ in C <0 S, replacing =(#l , \1) by
=(\1 , #l)

&1 in (3.6). For S/D these definitions coincide.

(8) Finally, we remark that there are similarities between our
definition of C <0 S and a construction [25] of a field algebra in algebraic
quantum field theory which preceded [7] but where the main result of [6]
was assumed.

3.2. C <0 S Is a Tensor Category

Lemma 3.2. The operations b , _ are bilinear and associative.

Proof. Bilinearity is obvious. In order to prove associativity of b consider
S, T as in the definition (3.5) and U # Hom(#n', \). Then,

(S��k b T��l) b U��n

= �
r # G�

:
m # G�

:

Nm
k, l

:=1

:

Nr
m, n

;=1

S b id#k
_T b id#k #l

_U b V m, :
k, l _id#n ' b V r, ;

m, n_id'

} (F (V r, ;
m, n)* b F (V m, :

k, l )*_idHn
)(�k g_ �l g_ �n). (3.10)

On the other hand

S��k b (T�� l b U��n)

= �
r # G�

:
m # G�

:

Nm
l, n

:=1

:

Nr
k, m

;=1

S b id#k
_T b id#k #l

_U b id#k
_V m, :

k, l _id' b V r, ;
k, m_id'

} (F (V r, ;
k, m)* b idHk

_F (V m, :
l, n )*)(�k g_ �l g_ �n). (3.11)

Since F is a functor of V -categories we have

F (V r, ;
m, n)* b F (V m, :

k, l )*_idHn
=F (V m, :

k, l _id#n
b V r, ;

m, n)*, (3.12)

F (V r, ;
k, m)* b idHk

_F (V m, :
l, n )=F (id#k

_V m, :
l, n b V r, ;

k, m)*. (3.13)

Since both

[V m, :
k, l _id#n

b V r, ;
m, n , m # G� , :=1, ..., N m

k, l , ;=1, ..., N r
m, n] (3.14)

and

[id#k
_V m, :

l, n b V r, ;
k, m , m # G� , :=1, ..., N m

l, n , ;=1, ..., N r
k, m] (3.15)

are orthogonal bases of Hom(#r , #k#l#n), the two expressions coincide.
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FIG. 4. Associativity of _.

The proof of associativity of _ is similar. Let S, T be as in (3.6) and let
U # Hom(#n\3 , _3). Since writing down (and reading!) the formulae would
be rather tedious we express the parts of the summands which live in C

graphically, cf. Fig. 4. Thus

(S��k_T��l)_U��n

= �
r # G�

:
m # G�

:

Nm
k, l

:=1

:

Nr
m, n

;=1

(Fig. 4, l.h.s.) } F (V m, :
k, l _id#n

b V r, ;
m, n)*

(�k g_ �l g_ �n). (3.16)

On the other hand

S��k_(T��l_U��n)

= �
r # G�

:
m # G�

:

Nm
l, n

:=1

:

Nr
k, m

;=1

(Fig. 4, r.h.s.) } F (id#k
_V m, :

l, n b V r, ;
k, m)*

(�k g_ �l g_ �n). (3.17)

By naturality the arrow V m, :
l, n in the r.h.s. of Fig. 4 can be pulled through

the braiding, and the identity of the two expressions follows by the same
argument as for b . K
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Lemma 3.3. The operations b , _ satisfy the interchange law

(S� 1 b T� 1)_(S� 2 b T� 2)=S� 1_S� 2 b T� 1_T� 2 , (3.18)

whenever the left hand side is defined.

Proof. We compute

(S1 ��k b T1 ��l)_(S2 ��m b T2 ��n)

= �
r # G�

:
p, q # G�

:

N p
k, l

:=1

:

Nq
m, n

;=1

:

N r
p, q

$=1

(Fig. 5, l.h.s.) } F (V p, :
k, l _V q, ;

m, n b V r, $
p, q)*

(�k g_ �l g_ �m g_ �n) (3.19)

and

S1 ��k_S2 ��m b T1 ��l_T2 ��n

= �
r # G�

:
p, q # G�

:

N p
k, m

:=1

:

Nq
l, n

;=1

:

Nr
p, q

$=1

(Fig. 6, l.h.s.) } F (V p, :
k, m_V q, ;

l, n b V r, $
p, q)*

(�k g_ �l g_ �m g_ �n) (3.20)

(Since S is a symmetric category we have used the symmetric braiding
symbol for =(#m , #l) in Fig. 6. We do not do this for braidings of #'s with
objects not in S since we do not assume S to be degenerate.) By standard

FIG. 5. (S1}�k b T1}�l)_(S2}�m b T2}�n).
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FIG. 6. S1 ��k_S2 ��m b T1 ��l_T2 ��n .

manipulations the left hand sides of Figs. 5, 6 can be seen to equal the
respective right hand sides. Next we transform (3.20) using

F (V p, :
k, m_V q, ;

l, n b V r, $
p, q)* (�k g_ �m g_ �l g_ �n)

=F (id#k
_=(#m , #l)_id#n

b V p, :
k, m_V q, ;

l, n b V r, $
p, q)*

(�k g_ �l g_ �m g_ �n), (3.21)

and observing that [V p, :
k, l _V q, ;

m, n b V r, $
p, q] and [id#k

_=(#m , #l)_id#n
b V p, :

k, m_
Vq, ;

l, n b V r, $
p, q] are orthonormal bases of Hom(#r , #k#l#m#n) (with p, q # G�

and :, ;, $ in the obvious ranges) we are done. K

Lemma 3.4. C <0 S has conjugates and direct sums.

Proof. Since the objects of C <0 S are just those of C the existence of
conjugates in C <0 S follows from

Rk # Hom(@, #k� #k)/HomC <0 S(@, #k� #k) (3.22)

and the fact that the conjugate equations clearly hold in C <0 S, too. In the
same way one shows that C <0 S has direct sums. K
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3.3. The V -Operation

Lemma 3.5. The V -operation is antilinear and involutive.

Proof. Antilinearity is obvious by definition. As to involutivity consider
S� =S��k with S # Hom(#k \, _), � # Hk . Twofold application of the
V-operation (3.7) yields

(S��k)**=R*k� _id_ b id#k #k�
_S b id#k

_Rk_id\}(�� k� g_ }, F (R� k� ) 0) ,

(3.23)

where

�� k� =(�k g_ }, F (R� k) 0) . (3.24)

The first tensor factor of (3.23) (which lives in C) can be transformed as
follows:

In the first step we have used the interchange law and in the second step
the first conjugate Eq. (3.3). The possible appearance of the minus sign is
due the fact that R*k� appears in (3.23) instead of R� k*. In view of our choice
of Rk� =\R� k the minus sign appears iff k is selfconjugate and pseudo-real.
Abbreviating the second factor in (3.23) (which lives in U(G)) by ��� k we
have

(a, ��� k)=(�� k� g_ a, F (R� k� ) 0) \a # Hk . (3.26)

Inserting

(�� k� , b)=(F (R� k) 0, �k g_ b) \b # Hk� (3.27)

we have

(a, ��� k) =(F (R� k) 0 g_ a, �k g_ F (R� k� ) 0)

=(0 g_ a, F (R� k*_id#k
b id#k

_R� k� ) �k g_ 0) . (3.28)

Now R� k*_id#k
b id#k

_R� k� =\id#k
, thus F (...)=\idHk

. With 0 g_ a=a and
�k g_ 0=�k we have (a, ��� k) =\(a, �k) and therefore ��� k=\�k . Also
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here the minus sign appears iff k is selfconjugate and pseudoreal. In any
case the two minus signs cancel and we obtain (S��k)**=(S��k). K

Lemma 3.6. The V-operation is contravariant, i.e., (S� b T� )*=T� * b S� *
whenever the left hand side is defined.

Proof. Let S # Hom(#k _, $), T # Hom(#l\, _), and �k # Hk , �l # Hl and
apply the V-operation (3.7) to S� b T� =S��k b T��l as defined by (3.6).
We obtain

(S� b T� )*= �
m # G�

:

N m
k, l

:=1

R*m_id\ b id#m�
_V m, :*

k, l _id\ b id#m� #k
_T* b id#m�

_S*

} (F (V m, :
k, l )* (�k g_ �l) g_ }, F (R� m) 0). (3.29)

On the other hand,

T� * b S� *= �
m # G�

:

N m�
k� , l�

:=1

Rl*_id\ b id#l�
_T* b id#l�

_Rk*_id_ b V m� , :
l� , k� _S*

} F (V m� , :
l� , k� )* (�� l� g_ �� k� ), (3.30)

where

�� l� =(�l g_ }, F (R� l) 0) (3.31)

and similarly for �� k� . The left tensor factors of (3.29) and (3.30) are
represented in Fig. 7.

FIG. 7. Compatibility of V and b .
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As to the right hand factors of (3.29) and (3.30) which live in Hm� and
which we abbreviate �1 , �2 , respectively, we have for all a # Hm� ,

(a, �1) =(F (V m, :
k, l )* (�k g_ �l) g_ a, F (R� m) 0)

=(�k g_ �l g_ a, F (V m, :
k, l _id#m�

b R� m) 0) (3.33)

and

(a, �2)=(a, F (V m� , :
l� , k� )* (�� l� g_ �� k� ))=(F (V m� , :

l� , k� ) a, �� l� g_ �� k� )

=(�k g_ �l g_ F (V m� , :
l� , k� ) a, [F (R� l) 0]23[F (R� k) 0]14)

=(�k g_ �l g_ F (V m� , :
l� , k� ) a, F (id#k

_R� l_id#k�
b R� k) 0)

=(�k g_ �l g_ a, F (id#k #l
_V m� , :*

l� , k� b id#k
_R� l_id#k�

b R� k) 0).

(3.34)

The fourth equality in (3.34) follows from the following computation in
Hk g_ Hl g_ Hl� g_ Hk� ,

[F (R� l) 0]23 [F (R� k) 0]14=_12 b _23(F (R� l) 0 g_ F (R� k) 0)

=F (=(#l #l� , #k)_id#k�
b R� l_R� k) 0

=F (id#k
_R� l_id#k�

b R� k) 0, (3.35)

where in the last step we have used the interchange law.
Now we observe that [W m, ;

k, l , ;=1, ..., N m
k, l] with

W m, ;
k, l =R� *m b id#m

_V m� , ;*
l� , k� b id#m #l�

_Rk_id#l
b id#m

_Rl (3.36)

is an orthonormal basis in Hom(#m , #k #l). Since the choice of such a basis
is irrelevant we can replace V m, :

k, l in (3.29) by W m, :
k, l . Using the conjugate

equations (3.3) one then easily verifies that (3.29) and (3.30) coincide. K

Lemma 3.7. The V-operation is monoidal, i.e., (S_T )*=S*_T*.

Proof. Let S # Hom(#k\1 , _1), T # Hom(#l\2 , _2), �k # Hk , �l # Hl . Then

(S� _T� )*= �
m # G�

:

Nm
k, l

:=1

(Fig. 8, l.h.s.)}(F (V m, :
k, l )* (�k g_ �l) g_ } , F (R� m) 0).

(3.37)

On the other hand,

S� *_T� *= �
m # G�

:

N m�
k� , l�

:=1

(Fig. 8, r.h.s.)}F (V m� , :
k� , l� )* (�� k� g_ �� l� ). (3.38)
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FIG. 8. Compatibility of V and _.

Using the interchange law several times, the right hand side of Fig. 8 is
shown to equal

which differs from the left hand side of Fig. 8 only by a replacement of the
basis

[R*m b id#m�
_V m, :*

k, l , :=1, ..., N m
k, l] (3.40)

of Hom(#m� #k #l , @) by

[Rl* b id#l�
_Rk*_id#l

b (=(#k� , #l� ) b V m� , :
k� , l� )_id#k #l

, :=1, ..., N m
k, l]. (3.41)

Concerning the right hand sides the calculation proceeds as in the preceding
lemma. The only difference is that in (3.38), F (V m� , :

k� , l� )* (�� k� g_ �� l� ) appears in
contrast to F (V m� , :

l� , k� )* (�� l� g_ �� k� ) in (3.30). But this is compensated for by
the =(#k� , #l� ) in (3.41). K
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Lemma 3.8. The V -operation of C <0 S is positive. Thus C <0 S is a
C*-tensor category.

Proof. Let S� # HomC < 0 S(\, _). It is sufficient to prove that the vanishing
of (S� *S� )e , i.e., the component in (3.4) with k=e (the G-invariant part, see
below), implies S� =0. Let thus

S= �
k # G�

:
i

S i
k }�i

k , S i
k # Hom(#k\, _), �k # Hk . (3.42)

(We must sum over an index i in order to allow for elements of
HomC < 0 S(\, _) which are not simple tensors.) Then

(S� *S� )e= :
k, l # G�

:
i, j

Rk*_id\ b id#k�
_S k

i* b id#k�
_S j

l b V e
k� , l_id\

} F (V e
k� , l)* ((� i

k g_ } , F (R� k) 0) g_ � j
l ). (3.43)

Now, the space Hom(#e , #k� #l)=Hom(@, #k� #l) is one dimensional for l=k
and trivial otherwise. Since the choice of an orthonormal basis in this space
does not matter we can choose V e

k� , k=d(k)&1�2 Rk . Here the numerical
factor involving the dimension d(k)=d(#k)>0 [19] is necessary in order
for V to be isometric. Then

(S� *S� )e= :
k # G�

1
d(k)

:
i, j

Rk*_id\ b id#k�
_(S k

i* b S j
k) b Rk_id\

} F (Rk)* ((� i
k g_ } , F (R� k) 0) g_ � j

k). (3.44)

Considering the Hom(\, \)-valued bilinear form on Hom(#k\, \)

(S, T ) [ (S, T ) k=Rk*_id\ b id#k�
_(S* b T ) b Rk_id\ , (3.45)

positivity of the V-operation of C implies that (S, S)k=0 iff id#k�
_S b Rk_

id\=0. By Frobenius reciprocity this is the case iff S=0, thus ( } , } ) k is
positive definite. Furthermore,

F (Rk)* ((� i
k g_ }, F (R� k) 0) g_ � j

k)

=(0, F (Rk)* ((� i
k g_ }, F (R� k) 0) g_ � j

k)) 0

=(F (Rk) 0, (� i
k g_ } , F (R� k) 0) g_ � j

k) 0

=(� i
k g_ F (Rk) 0, F (R� k) 0 g_ � j

k) 0

=(� i
k g_ 0, F (id#k

_Rk* b R� k_id#k
) 0 g_ � j

k) 0

=(� i
k , � j

k) Hk
0, (3.46)
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where we have used the conjugate equations. Thus also

(S� *S� )e= :
k # G�

1
d(k)

:
i, j

(� i
k , � j

k) Hk
(S i

k , S j
k) k }0 (3.47)

is positive definite since it is the sum of the tensor product of such maps,
and S� *S� vanishes iff S� =0. The second claim follows by Proposition 2.1. K

Summing up we have proved

Proposition 3.9. C <0 S is a C*-tensor category with conjugates and
direct sums.

Remark. If S/D we can consider the crossed product D <0 S, which
is a full subcategory of C <0 S. It is interesting to note that D <0 S can be
defined also if S/3 D, namely as the full subcategory of C <0 S whose
objects are those in D. It is obvious that for S/D this notation is consis-
tent with the crossed product in the sense of Definition 2.1. Thus also for
S/3 D we obtain a C*-tensor category D <0 S with conjugates and direct
sums. It turns out, however, that we obtain nothing new in this way.
For, by Frobenius reciprocity in C*-tensor categories [19] we have
dim HomC(#k\, _)=dim HomC(#k , _\� ). In view of _\� # S we have HomC

(#k \, _)=[0] whenever #k � S. Thus the direct sum in (3.4) effectively
runs only over the k such that #k # D, which implies D <0 S=
D < 0(D & S). Therefore we are left with the crossed product of a
symmetric tensor category by a full subcategory.

3.4. Braidings, Subobjects, and Uniqueness

Lemma 3.10. The braiding = of C lifts to a braiding for C <0 S iff
S/D.

Proof. Define =~ (\, _)==(\, _)�0 # HomC < 0 S(\_, _\). That =~ satisfies
the relations

=~ (\, _1_2)=id_1
_=~ (\, _2) b =~ (\, _1)_id_2

, (3.48)

=~ (\1 \2 , _)==~ (\1 , _)_id\2
b id\1

_=~ (\2 , _) (3.49)

is obvious since these relations hold in C. It remains to show that =~ is
natural w.r.t. both variables also in the extended category. Assuming
S/D we will prove

S� _id\ b =~ (\, _)==~ (\, ') b id\_S� (3.50)
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in C <0 S with S� # HomC < 0 S(_, '). The proof of naturality w.r.t. the other
variable is similar, and the general result follows by the interchange law
(3.18). Now, in more explicit terms the left hand side of (3.50) amounts to
(with S # Hom(#k_, '))

S��k_id\ �0 b =(\, _)�0=(S_id\)��k b =(\, _)�0

=S_id\ b id#k
_=(\, _)}�k (3.51)

and the right hand side to

=(\, ')�0 b id\ �0_S��k

==(\, ')�0 b [id\_S b =(#k , \)_id_]��k

==(\, ') b id\ _S b =(#k , \)_id_}�k . (3.52)

That these expressions coincide is seen by the following calculation for the
C-parts.

In the second step of this computation we have used the naturality of the
braiding in C, and the first step is legitimate if =M(#k , \)=id#k \ . This holds
for all \ # C if S/D since then all #k are degenerate. Now assume S/3 D,
i.e., there is a #k # S which has non-trivial monodromy with some \ # C.
Let now 'O#k _ and S # Hom(#k _, '). Reversing the above argument we
see that naturality of the braiding =~ (\, _) in C <0 S fails for S� =S��k #
HomC < 0 S(_, '). K

Remark. It is instructive to relate this result to what happens in the
quantum field framework [24, 21]. There the observables A are extended
by fields implementing the sectors in a symmetric semigroup 2 of DHR
endomorphisms and the localized sectors of A are extended to the fields
F. If 2 contains non-degenerate sectors then the extension \~ of at least one
sector \ is solitonic, i.e., localized only in a half-space. But it is well known
that for solitons there is no braiding.
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As observed in Remark 6 after Definition 3.1, the objects #k # S decom-
pose into multiples of @ in C <0 S. But in C <0 S also other irreducible
objects \ # C may become reducible in the sense that HomC < 0 S(\, \) �
C id\ . In this case the subobjects are not already present in C. Thus C <0 S

will in general not be closed under subobjects. There is a canonical proce-
dure [19, Appendix], yielding for every 2-category C a 2-category C� which
is closed under subobjects and contains C as a full subcategory. Since we
are concerned only with the special (and more familiar) case of tensor
categories, we give a fairly explicit description below.

Definition 3.11. The closure C� of a tensor category C w.r.t. subobjects
has as objects pairs (\, E ) where \ # Obj C and E=E2=E* # HomC(\, \).
The morphisms in C� are given by

HomC� ((\, E ), (_, F ))=[T # HomC(\, _) | T=T b E=F b T]

=F b HomC(\, _) b E, (3.54)

and the composition of morphisms, where defined, is the one of C. The
identity morphisms are given by id(\, E )=E. The tensor product is
(\, E )(_, F )=(\_, E_F ) for the objects and the one of C for the
morphisms. The embedding of C in C� is given by \ [ (\, id\) and the iden-
tity map on the arrows.

Remark. With this definition (\, E ) is a subobject of \=(\, id\) in
view of E # Hom((\, E ), (\, id\)) and E b E*=E, E* b E=E=id(\, E ) .
Assume a subobject \1 O\ exists in C with V # HomC(\1 , \) isometric.
Then \1 is isomorphic in C� to (\, E ), where E=V b V*. Indeed, on one
hand V # Hom((\1 , id\1

), (\, E )) since V=V b id\1
=id(\, E ) b V=E b V=

V b V* b V=V. On the other hand, V is unitary (in C� !) since V* b V=id\1

and V b V*=E=id(\, E ) . If C has conjugates then also C� has conjugates.
For, if \, \� , R, R� satisfy the conjugate equations, then (\� , E� ) is a conjugate
for (\, E ). Here

E� =R*_id\� b id\� _E_id\� b id\� _R� (3.55)

is easily verified to be an orthogonal projection in (\� , \� ), and R(\, E )=
E� _E b R, R� (\, E )=E_E� b R� satisfy the conjugate equations. If C is obtained
from a subcategory C0 by adding morphisms, \ is irreducible in C0 and
\� , R, R� is a solution of the conjugate equations in C0 then with the above
it is easy to see that \, \� , R, R� is a standard solution in C� . Finally, given
V # Hom(\, {), W # Hom(_, {) with V b V*+W b W*=id{ (thus {$\�_)
and given projections E # Hom(\, \), F # Hom(_, _) it is easy to verify that
({, V b E b V*+W b F b W*) is a direct sum of (\, E ) and (_, F ). Thus, if C

is closed w.r.t. subobjects then the obvious embedding functor C � C� is
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essentially surjective. Since it is also full and faithful, C and C� are equiv-
alent as categories, cf. [20, Sect. IV.4]. That this is in fact an equivalence
of tensor categories requires an additional argument for which we refer,
e.g., to [34].

Definition 3.12. C < S=C <0 S. C is identified with a subcategory
of C < S via the embedding \ [ (\, id\), Hom(\, _) % S [ S�0 #
Hom((\, id\), (_, id_)).

Theorem 3.13. C < S is a C*-tensor category with conjugates, direct
sums, and subobjects. If S/D then C < S is braided. If C is rational then
so is C < S.

Proof. As shown above, closing under subobjects does not affect the
property of being closed under direct sums. Since an object \ has the
same finite dimension in C < S as in C, it decomposes into finitely many
subobjects in C < S. Thus C < S is rational if C is. It only remains to
prove that the braiding of C <0 S given by Lemma 3.10 if S/D extends
uniquely to the closure under subobjects. This was shown for symmetric
tensor categories in [6] and works also in the braided case. We sketch
the argument. Consider \, _ # Obj C=Obj C <0 S and E # Hom(\, \),
F # Hom(_, _). Defining

=((\, E ), (_, F ))=F_E b =(\, _) b E_F, (3.56)

it is easily verified that we obtain a braiding for C < S which satisfies
naturality w.r.t. both variables. K

Proposition 3.14. Up to isomorphism of tensor categories, the category
C < S does not depend on the choice of the section [# l , l # G� ] and of the
functor F. If S/D then this isomorphism respects the braiding.

Proof. Let [#k , k # G� ], [#$k , k # G� ] be two sections of G� in S and let
F, F $ be functors embedding S into the category of Hilbert spaces. Denote
the corresponding categories by C < (#, F )

0 S, C < (#$, F $)
0 S. We know that

there are unitaries Wk # Hom(#k , #$k) as well as a natural transformation
[U\ : F (\) � F $(\), \ # G� ] from F to F $ with the U\ 's being unitaries.
Then the linear maps HomC <

0
(#, F )

S(\, _) � HomC <
0
(#$, F $)

S(\, _) defined by

S��k [ S b Wk _id\ �Uk�k , S # Hom(#k \, _), �k # Hk=F (#k)

(3.57)

are isomorphisms. The easy proof that these maps define a (braided) tensor
V-functor (obviously invertible) from C < (#, F )

0 S to C < (#$, F $)
0 S which is the
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identity on the objects is left to the reader. Finally, isomorphic categories
have isomorphic closures under subobjects. K

Remark. The functor F is unique up to a natural transformation, the
latter being in one-to-one correspondence to the elements of G. The role of
the compact group G for the category C < S we will thoroughly clarified
in the next section.

3.5. G-Symmetry

By the DR duality theorem (or the Tannaka�Krein duality, taking the
existence of a representation functor F for granted) the Hilbert spaces
Hk , k # G� carry unitary representations ?k( } ) of G. We define an action of
G=Gal(S)) on the morphisms of C <0 S and thus of C < S by

:g(S��k)=S�?k(g) �k , S # Hom(#k\, _). (3.58)

For the objects (\, E ) of C < S=C <0 S we define

:g((\, E ))=(\, :g(E )), (3.59)

where :g(E ) is defined in (3.58).

Definition 3.15. Let T/S be [B�S] TC*s. Then AutT(S) is the
group of automorphisms (invertible [braided�symmetric] tensor V -endo-
functors) of S which leave T stable.

Lemma 3.16. The map g [ :g is a homomorphism of G into
AutC(C < S).

Proof. Using the definitions (3.5), (3.6) and the functoriality of F one
easily verifies that

:g(S� vT� )=:g(S� ) v:g(T� ), where v # [ b , _]. (3.60)

In order to show that :g is a functor it remains to show that
T # HomC < S((\, E ), (_, F )) implies

:g(T ) # HomC < S(:g((\, E )), :g((_, F ))). (3.61)

This is true due to :g(T ) # HomC <0 S(\, _) and

:g(T )=:g(T ) b :g(E )=:g(F ) b :g(T ), (3.62)

where we have used (3.60). :g is a tensor functor since (3.60) for v =_
implies

:g((\, E )(_, F ))=(\_, :g(E_F ))=:g((\, E )) :g((_, F )). (3.63)
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Finally, saying that :g is a braided tensor functor is equivalent to the
equation

:g(=((\, E ), (_, F )))==(:g((\, E )), :g((_, F ))), (3.64)

which follows immediately from (3.56) and the G-invariance of =(\, _).
The homomorphism property of g [ :g is obvious and thus also the
invertibility of :g . Clearly, :g acts trivially on C. K

Proposition 3.17. For every : # AutC(C < S) there is g # G=Gal(S)
such that :=:g . Thus AutC(C < S)$Gal(S).

Proof. Let : # AutC(C < S). Then :(\)=\ for \ # C implies :(T ) #
HomC < S(\, _) if T # HomC < S(\, _). As before, we write T� =T��k with
T # HomC(#k\, _), �k # Hk also as T b �k_id\ , where �k is interpreted as
an element of HomC < S(@, #k). Then :(T� )=T b :(�k)_id\ since : acts tri-
vially on the morphisms in C. Thus : is determined by the actions on the
Hilbert spaces Hk , which are clearly linear. Due to :(�*�$)=�*�$ B
id@ # C for �, �$ # Hk these actions are unitary, which then is true for all
spaces HomC < S(@, #). If #, #$ # S, V # HomC(#, #$) and � # F (#) then
�$=F (V) � # F (#$) and :(�$)=F (V) :(�). Thus : acts on the spaces
Hom(@, #), # # S like a natural transformation of the functor F: S � H to
itself. But the latter are in one-to-one correspondence to the elements of
G=Gal(S) [6]. K

From now on we identify G=AutC(C < S).

Definition 3.18. Let H/G be a subgroup. Then (C < S)H is the sub-
tensor category of C < S consisting of H-invariant objects and morphisms.
(That this really is a tensor category follows from the functoriality of :g .)

Lemma 3.19. (C < S)G is equivalent to C.

Proof. A morphism T # HomC < S((\, E ), (_, F ))/HomC <0 S(\, _) is
G-invariant iff it is in HomC(\, _). An object (\, E ) of C < S is in
(C < S)G iff E is G-invariant iff E # HomC(\, \). Thus (C < S)G is
isomorphic to the closure C� of C under subobjects. The latter is equivalent
to C since C is by assumption closed w.r.t. subobjects. (Recall the remark
following Definition 3.11.) K

Remarks. (1) The fact that (C < S)AutC(C < S) &C justifies calling
C/C < S a Galois extension of BTC*'s. This line of thought will be
continued in Subsection 4.2.

181BRAIDED TENSOR CATEGORIES



(2) If \ # C is irreducible then HomC < S(\, \)G=HomC(\, \)=
C id\ , thus G acts ergodically on HomC < S(\, \). Now for irreducible \ # C

the obvious dimension consideration

dim HomC(#k\, \)�dk \k # G� (3.65)

together with (3.4) implies that the irreducible representation ?k of G=
Gal(S) occurs in HomC < S(\, \) with multiplicity at most dk (equivalently,
the corresponding spectral subspace has dimension at most d2

k). This is an
instance of a well-known general result in the theory of ergodic compact
group actions on von Neumann algebras, cf. [12, Proposition 2.1; 31, I].

4. GALOIS CORRESPONDENCE AND THE MODULAR CLOSURE

Throughout the section C is BTC*, S/C is a STC*, and G=
AutC(C < S)$Gal(S). Having defined the semidirect product C < S and
established its uniqueness, we will now prove some non-trivial properties.
We continue to assume S to be even and will make clear which results
require S/D.

4.1. The Modular Closure C < D

The following technical lemma can be distilled from [31, I, Sect. 11], but
we give the easy direct proof.

Lemma 4.1. Let N be a finite dimensional semisimple C-algebra and let
g [ :g # Aut N be an ergodic action of a group G. Then N is isomorphic to
the tensor product of its center Z(N ) with a full matrix algebra,

N$Mn�Z(N )$Mn � Mn � } } } � Mn

d terms

, (4.1)

where d=dim Z(N ) and Mn denotes the simple algebra of complex n_n
matrices. Let E, F be minimal (i.e., one dimensional ) projections in N.
Then there is g # G such that :g(E )$N F, i.e., there is V # N such that
VV*=F, V*V=:g(E ).

Proof. Let E be a projection in N. Since N is a von Neumann algebra
it contains the projection E� =�g # G :g(E ), which clearly is non-trivial and
G-invariant. Therefore E� # NG=C1 and thus E� =1. Applying this to the
(finite) set of minimal projections in Z(N) we see that G acts transitively
on the set of minimal central projections of N. Since the dimension of such
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a projection is invariant under an automorphism of N, all simple blocks of
N have the same rank.

Let E, F be minimal projections in N and let E� , F� be the (unique) mini-
mal projections in Z(N) such that E�E� , F�F� . Then there is g # G such
that :g(E� )=F� , thus :g(E )�F� . This implies :g(E )$N F since all one
dimensional projections in the factor F� N are equivalent. K

Proposition 4.2. Let \ # C be irreducible. Then all irreducible subobjects
\i of \ in C < S occur with the same multiplicity and have the same dimen-
sion. If S/D, thus C < S is braided, then all \i have the same twist as \,
and they are either all degenerate or all non-degenerate according to whether
\ is degenerate or non-degenerate.

Proof. HomC < S(\, \) is a finite dimensional von Neumann algebra
and HomC < S(\, \)G=HomC(\, \)=C id\ . Thus the lemma applies and
the first claim of the proposition follows from the result that all simple
blocks of HomC < S(\, \) have the same rank. Let E, F # HomC < S(\, \)
be minimal projections corresponding to the irreducible subobjects
(\, E ), (\, F ) of \ and let g, V be as in the lemma. Then (\, :g(E )) is
equivalent to (\, F ) since V is a unitary in HomC < S((\, :g(E )), (\, F )).
The dimension of \ being defined [19] via d\ id@=R*\ b R\ and R(\, E )

being given as in the remark after Definition 3.11, the independence of
d(\, E ) on E follows from the transitivity of the G-action on the set of
minimal central projections.

Assuming now S/D it follows similarly that the twist is the same for
all subobjects. If [Vi # Hom(\i , \)] is a family of isometries such that
V i* b Vj=$i, j id\i

and � i Vi b V i*=id\ where the \ i are irreducible in
C < S, then }(\)=� i Vi b }(\i) b V i*. Since }(\ i)=| id\i

for some | # C,
this implies }(\)=| id\ and thus |(\)=|(\i) \i. Since :g is a braided
tensor functor (3.64), (\, E ) is degenerated iff (\, :g(E ))$(\, F ) is
degenerate. Thus the subobjects \i are either all degenerate or all non-
degenerate. Since an object is degenerate iff all subobjects are degenerate,
cf. Proposition 2.7, we conclude that the subobjects are degenerate iff \ is
degenerate. K

Remark. That the decomposition of a degenerate object yields only
degenerate objects was known before, cf. Proposition 2.7, and for degene-
rate \ the result on the multiplicities and dimensions of the irreducible
subobjects reduces to a well known result on group representations, as will
be shown in the next subsection. But for the non-degenerate objects, which
have no group theoretic interpretation, the above result is new and crucial
for the rest of the paper. A detailed analysis of how an irreducible non-
degenerate object of C decomposes in C < S will be given in Subsection 5.1
for the case where Gal(S) is an abelian group.
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Corollary 4.3. If S/D then D(C < S)$D < S.

Proof. We have to show that starting from C the operations of taking
the crossed product with S and of picking the full subcategory of
degenerate objects commute. Now we observe

D(C < S)=D(C <0 S)$D(C <0 S)$D <0 S=D < S, (4.2)

where the equalities hold by definition. The first isomorphism follows since
an irreducible subobject (\, E ) of \ is degenerate iff \ is degenerate, and
the second isomorphism is true since D(C <0 S)=D <0 S. K

Even though further machinery will be developed below, we are already
in a position to state one of our main results, which in fact provided the
motivation for the entire paper.

Theorem 4.4. C < D is non-degenerate. Thus every irreducible
degenerate object is equivalent to @. If C < D is rational (which follows if C

is rational ) then C < D is modular.

Proof. By the proposition we have D(C < D)$D < D. Now, all objects
of D <0 D are multiples of the identity, cf. Remark 6 after Definition 3.1.
Thus there are no irreducible degenerate objects in C < D which are
inequivalent to @. The rest follows from the discussion in Section 2. K

This result motivates the following

Definition 4.5. The modular closure of a braided tensor V-category
with conjugates, direct sums, and subobjects is C�� =C < D.

The terminology closure is justified by the fact that D(C�� ) is trivial, which
implies that the modular closure C�� does not admit further crossed products
(with braiding).

4.2. Galois Correspondence

Turning now to the study of categories E sitting between C and C < S

we begin with those of the form (C < S)H where H/G.

Lemma 4.6. Let H/G be a subgroup and let H� be its closure in G. Then
(C < S)H=(C < S)H� is a [B]TC*.

Proof. That the fixpoint categories under H and H� are the same follows
from continuity of ?k in (3.58). If E # HomC < S(\, \) is H-invariant then
also E� defined in (3.55) is H-invariant, thus (C < S)H has conjugates. That
(C < S)H has direct sums and subobjects is seen similarly. In order to
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prove closedness of (C < S)H under the V -operation we have to show that
T* is H-invariant if T is. In view of (3.7) we have

:g((S��k)*)=Rk*_id\ b id#k�
_S* } ?k� (g)(�k g_ } , F (R� k) 0). (4.3)

That (S��k)* is H-invariant follows from the following calculation with
g # H and �k # HH

k ,

?k� (g)(�k g_ } , F (R� k) 0) =(�k g_ } , ?k(g)_?k� (g) F (R� k) 0)

=(�k g_ }, F (R� k) ?0(g) 0)

=(�k g_ }, F (R� k) 0). (4.4)

We have used that [?k(g), k # G� ] is a natural transformation of F and that
?0 is the trivial representation. The restriction of the braiding of C < S to
(C < S)H is, of course, a braiding. K

In order to prove that all TC*'s between C and C < S are of the form
(C < S)H we need the following

Lemma 4.7. Let E be a TC* such that C/E/C < S. With the iden-
tification of the Hilbert spaces Hk=F (#k) and HomC < S(@, #k)=
Hom(#k , #k)�Hk via �k [ id#k

��k we have

HomE(\, _)= �
k # G�

HomC(#k\, _) } HomE(@, #k). (4.5)

Thus the subspaces HomE(\, _)/HomC < S(\, _) for all \, _ # C are
determined by the subspaces HomE(@, #k)/HomC < S(@, #k).

Proof. In the entire proof let \, _ # C be fixed. With the above
identification of Hk and HomC < S(@, #k) we can rewrite (3.4) as

HomC < S(\, _)= �
k # G�

HomC(#k\, _) } HomC < S(@, #k) . (4.6)

If id#k
�� # HomC < S(@, #k) is contained in HomE(@, #k) and S # Hom(#k\, _)

then S��=S�0 b id#k
�� # HomE(\, _), since S # Hom C/Hom E.

Thus in (4.5) we have the inclusion #. Now we define positive definite
scalar products ( } , } ) k on HomC(#k\, _) for all k # G� as

S, T [ (S, T)k id#k
=id#k

_R� *\ b (S* b T )_id\� b id#k
_R� \ . (4.7)

We have used that #k is irreducible, thus Hom(#k , #k)$C id#k
. (Positive

definiteness is seen as follows: (S, S) =0 implies id#k
_R� *\ b (S* b S )_id\� b

id#k
_R� \=0. By positivity of the V -operation this implies S_id\� b id#k

_
R� \=0 and using the conjugate equation this entails S=0.) For every k # G�
pick an orthonormal basis [W k

i , i=1, ..., dim Hom(#k\, _) in the Hilbert
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spaces Hom(#k\, _). Every S� # HomC < S(\, _) is of the form S� =
�l # G� �j S l

j ��l
j , where S l

j # Hom(#l\, _) and �l
j # Hl . Using the above

discussion this can be expressed as

S� =�
l # G�

:
j \:

i

(W l
i , S l

j) W l
i+ }�l

j

= :
l # G�

:
j

:
i

(W l
i , S l

j) W l
i b id#l

��l
j_id\

= :
l # G�

:
j

:
i

W l
i b (id#l

_R� *\ b (Wi
l* b S l

j)_id\� b id#l
_R� \) b id#l

��l
j_id\

= :
k, l # G�

:
j

:
i

W l
i b (id#l

_R� *\ b (Wi
l* b S k

j )_id\� b id#k
_R� \)

b id#k
��k

j _id\

= :
l # G�

:
i

W l
i b (id#l

_R� *\ b (W i
l* b S� )_id\)

=�
l # G�

:
i

W l
i }9 l

i , (4.8)

where

9 l
i=id#l

_R� *\ b (Wi
l* b S� )_id\ b R� \ # HomC < S(@, #k). (4.9)

In the second step we have used S��l=S b �l_id\ . The fourth equality
is true since the big bracket is in HomC(#k , #l), which vanishes for k{l. In
the fifth step we used the interchange law (in C < S) as in the following
diagram and performed the summations over k and j. Now we have
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and if S� # HomE(@, # l) then also 9 l
i # HomE(@, #l) since W l

i and R� \ are
morphisms in C, thus in E. This proves the inclusion / in (4.5). K

Proposition 4.8. Let E be a TC* such that C/E/C < S. Then E=
(C < S)H where H=AutE(C < S) is a closed subgroup of G=AutC(C < S).

Proof. Let F be the full subcategory of E defined by Obj F=Obj E &
Obj S < S, i.e. (\, E) # E is in F iff \ # S. Then we have the diagram

C / E / C < S

_ _ _ (4.10)

S /F/S < S

Here all vertical inclusions are full and all categories in the lower row are
symmetric. (S < S is symmetric since it is the closure under subobjects of
S <0 S. The latter is a symmetric tensor category since S��though not
necessarily contained in D(C)��is trivially contained in D(S)=S, entail-
ing that the symmetric braiding of S lifts to S <0 S.) Fixing a DR
representation functor F : S � H, where H is the symmetric tensor
category of finite dimensional Hilbert spaces, we define G to be the group
of natural automorphisms of F and have AutS(S < S)$AutC(C < S)
$G. Defining H=AutF(S < S)/G, the proposition follows easily as
soon as we prove

F=(S < S)H (4.11)

since this implies HomF(@, #)=HomS < S(@, #)H, # # S and by Lemma 4.7
we have HomE(\, _)=HomC < S(\, _)H for all \, _ # C. Since E is sup-
posed closed under subobjects this implies (\, E) # Obj E if the projection
E # HomC < S(\, \) is H-invariant. On the other hand, (\, E) # Obj E

implies E # Hom E since E=id(\, E) and E is a category. Thus (\, E) #
Obj E iff E # HomC < S(\, \)H and therefore E=(C < S)H. Thus we are left
with the proof of (4.11).

Choose a section [#k , k # G� ] of irreducibles in S$U(G). We begin by
showing that F extends to a functor F� : S <0 S � H. For S # Hom(#k\, _),
� # Hk we recall that S�� # HomS < 0 S(\, _) and define F� (S��) : F (\)
� F (_) by

F� (S��)(,)=F (S)(� g_ ,), , # F (\). (4.12)

This makes sense since � g_ , # F (#k) g_ F (\) and the latter Hilbert space
is canonically isomorphic to F (#k\). By definition F� coincides with F on
the objects, and it is easy to see that the same is true on the morphisms
HomS(\, _) of S. We have to show that F� is a symmetric tensor
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V-functor, i.e., compatible with the operations b , _, V . We do this only for
b and leave the other arguments to the reader. Let S # Hom(#k_, '),
T # Hom(#l\, _), �k # Hk , �l # Hl and , # H\=F (\). We have to show that

F� (S��k b T��l) ,=F� (S��k) b F� (T��l) , \, # H\ . (4.13)

The right hand side equals

F� (S��k) F (T )(�l g_ ,)=F (S )(�k g_ F (T )(�l g_ ,))

=F (S b id#k
_T )(�k g_ �l g_ ,), (4.14)

and is seen to coincide with the left hand side

F� \ �
m # G�

:

Nm
k, l

:=1

S b id#k
_T b V m, :

k, l _id\}F (V m, :
k, l )* (�k g_ � l)+ ,

= �
m # G�

:

N m
k, l

:=1

F (S b id#k
_T b V m, :

k, l _id\)(F (V m, :
k, l )* (�k g_ �l) g_ ,)

(4.15)

appealing to the completeness relation for the bases [V m, :
k, l ]. The extension

of F� to the new objects (\, E), E Z� id\ of S < S=S <0 S is obvious:
F� ((\, E))=F� (E) F� (\), the right hand side being a subspace of the Hilbert
space F� (\)=F (\). The functor F� : S < S � H thus obtained is a symmetric
tensor V -functor and thus a DR representation functor. Furthermore,
F� � F is a representation functor for F, and Gal(F) is the set of natural
transformations of F� � F, i.e., the set of families of unitary maps
[U(\, E) # F Hom((\, E), (\, E))), (\, E) # F] such that

U(_, F ) b F (S� )=F (S� ) b U(\, E) (4.16)

for all (\, E), (_, F ) # F, S� # HomF((\, E), (_, F )). Since F contains S, a
natural transformation of F� � F restricts to one of F : [U(\, id\) , \ # S].
Now, the group of natural automorphisms of F is just the Galois group
G=Gal(C). Let g # G and let [U(\, id\)=?\(g), \ # S] be the correspond-
ing natural transformation. A necessary condition for the latter to arise
from a natural transformation of F� � F is that (4.16) holds for all
\, _, S� # HomF(\, _). The corresponding g # G clearly constitute a
subgroup H/G. In order to study this subgroup let S� # HomF(\, _)/
HomS < S(\, _). With

S� =�
i # G�

:
i

S i
k }� i

k , S i
k # Hom(#k \, _), �k # Hk (4.17)
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and the definition of F� we have

F� \�
k # G�

:
i

S i
k}� i

k+ ,= :
k # G�

:
i

F (S i
k)(� i

k g_ ,). (4.18)

Then (4.16) takes the form

:
k # G�

:
i

F (S i
k)(� i

k g_ ?\(g) ,)=?_(g) :
k # G�

:
i

F (S i
k)(� i

k g_ ,)

= :
k # G�

:
i

F (S i
k)(?k(g) � i

k g_ ?\(g) ,).

(4.19)

Since the subspaces Hom(#k\, _)}Hk for different k are linearly inde-
pendent, this is true iff :g(S� )=S� . Since this must hold for all arrows S� in
F we define

H=[g # G | :g(S� )=S� \S� # F], (4.20)

which is a closed subgroup of G. For g # H, U(\, id\)=?\(g) commutes with
the projections E # HomF(\, \), and U(\, E)=U(\, id\) � EH\ is a natural
transformation of F� � F. Thus Gal(F)$H, and by the duality theorem
we know that F is a category of representations of H. Thus for
T # HomS < S(\, _) the linear operator F� (T ): F (\) � F (_) is contained in
F� (HomF(\, _)) iff it intertwines the representations ?p and ?_ . By the
above this is equivalent to T being H-invariant and therefore we have
HomF(\, _)=HomS < S(\, _)H for \, _ # S. For the subobjects (\, E)
the argument at the beginning of the proof applies and we obtain
F=(S < S)H. K

Now we consider the question for which subgroups H/G there is a sub-
category T/S such that (C < S)H$C < T. We begin with three lemmas.

Lemma 4.9. Let G be a compact group and let ? be an irreducible
unitary representation on the Hilbert space H. Let H be a closed normal
subgroup of G. Then the subspace HH/H of H-invariant vectors is either
[0] or H.

Proof. Let � # H be H-invariant. The normality of H implies that the
vectors ?(g) �, g # G are H-invariant, too. But the span of the latter is H,
since otherwise it would be a non-trivial G-invariant subspace, which does
not exist by irreducibility of ?. K

Lemma 4.10. Let G be compact and H be a closed normal subgroup.
Then there is a one-to-one correspondence between the (i) continuous unitary
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representations ? of G�H and (ii) continuous unitary representations ?̂ of G
such that H/ker ?̂. This correspondence restricts to irreducible representa-
tions. An intertwiner between representations ?, ?$ lifts to ?̂, ?̂$ and vice
versa.

Proof. Let , : G � G�H be the quotient homomorphism. Then the
correspondences are given by ? [ ?̂=? b , and ?̂ [ ?=?̂ b ,&1, where the
latter is well-defined since ?̂ is constant on cosets. These constructions
respect continuity since , is continuous and open. The statement on
intertwiners is obvious. K

The following is not explicitly contained in [6], but a part of the results
is contained in the more general [6, Theorem 6.10].

Lemma 4.11. Let S be a STC* with Gal(S)$G. Pick a representation
functor F of Doplicher and Roberts which identifies S with a category U(G)
of representations of G and let ?\ be the action of G on the Hilbert space
F (\). For a closed normal subgroup H of G the full subcategory of S defined
by Obj TH=[\ # S | H/ker ?\] is a replete full symmetric subcategory
with conjugates, etc., and Gal(TH)$G�H. The map H [ TH is bijective,
the inverse being given by T [ HT=[h # G | h # ker ?\ \\ # T]. (In these
considerations the non-uniqueness of the functor F is unimportant since the
kernel of the representation ?\ does not depend on the choice of F.)

Proof. Given a closed normal subgroup H, define TH /S as given.
The braiding and the V-operation restrict to TH , which is also closed under
conjugates, direct sums, and subobjects. For \ # TH , Lemma 4.10 gives rise
to a representation of G�H on F (\), and F (T ) where \, _ # TH , T #
Hom(\, _) intertwines the representations of G�H on F (\), F (_). Since
U(G)=F (S) is complete in the sense that for every g # G there is a \ # S

such that F (\)(g){1, the same holds for TH and G�H, which implies
Gal(TH)$G�H. On the other hand, given T, HT clearly is a closed
normal subgroup of G, and we have to show that this map is inverse to
H [ TH . Obviously, H/HTH

and T/THT
. By the above, F (TH) can be

looked at as a complete category of representations of G�H. Thus g # G is
in HTH

iff g� =e� (where g� =,(g) is the image of g in G�H )
iff g # H, whence HTH

=H. For given T/S, F restricts to an embedding
functor for T, and Gal(T) is (isomorphic to) the group of natural
transformations of F � T to itself. Since g # Gal(S) is trivial as a natural
transformation of F � T iff g # HT we have a homomorphism of G�HT

into Gal(T). Since the map , : G � G�HT is surjective we have in fact an
isomorphism Gal(T)$G�HT . Comparing this with Gal(THT

)$G�HTHT
=

G�HT , where we have used HTH
=H, this implies T&THT

. Since T, THT

are replete full subcategories of S we have T=THT
. K
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Proposition 4.12. Given C/E/C < S where E& (C < S)H, the sub-
group H/G is normal iff there is a STC* T/S such that E$C < T.
In this case AutE(C < S)=H and AutC(E)$G�H.

Proof. Let H be a normal subgroup of G. Pick a functor FS identifying
S with a category U(G) of representations of G. Let TH /S be the full
subcategory corresponding to H. FS restricts to TH , and when comparing
C < S, C < TH we will choose the functors FS , FS � TH in the construction
of the crossed products.

By definition (C < S)H$C < TH is the subcategory of C < S whose
objects and arrows are H-invariant. In view of (3.4) and (3.58) this means
for \, _ # C that

Hom(C < S)H(\, _)= �
k # G�

Hom(#k\, _)}HH
k

= �

H/ker ?k

k # G�

Hom(#k\, _)}Hk , (4.21)

where in the second step we have applied Lemma 4.9. On the other hand

HomC < TH
(\, _)= � Hom(#k\, _)}Hk , (4.22)

k # G�H@

where Hk now carries an irreducible representation of G�H. By Lemma 4.10
there is a canonical one-to-one correspondence between k # G�H@ and k # G� ,
H/ker ?k . Choosing the same #k 's in (4.22) as in (4.21) we can identify
the right hand sides of (4.21) and (4.22), and the products b , _ on the
arrows of (C < S)H and C < TH are the same since FTH

is the restriction
of FS to TH . In view of Hom(C < S)H(\, \)=HomS < TH

(\, \) also the
objects of (C < S)H can be identified with those of C < TH . Thus
(C < S)H$C < TH . The preceding argument depended on choosing
FS � TH for the definition of D < TH . But by Proposition 3.14 another
choice of FTH

yields an isomorphic crossed product category. Conversely,
consider T/S where Gal(S)$G=AutC(C < S). Then there is a normal
subgroup HT of G such that Gal(T)$G�H, and it is easy to verify that
C < T$(C < S)HT. K

The preceding results were of a relative nature, classifying intermediate
extensions E such that C/E/C < S, where S/D was not assumed. The
following result clarifies the role of the absolute Galois groups for exten-
sions C < S where S/D.

191BRAIDED TENSOR CATEGORIES



Proposition 4.13. For S/D we have Gal(C < S)$AutC < S(C < D)
$HS .

Proof. By Corollary 4.3 we have D(C < S)$D < S. That the compact
group associated to the STC* D < S is HS follows from the proof of
Proposition 4.8. K

Remarks. (1) In particular, for S=D we have Gal(S)=Gal(C)=
Gal(D) and thus Gal(C < D)=1, which was the statement of Theorem 4.4.

(2) Let C be symmetric, i.e., D=C with Gal(C)$G. Then taking
the crossed product C < S with S/D and Gal(S)$G�H amounts to
restricting the representations in U(G)$C to the normal subgroup H.
Then the statement of Proposition 4.2 on the equality of multiplicities
and dimensions is nothing but the well known result [3, Section 49].
Namely given an irreducible representation ? of G all irreducible represen-
tations of H in ? � H occur with the same multiplicity and have the same
dimensions.

The preceding results make the analogy with algebraic field extensions
K#F obvious. Also these can be iterated until one arrives at the algebraic
closure F� . The latter is the unique (up to F-isomorphism) algebraic exten-
sion in which all polynomials split into linear factors with the consequence
that further algebraic extensions do not exist. Furthermore, there is a one-
to-one relation between intermediate Galois extensions K, F� #K#F and
closed normal subgroups H of the absolute Galois group of F, given by
H [ F� H, K [ AutK F� .

Observe that the analogy with the algebraic closure��of course��not
quite perfect since C�� may have less irreducible objects than C or be even
trivial:

Proposition 4.14. C < S is trivial��in the sense that all irreducible
objects are equivalent to the identity object @��iff S=D=C. Equivalently,
C is completely degenerate, i.e., symmetric, and S=C.

Proof. If S is strictly smaller than D then C < S by the above contains
degenerate objects which are inequivalent to @. Thus assume S=D. The
irreducible objects of C < D are obtained by decomposing those of C. We
have seen that the degenerate objects of C become multiples of the identity
in C < D. But the decomposition in C < D of a non-degenerate object of C

yields non-degenerate objects, which are inequivalent to @. K

Corollary 4.15. C�� =C < D is non-trivial iff C contains at least one
non-degenerate object.
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5. FURTHER DIRECTIONS

5.1. Abelian Groups G

In this subsection we consider the special case where all irreducible
objects in S have dimension one, which is equivalent to Gal(S) being
abelian. Our aim will be to give an explicit description of the sector struc-
ture of C < S, where a sector is a unitary isomorphism class of objects.
(Abusing notation we write #, \, etc., for objects and for the corresponding
sectors.)

Denoting by 2 the set of irreducible sectors of C, the tensor product and
braiding in C render 2 an abelian semigroup. 2 decomposes into the set
2S of sectors in S and the complement 2$. Under the above assumption
of one-dimensionality K#2S is a discrete abelian group and the compact
DR group is just the Pontrjagin dual G=K� . Given an irreducible # # K and
an irreducible \ # 2$, #\ is irreducible (in C) due to d#=1 and Frobenius
reciprocity Hom(#\, #\)$Hom(\, \)$C. Another use of Frobenius
reciprocity [21, Lemma 3.9] shows that #\ is in 2$. Thus the sectors in K
act on those in 2$ by permutation, which implies that 2$ decomposes into
K-orbits \

�
:=[#\, # # K]. Given irreducible \1 , \2 # 2, (3.4) implies that

\1 , \2 are unitarily equivalent in C < S iff \1 , \2 are in the same orbit (i.e.,
\1 =\2 ) and disjoint otherwise. Thus in order to find all sectors in C < S

it suffices to consider one element \ of each orbit \
�

and to decompose
it into irreducibles. Since C < S is closed under direct sums and sub-
objects the decomposition of \ is governed by the semisimple algebra
HomC < S(\, \). It is well known that

HomC < S(\, \)$�
i # I

MNi
O \=�

i # I

Ni\i . (5.1)

Here Md is the full matrix algebra of rank d, thus dimension d 2, and the \i

are pairwise inequivalent irreducible sectors, occurring with multiplicity Ni .
Now we work out explicitly the structure of HomC < S(\, \). Motivated

by (3.4) and the fact that the spaces Hom(#k\, \) are either zero or one
dimensional we define

K\=[k # K, #k \ $\], (5.2)

which clearly is a subgroup of K. By Remark 1 after Definition 3.1, K is
finite. Choosing unitary intertwiners Tk # Hom(#k\, \), k # K\ and nor-
malized vectors �k # Hk , HomC < S(\, \) is spanned by [Tk ��k , k # K\]
and we have

Tk ��k b Tl ��l=Tk b id#k
_T l b V kl

k, l_id\}F (V kl
k, l)* (�k g_ �l). (5.3)
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Now

Tk b id#k
_Tl b V kl

k, l _id\ # Hom(#kl\, \), (5.4)

and since Hom(#kl\, \) is one dimensional we have Tk b id#k
_Tl b V kl

k, l_
id\ B Tkl . Similarly, F (V kl

k, l)* (�k g_ �l) is a unit vector in Hkl , thus
proportional to �kl . Therefore

Tk ��k b Tl ��l=c(k, l ) Tkl ��kl , (5.5)

where associativity implies c to be a 2-cocycle in Z2(K\ , T), and
HomC < S(\, \) is the twisted group algebra CcK\ . (This result could also
have been derived from the general theory of ergodic actions of compact
abelian groups on von Neumann algebras, cf., e.g., [1].) Due to
Te # Hom(\, \) # C id\ we can choose Te=id\ , which will always be
assumed in the sequel. Now we need some group theoretical results.

Lemma 5.1. Let A be a finite abelian group and c # Z2(A, T). Then the
center of the twisted group algebra CcA=span[Uk , k # A] with UkUl=
c(k, l ) Ukl is spanned by [Uk , k # B], where

B=[k # A | c(k, l )=c(l, k) \l # B] (5.6)

is a subgroup of A. In fact, Z(CcA)$CB$C(B� ). The twisted group algebra
CcA is isomorphic to the tensor product of its center with a full matrix
algebra,

CcA$MN �C(B� )$MN�MN� } } } �MN

|B| terms

,

where N=- |A|�|B|. The minimal projections of the center are labeled by the
elements of the dual group B� and under the canonical action of the dual group
A� they are permuted according to

:g(P/)=Pg� / , (5.8)

where g� # B� is the restriction of the character g # A� to the subgroup B/A.

Proof. The twisted group algebra CcA is a von Neumann algebra. This
can be shown by explicitly exhibiting a positive V -operation or by consider-
ing CcA as a twisted product of the von Neumann algebra C with A. Since
the canonical action of the dual group A� on CcA given by :g(Uk)=
( g, k) Uk is ergodic, Lemma 4.1 applies and gives the result on the tensor
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product structure of the twisted group algebra. The claim on the center
follows by specialization to an abelian group A of well-known results on
the center of twisted group algebras, cf. [15], or by an easy direct proof.
That B is a subgroup of A is then obvious in view of (5.5) and the fact that
the center is a subalgebra. Now, in restriction to B the cocycle c is
symmetric, which is equivalent to c � B being a coboundary,

c(k, l )=
f (kl)

f (k) f (l )
\k, l # B. (5.9)

With the replacement Uk � f (k) Uk , k # B the cocycle disappears on B and
we have Z(CcA)$B. By Pontrjagin duality this is isomorphic to C(B� ) and
the minimal projections in the center are given by

P/=
1

|B|
:

k # B

/(k) Uk , (5.10)

where / # B� is a character of B. From this formula it is obvious that the
action of A� permutes these projections as stated. K

Applying Lemma 5.1 to \ with A=K\ and Uk=Tk ��k , we define L\

to be the group B of the lemma and obtain

Proposition 5.2. In C < S the object \ # C decomposes according to

\$N\ � \/, (5.11)
/ # L\@

where the \/, / # L\@ are irreducible, mutually inequivalent and all occur with
the same multiplicity N\=- |K\ |�L\ |. The automorphism group G of C < S

permutes the subsectors according to :g(\/)$\ g� /. Here g� # L\@ is the restric-
tion of g # G=K� , considered as a character on K, to the subgroup
L\ /K\ /K.

Remark. The result that all irreducible components of \ appear with
the same multiplicity N\ appears as the (unproved) assumption of ``fixpoint
homogeneity'' in conformal field theory, cf. [9].

Corollary 5.3. The irreducible sectors (isomorphism classes of
irreducible objects) of C < S are labeled by pairs (\

�
, /). Here \

�
# 2�2S is an

orbit of irreducibles in 2 under the action of the group 2S of degenerate
sectors by multiplication and / is a character of the subgroup L\ /K\ .
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5.2. Remarks on the Case S/3 D

Whereas the definition of C < D does not require S/D, we have seen
that only under this condition the braiding = of C gives rise to a braiding
for C < S. Even though this was without importance for the larger part of
Section 4 we remark that also in the case S/3 D one can obtain braided
tensor categories, which is of relevance for the applications to conformal
quantum field theory, in particular the theory of modular invariants, as
well as to subfactor theory.

If S/3 D we can still obtain a braided semidirect product if we replace
C by the replete full subcategory CS which is defined by

Obj CS=[\ # C | =M(\, #)=id\# \# # S]. (5.12)

This set is easily seen to be closed under isomorphism, tensor products,
conjugates, direct sums, and subobjects. Since S is symmetric we clearly
have CS #S, and by definition S/D(CS). Thus CS satisfies all assump-
tions and we can construct CS < S, which is a non-trivial braided tensor
category unless CS=S. (It may be instructive to compare D(C) with the
center Z(M) of a von Neumann algebra M, S with an abelian subalgebra
A/M and CS with the relative commutant M & A$. Then CS=S

corresponds to M & A$=A, i.e., A maximal abelian in M.) By the preced-
ing discussion CS < S will be non-degenerate iff S=D(CS), which can of
course be enforced by replacing S by D(CS). This makes clear that given
a pair (C, S) where C is a BTC* with S a symmetric subcategory and
setting

C$=CS , S$=D(CS) (5.13)

we obtain a non-degenerate BTC* C$ < S$. It would be interesting to
understand the structure of the set of all such crossed products obtainable
from a given C.

5.3. The Case of Supergroups

Up to now we have assumed that all objects in S are bosons, i.e., have
twist equal to +1. Now we consider the general case, assuming that there
is at least one fermionic degenerate sector. Clearly we may apply the con-
struction as expounded so far to replace C by C$=C < D+ , where D+ /D

is the category of bosonic degenerate objects. By the above it is clear that
Gal(C < D+)$Z2 , i.e., this BTC* has only one degenerate sector #, which
satisfies #2$@ and =(#, #)=&id#2 .

Lemma 5.4. A fermionic degenerate object # of dimension one does not
have fixpoints, i.e., there is no irreducible \ # C such that #\$\.
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Proof. Assume \ is irreducible such that #\$\. Then |(\)=|(#\). On
the other hand, in view of =M(#, \)=id#\ , (2.10) implies |(\)=|(#\) |(#).
Since ||(\)|=1 this is possible only if |(#)=1. K

Thus Obj C$ decomposes into orbits of length two under the action of #
by multiplication. Assuming naively that as in the bosonic case there is a
similar cross product construction, which we call C$ < #, we expect that the
irreducible objects in C$ remain irreducible in C$ < #. The only effect of the
cross product construction should be pairwise identifying the objects \ and
#\ for all \. The question is whether C$ < # exists as a BTC*. Unfor-
tunately, this is impossible, since \ and #\ are equivalent in the would-be
BTC* C$ < #, but they have different twist.

This does, of course, not exclude the possibility that there is a full
subcategory which contains precisely one object from each orbit [\, #\].
But we do not have a criterion which would guarantee this.

6. CONCLUSIONS AND OUTLOOK

If symmetric tensor categories are considered as an extreme species of
braided tensor categories then non-degenerate categories are the opposite
extreme and the construction of the modular closure C�� amounts to dividing
out the symmetric part. Thus C�� should be considered as the 1-dimensional
analogue (in the sense of higher category theory) of the quotient group
G�Z(G), which for nice G (e.g., semisimple) has trivial center. The
significance of our results lies in showing that every braided TC* (braided
tensor category plus some additional structure) can be faithfully embedded
into a braided tensor category which is non-degenerate. In this way we
obtain a non-trivial category whenever the original one is not symmetric.
In particular we obtain a unitary (in the sense of [29]) modular category
whenever C�� =C < D is rational. Since modular categories are instrumental
in the construction of 3-manifold invariants [29] our construction has
obvious applications to topology.

Our strategy for removing the degeneracy was to add morphisms to the
category C and to close the category C <0 S thus obtained w.r.t. subobjects.
This is precisely the approach conjectured to work in [30, p. 460],

... it seems likely that one could get more modular categories by
adding additional morphisms to the categories which are constructed
in this paper... .

These authors did not, however, indicate a general procedure. Com-
parison of our construction in Section 3 with [21] reveals that we have
done little more than to translate the formulae derived in the QFT
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framework [24, 21] into a more abstract setting and re-prove facts like
associativity which are obvious in the QFT case. The considerations of
Section 4, however, have little in common with those [21] in the QFT setting.

Concerning the special case of Subsection 5.1 where all irreducible
degenerate objects have dimension one we cite [18, p. 359],

... In case I0 is a subgroup of invertibles [_] we have for the
natural action of its elements on kJ that S_=S. Hence S and
T can be defined on the orbit space im(�_ # J0

_), where we can
hope for the modularity condition to hold.

Also this conjecture has been proved above, but as we have seen the
decomposition into irreducibles of the objects in C < S is not quite trivial,
since it may be complicated by (i) the existence of the stabilizers K\ and
by (ii) non-trivial 2-cocycles which lead to multiplicities N\>1, cf. also [9].

We have formulated our results in terms of C*-tensor categories since
they are the natural language for investigations on operator algebras and
quantum field theories. But it should be clear��as already pointed out��
that the C*-structure does not play a crucial role. Replacing the DR
duality theorem by the one of Deligne [5] one can formulate versions of
our construction for braided tensor categories which are enriched over
Vectk for an arbitrary field k of characteristic zero. Also the strictness of the
tensor categories assumed in this paper is not crucial. But note that
Deligne has to assume integrality of dimensions in the symmetric category,
whereas in the framework of C*-categories this is automatic [6, Corollary 2.15]
as a consequence of positivity.

We close by listing some questions which were not treated in this work
and directions for further investigations:

1. Find a universal property which characterizes the modular closure
C�� up to equivalence.

2. Let C be a BTC*, acted upon by a compact group G. Under
which condition is there a subcategory S/D(CG) with Gal(S)$G such
that C&CG < S?

3. Clarify the decomposition of an irreducible \ # C into subobjects
in C < S, extending the considerations in Subsection 5.1 to the non-abelian
case. This looks difficult since not even the results of Subsection 5.1 for the
abelian case are very explicit. We indicate a generalization of the considera-
tions given above which, however, is not quite sufficient. Assume \ # C

irreducible is such that #\$d#\ whenever # # S is irreducible and
Hom(#\, \){[0]. (This clearly includes the case of G being abelian.) Then
the set [# # S | #\$d#\] is closed under multiplication and gives rise to a
full subcategory S\ of the STC*S, which is the representation category of
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a quotient G\ of G. Clearly, the action of G on HomC < S(\, \) factors
through G\ . This action of G\ has full multiplicity in the sense that the
spectral subspace corresponding to any irreducible representation ?k has
dimension d2

k . Then the considerations of [31, II] apply and we know
that HomC < S(\, \)$?|(G\@ ) where | is a 2-cocycle on G\@ and the
isomorphism intertwines the actions of G\ . See [31, II] for the terminol-
ogy. This case seems, however, too special to deserve further analysis.

4. Given a rational BTC* C find a direct construction of the
3-manifold invariant arising from the modular closure C�� , bypassing the
construction of the latter.

5. There is an obvious connection between the crossed product
C < S and the ``orbifold constructions in subfactors'' [8, 33] which
deserves to be worked out.

6. Generalize everything in this paper to the non-connected case
where Hom(@, @){C id@ and the compact (super)groups are replaced by
compact (super)groupoids [2]. The resulting Galois theory should resemble
the Galois theory for commutative rings instead of the one for fields.

7. Since Janelidze's general Galois theory for categories [13] was
modeled on the Galois theory for commutative rings as expounded by
Magid, it should be possible to show that with the proper identifications
our Galois correspondence fits into Janelidze's formalism, also after
extension to the non-connected case.
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