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Abstract

For complex matriced andB there are inequalities related to the diagonal elememdBof
and the singular values & andB. We study the conditions on the matrices for which those
inequalities become equalities. In all cases, the conditions are both necessary and sufficient.
© 2000 Elsevier Science Inc. All rights reserved.
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Given amm x n complex matrixA, three sets of numbers are of particular interest:
eigenvaluegy, ..., A, (JA1] = - - > |Ay]), Ssingular valueg; > --- > a,, and diag-
onal elementgl1, ..., d,(|d1| > --- > |d,|). The relation between the eigenvalues
and the singular values was obtained by Weyl [15] and Horn [5] and the relation
between the diagonal elements and the singular values was obtained by Thompson
[12] and Sing [9] independently. However, the relation between the eigenvalues and
the diagonal elements is far from trivial, even for norrAdL3].

Some inequalities for the singular values of the produet A B and the singular
values ofA andB are well-known, e.gf[*_; ¢; < [Tt_,aibi,k=1,...,n —1and
equality holds wherk = n [4]. This immediately yields its additive version and
Lemma 4.
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So, ifd;,i =1, ...,n, denote the diagonal elementsAiB their absolute values
in nonincreasing order, then one has (part of Theorem 1)

ldil 4+ -+ |di]l < aibr+---+aby, k=1,....n
and the inequality with a subtracted term
|d1| + - + |dp—1| — |dn| < arb1+ -+ an—1by—1 — anby.

These inequalities completely describe the relation between the diagonal entries of
a productAB and the singular values & andB, respectively [8]. In recent years
inequalities of subtracted term have appeared repeatedly and turn out to be closely
related to the root system of some real simple Lie algebras. Here, we consider when
these inequalities become equalities. The main results are Theorem 2 (for the weak
majorization) and Theorem 3 (for the subtracted term inequality). The proofs rely on
Lemma 3 and some work of Li [6] on the characterization of extremal matrices.

Let AandB ben x n complex matrices with singular values > - -- > a, and
b1 > --- > by, respectively. Denote the setofx n complex matrices by/,,.

The 1937 trace inequality of von Neumann [14] asserts that

Re(tr(AB)) < a1by + - -+ + ayby,

where Re denotes the real part, and tr the trace.

This inequality has commanded attention in more than 60 years since it was found
and several applications of it in pure and applied mathematics are known. These
include applications of group induced orderings to statistics [2], nonlinear elasticity
[1], and applications to perturbation theory [10]. For more references, see [7].

A more detailed study of the theorem seems justified. Thus, in [8] we asked about
the conditions satisfied by the individual diagonal elements of the product that sum
to give the trace, and the answer was given in the following theorem.

Theorem 1. Let A and B be inM,, with singular valuesi; > --- > a, andby >
--- > by, respectively. Then iy, ..., d, denote the elements of the principal diag-
onal of AB numbered in order of decreasing absolute valveshave that

ldil + -+ |dk| < arb1+ ---+arby, k=1,....n,
|da| + -+ -+ |dp—1| — |du]| < a1br+ -+ ay—1by—1 — apby.

Conversely if we have numbers satisfying the above inequalitieere exist
matrices A and B with singular valueg > --- > a, andby > --- > b,, respect-
ively, andds, ..., d, the diagonal entries of AB.

Here, we want to study the structure of the matrices in the case when the in-
equalities from Theorem 1 become equalities. In order to obtain an answer we need
some results. Thompson [12] found the conditions satisfied by the diagonal elements
and singular values of a complex matrix. Li [6] studied the extreme cases of these
inequalities and found that:
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Lemmal. Let A € M, with singular valuesa; > --- > a,, diagonal elements
di,...,d, suchthatdi| > --- > |d,|. Letl < k < n. Then

ldil+ -+ |dkl = a1+ -+ ax

ifand only ifA = A1 @ A (A1 € My) and there exists a diagonal matrix € U (k)
such thatD A1 is a positive semidefinite matrix with eigenvalugs. . ., ax.

Lemma?2. Let A € M, with singular valuesa; > --- > a, diagonal elements
di,...,d, suchthatdi| > --- > |d,|. Then

ldi| + -+ |dp-1] = ldn| = a1+ -+ +ap—1 — an
if and only if there exists a diagonal matriX € U (n) such that DA is a hermitian

matrix with diagonal elementds|, ..., |d,—1], —|d,|; and eigenvalues,, . .., a,_1,
—dy.

Horn [4] proved that the vector of singular values of a product of two matrices is
weakly majorized by the vector of the corresponding products of singular values of
the factors, when they are ordered in decreasing order. The equality case is given in
the next lemma.

Lemma 3. LetA, B € M, with singularvalues1 > --- > a,, andb1 > --- > by,
respectively. Let1 > --- > ¢, denote the singular values of AB. LB k < n.
Then

c1+ -+ ok =aibr+ -+ aby
ifand onlyifthere ard/, V. W € U (n), then x n unitary group such that/*AV =

diagla1, ...,ax) ® A2 and V¥*BW = diagbs, ..., br) ® B2 for some Ay, By €
M, k.

Proof. Firstassume th& < min{rankA, rank B}, soaxb; > 0. The singular value
decomposition ensures that there mre n unitary matricesX = [X1 X2] andY =
[Y1 Y2] suchthatX1, Y1 € M, x and

X* (AB)Y = diag(c, ..., ¢p) = [

XTABYl *
* x|

In particular,(X;A) (BY1) is positive semidefinite.
Since

e [XiA
Clxzal’

singular value interlacing ensurestha(XiA) <o; (X*A) =q;foralli =1, ..., k.
If these inequalities are all equalities, then kHargest eigenvalues of

XiAA*X1 1

G = (X*A) (X*A)" =
(x*4) (x*4) [X;AA*Xl *
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are exactly théeigenvalues of its principal submatik = X7 AA* X1, which means
that the interlacing inequalities fét in G are all equalities; this forces;AA* X1 =
0 (the rows ofx} A are orthogonal to the rows af3A). A similar conclusion holds
for B.

Now compute

k
Y ci=tr(X;A) (BY1) = tr (BY1) (X;A)

i=1
k

<) oi (BY1X7A) 1)
i=1
k
<) oi (BY1)o; (XiA)
i=1

k
<D oi(A)oi (B) 2
lil .
:Z aib; = Z G
i=1 i

i=1

Thus, all these inequalities are equalities.

Equality at(2) means that aly; (XTA) = 0; (A) ando; (BY1) = o; (B) since all
the terms are positive (here’s where we use the rank assumption).

Equality at(1) means thatBY1) (XIA) is positive semidefinite. Since we already
know that (XIA) (BY1) is positive semidefinite, the simultaneous singular value
decomposition [3] says there afec U (k) andW € U (n) suchthatXjA = ZXW*
andBY = WAZ*, whereX = [Dy 0] € My, andA” = [PDp O] € My, Ds =
diagas, ..., ar), Dp = diagbs, ..., by), andP is some permutation matrix. The
usual interchange argument usinQXt{A) (BY1) = Zf‘zl a;b; ensures that the;
are in the correct position when theare distinct, or thathey can be put into correct
positionvia a harmless permutation (which is then absorbed\itevhen some;
are repeated. The conclusion is that therezare U (k) andW = [W1 W2] € U (n)
such thatWi € M, x, XIA =ZIXW* = ZDAWf, andBY = WAZ* = W1DpZ*.
Compute

[ x* X*AW1 X*AW>
X*AW = 1:|A[W1 W2]=|: L 1 }

| X3 X5AWL *
[ ZDaWiwWy ZDAW; W2 ZD, O
x4 (arxaznyt) x _[ 0 J

sinceW; W, = 0 andX5AA* X, = 0. Finally,
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. . Dy O
(Z* ® k) X*AW =
0 =

is a representation of the required form. A similar argument gives a representation of
the desired form foB.

Now suppose that; = rank A < rank B andk > k1. Then rankAB < k1, SO
¢; =0ifi > k1, and

k1 k k k1
Doe=3a =Y ah =Y a
i=1 i=1 i=1 i=1

The preceding argument ensures that there are uritanydV such that

Dy 0 Dp 0
U*AV = and U*BV = )
0O O 0 B

whereDy, Dp € My, . Let B, = V3AWJ be a singular value decomposition. Then
Dy O
Ur(I® V3)U*AV (I & W3) = 0 o

and

Dp O
(I®V;)U*BV (I ® W3) = { . A]

is a representation of the desired form forialt k.
The converse is clear. [J

Let us prove now an inequality with subtracted term satisfied by the singular
values of a product of matrices and the singular values of the factors.

Lemma 4. Let A, B € M, with singular valuesi; > --- > a,,b1 > --- > by, re-
spectively. Denote by; > - - - > ¢, the singular values of AB. Then

caa+--+ep1—cp <arbi+ -+ ap—1by—1 — apb,.

Proof. We know thatcy---cx < aibi---axbi, k =1,...,n, with equality when
k =n.
¢p = 0 impliesa, b, = 0 and there is nothing to prove. So, assume: 0. Thus,
aiby - --a,by,
Cn = 77
C1-+Cp—1

and

aiby - --ayby,
1t en1—en=cr o ooy — e
Cl...cn71
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<e1+ - H -1 —anby
<aiby+ -+ ay—1by_1 — apby,

since
-1 -1

< . O
c1---cp—1  aibi---ap_1by_1

The equality case of the previous result is given now.
Lemmab. LetA, B € M, with singular valuesi1 > --- > a,,b1 > --- > b, re-
spectively. Denote by > - - - > ¢, the singular values of AB. Then
c1+- -t ep-1—cp=arb1+ - +ap-1bn—1 — anby
if and only if there areU, V, W € U(n) such thatU*AV = diag(as, ..., ap,-1) @
€%a, andV*BW = diag(bs, . .., b,—1) ® €%b, for some real numbes ands.

Proof. If ¢, # 0, as in the proof of Lemma 4, we have
aib1 + -+ ap—1bp—1 — anbp=c1+ -+ cn—1—cn
<e1+4 o1 — anby.
Therefore,
c1t- -1 =aib1+ -+ ap-1by-1,

andc, = a,b,, and the result follows from Lemma 3. ¢f, = 0, we do not have a
subtracted term and again we can use Lemma 3.

For the converse, if, = 0 thena,,b, = 0 and the result follows from Lemma 3.
If ¢, # 0, then

caat-to<atbi+-+anby =c1+ -+ on1— cn + 2anby
and thus:;, < a,b,. Consequently,
aitbi1+ -+ ap—1by—1 —apbp=c1+ -+ cn—1 — anby
Se+- tn-1—Cn

and we have equality from the previous lemmal
Now, we proceed with the main results.

Theorem 2. Let A and B be inM,, with singular valuesi; > --- > a, andb1 >
.-+ > by, respectively. Let the diagonal elements of AB be denotedh hy ., d,
and numbered in order of decreasing absolute valuesllek < n, then

ld1l + -+ |dk| = aab1 + - - - + aibi
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if and only if there areU, V, W € U (n) such thatU*AV = diag(as, ..., ar) ® A2
andV*BW = diag(bs, ..., br) @ B2 forsomeAs, B € M,,_;, andAB=(AB)1&®
(AB)2 where(AB)1 € M; and there exists a diagonal matri® € U (k) such that
D(AB)1 is a positive semidefinite matrix with eigenvalues;, . . ., a;by.

Proof. We have|di| +---+ |dik| =c1+ -+ cx = a1by + - - + agby. Lemma 3
gives us the structure féxandB, and Lemma 1 decompos@Bas(AB)1 & (AB)2
and produce® € U (k) so thatD(AB)1 has eigenvalues, ..., cx. Multiplying A
andB gives us

AB = (AB)1® (AB)2 =U(DsDp @ A2B2)W*
where
Dy =diagas, ...,ar), and Dp =diagb,...,by).

Consequently, the eigenvaluesibtAB); areaibs, . . ., aiby.
The converse is clear. O

Theorem 3. Let A and B be inM,, with singular valuesi; > --- > a, andb1 >
-+ > by, respectively. Let the diagonal elements of AB be denotedh hy ., d,
and numbered in order of decreasing absolute values. Then

|di] + - -+ |dp-a1| — |dy| = arb1 + - - - + ap—1by—1 — apby

if and only if there arel/, V, W € U(n) such thatU*AV = diag(azs, ..., a,-1) ®

€%q, andV*BW = diagb1, . .., b,_1) ® €°b, for some real numbessands, and

there exists a diagonal matri® € U (n) such thatD(A B) is hermitian with diagonal
elementsds|, ..., |d,—1|, —|d,| and eigenvaluesibs, ..., a,_1b,—1, —a,by.

Proof. We have

ldil + -+ |dp—1] — ldn|=c1+ -+ -1 —Cn
=aiby1 + - +ap—1by—1 — ayby,.

Lemma 5 gives us the structure farandB, and Lemma 2 produces a unitary diag-
onal matrixD such thatD (A B) is hermitian with diagonal entrigd1]|, ..., |d,—1l,
—|d,| and eigenvalues, ..., ¢,—1, —c,. The eigenvalues aD (A B) areaib, .. .,
an—1by—1, —aub,. This follows from the proof of Lemma 5.

The converse is trivial. [

Comments.

1. The theorems remain valid whénandB are real matrices. This is because the
real version of the diagonal elements—singular values relation is proved in [12].

2. These results can be extended to more than two matrices since Theorem 1 was be
generalized by Tam [11].
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3. The trace of a matrix can be viewed as the sum of the eigenvalues. This is one
of the reasons why Miranda and Thompson [8] proved Theorem 2 to study the
inequalities satisfied by the eigenvalues of the product of two matrices in terms
of the singular values of the factors. It would be interesting to study the equality
cases in this context.

4. It would also be of interest to consider the diagonal eleménts. ., d,, of the
SumA + B. Itis clear that

k k
DMl <D (ai+bi), k=1,....n.
i=1 i=1
What is the complete characterization of the diagonal elemerifsidf + W BX
whereU, V, W, X run over the unitary group independently? What happens with
the extremal characterization in this case? Finally, one can also consider the ex-
tremal characterization for the real parts of the diagonal elements of the sum of
two matrices since we have
k k
Y IRedi| <Y (ai+b). k=1....n.
i=1 i=1

5. Another possibility to explore in the future, instead of the additive equality which
appears in Lemma 3, is to study equality cases in product inequalities like in the
case[[‘_; ¢; = [1f_, a;b;. It is important to note that the same characterization
does not work since the additive inequality does not imply the multiplicative one.
A sufficient condition is given by the decompositian= A1 @& Ao andB = B1 @

By, whereA1 andB1 € M haveas, ..., ar andby, ..., b, respectively, as their
singular values.
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