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Sufficient conditions are given that certain statistics have a common distribution 
under a wide class of underlying distributions. Invariance methods are the primary 
technical tool in establishing the theoretical results. These results are applied to 
MANOVA problems, problems involving canonical correlations, and certain 
statistics associated with the complex normal distribution. 

1. INTRODUCTION 

Using a geometric argument, Fisher [lo] showed that Student’s one 
sample t-statistic has the same null distribution under normality as under the 
assumption of spherical symmetry (see Efron [8] for a discussion and some 
related topics). This fact about the t-statistic is due to two things: 

(i) The t-statistic is scale-invariant. 
(ii) The uniform distribution on S,,- , (the sphere of radius 1 in R”) is 

the unique spherically symmetric distribution on S, _ 1. 

Basically, we have used this observation to formulate a general method for 
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proving similar results about other statistics of interest. Some additional 
properties of the f-test under spherical symmetry are established in Kariya 
and Eaton [ 191. Recently, multivariate analogues of some of these results 
have been developed by Dawid [5], Fraser and Ng [ 111, Kariya [ 17, 181, 
and Jensen and Good [ 151. 

Let (%, 9) be a measurable space and suppose X takes values in Z’. We 
write P(X) = P to mean that the distribution of X is P. If t(X) is any 
statistic, P(t(X) ] P) denotes the distribution of t(X) when P(X) = P. Now, 
suppose that the distribution of t(X) is known when Y(X) = P, and set 

9 = {P 1 L&(X) 1 P) = sqt(Jq 1 PO)}. (1.1) 

It would be of interest to supply some useful sufficient conditions which 
imply that P E .P. Using invariance assumptions, this is what is done in 
Theorem 2.1. This result is related to a result in Das Gupta [4]. 

EXAMPLE 1.1. Take X to be the set of all n x p real matrices of rank p 

(so n > p) and suppose X E X. A number of important statistics which arise 
in testing problems in MANOVA (see Section 3) can be written as functions 
of 

T= t(X) =X(X’X)-‘X’ 

which is a random orthogonal projection of rank p. The distributions of these 
functions of t(x) can often be computed when the elements of X are i.i.d. 
iV(0, l)--let this be P,. We now assert that if Y(X) = P(ZX) for each 
r E @, (the orthogonal group), then P(X) E 9 which is defined by (1.1). To 
see this, first observe that t(rx> = rt(X) r’ so 

LP( T) = Y(l-Tr’), TE Pn, (1.2) 

when P(X) = .Y(TX). However, (1.2) characterizes the distribution of T 
because: (i) fl, is compact and (ii) fl, acts transitively on the set of n X n 
rank p orthogonal projections (see Nachbin [21, Chap. 31). The conclusion is 
that for any function f; 

-w-(W) I PO) = em(m) I p>, 

so long as Y(X) = P(TX) when Y(X) = P. 
Example 1-l contains the elements of the argument which led to the 

theorem in Section 2. Once this result is established, the rest of the paper 
consists of examples from multivariate analysis. In Section 3, we discuss the 
MANOVA problem. In Section 4, we provide sufficient conditions that the 
sample canonical correlations have the same distribution as if the variables 
were independent normals. Some applications to problems involving the 
complex normal distribution are given in Section 5. 
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2. MAIN RESULT 

In this section, we give our main results. To set notation, Rk will denote 
the k-dimensional Euclidean space of column vectors, x’ denotes the 
transpose of x E Rk, 4 is the group of k x k orthogonal matrices and Cl, is 
the group of k X k nonsingular matrices. If X is a random vector, P(X) will 
denote the distribution of X. Also, N(u, I, @ x) denotes the normal 
distribution on the vector space of n X p matrices. Here, ,U is the mean 
matrix and I, @ z is the Kronecker product of the n X n identity matrix with 
the p x p positive definite matrix C. 

Suppose that (s, 9’) is a measurable space and G, is a group which acts 
measurably on the left of %. Let M(s) be the set of all probability 
measures on (%, 9). If P E J(X) and g E G,, then gP denotes the 
probability defined by 

WW) = P(g- WY BE9. 

Now suppose K is a compact group acting on % and suppose t is a 
measurable mapping from (%, 9) onto @Y, %?). Let 

& = {P 1 P E J(%), P = kP for all k E K}. 

The basic result in this paper provides sufficient conditions so that 

QVQ I PI = ~MW I P’> for all P, P’ E YK. (2.1) 

Consider the following two conditions: 

(A) For every k E K, t(x,) = t(xJ implies t(kx,) = t(kx,). 

(B) Given x,, x2 E %, there exists k E K such that t(x,) = t(kx,). 

Condition (A) allows one to define K acting on $Y (see Hall, Wijsman, and 
Ghosh [ 141) and (B) implies this action on $Y is transitive. Assuming (A) 
and (B), Das Gupta [4] proved that (2.1) holds. In addition, Das Gupta [4] 
noted that if a group G acts transitively on % and if G is a direct product, 
G = H X K with K as above, then any H-maximal invariant statistic t 
satisfies conditions (A) and (B). There are many examples to which Das 
Gupta’s approach applies-see Sections 3 and 5. However, there are also 
important examples (see Section 4) for which (A) does not hold but (2.1) 
does hold. Theorem 2.1 gives a different set of conditions which imply that 
(2.1) holds. 

TO describe our main result, assume that G is a locally compact 
topological group which acts transitively on %, and K is a compact 
subgroup of G. In addition, assume that H is a subgroup of G so that 
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THEOREM 2.1, Let t be any H invariant statistic. If either H or K is a 
normal subgroup of G, then 

Wt(X) I p> = wm I P’) for P, P’ E 9jj. (2.2) 

ProojI The proof will be given for the case that K is normal in G. The 
proof for the other case is easier. It suffices to show that for any bounded 
measurable f, 

J fW)) Wx) = J fMx>) P’ @xl for P,P’EYK. (2.3) 

Since kP = P for P E TK, we have 

j fW)> Wx) = j f(W)) Wx). (2.4) 

Let ,U be the unique invariant probability measure on K. Integrating both 
sides of (2.4) and using the Fubini theorem entail 

j f@(x)) P@x) = jj f(W)) cl@) Wx). (2.5) 

Fix x,, Es and use the transitivity of G = K - H to write x = k, hx, for a 
fixed x E 5. Then the invariance of ,u and the invariance of t under H give 

j f(W)) /Wk) = j f(W, hx,)) ,Wk) = j f(t(h - 'kh-0 Er W). WI 

Since the map k -+ h- ‘kh is a continuous isomorphism of K, the uniqueness 
of p implies that ~1 is invariant under this map. Applying this to (2.6) yields 

j f(W)) ,Wk) = j .fMW) Nk), (2.7) 

for all x E X and all bounded measurable J Substituting (2.7) into (2.5) 
gives 

j fW)) W4 = j f(W,)) Nk), 

for all P E &. This establishes (2.3) and the theorem. 

Remark 2.1. If H is normal in G, and t is a maximal H invariant 
function, then it is easy to show that conditions (A) and (B) hold so Das 
Gupta’s result implies our result (for any H invariant statistic). However, 
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when K is normal in G and H is not, there are interesting examples where 
condition (A) does not hold-see the canonical correlation example in 
Section 4. 

We end this section with a description of the elements of YK. In what 
follows, it is assumed that 

Y is a measurable subset of (%, 9) such that S n {kx ) k E K} 
consists of exactly one point-say s(x)--and x+ s(x) from 
(%, 9) to (9, s,,) is measurable. Here, &Y$ is the u-algebra on 
9 inherited from (X, 58). (2.8) 

This assumption simply means that there exists a measurable cross section in 
X. It is well known that the statistic s(X) is sufficient for _SK (see 
Farrell [9]). Let R denote a probability measure on (9, ~3~) and R denote 
the extension of R to (s, 9), that is, 

l?(B) = R (B n Y), BELT. 

Given any such R, define P by 

P(B) = j l?(k-‘B)p(dk), (2.9) 

where p is invariant probability measure on K. It is easily verified that 
P E ,PK. However, it is not too difficult to show that if P E YK, then (2.9) 
holds for some R. Hence (2.9) gives a representation of all the elements of 
&. In terms of random variables, the representation (2.9) is expressed as 
follows. Let the random group element U E: K have the “uniform” 
distribution iu and be independent of S E 9. With X = US (the group 
element U acting on S E %), it is clear that Y’(X) E QK. Conversely, if 
U(X) E SK, one can construct (using (2.9)) an S E 9 which is independent 
of U and U(X) = Y(US). The representation (2.9) is discussed in Eaton [7]. 

Remark 2.2. Returning to the general case, suppose K is compact, acts 
on Z, and t is a statistic on X. With SK as above, suppose we want to give 
a condition so that 

W(x) I PI = mtm I P’> for P,P’EYK. (2.10) 

Using the representation of elements of YK given previously, (2.10) holds iff 
the distribution of t(Ux) does not depend on x E 5. (Here, U is uniform on 
K.) It is exactly this condition which Das Gupta’s conditions and our 
conditions imply. 



160 EATON AND KARIYA 

3. FIRST APPLICATIONS 

In this section we apply the techniques described in the previous sections 
to two classical problems in multivariate analysis-namely, the MANOVA 
problem and the problem of testing for the equality of two covariance 
matrices. A canonical form of the MANOVA model can be written 

x= 

where X is n x p, U and B, are n, X p, V and B, are n2 X p, W is n3 X p, 
and E, the matrix of errors, is n X p. We assume n3 > p. The MANOVA 
problem is to test H,: B, = 0 versus H, : B, # 0. The sample space for this 
example is S-the space of (n, + n, + nJ x p matrices 

u 
u 

x= =v, 
00 

u: n, X p, z: (n, t n3) X P, 
Z 

W 

such that z has rank p. When E is N(0, I, @C) with ,Y positive definite and 
unknown, a standard invariance argument (see Eaton [6, Chap. 91) shows 
that all fully invariant tests are based on t,(X) which is the vector of the 
ordered nonzero eigenvalues of 

v(v'vt wvv-'V' = V(Z'Z)~'V', 

where 

V 
z= ( ) W’ 

Let P, denote the N(0, I, @ ZP) distribution on 37. It is well known that 
.Y(t,(X) 1 P,) is the same as the distribution of f,,(X) when 

P(X) = N [(i’)J”@Z], 

for any B, and any z. 
We will now apply Theorem 2.1 to obtain a larger class of distributions 

for which the distribution of to(X) is the same as when P(X) = P,. The 
technique in Dawid [5] will also yield our results for this example. To apply 
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Theorem 2.1, consider the group G whose elements are (r, A, C), where 
TE @n”,,+n,, A E Glp, and C is an n, x p matrix. The action of G on A’- is 

V,A,C) (; )= (yz;,c), 
and the group operation is 

V,YA,> C,)V*,4, c,>= (T,T*,A,A,, cy4; + C,). 
The action of G is transitive. With 

and 

K={(r,A,C)EGIA=I,,C=O}, 

it follows that G = K . H, H is normal in G and K is compact. 
Let $? be the set of all (n, + n3) x (nz + n,) rank p orthogonal projections 

on Rnzin3 and equip $! with the usual topology. The function t on .% to y 
defined by 

t(x) = z(z’z)-lz’, 
u 

x= 
( 1 z ’ 

is measurable and is H invariant. Note that t, defined earlier is a function of 
t since the upper left n2 X n2 block of t(x) is D(z’z)-‘u’ = U(U’U + w’w’))‘~‘. 
By Theorem 2.1, P(t(X) 1 P) = Y(t(X) 1 P,) for any P E L$. In particular, if 
the distribution of X satisfies 

(3.1) 

for rE <2+n3, then the distribution of t(X) is the same as if X is 
N(0, I, @ I&. Since t, is a function of t, the same conclusion holds for t,. 

We now turn to a brief discussion of testing -for the equality of two 
covariance matrices. For simplicity, the case of zero means is treated-the 
general case can be handled by a similar argument. For this problem, 
consider two independent data matrices Xi: n, X p, i = 1, 2. When 
.P($) = N(0, Iii@ ZJ and we wish to test Ho: Z, = Z, versus H, : 
Z:, # Z;,, fully invariant tests are based on the p nonzero eigenvalues of 
X,(X;X, + X,X;)-‘Xi. Set 
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and 

t(2) = z’(z’z)-‘2’. 

Proceeding as in the MANOVA problem (with U absent) shows that the 
distribution of t(Z) when Z is N(0, I,, @I& is the same as when 
9(Z)=PE9K,whereK=@,nP,1+,Z for this problem. Thus the distributions of 
fully invariant tests will be the same under a N(0, I, @ Zp) distribution as 
under any distribution for Z which satisfies Y(Z) = Y(I’Z), r E e,, + n,, 

Remark 3.1. These two examples provide results which are slightly 
stronger than the corresponding results in Dawid [5] and Jensen and 
Good [ 151. However, the underlying argument in these two papers is very 
close to that given here. 

Remark. The generalized MANOVA problem was introduced in Potthoff 
and Roy [22] and discussed at length in Gleser and Olkin [ 121 and 
Kariya [ 161. The techniques used on the MANOVA problem above can also 
be used on the GMANOVA problem to yield corresponding results. The 
details are omitted. 

4. CANONICAL CORRELATIONS 

In this section, we discuss the distributions of canonical correlations. 
Without essential loss of generality we consider the mean zero case. The 
sample space for this section is X, the set of n x p matrices of rank p. 
Consider Z E 97 and partition Z as Z = (Z,, Z,), where Zi is n X pi, 
i = 1,2. The orthogonal projections 

Qi = Z,(ZfZi)-‘Zl, i= 1,2, 

are elements of &;l,pi, i = 1,2, where $Y,,,p is the space of n X n orthogonal 
projections of rank p. The squared canonical correlations are defined to be 
the r = min{p, , pz} largest eigenvalues of Q, Q2. To see that this definition 
agrees with the standard definition in terms of the sample covariance matrix 
S = Z’Z, partition S as 

(4.1) 

for i, j = 1, 2. Classically, the squared canonical correlations are defined to 
be the r-largest eigenvalues of S,’ S,, S,‘S,, . But S, = ZfZ,, SO 

Q, Q, = Z, s;,‘&, s,‘Zi+ 
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However, the nonzero eigenvalues of Z,S;l’S,2S;21Z; (of which there are at 
most r) are the same as the nonzero eigenvalues of 

s,‘s,,s,‘z;z, = S,‘S,,S,‘S 21’ 

Thus, our definition coincides with the usual definition. 
Given Z E S, let f(Z) be the vector of the r largest eigenvalues (arranged 

in order) of Q, Q2. When Z is N(0, I,, @ I,) s P,, the density of t(Z) is 
known (see Anderson [ 1, (1958), Chap. 131). Here we will describe a large 
class of distributions under which f(Z) has the same distribution as when 
P(Z) = P,. Consider the group G whose elements are (w, T,A, B) with 
yl,~E~,,AEGZP,,andBEGlP2.TheactionofGon~is 

(v,r,A,B)(z,,z,)= (w,A’,Tz,B’), 

and G acts transitively on ;%: The group operation is 

(W~,~,,A,,B,)(W~,~~,A,,B,)=(W~W~,~,T~,A,A~,B~B~). 

Let 

and 

K={(yl,r,A,B)EGIT=I,,A=l,,,B=Z,*}. 

Then G = K + H, K is compact and K is normal in G. Thus Theorem 2.1 is 
applicable and we have 

for all P E YK since P, E YK. To describe YK, first observe that elements of 
K act on X by 

(WV IfI, ‘pp qJ(Z,~ z2> = (wz,, z2)* 

Thus P(Z) E PK iff Z = (Z,, Z,) has the same distribution as (I,uZ,, Z,), 
II/ E F”, . This certainly occurs when 

Y(Z) = N(0, z, @ E), 

where 

E= (“d’ 12), Zii: pi X pi, i = 1, 2. 
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When Z has a density on 3” which can be written as 

f(z,~z*>=fl(4z1~z*)~ 
for some f,, then it is easy to show that 

(4.2) 

Qv, 2 Z,) = F(v/z, 9 Z,), (4.3 1 

for w E 0,. (When Z has a density, condition (4.1) is almost necessary for 
LP(Z, , Z,) = U(yZ, , Z,)-measure-theoretic difficulties being the only 
problem). It should be noted that, in this example, H is not normal in G and 
condition (A) fails to hold for the statistic f(Z). Thus, it makes no sense to 
speak of K including a transitive action on the space of t values. This 
example seems to be new. 

For comparative purposes, we now discuss a recent result due to Jensen 
and Good [ 151 concerning canonical correlations. Consider a random matrix 
Z: n x p with a density of the form 

f(z) = IEI-“‘2f,(tr z’zz-l), (4.4) 

where ,?Y: p x p is positive definite. Partition Z as above into Zi : n X pi, 
i = 1, 2, and let t(Z) be the vector of I E min{ pI , pz } canonical correlations. 
Also, partition z as S is partitioned in (4.1) and let 19(c) be the vector of 
population canonical correlations based on C. The argument used by Jensen 
and Good [ 151 shows that the distribution of t(Z) does not depend on fi and 
depends on x only through 8(C). The essence of this argument is that when 
Z has a density given by (4.4), then 9(Z) = .Y(XZ”*), where X: n x p has 
density f,(tr x’x). But the distribution of X is invariant under all orthogonal 
transformations on np-dimensional coordinate space so U = (tr X’X)- “*X 
has the same distribution as if the elements of X were i.i.d. N(0, 1). Since the 
statistic t is scale-invariant, we have 

LP(t(Z)) = L?qf(XZ”‘)) = Y(t(UP’)), 

so L&t(Z)) does not depend on f2. This argument shows that when Z has 
density (4.4), then the distribution of t(Z) is the same as if Z is 
N(O,I, @ z). Thus, with a strong assumption on the density of Z, namely 
(4.4), Jensen and Good show that both the null (e(E) = 0) and the nonnull 
distributions of t(Z) are the same as if Z is normal. When I = 1, this result 
implies that the test of H,: 13(z) = 0 versus H, : 0(z) > 0 which rejects for 
large values of t(Z) is UMP invariant for all densities f2. However, none of 
these results are valid for the more general class of densities given in 
(4.2)-only the null distribution of t(Z) is independent off,. 
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5. SOME COMPLEX NORMAL PROBLEMS 

In this section we discuss two problems related to some recent results of 
Andersson and Perlman [2]. To describe the situation, suppose that we have 
a random sample with 

xi 9 Y [i ill 
= N(O, a, i=l n, ,***, 

with Xi E RP and Yi E RP, and partition Z as 

Consider the following three classes of (2~) x (2~) covariances: 

%?‘I = (C 1 is positive definite}, 

Khatri [ZO] considered the problem of testing Hk3’: C E gj versus 
Hi3’: Z E gz. Elements of $Zz are usually said to have “complex structure” 
while those in %?1 and %‘, are said to have “real structure”-see 
Goodman [ 131 and Brillinger [3]. The above testing problem can be inter- 
preted as testing that a complex normal random vector is in fact real. In 
contrast, the problem of testing H, (‘): Z E g2 versus H~2’: C f gx is testing 
that a real normal is in fact complex. Both of these problems are discussed in 
detail in Andersson and Perlman [2]. They reduce both problems via 
invariance and establish many properties of invariant tests. In what follows, 
we apply the results of Section 2 to show that the null distribution of all 
invariant tests is the same under normality as under a wider class of 
distributions. The result and techniques are similar to those in Section 3. 

First, we treat testing Hb3’ versus H:3’. Write the data in matrix from to 
yield W: (2n) x p whose first n rows are Xi ,..., XL and whose second n rows 
are Y; ,..., YA. Under Hi3’, 

~P(W=NO,~2,O.J5,,). 

The sample space for W is taken to be x-the set of real (2n) x p matrices 
of rank p. Take G to be the group whose elements are (r, A) with r E p2,, , 
A E Glp, and group operation (r, , A ,)(r,, AZ) = (r, r,, A 1A2). The action of 
G on .Z is (r, A) W = TWA’, so G is transitive on .,%. Also, take 

H= {(T,A)E GIT=I,,} 

683/14/2-3 
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and 

so K is compact and both H and K are normal in G. The function 

t(w)= w(w’w)-~w’, 

is a maximal invariant under H. 
Theorem 2.1 implies that the distribution of t(W) under a N(0, I,, 0 I,) 

distribution for W is the same as under any distribution for W which 
satisfies 9( IV) = I for r E F,, . Now, all the tests of Hk” versus HJ3’ 
discussed in Andersson and Perlman [2] are invariant under the group H 
and are thus functions of t( IV). Hence the null distribution of all these tests 
is the same as when 9(W) = Y(TFV) for TE L’$,,. 

To discuss testing Ha’ and Hi*‘, it is convenient to introduce the complex 
random vectors 

Zj=Xj+iYj, j = l,..., n, 

and form the data matrix Z: n x p with rows Z:,..., Z,* where * denotes 
conjugate transpose. Under H, , (*I Z has a complex normal distribution, 

L(Z) = GN(0, I, @ H), 

where H =.X1, + iZ,, and 

Of course H is Hermitian and positive definite. The sample space for Z is 
taken to be S-the space of all n x p complex matrices of rank p. To apply 
Theorem 2.1, consider the group G whose elements are (V, A), where U is an 
element of gn (the group of n x n unitary matrices) and A E CGI, (the group 
of p x p nonsingular complex matrices). The action of G on .K is 

(U, A)Z = UZA”, 

so G is transitive on X. Also take 

and 

H= {(U,A)EGj U=I,) 

K= {(U,A)EGIA=I,}, 

so K is compact and both are normal in G. 
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A maximal invariant under the action of H on 5 is 

t(2) = z(z*z) - ‘z*. 

Let P, denote the GN(0, I, @ I,). Theorem 2.1 implies that Y(t(Z) 1 P,) = 
S?(t(Z) 1 P) for any probability measure P for which Y(Z) = Y’(UZ), 
U E pa. All of the tests discussed in Andersson and Perlman [2] are H 
invariant and thus functions of r(Z). Hence the null distribution under P, is 
the same as the null distribution under any P for which Y(Z) = Y(UZ), 
UE s/,. 
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