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In this paper, we present an agent-based system for distributed risk assessment of breast cancer devel-
opment employing fuzzy and probabilistic computing. The proposed fuzzy multi agent system consists of
multiple fuzzy agents that benefit from fuzzy set theory to demonstrate their soft information (linguistic
information). Fuzzy risk assessment is quantified by two linguistic variables of high and low. Through
fuzzy computations, the multi agent system computes the fuzzy probabilities of breast cancer develop-
ment based on various risk factors. By such ranking of high risk and low risk fuzzy probabilities, the multi
agent system (MAS) decides whether the risk of breast cancer development is high or low. This informa-
tion is then fed into an insurance premium adjuster in order to provide preventive decision making as
well as to make appropriate adjustment of insurance premium and risk. This final step of insurance anal-
ysis also provides a numeric measure to demonstrate the utility of the approach. Furthermore, actual data
are gathered from two hospitals in Mashhad during 1 year. The results are then compared with a fuzzy
distributed approach.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Risk assessment is one of the most important aspects in medical
decision making. One of the risks that should be assessed is the risk
of being affected by deadly diseases such as cancer where the risk is
influenced by various variables. An appropriate paradigm for han-
dling the effect of these variables can help insurance companies
to better evaluate the risk of deadly diseases and provide the users
suitable financial facilities for screening and preventive treatment
circumstances based on a fair premium. In this order confidential
risk assessments can save so many lives and subsequently decrease
the treatment costs and increase the social health.

Unfortunately, recognizing all of the effective variables and their
precise amount of effectiveness in a risk assessment is nontrivial. In
addition, the available information is highly imprecise and can lead
to uncertain conclusions. With respect to the existing uncertainties
in the available information, the first source of data for risk assess-
ment is known as ‘‘soft’’ data [1] that can be represented in linguis-
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tic forms (linguistic data). This data is extracted from the expert
opinions, their aggregated studies and experiences. Due to the lin-
guistic form of this information and imprecision of data, fuzzy-logic
based analysis offers a promising solution paradigm [2] to handle
the existing uncertainty. In addition to soft data, the statistical data
is another valid data source which can be helpful. This statistical
data may be incomplete when the number of observed data is not
considerably large. Hence the statistical data are also accompanied
by uncertainty which is caused by sparsity and insufficiency of data.
We have found fuzzy probability framework as a suitable approach
which enables us to enhance the reliability of our risk assessment
by employing both databases of soft data and statistical data at
the same time. Furthermore fuzzy probabilities enable us to show
the uncertainty of the assessed risk and compute the amount of
uncertainties in these fuzzy probabilities.

Fuzzy probabilities were first introduced by Zadeh [3]. Fuzzy
probability (FP) theory [4] is a fuzzy approach to probability theory
and is a generalized form of probability theory. In fuzzy probabil-
ities, probability theory is complemented with an extra dimension
of uncertainty provided by fuzzy set theory [5]. We divide the
applications of fuzzy probabilities to two different main areas
[6]. The first is the area of reliability and risk assessment. In this
area fuzzy probability has been widely applied in fuzzy fault trees
to assess the fault risk [7–9], risk assessment of pedestrian colli-
sions [6], reliability assessment for pressure piping [10], risk
assessment of natural hazards [11] and reliability enhancement
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by combining expert opinions [12]. Second is the field of decision
making, where fuzzy probabilities have been employed in percep-
tion-based theory [13], optimal decision fusion [14,15], inference
by aggregation [16], information retrieval [17] and inventory con-
trol [18]. Since risk is evaluated based on the uncertain data, the
assessed risk is also imprecise. Therefore we consider risk as a fuz-
zy variable and show the likelihood of any fuzzy risk by fuzzy
probabilities.

To employ and influence all the available factors in the risk
assessment, we employ multi-agent systems. Multi agent system
(MAS) is a distributed computational system with intelligent
autonomous agents. In a MAS, agents coordinate their tasks coop-
eratively or competitively to reach their goals in a distributed form
while the agents may be the same or different [19].

Fuzzy risk assessment is an open and highly dynamic problem
because new risk parameters may be added to the old ones in
our problem, also the environment is uncertain and complex.
Therefore we employ multi-agent systems (MASs) which properly
conforms to the features of our distributed risk assessment envi-
ronment. In addition MAS structure gives the system this opportu-
nity to add new parameters to legacy components through an
agent layer. Other characteristics of MAS which make it suitable
for the risk assessment problem are decentralization, result sharing
and self-organization. Decentralization means the distribution of
data, control or expertise [20]. In some risk assessment problems
the distribution of data, control or expertise in a centralized solu-
tion is at best extremely difficult or at worse impossible especially
where the parameters are numerous and are not correlated [21].
Result sharing is one the most important capabilities of a multi
agent system where each agent shares his local result obtained
based on his local data with other agents. The aggregation of all
these local results creates a global result with a high level of con-
fidence. Result sharing increases the confidence level in the total
result and ensures the precision of the final solution [22]. More-
over, these characteristics enable the proposed flexible system to
automatically continue its computations ignoring the unavailable
factors. In this paper self-organization enables the designed MAS
to arrange the solution procedure according to the available data
without being guided or managed by an outside source.

Multi agent systems are applicable in various areas of medical
sciences such as health monitoring [23–27], medical diagnosis
[28–31], electronic medicine [32–34], risk assessment [35,36],
medical services [37] and medical information systems [38]. In
the mentioned fields, risk assessment is mostly accompanied by
uncertainty, where it is usually impossible to determine all the
effective factors and the percentage of their effectiveness on the fi-
nal assessment.

More recently MASs have begun to emerge as an integrated
solution approach to distributed computing. Research shows that
domains in which data, control, expertise or resources are inher-
ently distributed can be addressed using agent technology. A
MAS consisting of multiple agents can take advantage of computa-
tional resources and capabilities that are distributed among inter-
connected entities. In this paper, for distributed computing of risk
fuzzy probabilities, a MAS is introduced which handles fuzzy and
probabilistic computing concurrently. Therefore based on the mul-
ti agent system capabilities, it is called ‘‘fuzzy-probabilistic multi
agent system’’, where ‘‘fuzzy probabilistic’’ is just a reasoning fea-
ture for the employed MAS.

Actually the main reason for risk assessment is to make preven-
tive decisions. Therefore the assessed risk is employed to calculate
the insurance premium, where insurance company recommends
preventive facilities for any user with a certain risk.

In this paper we introduce a general paradigm for distributed
risk assessment and insurance premium assignment under uncer-
tain conditions by integrating the capabilities of fuzzy probability
and multi-agent systems synergistically which is employed for
breast cancer (BC) risk assessment. We introduce an approach for
fuzzy probabilities computation which is particularly helpful to
model and combine imprecise probabilities derived from linguistic
data and statistical data. Furthermore system can estimate the BC
insurance premium based on the calculated risk which can be of-
fered by insurance companies for preventive and screening
facilities.

This paper is organized as follows. In Section 2, breast cancer
risk assessment factors and models are introduced. Section 3 illus-
trates the performance of the proposed multi agent system. The
employed soft data and statistical data are explained in Section
3.1. In Section 3.2, we describe the fuzzy probabilities calculation.
We explain the procedure of breast cancer risk assessment by the
proposed fuzzy-probabilistic multi agent system and ranking fuzzy
probabilities in Sections 3.3 and 3.4 respectively. In Section 4, we
discuss how the obtained results can be employed for defining
breast cancer premiums. We demonstrate the total performance
of the proposed fuzzy-probabilistic MAS in breast cancer risk
assessment and insurance premium assignment through an exam-
ple in Section 4.1. In Section 5, we evaluate the final results of an-
other distributed computing method called ‘‘fuzzy MAS’’ for BC risk
assessment and insurance assignment and compare the results of
the proposed fuzzy-probabilistic MAS with fuzzy MAS method. Fi-
nally, conclusions are drawn in Section 6.
2. Breast cancer risk assessment factors and models

One in nine women will develop breast cancer (BC) at some
point in her life [39]. Hence it is likely for any woman to be threa-
tened by breast cancer. Based on the extensive researches on BC
risk factors, we have gathered a collection of factors which have
been investigated to date. Due to this fact that not all factors in-
crease a woman’s chance of BC development equally, BC risk fac-
tors are categorized to three groups of strong, moderate and
minor risk factors [40]. Here we have extended the categorization
in [40] to include other several factors based on the survey of
multiple articles in this field. We have shown these three groups
in Table 1.

In this section we aggregate the relative researches about breast
cancer risk factors thus far.

Age is the primary risk factor for BC. Overall 85% of cases is in
women with 50 years of age and older, while only 5% of BC devel-
ops in women younger than 40 [40–43]. Therefore, women who
are older than 50 are at high risk of breast cancer development
and women who are younger than 40 are at low risk of breast can-
cer development.

In addition to the age another strong risk factor is family his-
tory. Women who have a family history of BC are at a higher risk
for BC than those who lack such a history. Women who have first-
and second- degree relatives with BC have a greater chance of
developing BC [27,34,44–46].

The carriers of BRCA1and BRCA2 genes are at high risk of being
affected by BC at some time in their lives [37,41]. Women who
have had a prior breast biopsy that revealed a proliferative abnor-
mality (extensive growth of the glandular breast tissue, also called
hyperplasia) have an increased risk of BC [40,41].

Being younger than 12 when first menstrual period occurs in-
creases the risk of BC development [40,41] and older age at meno-
pause (>55) increases the risk of BC, where both of these factors are
considered as moderate factors. Other moderate risk factors are
age at first child’s birthday, number of pregnancies, mammogram
density and exposure to radiation.

There is evidence that the more the children a woman has, the
greater the protection from BC, and women with 5 or more children



Table 1
Breast cancer risk factors.

Risk factor High risk group Low risk group

cFirst-degree relatives with BC (mother, sisters, daughters) P1 0
cSecond-degree relatives with BC (grandmothers, aunts, nieces, cousins) P1 0
cSNP information Refer to Table 2
cAge >50 years <45 years
cInheriting BRCA1,2 Yes No
bAge at menarche <12 years >14 years
bAge at menopause >55 years <45 years
bAge at first child birthday >30 years <30 years
bNumber of pregnancies <3 >4
bMammogram density >50% <5%
bBiopsy abnormalities Yes No
bExposure to radiation >400mrad <200mrad
aOral contraceptive consumption period >4 years <2 years
aAlcohol consumption >2 drinks a day <2 drinks a day
aHormone replacement therapy period >4 years <2 years
aFirst-degree relatives with other cancers P1 0
aSecond-degree relatives with other cancers P1 0
aObesity >25 <25
aVegetable and fruit consumption(serves a day) <1 >2
aPhysical exercises >5 min <15 min
aRace East European, European Asian, African

a Minor factors.
b Moderate factors.
c Strong factors.

Table 2
Common breast-cancer susceptibility alleles.

SNP No. Genea Chromosome Relative risk per allele

rs2981582 FGFR2 10q 1.26
rs3803662 TNRC9, LOC643714 16q 1.20
rs889312 MAP3K1 5q 1.13
rs3817198 LSP1 11p 1.07
rs13281615 None known 8q 1.08
rs13387042 None known 2q 1.20
rs1053485 CASP8 2q 1.13
C3435T MDR1 21q 1.30

a SNP No. single-nucleotide polymorphisms number, CASP8 denotes caspase 8,
FGFR2 the fibroblast growth factor receptor 2 gene, LOC643714 a hypothetical
protein LOC643714, LSP1 lymphocyte-specific protein 1, MAP3K1 mitogen-activated
protein kinase 1, TNRC9 trinucleotide repeat containing 9, and MDR1 multidrug-
resistant gene.
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are at low risk of breast cancer development in comparison with
nuliparous women [41,44]. Women who have their first full term
pregnancy at the age of 30 years or older have an increased risk of
BC as compared women who give birth before age 30. Women
who have never given birth are more likely to develop BC
[40,41,43]. Mammographic density is identified on mammograms
as the non-radiolucent portions of the image. These represent the fi-
brous and glandular tissues in the breast; where as the dark radiolu-
cent areas are primarily fat. Women with a high percentage density
in their breasts (>50%) are at higher risk of breast cancer as compared
to women with low percentages of density [41,47].

High dose ionizing radiation to the chest such as repeated fluo-
roscopies used during lung-collapse therapy for tuberculosis or
subjecting to atomic bomb explosion [48], have been shown to in-
crease the subsequent risk of BC [49]. Radiation exposure from
modern mammographic equipment is in range of 200–400 mrad,
which has been calculated to have minimal impact on BC risk [50].

Minor risk factors are the factors which mostly depend on hor-
mone replacement therapy and oral contraceptive (OC) consump-
tion, life style, environmental factors, diet schedule and the
health background of any person. Women who are obese (body
mass index (BMI) > 25), are at higher risk of BC [43]. More than
two serving a day of vegetable and enough physical exercises dur-
ing the day decrease the risk of BC [43,51].

It has been shown that alcohol consumption (P2 drinks a day)
increases the risk of BC [40,43]. As a woman ages, the breast gran-
dular tissue, the tissue in which breast cancer arises, is gradually
replaced by fat. Hormone therapy which includes estrogen and
progestin that slows or reverses this process increases the risk of
BC [40,41]. Use of oral contraceptive agents appears to increase
BC risk as well women who have used these agents for a prolonged
period of time (>4 years) are at higher risk of BC development [47].
Race and ethnicity are among the minor risk factors. It has been
discovered that the women of Asia and Africa are at the lower risk
of BC development in comparison with the American, European
and eastern European women [41].

An improved understanding of genetic risk factors and their
interactions with the environment would allow accurate predic-
tions of disease and facilitate prevention through measures directed
toward persons at high risk [52,53]. Although the clinical use of
single, common low penetrance genes is limited, a small number
of susceptibility alleles could distinguish women at high risk for
breast cancer from women at low risk, particularly in the context
of population screening programs. Moreover, stratifying women
according to genetic risk may improve the efficiency of screening
programs. Also genetic variation, rather than lifestyle or environ-
mental factors, accounts for most of the familial clustering [54,55].

Studies in breast cancer have reported new breast cancer sus-
ceptibility loci at highly stringent levels of statistical significance
(Table 2) [56–59]. These loci are all single-nucleotide polymor-
phisms (SNPs) with two alleles: a high-risk allele and a low-risk al-
lele. Since there are two copies of each locus in the genome, there
are three possible combinations of alleles: two low-risk alleles, one
low risk and one high-risk allele, or two high-risk alleles. The risk
conferred by each of these loci appears to be allele-dose-dependent
with a multiplicative effect on the risk.

The specifications of these SNPs, available in Table 2, are ex-
tracted from [59,60]. Apparently the cost of a genetic test for pur-
poses of risk profiling would be minimal as compared with the
costs of a lifetime screening program.

Currently there are no risk prediction models that efficiently
incorporate all known risk factors [49]. Till now there have been
three risk prediction models named as Gail model [61], Claus model
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[62] and IBIS model [63] where Gail is the earliest and IBIS is the lat-
est. Based on the descriptions mentioned in [45], we have shown the
main characteristics of these three models in Table 3.

The problem of overestimating and underestimating in these
models is caused by this fact that we cannot weight the risk fac-
tors according to their effectiveness on breast cancer risk. Also if a
woman wants to assess her risk based on these models, she must
have the answer of all the requested factors by the program. In
other words such kinds of models are not robust towards the sit-
uations where the user does not have all the information about
her factors. Also if we want to update the statistical database
by adding the information of new cases or new risk factors to
the database, we must build a new model based on the updated
database. While it is impossible to add a new part to the previous
program as a complement to the old part.

Since there are still further limitations about the existing mod-
els, it is needed to develop models with fewer limitations. It is
anticipated that newer risk models and methods of assessment
that incorporate breast density and/or evaluation of SNPs will be-
come available in the near future [45].
Table 3
Gail, Claus and IBIS models characteristics.

Gail model [61]

Included BC risk factors – Age
– First degree relatives with BC (mother,
sisters, daughters)
– Age at menarche

– Age at first child birthday
– Number of previous breast biopsies

– Presence of atypical ductal hyperplasia

– Race

Benefits – Easy to access and use

– Incorporates reproductive factors

– Adjusts for race

– Well validated on a population basis

Limitations – Does not incorporate second-degree
relatives with breast cancer, age at
diagnosis, or presence of ovarian cancer

– May overestimate risk in women with
nonproliferative breast lesions

– Has lower accuracy for individual risk
prediction
– Uses older population prevalence data
associated with lower baseline incidence
rates

Risk calculation model Logistic regression
3. The proposed fuzzy-probabilistic multi-agent system

Flexible topology and collaborative structure of the MASs makes
them applicable in a wide area of applications. In this paper we
introduce a cooperative MAS where agents can share knowledge
and distribute subtasks. By this strategy they benefit from decen-
tralization and self-organization to solve distributed problems
more effectively. In this system, agents are equipped with suitable
knowledge and computational capabilities.

The proposed fuzzy-probabilistic multi-agent system (MAS) for
BC risk assessment consists of several risk factor agents, each risk
factor agent represents one of the BC risk factors mentioned in
Table 1. There is also one interface agent which plays the role
of an interface between user agent and risk factor agents. In this
system each risk factor agent is provided with soft and statistical
data. Therefore any risk factor agent that corresponds to the ith
risk factor is equipped with soft data and statistical data about
his own risk factor. In the following sections we will discuss that
soft data of any risk factor agent is defined in the form of fuzzy
sets on the universe of the corresponding risk factor. In any coop-
Claus model [62] IBIS model [63]

– Age – Age at menarche
– First degree relatives with BC
(mother, sisters, daughters)

– Age at first child birthday

– Maternal and paternal second
degree relatives with BC
(grandmothers, aunts)

– Age at menopause

– Ages at diagnosis of BC – Number of pregnancies
Extended model adjusts Claus risk
for presence in the family of

– Use of hormone replacement therapy
(type, years of use, years since last used)

– Bilateral BC – Breast disease (hyperplasia, atypical
hyperplasia, Lobular carcinoma in situ
(LCIS))

– Ovarian cancer – Height (premenopausal)
– More than two relatives with BC – Body mass index (BMI)

(postmenopausal)
Genetic factors:
– Breast cancer and age at onset in first- ,
second- , and third-degree maternal and
paternal relatives
– Ovarian cancer and age at onset in first-
and second-degree relatives
– Jewish ancestry

– Accounts for moderate and strong
genetic risk factors

– Incorporates both genetic and
nongenetic risk factors

– Validated using data from a large
case-control study

– Easy data entry but requires extensive
family history details
– Adjusts for number/age of unaffected
first- and second- degree relatives
– Provides age-adjusted risks compared
to population in graph form

– Does not incorporate nonfamilial
risk factors

– Limited validation data

– Certain combinations of affected
family members not accounted for

– Model assumes nongenetic factors are
multiplicative on risk and of same
magnitude across all genotypes

– Extended model requires manual
application of regression formula
using baseline Claus risk

– Underestimates risk in women with
strong family histories

– Overestimates risk in women with less
strong family histories
– Dramatic increase in risk for women
with atypia and a positive family history

Logistic regression Bayes theorem
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erative MAS, problem solving contains three main stages: (1)
problem decomposition, (2) sub problem solution and (3) solution
synthesis [20]. In this order interface agent, receives the amount
of each BC risk factor from the user agent and distributes the
whole information to different packages and sends any of the risk
factors data to its specific risk factor agent. Then any risk factor
agent based on the received amount of his risk factor and also
his soft data and statistical data, computes the fuzzy probabilities
of fuzzy risk (high risk and low risk) of BC development based on
his own risk factor. After that each risk factor agent computes the
fuzzy probabilities of risk levels, in the next step interface agent
collects all the calculated fuzzy probabilities of risk factor agents
and aggregates them to obtain more confidential results.

By applying fuzzy probabilities, agents cope with the existing
uncertainty, at the same time applying parallel structure of MASs
can save time and decrease computational complexities. Addition-
ally regardless of the amount of information, we can consider all
the available information and increase the confidence level of the
aggregated decision. A general scheme of the proposed cooperative
fuzzy MAS in the stages of information distribution and result
sharing is outlined in Fig. 1.
3.1. Soft data and statistical data

As we mentioned in the previous section any risk factor agent is
provided with its corresponding BC soft data and statistical data. In
the BC risk assessment, the available soft data are the linguistic
facts and linguistic data about risk factors (Table 1) that are col-
lected by various experts and are available in medical literature.
For example, as we mentioned in Section 2 women who are youn-
ger than 40 are at low risk of BC development and women who are
older than 50 are at high risk of BC development. According to fuz-
zy-logic based analysis we can demonstrate this linguistic informa-
tion in the form of two fuzzy sets on the universe of woman age as
in Fig. 2, which forms our soft data about age risk factor.

Similarly all the linguistic information about other risk factors
mentioned in Section 2 (except some factors which are naturally
crisp) can be shown by two fuzzy sets of high risk and low risk.

The statistical database we employed is collected from patients
with BC in Omid and Imam Reza hospitals of Mashhad during
2006–2007. Therefore the available statistical database is only
from women with diagnosed BC (high risk). In this database, the
information of 12 BC risk factors are available for any of these 87
women. Table 1 contains these 12 risk factors which are age, first
degree relatives with BC, second degree relatives with BC, age at
menarche, age at menopause, age at first child birthday, number
of pregnancies, OCP consumption duration, hormone replacement
therapy duration, other cancers in first- and second-degree rela-
tives and C3435T SNP information of MDR1. The database contains
the risk information of 87 BC patients where some of these patients
had missing data about their risk factors. We have randomly di-
vided the available database to two sets of training (44 patients)
and testing (43 patients).

We employ both of these data, soft data and statistical data, to
compute the fuzzy probabilities of high risk and low risk of BC
development.
3.2. Fuzzy probabilities computations

There are several methods to compute fuzzy probabilities. In
this part we explain that how any risk factor agent can employ
its own soft data and statistical data to compute the fuzzy proba-
bilities of high and low risk levels. Here we modified the procedure
of fuzzy probability calculation explained in [6,11], where fuzzy
probability is called possibility probability distribution. To com-
pute fuzzy probabilities of high and low risk based on the method
explained in [11], we must compute prior fuzzy probabilities
where we employ soft data to calculate them based on the proce-
dure explained in [17]. After the calculation of prior fuzzy probabil-
ities, the statistical data are employed to convert prior fuzzy
probabilities to posterior probability distributions. Finally these
posterior probability distributions can be converted to posterior



Fig. 3. (a) Two adjacent fuzzy sets and (b) fuzzy information FIA ¼ A \ FII; FIB ¼ B \ FII, (FII = (b�a + 1) for c = 40).
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fuzzy probabilities. The detailed description of the employed
method is as follows.

In any fuzzy computing, the nature of available data or the pro-
cess of decision making to solve the problem is fuzzy. For comput-
ing the fuzzy probabilities of the occurrence of two adjacent fuzzy
sets (see Fig. 3a) based on the variable measure on the universe of
these two fuzzy sets, we could evaluate the membership degrees of
the variable in the fuzzy sets. But employing the membership de-
grees is not desirable for fuzzy probabilities computations. Because
the membership degrees are crisp and hence are less informative
in comparison with considering a part of the fuzzy sets where
the variable amount is in its center and gives more information
about the situation of the variable in the fuzzy sets. To solve this
problem, when the agent receives the amount of the variable and
its membership degrees, it translates its information into a specific
part of the two fuzzy sets. This part of fuzzy sets and its width is
chosen in a way that the measured amount of the variable is lo-
cated at its center. The width of this cut is called fuzzy information
interval (FII P 3), where FII = 5 in our calculations.

This part that contains two fuzzy subsets of A and B (depicted in
Fig. 3b) is called fuzzy information (FI). In this stage for computing
the fuzzy probabilities of A and B based on the fuzzy information,
FIA ¼ A \ FII; FIB ¼ B \ FII, we employ a procedure introduced in
[17] as follows.

We compute SB, SA and S according to the obtained fuzzy infor-
mation which is shown in Fig. 3b.

SB ¼
Xn

i¼1

lBðxiÞ; SA ¼
Xn

i¼1

lAðxiÞ; S ¼ SA þ SB ð1Þ

lA(xi) and lB(xi) are the membership degrees of xi in FIA and FIB

respectively, where xi, (a < xi < b) are the integer points between a
and b in Fig. 3b.

It is considered that pB(SB/S) = 1, pA(SA/S) = 1,where pA(p) and
pB(p) show the possibility of each probability p e [0, 1] of A and B
occurrence fuzzy probabilities respectively. Then agent considers
the possibility that one of n data xn may leave FIB. As stated in
[17] the point xi, (a < xi < b) with a less degree of membership in
FIB, is more likely to leave. The possibility of probability for FIB

occurrence being (SB � lB(xi))/S can be calculated as

p0BððSB � lBðxiÞÞ=SÞ ¼ lAðxiÞ=lBðxiÞ ð2Þ
Similarly two data points, xi and xi�1, (l(xi) < l(xi�1)) which
have the less degree of membership values in FIB are more likely
to leave FIB [17]. The corresponding possibility of this event is thus
calculated as

p0BððSB � lBðxiÞ � lBðxi�1ÞÞ=SÞ ¼ lAðxi�1Þ=lBðxi�1Þ ð3Þ

Similar processes are carried out until all the SB membership
values of data points xi, (a < xi < b), leave FIB.

Conversely it is possible for some data points to join FIB. Sup-
pose xi has the minimal positive value of FIA and it is thereby
mostly possible to leave FIA and join FIB. The possibility of probabil-
ity of FIB occurring being (SB + lA(xi))/S can be calculated as

p0BððSB þ lAðxiÞÞ=SÞ ¼ lBðxiÞ=lAðxiÞ ð4Þ

Similarly if the probability of FIB occurrence is (SB + lA(xi) + -
lA(xi+1))/S then the possibility of the corresponding probability
can be defined as follows.

p0BððSB þ lAðxiÞ þ lAðxiþ1ÞÞ=SÞ ¼ lBðxiþ1Þ=lAðxiþ1Þ ð5Þ

Similar processes are carried out until all the SA membership
values associated with FIA join FIB. In the last step the agent em-
ploys function p = (2/(1 + exp (�p0))) � 1 to normalize p0 e [0, +1]
to p e [0, 1].

In this way any risk factor agent computes the prior fuzzy prob-
abilities of high risk (HR) and low risk (LR) of BC development in
the form of two adjacent fuzzy sets based on the received amount
of their factor by employing soft data and fuzzy computing.

Low risk prior fuzzy probability and low risk posterior fuzzy
probability are the same since there is no available and real statis-
tical data about low risk women. But in the case of high risk fuzzy
probabilities, we must combine the prior knowledge in the form of
soft data and available statistical data of high risk women. There-
fore we employ the available statistical data mentioned in Section
3.1 to obtain posterior fuzzy probability of HR from prior fuzzy
probabilities.

We first divide the unit interval of probabilities in prior fuzzy
probabilities into m points, hj, j = 1, . . ., m, and then calculate the
posterior probability for each point hj as follows [11].

p0iðhjÞ ¼
n

ni

� �
hn1

j ð1� hjÞn�n1 _piðhjÞ � ð1=cÞðcjqj þ ð1� cjÞqjþ1Þ

qj ¼ hni
j ð1� hjÞn�n1 piðhjÞ

ð6Þ
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where ni is the number of observations that satisfies the amounts of
the ith risk factor among n observations (patients) in the training
set and Pi(hj) is the possibility of hj probability in the prior fuzzy
probability and P0iðhjÞ is the posterior probability of hj probability.
cj e [0, 1) is a unique value such that

hj ¼ cjhj þ ð1� cjÞ � qjþ1 ð7Þ

and c is a normalizing constant that guaranteesZ 1

0
p0iðhÞdh ¼ 1 ð8Þ

Now is the time of transforming probability distribution to pos-
sibility distribution. Suppose a probability measure P on a set X is
obtained via some statistical experiment. This probability function
is a very rich piece of information, if the number of statistical
experiments supporting it is high enough. According to widely ac-
cepted consistence principle, the possibility measures should dom-
inate P in the sense that P(A) 6 p(A) for all events A # X and the
maximally specific possibility distribution that exists must be un-
ique [11]. As illustrated in [11] the most specific possibility distri-
bution that approximates P from above (in the sense that P 6 p)
can be derived quite easily [6,11]. For obtaining a possibility degree
for any h, pi(h), first k ¼ p0iðhÞ is computed. Next, the second bound-
ary point h0 that satisfies p0iðh

0Þ ¼ k is found. Finally, the possibility
degree pi(h) can be obtained as:

piðhÞ ¼ piðh0Þ ¼ 1�
Z h0

h
p0iðxÞdx

�����
�����: ð9Þ

This possibility is equal to the area shaded grey in Fig. 4a.
The possibility probability distribution which is finally obtained

is the HR posterior fuzzy probability which must be sent to the
interface agent as well as the LR posterior fuzzy probability by
any risk factor agent.

3.3. Breast cancer risk assessment by the proposed fuzzy-probabilistic
MAS

Based on the existing soft data we quantize BC risk factors uni-
verses by two fuzzy sets of low risk (LR) and high risk (HR) except
few factors that cannot be quantized by fuzzy sets due to their
crisp nature, such as first- and second-degree relatives with BC,
first- and second-degree relatives with other cancers, having
biopsy abnormalities, SNP information and race.

Through the fuzzy computing that we explained in Section 3.2
any single factor agent computes the fuzzy probabilities of HR
and LR of BC development based on the fuzzy information and
available training data of his own risk factor. After that they send
the fuzzy probabilities of HR and LR of BC development to the
interface agent. The interface agent must aggregate these fuzzy
probabilities to gain the aggregated fuzzy probabilities of HR an
LR of breast cancer which are in higher level of reliability. Interface
Fig. 4. (a) Probability distribution to be transformed into a
agent employs a procedure for combining fuzzy probabilities
which was first proposed by Fau [6,12]. Based on the proposed
method by Fau, for aggregating fuzzy probabilities, we must mul-
tiply the possibilities of all fuzzy probabilities at each probability
value p e [0, 1] and normalize the products [12]. The normalized
products would be the possibilities of the corresponding probabil-
ities for the aggregated fuzzy probability.

Actually, fuzzy probabilities of strong risk factors must influence
the global result more than fuzzy probabilities of moderate risk fac-
tors and also fuzzy probabilities of moderate risk factors must influ-
ence the final fuzzy probabilities more than fuzzy probabilities of
minor risk factors. Therefore before receiving and combining fuzzy
probabilities by interface agent, any risk factor agent weights his cal-
culated fuzzy probabilities based on his own risk factor category
(strong, moderate, minor). To improve the reliability of aggregation,
1, 0.8 and 0.6 are considered as the weights of strong fuzzy probabil-
ities (FPs), moderate FPs and minor FPs respectively (refer to Fig. 5).

To demonstrate the effect of this reliability weighting [12], we
imagine that in Fig. 6a the weight of fuzzy probability for agent 1
(a1) is 0.8 while the second agent (a2) fuzzy probability weight is
one. If we employ the weights, the fuzzy probabilities will change
to Fig. 6b and the fuzzy probability of their combination can be
shown in Fig. 6c. In the aggregated fuzzy probability the modal va-
lue (MV) is obtained at p = 0.485, which shows that the resulting
fuzzy probability reflects the second agent’s fuzzy probability more
than the first case [12].

In this order, the interface agent calculates the final fuzzy prob-
abilities (FPs) of HR and LR of BC development by combining the
weighted fuzzy probabilities of HR and weighted fuzzy probabili-
ties of LR respectively. In this stage there are still some remaining
factors which could not be defined by fuzzy sets, however accord-
ing to the amount of their influence on BC risk, we can adjust the
aggregated fuzzy probabilities to obtain the final fuzzy probabili-
ties. To perform this adjustment, the interface agent asks the user
about ‘‘having 1st or 2nd degree relatives with BC, having 1st or
2nd degree relative with other cancers, C3435T SNP information.’’

It should be noted that these factors are not modeled by HR and
LR fuzzy sets since they are not inherently gradual (fuzzy) and the
approach requires both HR and LR sets to be of same type, either
fuzzy or crisp. For example, C3435T SNP can take on only 3 distinct
values, where any of these values has a different effect on risk. For
the other two parameters on relatives, since a LR case is inherently
non-fuzzy, i.e. set for not having any relatives with cancer, we did
not define HR fuzzy set either.

Therefore according to user’s replies, the final fuzzy probabili-
ties are tuned. For instance if the user’s answers confirm that she
has one 1st degree relative with breast cancer, her HR risk of BC
development increases remarkably; otherwise both the HR and
LR fuzzy probabilities remain unchanged. In the cases when the re-
plies imply increase in the risk of cancer, we shift the range of HR
probabilities by constant b > 0 (here b = 0.3) while the correspond-
ing possibilities and LR fuzzy probabilities remain unchanged [46].
possibility distribution and (b) transformed possibility.



Fig. 5. (a) Fully reliable fuzzy probability, (b) 80% reliable FP, (c). 60% reliable FP.

Fig. 6. (a) Two fuzzy probabilities, (b) weighted fuzzy probabilities and (c) aggregation of fuzzy probabilities.

Table 4
b Constant for the risk factors of first and second degree relatives with breast and
other cancers.

b 1 Affected
relative

2 Affected
relatives

3 Affected
relatives

1st Degree relatives with
breast cancer

0.3 0.45 0.6

2nd Degree relatives with
breast cancer

0.1 0.2 0.3

1st Degree relatives with
other cancers

0.1 0.2 0.3

2nd Degree relatives with
other cancers

0.05 0.1 0.15
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In the other mentioned risk factors, we have chosen b based on the
possible answers and description about their effect on BC develop-
ment which are available in medical literature [24,28,40,46,51].
Chosen b for risk factors of ‘‘having 1st or 2nd degree relative with
BC, having 1st or 2nd degree relative with other cancers’’ is shown
in Table 4. In C3435T SNP risk factor, the alleles may be T or C
where T-allele is high risk allele and C-allele is low risk allele. If
the two alleles are T-allele then b = 0.6, if one allele is C and the
other is T then b = 0.3 and when the two alleles are C then b = 0.

After tuning fuzzy probabilities the interface agent must evalu-
ate whether the user is in HR or LR of BC development.
3.4. Fuzzy risk analysis based on ranking fuzzy probabilities

There are various methods for ranking fuzzy numbers for fuzzy
risk analysis. By investigating the available methods, we have cho-
sen a proper method proposed by Chen and Wang [69]. The eligi-
bility of this method to others is that it can overcome the
drawbacks of the previous methods [44,64–68] which had been
employed in fuzzy risk analysis [69]. This method integrates many
concepts such as the approximate area measure [70], the belief fea-
ture [71] and the signal noise ratio [72].

In this stage the interface agent is a decision maker who wants
to determine the ranking order of the two fuzzy numbers
Ai; i ¼ 1;2. (A1 = fuzzy probability of high risk, A2 = fuzzy probabil-
ity of low risk). The kth a cut, Aak

i , of fuzzy probability Ai is defined
as follows

Aak
i ¼ fpjpAi

ðpÞP ak;p 2 ½0;1�g; ak ¼ k=n; k 2 f0;1; . . . ;ng ð10Þ

where n denotes the number of a cuts. The interface agent has cho-
sen n = 10. The minimal value li,k and the maximal value ri,k of the
fuzzy probability Ai are defined as follows [69].

li;k ¼ inf
p2½0;1�

fpjpAi
ðpÞP akg; ri;k ¼ sup

p2½0;1�
fpjpAi

ðpÞP akg ð11Þ

Fig. 7 shows the minimal value li,k and the maximal value ri,k of the
kth a cut of the fuzzy probability Ai. It also shows the minimal value
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lj,k and the maximal value rj,k of the kth a cut of the fuzzy number Aj.
The maximal barrier U and the minimal barrier L of the fuzzy prob-
abilities Ai; i ¼ 1;2: are defined as follows [69]:

U ¼max
8i
fpjp 2 Aa

i ;0 � a 6 hAi
; i ¼ 1;2g;

L ¼min
8i
fpjp 2 Aa

i ;0 6 a � hAi
; i ¼ 1;2g ð12Þ

where Aa
i denotes the a cut of the fuzzy probability Ai and hAi

de-
notes the height of Ai defined as follows

hAi
¼ supp2½0;1�pAi

ðpÞ ð13Þ

The signal/noise ratio ĝi;k of the kth a cut of the fuzzy probabil-
ity Ai used in the proposed method is defined as follows

ĝi;k ¼ ðmi;k � LÞ=ðdi;k þ cÞ; mi;k ¼ ðri;k þ li;kÞ=2;
di;k ¼ ri;k � li;k ð14Þ

where mi,k and di,k denote the middle point and the spread of Aak
i

respectively, L denotes the minimal barrier of fuzzy probability Ai

defined by Eq. (12), c is a parameter and c > 0, where the interface
agent has chosen c as U � L + 1. The ranking index RIðAiÞ of the fuzzy
probability Ai is calculated as follows [69].

RIðAiÞ ¼ hAi

Xn

k¼1

ak � gi;k

 !
=
Xn

k¼1

ak

 !
ð15Þ

where ak ¼ hAi
� k

n ; k 2 ½0;1; ::;n�; n ¼ 10. The greater the value of
RIðAiÞ the better the ranking of Ai. According to the explained proce-
dure, the interface agent computes the ranking index of the fuzzy
probabilities of high risk and low risk. Due to the higher ranking in-
dex of HR and LR fuzzy probabilities, the interface agent announces
to the user that she is in high risk or low risk of breast cancer
development.

Since different users may have different interpretations of high
risk or low risk, we compute the HR percentage and LR percentage
as follows, to numerically show the user that whether she is in HR
or LR of BC development.

HR percent ¼ ðRIðHRÞÞ=ðRIðHRÞ þ RIðLRÞÞ;
LR percent ¼ ðRIðLRÞÞ=ðRIðHRÞ þ RIðLRÞÞ:

ð16Þ

Additionally, we are interested to evaluate and represent how
uncertain are the assessed fuzzy probabilities. To measure the
amount of uncertainty of the assessed fuzzy probabilities which
are also possibility distributions we employ the following defini-
tions [73].
Fig. 7. Minimal values li,k and maximal values ri,k.
ax ¼
Z

x
pðxÞdx; ~x ¼

Z
x

xpðxÞdx
� �

=ðaxÞ;

Un ¼
Z

x
ðx� ~xÞ2pðxÞdx

� �
=ðaxÞ ð17Þ

where ~x is called the center of gravity and Un is called the uncer-
tainty [77]. x represents the probability which varies between
[0,1] and p(x) is the possibility of x probability. Un shows the level
of uncertainty for HR and LR fuzzy probabilities. Measured uncer-
tainty can ensure the user how much she can trust the assessed risk.

It should be mentioned that system automatically organizes its
solution according to the provided data by the user. In the other
words, if the user does not answer to specific risk factors, system
automatically takes out the corresponding risk factors from the
procedure of HR and LR fuzzy probabilities calculations and in-
creases the uncertainty of the final calculated probabilities based
on the missing risk factors. The system increases the calculated
uncertainties for high risk and low risk fuzzy probabilities by a
fixed amount called missing-factors-uncertainty (mfu), where
mfu = 0.5, 0.25, 0.12 corresponds to strong, moderate and minor
factors with missing data, respectively.

Finally, by calculating the HR and LR fuzzy probabilities, their
percentages and their uncertainties, we prepare the fuzzy multi
agent system to determine the insurance BC premium of any wo-
man who has used the system to evaluate her BC risk. The inner
structure and calculations of the proposed fuzzy-probabilistic
MAS is depicted in Fig. 8.

4. Breast cancer insurance premium assignment based on the
proposed method

BC risk assessment is a criterion of how the calculated risk can
be decreased or controlled by preventive or screening treatments.
Insurance companies can offer appropriate premiums and preven-
tive facilities for BC development. In other words, different premi-
ums can be assigned more appropriately to different BC risks
which need different preventive and screening facilities.

There are several studies about the relationship between insur-
ance and BC. Armstrong et al. indicates that information about in-
creased BC is associated with increase in life insurance purchasing
and compared to women who did not increase their life insurance
coverage, women who increased insurance coverage were more
likely to have a higher predicted life time risk of BC [74]. Lemair
et al. [75] discussed that women who have learnt through genetic
tests that they are at a higher risk of death by BC may purchase
more insurance, which to them seems inexpensive because it is
priced at a rate set for average risks and women who learn they
are at lower risk may purchase less insurance. Lemair et al. analysis
suggests that insurance companies could consider gathering as
much information about family history as possible during the
underwriting process and use BC and ovarian cancer information
in setting premiums. Also they tried to determine the term insur-
ance premium based on the available data of National Cancer Insti-
tute, where based on different age ranges, family history and
genetic factors they tried to conservatively determine the BC insur-
ance premium.

There is substantial evidence that lack of adequate health insur-
ance coverage is associated with less access to care and poorer out-
comes for cancer patients, also it is a major barrier to preventive
health services and adequate treatment [76].

Therefore according to the above mentioned points we can ben-
efit from the obtained information about fuzzy probabilities of HR
and LR of BC development to help the insurance company properly
adjust its BC premiums and services. Clearly high risk women are
willing to pay higher premiums but low risk women prefer to
pay lower premium prices. The premiums must then be tuned in
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a way that offers higher premiums for HR women and lower pre-
miums for LR women, furthermore the premium formulations
must guarantee that the insurance company will not have financial
loss. Consequently, high risk women pay higher premium and can
benefit from more preventive treatment services and low risk wo-
men who pay less premium can benefit from financial facilities for
screening.

Valid statistics can show the prevalence of breast cancer among the
women in any country, where we show this percentage by a (1 - a
shows the percentage of women who are not affected by BC in the same
country). For example, the prevalence of BC among Iranian women is
120 per 100,000 [77]. Therefore, a = (120/100,000) of women in Iran
may be affected while 1� a = (1� (120/100,000) of them may not
be affected by BC. Therefore average price of BC premium, (APP) in
any country, can be computed as below

APP ¼ a�MEBCT þ ð1� aÞ �MEBCP ð18Þ

where MEBCT is the maximum expense of breast cancer treatment and
MEBCP is the maximum expense of breast cancer prevention. In this
paper it is assumed that MEBCT = 34,000,000, MEBCP = 3000,000,
a = (120/100,000), 1� a = (1� (120/100,000)).

But we must tune the premium price based on the BC develop-
ment risk of each woman. If in fuzzy probability ranking of HR and
LR, a woman is high risk, her BC premium is then obtained as
follows

BC premium HR¼APP�ð1þHR percentÞ�ð1þUnHRþ total mfuÞ
UnHR¼ðHR UnÞ=ðHR UnþLR UnÞ

ð19Þ

where ð1þ HR percentÞ is a coefficient that increases the average pre-
mium based on the HR percent (Eq. (16)). Also ð1þ UnHR þ total mfuÞ
is a conservative coefficient that tunes the premium price based on
the existing uncertainty to guarantee that the insurance company
will not have financial loss where total mfu is the sum of all missed
factors uncertainties in the system which is equal to zero when there
is not any missed factor.

If in FPs ranking it has been noticed that the woman is low risk,
her insurance premium will be calculated as follows
BC premium LR ¼ APP � ð1� LR percentÞ � ð1þ UnLR þ total mfuÞ
UnLR ¼ ðLR UnÞ=ðHR Unþ LR UnÞ

ð20Þ

The ð1� LR percentÞ decreases the premium from the average
premium for low risk woman and ð1þ UnLR þ total mfuÞ is a con-
servative coefficient which increases the premium based on the
existing uncertainty to guarantee that the insurance company will
not have financial loss. HR Un and LR Un are calculated by Eq. (17)
based on the obtained high risk and low risk fuzzy probabilities
respectively.

Preventive treatmentand screening financial services may completely
or partially cover mammography, magnetic resonance imaging (MRI),
prophylactic ophorectomy, mastectomy and chemoprevention expenses
and other treatment services which should have been considered in the
maximum expenses of BC treatment and prevention in Eq. (18).

In this stage system employs different training and testing sets,
extracted from our statistical database, to recommend fixed breast
cancer premium prices for high risk and low risk women.

Since the system may have different results for different distri-
butions of training and testing sets, we have validated the system
for 10 different random distributions of training and testing sets.
In any of these distributions, the training and testing sets contain
44 and 43 patients respectively. Each training set is given to the fuz-
zy-probabilistic multi agent system to calculate the HR and LR fuz-
zy probabilities. In addition to calculating the success average of
risk assessment, the total insurance premium of the patients in
the testing sets who are recognized as HR women ðTIP HRÞ in any
distribution is also calculated based on Eq. (19). Similarly the total
insurance premium of the patients testing sets who are recognized
as LR women ðTIP LRÞ in any distribution is calculated based on Eq.
(20). Since all the patients in the database are affected by breast
cancer, the success average is defined as the ratio of the number
of women who are recognized as HR women to the total population
of testing set which is 43.

In any distribution testing, HR-insurance premium, HR IP, and
LR-insurance premium, LR IP, are calculated as follows

HR IP ¼ ðTIP HRÞ=ðNHRÞ
LR IP ¼ ðTIP LRÞ=ðNLRÞ

ð21Þ
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where NHR and NLR are the number of the women recognized as high
risk and low risk in any distribution respectively. Finally the system
recommends the mean of 10 available HR IP s as the final insurance
premium of high risk women and the mean of 10 available LR IP s as
the final insurance premium of low risk women. We demonstrate
the described results in Table 5.

Based on the obtained results (Table 5), the mean of 10 available
success averages is 88.14%. The final high and low risk insurance
premiums are 0.98285e+007 and 3.9395e+005 respectively (see
Table 5). We demonstrate the performance of the above fuzzy-
probabilistic MAS by the below example.
4.1. Example

Assume that a user has asked the system to assess the risk of
her BC development. The interface agent enquires about her risk
factors (12 risk factors mentioned in Section 3.1). The user replies
to the interface agent by entering her risk factors to the system as
below

MATLAB 7.1 command window:
Warning: if you do not know the answer of any question press �.
User-age (enter a certain age) = 65.
Age-at-menarche (enter a certain age) = 17.
Age-at-menopause (enter a certain age) = 55.
Age-at-1st-child-birthday (enter a certain age) = 20.
Number-of-pregnancies (enter a certain number) = 6.
Hormone-usage-period (enter the period of usage by year) = 0.
Oral-contraceptive-usage-period (enter the period of usage by
year) = 4.

In the next step the entered information is sent to the risk factor
agents. Risk factor agents obtain the fuzzy information by choosing
the parts of high risk and low risk sets based on the received infor-
mation and the fuzzy information interval which is equal to 5. After-
wards they calculate the fuzzy probability of HR and LR of BC
development based on their own risk factors. The interface agent
combines the received fuzzy probabilities to obtain the aggregated
fuzzy probabilities. It should be mentioned that when the user does
not know the amount of some of her risk factors, the corresponding
risk factor agents would weight these factor fuzzy probabilities by
zero weight. Therefore these factors cannot influence the final fuzzy
probabilities, but based on the kind of missing factor they increase
the amount of uncertainties as we discussed.

In the next step, interface agent asks the user about the remain-
ing risk factors to tune the aggregated fuzzy probabilities and ob-
tains the final LR and HR fuzzy probabilities. These questions and
the user answers are as below:
Table 5
The results of fuzzy-probabilistic MAS BC risk assessment and premium assignment based

Fold number Success average Total HR insurance premium Tota

1 0.8140 3.3547e+008 1.87
2 0.8837 3.7753e+008 1.49
3 0.9302 4.0460e+008 1.65
4 0.9535 4.0755e+008 0.65
5 0.8605 3.6502e+008 1.62
6 0.8837 3.6816e+008 2.39
7 0.8605 3.6916e+008 1.39
8 0.8372 3.5325e+008 2.89
9 0.9302 4.0300e+008 1.78

10 0.8605 3.4376e+008 3.19
Mean of each column 0.8814 3.7275e+008 1.89
MATLAB 7.1 command window:
What is your C3435T SNP information? (CC = 1, TC = 2,
TT = 3) = 3.
How many first-degree relatives with breast cancer do you
have? (If you do not have any enter 0) = 0.
How many second-degree relatives with breast cancer do you
have? (If you do not have any enter 0) = 1.
How many first-degree relatives with other cancers do you
have? (If you do not have any enter 0) = 0.
How many second-degree relatives with other cancers do you
have? (If you do not have any enter 0) = 0.

In this part if the user does not know the certain answers of
some questions, the interface agent sets the b constant for those
questions factors equal to 0, therefore these factors cannot have
any influence on the tuning of final fuzzy probabilities but they in-
crease the uncertainties of the assessed fuzzy probabilities. Finally
by tuning the aggregated fuzzy probabilities the resulting final fuz-
zy probabilities are obtained and shown in Fig. 9.

In the last step the interface agent ranks the final fuzzy proba-
bilities of HR and LR and announces the user risk based on the re-
sult of ranking as below:

‘‘Patient is at high risk of being affected by breast cancer where
the HR-percentage is 99.07 and the LR-percentage is 0.93’’.

The calculated uncertainties of HR fuzzy probability and LR fuz-
zy probability are respectively 1.2034e-005 and 1.9863e-004
where these uncertainty percentages are 0.0571 and 0.9429
respectively. System suggests the user to benefit from the insur-
ance financial aids for prevention by proposing the following pre-
mium rate.

‘‘You can benefit from the insurance financial aids for breast
cancer prevention by paying the following premium rate’’

User-premium-rate = 9,830,200.
5. Comparison and final results

In the proposed method we employ both soft data and statisti-
cal data in high and low risk fuzzy probabilities calculations. In this
section the performance of the same system ignoring statistical
data and employing only soft data in the process of fuzzy probabil-
ities calculations, is evaluated. As we discussed in Section 3.2 the
available soft data is employed to evaluate prior fuzzy probabilities
(FPs) and the statistical data is employed to convert the prior FPs of
high and low risks to posterior FPs of high and low risks. By consid-
ering just the available soft data in FPs calculations, posterior fuzzy
probabilities remain the same as prior fuzzy probabilities, while
the other characteristics and computations of this system is the
same as the proposed fuzzy-probabilistic MAS. Since the men-
on fuzzy probabilities.

l LR insurance premium HR-insurance premium
(HR-IP)

LR-insurance premium
(LR-IP)

55e+006 0.9585e+007 2.3444e+005
53e+006 0.9935e+007 2.9906e+005
96e+006 1.0115e+007 5.5320e+005
76e+006 0.9940e+007 3.2880e+005
18e+006 0.9865e+007 2.7030e+005
34e+006 0.9688e+007 4.7868e+005
59e+006 0.9977e+007 2.3265e+005
11e+006 0.9812e+007 4.1301e+005
94e+006 1.0075e+007 5.9647e+005
73e+006 0.9291e+007 5.3288e+005
769e+006 0.98285e+007 3.9395e+005



Fig. 9. (a) Low risk of BC development fuzzy probability and (b) high risk of BC development fuzzy probability.
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tioned system still benefits from MAS capabilities and fuzzy com-
puting we call it as ‘‘Fuzzy MAS’’ method.

To have a fair comparison, fuzzy MAS is validated for 10 differ-
ent random distributions of training and testing sets. In any of
these distributions, the training and testing sets contain 44 and
43 patients respectively. Table 6 shows the results of fuzzy MAS
evaluation.

Based on the obtained results (Table 6), the mean of 10 available
success averages is 73.49%, the final high and low risk insurance
premiums are 1.1069e+007 and 0.95186e+006, which are respec-
tively the mean of HR- and LR-insurance premiums columns in Ta-
ble 6.

In Table 7 the performance of the proposed fuzzy-probabilistic
MAS is compared against the performance of the mentioned fuzzy
MAS method. The aim of this comparison is to evaluate the perfor-
mance of the system employing both soft data and statistical data
with the case of just soft data employment. Table 7 illustrates that
the average success percentage of fuzzy-probabilistic MAS and
fuzzy MAS methods are 88.14% and 73.49% respectively. By
employing both soft data and statistical data in fuzzy-probabilistic
MAS the fuzzy probabilities of HR and LR women are more pre-
cisely computed in comparison with fuzzy MAS which employs
only soft data. Therefore in fuzzy-probabilistic MAS method HR
and LR fuzzy probabilities and consequently HR and LR insurance
premiums are more accurately calculated. These premiums ensure
that the insurance company will not have financial losses based on
the proposed premiums where the higher premiums of 88.14% of
the population who are correctly recognized as HR women can
Table 6
Results of fuzzy MAS method BC risk assessment and premium assignment (10 folds).

Fold number Success
average

Total HR insurance
premium

Total
prem

1 0.6744 3.0920e+008 1.069
2 0.7209 3.4349e+008 0.912
3 0.6977 3.4806e+008 1.329
4 0.7907 3.6960e+008 0.998
5 0.7442 3.5117e+008 1.132
6 0.7209 3.4451e+008 1.220
7 0.7674 3.5962e+008 1.196
8 0.7442 3.5891e+008 0.926
9 0.7674 3.6383e+008 0.766

10 0.7209 3.4867e+008 1.213
Mean of each column 0.7349 3.49706e+008 1.076
compensate the lower premiums of the women who are mistak-
enly recognized as LR women. It should be mentioned that on both
of these approaches, due to the wrong diagnosis of low risk wo-
men, their corresponding premiums (LR insurance premium) are
incorrect.

On the other hand, in the fuzzy MAS risk assessment method,
system is not able to recognize high risk women in the given test
populations properly. Furthermore, due to the lack of statistical
data, in fuzzy MAS method the uncertainty of HR and LR fuzzy
probabilities is not decreased in the process of posterior fuzzy
probabilities calculations, therefore HR and LR insurance premi-
ums in this method are too conservatively tuned where high and
low insurance are 1.1069e+007 and 0.95186e+006 respectively.
Clearly in this method, the HR insurance premium of 73.49% of wo-
men who are correctly recognized as HR women cannot cover the
financial loss of 26.51% of women who are mistakenly recognized
as LR. It should be mentioned that the general revenue of insurance
company in fuzzy-probabilistic multi-agent system is 8.7095e+006
and the insurance company revenue in fuzzy MAS method is
8.3867e+006 where the revenue is computed based on following
equation:

revenue ¼ SA� ðF HR IPÞ þ ð1� SAÞ � ðF LR IPÞ ð22Þ

SA is the success average where in fuzzy probability and fuzzy MAS
methods SA = 0.8814 and SA = 0.7349, ðF HR IPÞ and ðF LR IPÞ are
the fixed premium rates for LR and HR women respectively which
are available in Table 7.
LR insurance
ium

HR-insurance premium
(HR-IP)

LR-insurance premium
(LR-IP)

0e+007 1.0662e+007 0.7636e+006
4e+007 1.1080e+007 0.7603e+006
6e+007 1.1602e+007 1.0228e+006
0e+007 1.0871e+007 1.1089e+006
6e+007 1.0974e+007 1.0296e+006
4e+007 1.1113e+007 1.0170e+006
1e+007 1.0898e+007 1.1961e+006
1e+007 1.1216e+007 0.8419e+006
8e+007 1.1025e+007 0.7668e+006
9e+007 1.1247e+007 1.0116e+006
49e+007 1.1069e+007 0.95186e+006



Table 7
Comparing fuzzy-probabilistic MAS and fuzzy MAS results.

Average success
percentage

HR insurance
premium

LR insurance
premium

Maximum success
average

Insurance company
Revenue

Fuzzy-probabilistic MAS
method

88.14 0.98285e+007 3.9395e+005 88.37 8.7095e+006

Fuzzy MAS method 73.49 1.1069e+007 0.95186e+006 83.72 8.3867e+006
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In fuzzy-probabilistic MAS method, LR and HR women who
must pay respectively 3.9395e+005 and 0.98285e+007 for their
premium are more eager to purchase premium since the proposed
premium is significantly lower in comparison with fuzzy MAS
where the corresponding premium rates are 0.95186e+006 and
1.1069e+007 respectively.

Consequently, due to proceeding analysis and comparisons, the
insurance company can determine the fuzzy-probabilistic MAS
method is more accurate for breast cancer risk assessment and pre-
mium assignment in a certain population, where the method en-
sures the bilateral benefits of the insurance company as well as
insured women.

Additionally the insurance company can determine its treat-
ment, prevention and screening services based on the fixed HR
and LR insurance premiums that are proposed by the fuzzy-proba-
bilistic MAS.

It should be mentioned that the proposed fuzzy-probabilistic
multi-agent system assumes FII = 5 in its computations, where
decreasing it to FII = 3 leads to the increase of LR and HR premiums
and consequently decreases the number of insurance purchasers
and increases the general revenue of insurance company based
on Eq. (26). In contrast, increasing FII to 7 leads to the decrease
of premium rates and general revenue of insurance company,
while attracting more insurance purchasers. This is while the suc-
cess average of the proposed method in all these three choices of
FII is similar.

6. Conclusions and future work

Here we propose a general paradigm for distributed risk assess-
ment and insurance premium assignment under uncertain condi-
tions by integrating the capabilities of fuzzy probability and
multi-agent systems synergistically. Through this paper we show
how fuzzy logic can be benefited to model soft data. We
demonstrate that multi agent systems offer an attractive approach
for distributed computing problems through decentralization,
cooperation and result sharing with a higher reliability and flexibil-
ity. In the particular case of breast cancer development, the pro-
posed fuzzy-probabilistic multi-agent system employs fuzzy
computing and probabilistic computing to assess fuzzy risks and
fuzzy probabilities to model uncertain probabilities. Also the pro-
posed approach for fuzzy probabilities computation is especially
helpful when we want to model and combine imprecise probabili-
ties derived from linguistic data and statistical data. System can also
estimate the breast cancer premium based on the calculated risk
which can be offered by insurance companies for preventive and
screening facilities. Finally we compare the results of the proposed
fuzzy-probabilistic MAS with those of the fuzzy MAS. The results
indicate the superiority of the proposed method in the case of breast
cancer risk assessment and premium assignment. The system can
also be improved as a social or private health system for assessing
BC risk and offering preventive advices.

Regardless of the economic aspects, the proposed system can be
employed as a private health system for any woman or as a public
health system for any expert. The system can be improved by
offering different preventive advices for any user about appropri-
ate life style, health habits, screening and preventive methods.
The research can be extended by augmenting the available data-
base by supplying the healthy women factors and re-evaluating the
performance of the system. The available risk factors can be com-
pleted by considering breast density and other BC single-nucleotide
polymorphisms (SNPs) factors. Finally, the proposed approach can
be applied for other diseases.
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