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We study the semi-classical asymptotics for local spectral densities of Schriidinger 
operators -fh2d + V and apply the obtained result to the time delay problem in 
potential scattering theory. It is shown that for a class of central potentials, the time 
delay in quantum mechanics converges to the corresponding one in classical 
mechanics in the semi-classical limit in a non-trapping energy region. However, 
such a convergence is not expected in a trapping energy region. 0 1988 Academic 

Press, Inc. 

0. INTRODUCTION 

In the present paper we study the semi-classical asymptotics for local 
spectral densities of Schriidinger operators H(h) = -$h2d + V, 0 < h < 1, in 
the n-dimensional space R:, n > 2, and apply the obtained results to time 
delay problems in scattering processes. 

We begin by defining the local spectral densities above, which are essen- 
tially energy derivatives of spectral functions. We first make the following 
assumptions on the potential V(x): 

Assumption ( V&. V(x) is a real P-smooth function and satisfies 

Ia;V(x)l <C,(x)-P-l@’ 

for some p>O, where (x)=(1+ [x12)1/2. 
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We denote by E(I; H(h)) the spectral resolution associated with H(h), 

H(h) = Srn 1 dE(A; H(h)), 
-m 

and by R(z; H(h)), Im z #O, the resolvent of H(h), R(z; H(h))= 
(H(h)-z))‘. Under the assumption ( V)P with p > (n + 1)/2, the principle 
of limiting absorption yields the well-known relation 

E’(A; H(h)) = (d/dA)E(l; H(h)) 

= (2ni)-1 (R(l+ io; H(h)) - R(l- io; H(h))) 

for A> 0 and also the integral kernel e’(x, y; 1, h), 2 > 0, of E’(I; H(h)) is 
represented in terms of the generalized eigenfunctions of H(h). 

Let B be a bounded open set in R: and let Z be a bounded interval in 
(0, co). Denote by xB and 1, the characteristic functions of B and Z, respec- 
tively. We define a,(B x I) by 

CAB x 0 = Wh)” ‘Wx,x,(fW)) xd. 

Then we have 

do,(x, A) = (2nh)” e’(x, x; 1, h) dx dlz. 

According to Lavine [ 163, we shall call a,(~, A), (x, 2) E R; x (0, co), the 
local spectral density for H(h). The corresponding quantity in classical 
mechanics is defined by 

and hence 

where w, denotes the volume of the n-dimensional unit ball and 
f+(x) = max(O, f(x)). We know [16,21] that 

(27th)” e’(x, x; 1, h) + no,( (21- 2 V(x)) + )“‘*-- ’ 

as h + 0 in the distribution sense (i.e., in D’(R: x (0, co))). In the first half 
of the present paper, we will show that the above convergence holds in 
D’(R:), if energy I is restricted to a certain energy region (non-trapping 
energy region). 

We shall formulate the above result more precisely. In addition to (V), 
with p > (n + 1)/2, we assume that energy il > 0 under consideration is non- 
trapping in the following sense. 
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Non-trapping Condition. Let (x(t; y, q), <(t; y, q)} be the solution to 
the Hamilton system i = 5, < = -V Vwith initial state (y, q). We say that 
energy ;1> 0 is non-trapping, if for any R B 1 large enough, there exists 
T= T(R) such that Ix(t;y,q)I > R for ItI > T when lyl < R and 
A=$ (‘112+ V(y). 

Under the above assumptions, the main theorem can be formulated as 

THEOREM 0.1. Assume ( V), with p > (n + 1)/2 and that 1> 0 is non- 
trapping. Let W(x) E C”(R”,) be a function such that for v > n 

Ia; W(x)1 <C,(x)-“-‘% 

Then 

(2nh)” fRn W(x)e’(x, x; A, h) dx w f Fj(n)hi, 
j=O 

as h + 0, where the leading term F,(A) is given by 

F,(A) = no, 
f 

W(X)((~~-~V(X))+)“‘~-’ dx. 
R” 

We here make a comment on the pointwise asymptotic expansion in h 
for e’(x, x; I, h). In [17,22], the problems on the short-wave (or high- 
energy) asymptotics for local spectral densities have been studied for 
second-order elliptic operators with compactly supported perturbed coef- 
ficients, and under the non-trapping condition, pointwise expansion for- 
mulas have been obtained when x ranges over a compact region. These 
results will apply to our semi-classical asymptotic problems, if 1 is non- 
trapping and if x is restricted to a compact region, and such formulas will 
be represented by making use of the Arnold-Keller-Maslov index for the 
classical trajectories starting from x and coming back to x with energy 1, if 
such trajectories exist. However, our interest here lies in the global expan- 
sion rather than in the local expansion. It seems to be not easy to prove 
even the uniform bound for e’(x, x; 1, h) such as e’(x, x; 1, h) = O(h-“) 
uniformly in x. One of the difficulties comes from the fact that the 
generalized eigenfunction of H(h) itself is not expected to be bounded 
uniformly in h, because the scattering amplitude f(w + 0; 1, h) for the 
incoming direction o has a strong peak in a neighborhood of CD. 

The second half is devoted to the application of the above theorem to the 
time delay problems in scattering processes. We define the (average) time 
delay in quantum mechanics by the I-derivatives of spectral shift functions 
(total scattering phases) in the Birman-Krein trace formula and show that 
in the semi-classical limit h + 0, this quantity converges to the 
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corresponding one in classical mechanics for a class of central potentials, 
if I is in a non-trapping energy region. On the other hand, if I is in a 
trapping energy region, this quantity is not expected to converge to the 
classical one. 

1. SPECTRAL REPRESENTATION 

We write H,(h)= +*A and denote by E(I; H,(h)) the spectral 
resolution associated with H,(h). We further denote by &,(x, A, o; h), 
(A, o) E (0, co) x S”- ‘, the generalized eigenfunction of H,(h), 

&(x, A, o;h)=exp(ihPIJG (x, o)), 

where S”- ’ denotes the (n - 1)-dimensional unit sphere and (, ) is the 
scalar product in R". We define tj,,(x, A, w; h) by yQO = c,(A, h) #,, with the 
normalized constant 

c,(A, h)= (27th)~"'2 (21)'"-2"4. 

Then the unitary operator F,(h): L2( R",) -+ L*( (0, cc); L2(S” ~ ‘)) defined by 

(f',(h) fN4 0) = jRn $o(x, A w h) f(x) dx (1.1) 

gives the spectral representation for H,(h) in the sense that H,,(h) is trans- 
formed into the multiplication by 1 in the space L2((0, co); L*(S”-I)), 

We now assume (V), with p > (n + 1)/2. Then, according to the principle 
of limiting absorption, the generalized eigenfunction 4*(x, 1, o; h) of H(h) 
is given by 

We define II/&(x, A, o; h) by 1+9+ = c,(A., h)#, with the same normalized 
constant c,(l, h) as above. We denote by Lf, the absolutely continuous 
subspace of H(h). Then we can define the unitary operators F,(h): 
L;,+L*((O, m);L*(S"-')) by 

(F,V)f)(A 0) = jRn $,k 4 0; h).f(x) dx 

and F,(h) give the spectral representation for H(h) restricted to L!& in the 
same sense as for H,(h). Therefore, the integral kernel e’(x, y; A, h), ,I > 0, 
of E’(A; H(h)) is represented as 

e’(x, Y; 5 h) = Jung, J/ _+ (x, A w h) 4 + (Y, 4 0; A) do. (1.3) 

580/80/l-9 
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2. WEAK ASYMPTOTICS 

In what follows, we write p(x, 5) =f lrj2+ V(x) and use the 
abbreviation; integrations with no domains attached are taken over the 
whole space. In this section we first show without assuming the non- 
trapping condition that the quantity under consideration 

p&/l; h) = (27th)” j- W(x)e’(x, x; 1, h) dx, 1>0, 

has an asymptotic expansion in h in the weak sense (i.e., in the distribution 
sense). 

The next proposition follows from [9] and is proved in exactly the same 
way as there. 

F'RO~OSITION 2.1. Assume (V), with p > 0. Let f E C,“(R’). Then there 
exists a formal series af = X7= ,, a,-Jx, r)h’ such that 

II 
N-l 

f(H(h)) - 1 aAj(x, hD,)h’ = O(hN-“) 
j=O II tr 

for any N > n, where 1) 11 tT denotes the trace norm and the symbols aAj(x, <) 
take the forms 

2j+ 1 

as,j(% t)= C Pjktx, S)f’k’(P(X, 5))~ i> 19 

k=3 

with a family of universal polynomials pjk(x, <) of a; a<p, /aI + IpI 2 1. 

As an immediate consequence of the above proposition, we obtain the 
following 

THEOREM 2.1. Assume ( V)p with p I=- (n + 1)/2. Let W(x) be as in 
Theorem 0.1. Fix an open interval Zc (0, 00) such that p(x, 5) has no critical 
values in I. Then 

Jrn f(n)p,(J;h)dA- f [IUf(l)Fj(J)d).]h’, h-0, 
0 j=O O 
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for any f E C,“(Z), where 

Fo = (WA) lj- 
P(d)<i. 

W(x)dxd~=ntu,[ W(x)((2L-21/(x))+)“‘*-‘dx, 

2j+ I 

F,= c (-1)” (d/dA)k+’ 
k=3 

w(x)Pjk(X, 5) dx 4 , j2 1, 1 
for ju E 1, pjk being as in Proposition 2.1. 

If there are no critical values of p(x, 5) in a fixed open interval 
Zc (0, co), it then follows from Theorem 2.1 that p w(l; h) converges to 
F,,(A) as h -+ 0 in D’(Z). We should note that this result is obtained without 
assuming that A E Z is non-trapping. 

3. STRONG ASYMPTOTICS 

In this section, we prove Theorem 0.1. As a result, we obtain that 
p w(L; h) converges to F,(1) as h -+ 0 in the strong (usual) sense, if ,? is 
restricted to a non-trapping energy region. 

Proof of Theorem 0.1. By Theorem 2.1, we have only to prove that 
pw(& h) has an asymptotic expansion in h in the strong sense. We prove it 
through several steps. 

(1) Wefirstfixan0peninterva1Z0=(il-s,~+~)(~(0,00))f0rs~0 
small enough. We may assume that p E Z, is non-trapping. We now take 
gECF(Z,,) with g I~=j.= 1, and define 

P(P; h) = g(p) [ Wx)e’(x, x; P; h) dx. 

We further define 

G(t;h)=exp(-ih-‘tH(h))g(H(h)), -al<<<<. 

Then we have 

Tr(G(t;h) W)=Iexp(-ih-‘tp)p(y;h)dp 

and hence the inverse Fourier transform yields 

p(p; h) = (2nh)-’ 
5 

exp(ih-‘pt) Tr(G(t; h) W) dt. 
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However, we have no nice information on the behavior as (t( + cc of 
Tr(G(t; h) W). Thus, we consider the cut-off integral. Let 8 E C,“(R’) and 
define 

J&; h) = (2ah))’ 1 exp(ih-‘pt)B(t) Tr(G(r; h) W) dt. 

(2) We state some properties of J,(A; h) or Tr(G(t; h) W) as a series 
of lemmas. We will prove these lemmas in Section 4. 

LEMMA 3.1. If t?ECr((-r,z)) for z>O small enough and 8=1 for t, 
1 tl < 212, then Je(,u; h) has an asymptotic expansion in h, 

J&; h) w f K@)h’-” 
j=O 

uniformly in p E I,. 

LEMMA 3.2. Let z > 0 be as above. Fix T % 1 arbitrarily. If 
tl~C;((r/2, T)) or C$‘((-T, -r/2)), then J,(p;h)=O(hN) for any N9 1 
uniformly in p E I,. 

LEMMA 3.3. There exists To > 0 such that if 1 cl > To, then 
Tr(G(t; h) W) = O(hN) for any Np 1. 

We proceed with the proof of the theorem, accepting these lemmas as 
proved. 

(3) LEMMA 3.4. p’(p; h) = 0(hPne3) uniformly in peZo (and hence 
PER’). 

For the proof of this lemma, we use two lemmas. 

LEMMA 3.5. Assume ( V)p with p > 0 and that p EZ~ is non-trapping. 
Then, for any a > 4, 

II(x)-“R(p&+O;H(h))(x)-“IJ=O(h-‘) 

uniformly in ,u E IO, where 11 11 denotes the operator norm when considered as 
an operator from L’(R;) into itself: 

The above lemma has already been proved in [ZO], where we have used 
this resolvent estimate to study the semi-classical asymptotics for total 
scattering cross-sections. This lemma plays an important role in the proof 
of this theorem also. 
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LEMMA 3.6. Let q4 + (x, p, o; h) be the out-going generalized eigenfunction 
of H(h). Define 

Then 

(a/ao)J~,=~= --R(p++O;Wh)) W+, 

where 

U(x) = (a/ao)(o-*v(x/b)) lazl = -2V- (x .V) v. 

Proof. We first note that &,(x/o, pa*, w; h) is independent of (T. Hence 
(a/&)$ satisfies the out-going radiation condition. As is easily seen, $ 
obeys the equation 

-+h*A$+o-*V(x/o)&&=O. 

Hence, the desired relation can be obtained immediately. 1 

Proof of Lemma 3.4. We calculate p’(p; h), using the relation 

P’(P; h) = GW’GWhW*; h) lo= 1. 

By definition, 

Aw2; h) = g(w2)c,(po2, h)* {fFe, w(x) 14+(x, PLO*, 0; WI* do dx. 

We make a change of variables x -+ y = (TX in the above integral and dif- 
ferentiate the resulting relation with respect to cr. Then Lemmas 3.5 and 3.6 
yield the desired order estimate. 1 

(4) We now complete the proof of the theorem. We take 
0,~Cr((-l, I)) such that &=l for t, ItI<& Fix an integer K%l 
arbitrarily and set e,(t) = kI,(h”t). Define 

qSK(q h)= (2nh)-’ f exp(ihk’Tt)6),(hKt) dt. 

If we denote by 8(r). the Fourier transform of e(t), 8(t) = 
j exp( -itz)@(t) dt, then 

qSK(r; h)=(2zhK+‘)-’ &( -h--(K+‘)T) 



132 

and also 
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s 
fj&; h) dz = e,(o) = 1. 

By definition, we have 

and by Lemmas 3.1-3.3, we see that JO,&; h) has an asymptotic expansion 
in h. Thus we have only to evaluate the difference between p(p; h) and 
J&; h). By Lemma 3.4, this is estimated as 

O(h- (K+l))O(h-@+3) 1 j Id I&(--h- (K+‘)T)I & = O(hK--n-2). 

This completes the proof. 1 

4. PROOF OF LEMMAS 3.1-3.3 

In this section we prove Lemmas 3.1-3.3. The method of proof is based 
on the calculus of oscillatory integral operators. We first introduce a 
certain class of symbols. 

Symbol Class A,. For given IR c R; x RF, we denote by A,(G) the set 
of all a(x, <), (x, 0 E Sz, such that 

for any N9 1. If, in particular, B = R: x R;, then we write A, for A&?). 

Most of the symbols we consider later have compact support in 5 and 
hence are of class A,(Q). We say that a family of symbols a(x, 5; a) with 
parameter E belongs to A,(O) uniformly in E, if the constants C,,, above 
are taken uniformly in E. 

We again write p(x, <) = 4 IQ2 + V(x). Let {x(t; y, q), c(r; y, II)} be the 
phase trajectory with initial state (y, q) associated with the hamiltonian 
function p(x, <). We denote by @, the canonical mapping 

Q,: (Y, fi+) + (a; y, VI, ttt: Y, YI)). 

Proof of Lemma 3.1. The lemma is proved in the standard way based 
on short time parametrices for the Schriidinger equation. If, in particular, 
W(x) is of compact support, the proof is done in exactly the same way as 



SPECTRAL DENSITY AND TIME DELAY 133 

in [3, 81, etc. Even if W(x) is not of compact support, any serious difficulty 
does not occur. We give only a sketch for the proof. 

By Proposition 2.1, it suffices to prove the lemma for o(x, hD,) with 
symbol w(x, <) E A, supported in {(x, 5): p(x, 5)~ I,}, I0 being the fixed 
non-trapping energy interval. We define 

I&; h) = (27ch)-’ 1 exp(ih-‘tp) 0(t) Tr( Wexp( -ih-‘tH(h))o(x, hD,)) dt 

for p E lo. Let S(t, x, 0, )t( < z 4 1, be the solution to the Hamilton-Jacobi 
equation 8,s + p(x, V,S) = 0 with S 1 ,=O = (x, g ). The function S has the 
following property (S): If 5 ranges over a compact set, then 8;k 8; a!S with 
k + JaJ + I/?/ > 2 is bounded uniformly in (t, x, r), x E: R’$ This follows from 
the fact that S is the generating function of the canonical mapping @,. By 
constructing a short time parametrix for exp( - ih- ‘tH(h)), It( < 7, we can 
write I&; h) in the form 

(2nh)-‘“+I’ exp(ik’$(t, x, [))O(t) W(x)a,(t, x, 4; h) dx dt dt + O(hN) 

for any N 9 1, where 

and uN belongs to A0 uniformly in t, Jtl < 7, and h with support in 
((x, <): p(x, V,S) E I,}. We apply the stationary phase method to the 
above integral. As is easily seen, the set of the stationary points of JI is 
given by ((t, x, 5): t = 0, p(x, 5) = p}, because p E I,, is not a critical value 
of PC5 cl). 

We first consider the case W(x) E CF( R”,). We make a change of 
variables z = p(x, <) and use the stationary phase method in the variables 
(t, z), regarding the other variables as parameters. These parameters range 
over a compact set. Since $ behaves like tj = tp - tz + O(t2) as ItI + 0, the 
stationary point (0, II) is non-degenerate. This proves the lemma in the case 
of compact support. 

Next we consider the case of non-compact support. Assume that W(x) 
has support in (x: )x1> R} for R+ 1. The above arguments apply to this 
case without any essential change but we have to look at the dependence 
on parameters carefully. We put 
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By partition of unity, we may assume that 6, has support in 

L’= ((6 x, 5): I4 CT, 1-d >R, 151 cc, c-k Iti1 4 

for some c> 1. We set r’= (r2, . . . . 5,) and make a change of variables 
(t, x, <) + (t, x, r’, z) with z = p(x, 5). We denote by !P the representation 
of $ in terms of the new variables. We assert that 

P,Y + P,W aco(l4 + lz-PI) (4.1) 

in Z. By (4.1), we can apply the stationary phase method with parameters 
(x, 5’) to obtain the asymptotic expansion with a uniform remainder 
estimate. Assertion (4.1) is easy to prove. By a direct differentiation, 

By property (S), we can take r so small that 18, Yl> c1 It J for It( < r. By 
the energy conservation, we have 

and hence we can take R so large that 

IAX, V,S(c 4 5)) -Ax, 5)l < (cd21 ItI 

for (xl > R. This proves (4.1) and the proof of lemma is complete. 1 

The next lemma reduces the proof of Lemmas 3.2 and 3.3 to the case 
W(x)csC,“(R”,). 

LEMMA 4.1. Let W(x) be as in Theorem 0.1 and let t be as in lemma 3.1. 
If W(x) has support in {x: (xl> R,) for RO $1, then Tr(G(t; h) W) = O(hN) 
for any N $1 uniformly in t, (tl > 212. 

Proof: The proof uses the out-going parametrices constructed globally 
in time t 2 0. In the Appendix, we will give a brief review on the construc- 
tion of such parametrices based on the idea due to Isozaki and Kitada 
[111. 

We consider the case t ~-0 only. It suffices to prove the lemma for the 
following two types of symbols: 

(a) w + (x, <) E A, is supported in 

{(x, 5): I4 >&>P(-G ~)EL,> <xv 5)> 41-4 ItI>; 
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(b) o-(x, ~;)EA~ is supported in 

i(x, 5): l-4 >&I, P(X, 5)EL (x, 5) <t I4 151). 

We define 

d,(t;h)=Tr(Wexp(-ih-‘tH(h))o.(x,hD,)) 

for t > r/2. By Lemma A.1 in the Appendix, we have d+(t; h) = O(hN) for 
any N $1. On the other hand, by the cyclic property of trace, d _ (t; h) can 
be rewritten as 

-- 
d_(t;h)=Tr(Wexp(ih-‘tH(h))w_(x, hD,)*), t > 0. 

Hence, (A.4) in the Appendix proves d-(t; h) = O(hN). Thus the proof is 
complete. 1 

By Lemma 4.1, we have only to prove Lemmas 3.2 and 3.3 in the 
case WE C;(R;). We keep the same notations and assumptions as in 
Lemmas 3.2 and 3.3. 

LEMMA 4.2. Assume that W(x) E C,“(R”,). Fix T& 1 arbitrarily. If 
0 E C,“((t/2, T)) or Cg(( - T, -r/2)), then .I&“; h) = O(hN) for any N$ 1 
uniformly in p E I,. 

Proof We give only a sketch. The argument is based on the iteration of 
short time parametrices and also is standard. For details, see again [3, 81, 
etc. 

We consider the case 8 E C,“((r/2, T)) only. Assume that W(x) is suppor- 
ted in {x: 1x1 < R) for some R. It suffices to prove the lemma for w(x, hD,) 
with symbol o(x, 5) E A, supported in {(x, 5): p(x, 5) E I,,, (x) < R}. We 
may assume that e(t) is supported in ((k - 1 )r, (k + 1 )z) with some k 2 1. 
For such 8, (2zh)ck’ ‘)n+‘JB(~; h) is represented in the form 

SI‘S exp(ih-‘ll/(r, x, 8, t))@t) W(x)a,(t, x, 0, 5; h) dr dx d0 d5 + O(hN) 

for any N B 1, where 0 = (xi, t,, . . . . xk, tk)~ RZkn, aNE: Cg’(R: x R: x 
RZ,k” x R;), and 

II/=fCL+S(f--kz,X,rk)-(X,1;)+ i {S(z,Xj,rj-,)-(Xj,5j)} 
j=l 

with 5,, = <. We easily see that the stationary points of II/ lie in 

{(~,x,Q,~):~(x,5)=~~QZ,(~,5)=(~,5)forsome~~~~pp~f. 
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By the non-trapping condition, the above set is void and hence the non- 
stationary phase method proves the lemma. 1 

LEMMA 4.3. Assume that W(x) E CF(R:). Then there exists TB 1 such 
that if ItI > T, then Tr(G(t; h) W) = O(hN) for any IV% 1. 

Proof. The method of proof is based on the Egorov theorem and out- 
going parametrices. We consider the case t > 0 only. It again suffices to 
prove the lemma for o(x, hD,) as in Lemma 4.2. Set 

B,(h) = exp( -ih-‘TH(h))o(x, hD,) Wexp(ih-‘TH(h)). 

Then, by the semi-classical Egorov theorem [19], we have 

n+N 

B,(h) = C bjT(x, hD,)h’+ RNT(h) 
j=O 

for any N$ 1, where RNT(h) is of trace class with bound 
IIRNT(h)Ijtr = O(h”‘), while the symbol bjT(x, <) E C,“(R; x RF) has support 
in 

a,= {(x, 0~44 ~)EZ~, (x9 O=@At,q) for (Y, rl)~su~p~). 

By the non-trapping condition, we can choose T so large that QT is con- 
tained in the out-going region 

52, = {(A 8: P(X, t)~Zo, 1x1 >R,, (x, 5>>0) 

for some R, 9 1. Hence, by the cyclic property of trace, we have only to 
evaluate the trace of the form 

d(t; h) = Tr(exp( -ih-‘tH(h))b(x, hD,)), t> T, 

where b(x, <) E C,“(R; x RF) (and hence EA _ N for any N % 1) has support 
in 52,. Thus it follows from Lemma A.1 that d(t; h) = O(hN) for any N% 1 
uniformly in t > T. This completes the proof. 1 

Lemmas 3.2 and 3.3 follow from Lemmas 4.14.3 at once. 

5. TIME DELAY AND TRACE FORMULA 

In this section we introduce the (average) time delay in quantum 
mechanics, following the idea due to [S], where total scattering cross 
sections have been introduced in the framework of the time-dependent 
scattering theory. We will show that it is natural to define this quantity by 
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the l-derivatives of spectral shift function in the Birman-Krein trace 
formula [2, 151. The time delay problems in scattering processes have been 
studied by many authors. For related references, see [13] and the 
references quoted there. Among these references, the relation between the 
time delay and the. trace formula has been discussed in [ 121. 

We begin by introducing several notations. We denote by 1 I0 the L2 
norm. Let B, = {x: 1x1~ R} and let L2(BR) = {fc L2: suppf c BR}. We 
also denote by xR the characteristic function of B,. The probability of 
finding the state exp( - ih- ‘tH,(h))f, f~ L*, in L2(BR) at time t is given by 

IxRexp(-ih-‘tH,(h))fl:, 

and hence the total time spent in L*(B,) is given by 

NOR = j IXR exp( -ih-‘tH,(h))f(i dt. 

We now consider a homogeneous beam of free particles incoming from 
the long distance with density one per unit area. We fix the incoming direc- 
tion WE S”-* and the energy 1 >O. Let Y(0) = Y(& O)E CF(S”-I) and 
g(p) = g(p; 2) E CT((O, co)) be supported in a small neighborhood of o 
and ;1, respectively. We denote by Z7 the hyperplane orthogonal to o. For 
a E l7, we define 

and 

gob4 0; km, h) = exp( -iA-’ fi (a, 0)) r(e) g(p) 

fak 19 WY h) = (hong,), 

where F,(h): L* + L*((O, co); L*(S”-‘)) is the unitary operator defined by 
( 1.1) which gives the spectral representation for H,(h). We further define 
%&, w; h) by 

We calculate S,, formally, making use of the representation 

X, P, 0; 4 exp( - ih-‘@L) gob, 0) de 4 

and exchanging the order of integrations. We first carry out the 
t-integration, 

s exp(-K’t(y-@))dr=(2nh)&p-$), 
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and then the a-integration, 

iexp(-ih’~(a,e-B’))da=(2nh)“-‘(2~)-’”-’”*6(8,-8;), 

whereO,=9-(8,w)oEl7.Thus weobtain 

SOR = j- \ M/41* I Y(‘O* (‘A w>-’ vo&, 0; h) de dp, 
0 5-1 

where 

tlo,t= (2~)-“* JB, Icbok pi, 6; WI* dx. 

In the limits 1 Y(8; o)l’ -+ S(t3 - w) and (g(p; A)l’ + S(p - A), the quantity 
S,,(A, o; h) converges to qoR(IZ, o; h), which represents the total time spent 
in B, by a homogeneous beam of free particles incoming from the direction 
o with energy 1. 

We can calculate the corresponding quantity in classical mechanics. Let 
(z, be the surface area of the n-dimensional unit sphere and let o, be again 
the volume of the n-dimensional unit ball. Then this quantity is calculated 
as 

which just coincides with qoR(A, o; h), where b denotes the impact 
parameter. 

For the perturbed system H(h) = H,(h) + I’, we introduce the quantity 
S,(A, o; h) analogous to S,,(A, w; h). Let w,(h) be the wave operators 
defined by 

IV,(h)=s-iimexp(ih-ltH(h))exp(-ih-ltHo(h)). 
I- +a, 

Then we define S,(A, o; h) by 

s,@, w; h) = 5, J 1 xR exp( -iK’rH(h)) IV+(h)f,Is dt da. 

Recall the notations, Li, is the absolutely continuous subspace of H(h) and 
F,(h): Li,+ L*((O, co); L*(S”-I)) is the unitary operator defined by (1.2) 
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which gives the spectral representation for H(h) restricted to Li,. Since 
W+(h) = F+(h)* F,(h), we have 

Thus, by a calculation similar to that used for So,, we obtain 

where 

qR = (2/l-1’2 
s I#+(X, P, 8; h)l* dX. 
BR 

Now, we take the difference between ~~(2, w; h) and qOR(A, o, h) and 
average it over w E S” ~ ‘, 

Recall the representation (1.3) for the kernel .6(x, y; A, h) of E’(A; H(h)). 
We denote by eb(x, y; A, h) the kernel of E’(A; N,(h)). Then we can rewrite 
z,(A; h) as 

z,(A; h) = (onpI)-’ (21)-“2 c,(i, II-2 jB, (e’(x, x; A, h) 

- eb(x, x; A, h)) dx 

with the normalized constant co(A, h) in Section 1. Hence it follows that 

TrhUVW)) -fWo(W xR) = L l jam f(4W)“* co(k 4’ 44 4 d2 

(5.1) 

forfg C,“((O, co)). 
We are interested in the problem of whether or not r,(A; h) is convergent 

as R + cc. The Birman-Krein trace formula gives a partial answer to this 
problem. 
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THEOREM. Assume (I’)+, with p > n. Then, for f~ C$(R’), f(H(h)) - 
f(H,,(h)) is of truce class and there exists 8(1; h)EL:,,(R’) uniquely such 
that: 8(1; h) -+ 0 us 1+ -m; 

det S(I; h) = exp(2ni6(1; h)) for ;1> 0; (5.2) 

(5.3) 

where S(1; h): L2(Sn-‘) + L’(S”-I) is the scattering matrix definedfor the 
pair (Ho(h), W)). 

Remark. The function 8(1; h) is called the spectral shift function or the 
total scattering phase because of property (5.2). 

The above theorem follows from the general theory of the Birman-Krein 
trace formula (see also [4, 7, 141, etc.). 

By (5.1) and (5.3), r,(A; h) is convergent to 

z,(A; h)= (a,-,)-’ (21)-1’2 c&l, h)-2 @(A; h) (5.4) 

as R + a in the distribution sense (i.e., in D’((0, co))). Thus, we shall call 
z,(A; h)ED’((O, co)) the (average) time delay for the pair (H,(h), H(h)). 
We do not know whether or not ~~(12; h) is pointwise convergent as 
R-+03. 

5. ASYMPTOTICS FOR TIME DELAY 

In the previous section we have defined the time delay 
r,(A; h) ED’((O, co)) in the distribution sense. The aim of the present sec- 
tion is twofold. First we show that 8(1; h) E C’( (0, co)), which implies that 
ta(A; h) is well-defined as a function, and establish the relation between 
t,(A; h) and e’(x, x; I, h) through the representation for @(A; h). Second, 
we apply Theorems 0.1 and 2.1 to obtain the semi-classical asymptotic for- 
mula as h + 0 for r,(A; h). We compare the leading term of the obtained 
asymptotic formula with the corresponding time delay in classical 
mechanics for a class of central potentials in the 3-dimensional space R$ 
We can show that both quantities coincide with each other, if the energy Iz 
under consideration is restricted to a non-trapping energy region. On the 
other hand, if 1 is in a trapping energy region, both quantities do not 
necessarily coincide with each other. 

We begin by proving the following 
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PROWSITION 6.1. Assume (V), with p > n. Then B(i; h) E C’((0, co)) and 

&(,I; h) = -(21)-l 1 V(x)e’(x, x; I, h) dx, (6.1) 

where U(x) is defined in Lemma 3.6. 

Proof: The proof is divided into several steps. 

(0) We recall the properties of the scattering matrix S(1; h). For 
details, see [ 181. Under the assumption ( V)P with p > n, S(Iz; h), I > 0, is a 
unitary operator acting on the space L*(S”- ‘) and takes the form 
s(n; h) = Id - (2zi)T(& h) with T of trace class. The integral kernel 
T(8, o; 1, h) of T(I; h) is given by 

T(e,w;I,h)=(V~+(.,1,w;h),~,(.,~,e;h)), (6.2) 

where ( , ) denotes the L* scalar product. 
(1) We first consider the case in which V(x) is of compact support. 

Assume that V(x) E Cc(R”). Then we know from the arguments in [14] 
that @(A; h) is analytic in J > 0 and also it follows from (5.2) that 

8’(1; h) = -Tr(S(I; h)(d/dl)T(& h)*). 

(See [6, p. 1631.) We calculate the above trace by a method similar to that 
in [lo]. As in the proof of Lemma 3.4, we use the relation 

By (6.2) the kernel of T(k*; h)* is represented as 

T*(O, co; Ia’, h) = ($,J ., kr*, o; h), I’++( ., k*, 8; h)). 

We make a change of variables x -+ y = crx to obtain that 

T*(& w Jo*, h) = cdl, h)’ (qh,(., A, co; h), V( .; a) & ., ;1, 8; 0, h)), 

where V(x; cr) = o-*V(x/a) and 

6(x, A, 8; CT, h) = qf~ + (x/a, ila2, 8; h). 

Therefore, Lemma 3.6 yields 

(a/aa)T*(e,o;la2,h)l.=,=c,(l,h)2(U~~(.,I,o;h),db+(.,~,8;h)). 
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(2) It follows from the definition of S(A; h) that S(A; h) maps 
4+(x, 1, .; h) into 4-(x, 1, .; h). This shows that 

Tr(S(I; h)(d/&) T(1; h)*) = c,(A, /z)* JJ U(X) 14 _ (x, 1, o; h)12 do dx 
s”-’ 

and hence the desired relation follows immediately from (1.3). Thus, the 
proof is complete in the case VE C;(R”). 

(3) Next we consider the general case in which V(x) is assumed to 
satisfy (V), with p > n. For such a V(x), the right side of (6.1) is well- 
defined. We denote by ~(1; h) this term. We approximate V(x) by a 
sequence of C,“-potentials. Then, the standard limit procedure combined 
with the Birman-Krein trace formula and Theorem 4.3 of [l] gives the 
relation 

- j- f’(A)e(A; h) d2 = j-m f(L)s(l; h)dl 
0 0 

for any fe CF((O, co)). This proves that 8(2; h)~ C’((0, co)) and 
8’(1; h) = ~(1; h). Thus the proof is complete. 1 

We apply Theorems 0.1 and 2.1 with W(x) = -U(x) to obtain the 
following 

THEOREM 6.1. Assume ( V)p with p > n and fix a bounded open interval 
Zc (0, a~). Zf there are no critical values of p(x, r) = 4 1(1* + V(x) in Z, then 
z,(l; h) defined by (5.4) has an asymptotic expansion in h, 

?,(/I; h) N f z&)h’, 
j=O 

h + 0, (6.3) 

in the weak sense (i.e., in D’(Z)), where 

z mo(,)=(22)-(“-1)~2\ (((21-2V(~))+)“‘*-‘-(21)“~-‘} dx. (6.4) 

Furthermore, if the interval Z is contained in a non-trapping energy region, 
then the asymptotic formula (6.3) holds in the strong sense for 1 E I. 

ProoJ Equation (6.3) is an immediate consequence of Proposition 6.1 
and Theorems 0.1 and 2.1. We calculate the leading term r,(A). By (5.4), we 
have 

zmo(A)= -(21)-“‘+I)‘* U(x)((21-2V(~))+)“‘~-‘dx. 
s 
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If we note the relation 

v .x(21 - 2V)“!2 - (2A)“‘*} 

= n((2~-2V)“!~-(21)“‘2}-n(x.VV)((21-2v)+)”’*-’, 

then (6.4) is obtained by a direct calculation. u 

We shall calculate the corresponding quantity ~~~(1) in classical 
mechanics for a class of central potentials in Ri. Assume that 
V(x) = V(r), r= (xl, is a central potential satisfying (V), with p > 3. Let b 
denote the impact parameter. Then, by the conservation law of energy and 
angular momentum, we have 

$(i’ + P/r*) + V(r) = /I 

with 1= ,,&&. We define r(b; A) by 

r(b; A) = sup{r: 23, -21/(r) - (21b2)/r2 < 0) 

and denote by b(r; A) the inverse function of r(b; A), 

b(r; A) = (2A)p”2 r(2A - 2V(r))li2, 

for r > r. = r(b; 1) lb = 0. We take R large enough. Then the total time spent 
in 1x1 -CR is given by 

z=47c 
I 1 bR R(2L-2V(r)-(2~b2)/r2)~“2bdrdb 

0 ‘h 

with b, = b(R; 2) and rb= r(b; 2). We calculate the above integral, 
exchanging the order of integrations, 

Z=4~~(2;1)~’ jR (21- 2V(r))“2 r2 dr. 
r0 

Thus the classical quantity r,,(A) is given by 

7,,(l) = /i,y [4n(Zl)l { jR (21- 2V(r))“2 r* dr 
ro 

- $ (U)“’ r2 dr}]. 
I 

As is easily seen, if ,I is in a non-trapping energy region, then both the 
quantities rmo(A) and 7,,(A) coincide with each other. On the other hand, if 
;1 is in a trapping energy region and if 2 is not a critical value of 
4 lc12 + V(x), then both quantities are not expected to coincide with each 
other. 

580/80/l-10 
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APPENDIX: OUT-GOING PARAMETRICES 

In this appendix we give a brief review on the construction of out-going 
parametrices due to Isozaki and Kitada [ 1 l] (see also Section 5 in [20]). 

We first fix the notations. For given (Q, d), - 1 <Q < 1, d> 1, let 

where 

r+ (a, R 4 = {Cc 5): XE~+(U, R; 5), d-l< 151-4, 

for R B 1. Throughout the entire discussion, the potential V(x) is assumed 
to satisfy ( V)p with p > 0. We may assume that 0 <p < 1, which loses no 
generality. We further assume 5 to range over {r: d,- ’ < ItI < d,, > for some 
do > 1. Then, by Proposition 2.4 of [ll], we can construct a real Cm- 
smooth function 4(x, c) with the following properties: For given go, there 
exists R. b 1 such that: (i) 4(x, l) solves 

in r+(ao, Ro, do); (ii) 4(x, {)- (x, t) belongs to A,-, (see Section 4 for 
the notation A,); (iii) 4(x, r) satisfies l(a2q5/laxj a<,) - Sj,J < c(R,), Sjk being 
the Kronecker notation, where c(R,) can be made as small as we desire by 
taking R, sufficiently large. 

For given a(x, r) G A,, we define I,(a; h): S(R;) + S(R;) by 

((da; h) f)(x) = Wh)-” JJ exp(ih-‘(4(x, 5) - (Y, t >)I 4x, 5) f(v) dy 4. 

For the above triplet (co, R,, do), we take oj, Rj, and dj, 1 ,<j< 3, as 
follows: CJ~>CT~>(~,>CT~, R,>R,>R,>R,, and d,<d,<d,<d,. Let 
o(x, t)eAo be supported in f+(cr,, R3, d3). We shall construct a 
parametrix (approximate representation) globally in time t 20 for the 
operator 

U(t; h, co) =exp( -ih-‘tH(h))o(x, hD,), t 2 0, (A.11 

in the above form of oscillatory integral operators. 
We first determine the symbol a(x, 5; h) to satisfy 

exp(-ih-‘cj)(-fh2d+ V-4 Itl’)exp(ih-‘d)a-0 
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asymptotically as h + 0. If we set a - X7= 0 uj(x, <)h’ formally, then ui(x, <) 
is inductively determined by solving the transport equation, 

v,4 .v,ao + 4(U)ao = 0, 

V.~~V,u,+~(A,qS)uj-i~A,ui-,=O, j>/ 1, 
(A.2) 

under the condition a, + 1, uj -+ 0, j> 1, as 1x1 -+ co. We can construct the 
solution uj~Aej(T+(a,, R,, d,)) to Eq. (A.2) in the region T+(a,, R,, d,) 
by the standard characteristic curve method and we extend aj over the 
whole space R: x R; in the following way: (i) ui E A -j; (ii) uj has support in 
f+(oo, ROT do). 

We fix N arbitrarily and sufficiently large. We set 

and 

UN(X, 5; A) = 2 q(x, w 
j=O 

r).Jx, <;h)=h- (Nt2)exp( -ih-‘tj)(#*A - I/+ i 1512) exp(ih-‘4)u,. 

Then, by construction of C$ and u,, j 2 0, it follows that AN+ ‘rN E A _, and 
r,EA -(N+2)(r+h~ RI, d,)) uniformly in h. Let w(x, 5) E A, be as in 
(A. 1). By the composite formula of Fourier integral operators, we can find 
b,(x, 5; h)~ A,, with support in f +(c2, RZ, d,) such that 

dx, jD,) = Id(a,; h)(z,(b,; h))* + hN@,(X, AD,; h) 

with oN E A _ N (uniformly in h). We now define U,(t; h) and RN(t; h), 
t > 0, as 

UN(t; A) = zqi(“N; h) exp( -ih-‘tH,(h))(Z,(b,; h))*; 

R,(t; h) = z&N; h) exp(-ih-‘tH,(h))(Z,(bN; h))*. 

Then, the Duhamel principle yields 

U(t;h, co)= UN(t;h)+hNexp(-ih-‘tH(h))wN+hN+‘GN(t;h), (A.3) 

where 

GN(t;h)=SreXp(-ih-‘(1-s)H(h))R,(s;h)ds. 
0 
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LEMMA A. 1. Let W(x) satisfy ( V), with p > n. Then, for given (a, d), 
there exists R 9 1 such that if o(x, <) E A, has suport in r+ (0, R, d), then 

Tr(exp( -ih-‘H(h)) o(x, hD,) W) = O(hN) 

for any N B 1 uniformly in t > q T, 0 < z 4 1, being fixed arbitrarily. 

Proof The proof uses the representation (A.3). We can prove 
IlG,(t; h)ll,, = O(h-N’2) uniformly in t 80 (see Lemma 5.1 in [20]). We 
assert that Tr( WU,,,(t; h)) = U(hN) for t > r. We can represent the above 
trace as 

(27ch)+’ j[ exp( -ih-‘t 151*/2) W(x)a,(x, <, h)6,(x, l; h) dx dc 

with uN and bNE A,, (uniformly in h). Hence, integrating by parts in 5 
proves the lemma and the proof is complete. 1 

We fix another notation, 

r-to, R, d)= ((x, 0: xeC-(u, R; 5), d-l< 151 cd}, 

where 

.L(c,R;5)= {x: Ixl>R, C-G t><~ltl +I>. 

Let o(x, 5) E A0 be supported in r- (a, R, d) for R 9 1. Then we can repeat 
the same arguments as above to prove that 

Tr(exp( -ih-‘tH(h))o(x, hD,) W) = O(hN) (A.4) 

for any N % 1 uniformly in t < --t. 
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