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Abstract

For complex matricesA andB there are inequalities related to the diagonal elements ofAB
and the singular values ofA andB. We study the conditions on the matrices for which those
inequalities become equalities. In all cases, the conditions are both necessary and sufficient.
© 2000 Elsevier Science Inc. All rights reserved.
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Given ann× n complex matrixA, three sets of numbers are of particular interest:
eigenvaluesλ1, . . . , λn(|λ1| > · · · > |λn|), singular valuesa1 > · · · > an, and diag-
onal elementsd1, . . . , dn(|d1| > · · · > |dn|). The relation between the eigenvalues
and the singular values was obtained by Weyl [15] and Horn [5] and the relation
between the diagonal elements and the singular values was obtained by Thompson
[12] and Sing [9] independently. However, the relation between the eigenvalues and
the diagonal elements is far from trivial, even for normalA [13].

Some inequalities for the singular values of the productC = AB and the singular
values ofA andB are well-known, e.g.

∏k
i=1 ci 6

∏k
i=1 aibi, k = 1, . . . , n− 1 and

equality holds whenk = n [4]. This immediately yields its additive version and
Lemma 4.
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So, if di, i = 1, . . . , n, denote the diagonal elements ofAB their absolute values
in nonincreasing order, then one has (part of Theorem 1)

|d1| + · · · + |dk| 6 a1b1+ · · · + akbk, k = 1, . . . , n

and the inequality with a subtracted term

|d1| + · · · + |dn−1| − |dn| 6 a1b1+ · · · + an−1bn−1 − anbn.
These inequalities completely describe the relation between the diagonal entries of
a productAB and the singular values ofA andB, respectively [8]. In recent years
inequalities of subtracted term have appeared repeatedly and turn out to be closely
related to the root system of some real simple Lie algebras. Here, we consider when
these inequalities become equalities. The main results are Theorem 2 (for the weak
majorization) and Theorem 3 (for the subtracted term inequality). The proofs rely on
Lemma 3 and some work of Li [6] on the characterization of extremal matrices.

Let A andB ben× n complex matrices with singular valuesa1 > · · · > an and
b1 > · · · > bn, respectively. Denote the set ofn× n complex matrices byMn.

The 1937 trace inequality of von Neumann [14] asserts that

Re(tr(AB)) 6 a1b1+ · · · + anbn,
where Re denotes the real part, and tr the trace.

This inequality has commanded attention in more than 60 years since it was found
and several applications of it in pure and applied mathematics are known. These
include applications of group induced orderings to statistics [2], nonlinear elasticity
[1], and applications to perturbation theory [10]. For more references, see [7].

A more detailed study of the theorem seems justified. Thus, in [8] we asked about
the conditions satisfied by the individual diagonal elements of the product that sum
to give the trace, and the answer was given in the following theorem.

Theorem 1. Let A and B be inMn with singular valuesa1 > · · · > an and b1 >
· · · > bn, respectively. Then ifd1, . . . , dn denote the elements of the principal diag-
onal of AB numbered in order of decreasing absolute values, we have that

|d1| + · · · + |dk| 6 a1b1+ · · · + akbk, k = 1, . . . , n,

|d1| + · · · + |dn−1| − |dn| 6 a1b1+ · · · + an−1bn−1 − anbn.
Conversely, if we have numbers satisfying the above inequalities, there exist

matrices A and B with singular valuesa1 > · · · > an and b1 > · · · > bn, respect-
ively, andd1, . . . , dn the diagonal entries of AB.

Here, we want to study the structure of the matrices in the case when the in-
equalities from Theorem 1 become equalities. In order to obtain an answer we need
some results. Thompson [12] found the conditions satisfied by the diagonal elements
and singular values of a complex matrix. Li [6] studied the extreme cases of these
inequalities and found that:
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Lemma 1. Let A ∈ Mn with singular valuesa1 > · · · > an, diagonal elements
d1, . . . , dn such that|d1| > · · · > |dn|. Let16 k 6 n. Then

|d1| + · · · + |dk| = a1+ · · · + ak
if and only ifA = A1⊕ A2 (A1 ∈ Mk) and there exists a diagonal matrixD ∈ U(k)
such thatDA1 is a positive semidefinite matrix with eigenvaluesa1, . . . , ak.

Lemma 2. Let A ∈ Mn with singular valuesa1 > · · · > an diagonal elements
d1, . . . , dn such that|d1| > · · · > |dn|. Then

|d1| + · · · + |dn−1| − |dn| = a1+ · · · + an−1− an
if and only if there exists a diagonal matrixD ∈ U(n) such that DA is a hermitian
matrix with diagonal elements|d1|, . . . , |dn−1|,−|dn|; and eigenvaluesa1, . . . , an−1,

−an.

Horn [4] proved that the vector of singular values of a product of two matrices is
weakly majorized by the vector of the corresponding products of singular values of
the factors, when they are ordered in decreasing order. The equality case is given in
the next lemma.

Lemma 3. LetA,B ∈ Mn with singular valuesa1 > · · · > an, andb1 > · · · > bn,
respectively. Letc1 > · · · > cn denote the singular values of AB. Let16 k 6 n.
Then

c1+ · · · + ck = a1b1+ · · · + akbk
if and only if there areU,V,W ∈ U(n), then× n unitary group, such thatU∗AV =
diag(a1, . . . , ak)⊕ A2 and V ∗BW = diag(b1, . . . , bk)⊕ B2 for someA2, B2 ∈
Mn−k.

Proof. First assume thatk6 min{rankA, rankB}, soakbk > 0. The singular value
decomposition ensures that there aren× n unitary matricesX = [X1 X2] andY =
[Y1 Y2] such thatX1, Y1 ∈ Mn,k and

X∗ (AB) Y = diag(c1, ..., cn) =
[
X∗1ABY1 ∗
∗ ∗

]
.

In particular,
(
X∗1A

)
(BY1) is positive semidefinite.

Since

X∗A =
[
X∗1A
X∗2A

]
,

singular value interlacing ensures thatσi
(
X∗1A

)
6 σi (X∗A) = ai for all i = 1, ..., k.

If these inequalities are all equalities, then thek largest eigenvalues of

G = (X∗A) (X∗A)∗ = [X∗1AA∗X1 ∗
X∗2AA∗X1 ∗

]
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are exactly thekeigenvalues of its principal submatrixH ≡ X∗1AA∗X1, which means
that the interlacing inequalities forH in G are all equalities; this forcesX∗2AA∗X1 =
0 (the rows ofX∗1A are orthogonal to the rows ofX∗2A). A similar conclusion holds
for B.

Now compute

k∑
i=1

ci= tr
(
X∗1A

)
(BY1) = tr (BY1)

(
X∗1A

)
6

k∑
i=1

σi
(
BY1X

∗
1A
)

(1)

6
k∑
i=1

σi (BY1) σi
(
X∗1A

)
6

k∑
i=1

σi (A) σi (B) (2)

=
k∑
i=1

aibi =
k∑
i=1

ci.

Thus, all these inequalities are equalities.
Equality at(2)means that allσi

(
X∗1A

) = σi (A) andσi (BY1) = σi (B) since all
the terms are positive (here’s where we use the rank assumption).

Equality at(1)means that(BY1)
(
X∗1A

)
is positive semidefinite. Since we already

know that
(
X∗1A

)
(BY1) is positive semidefinite, the simultaneous singular value

decomposition [3] says there areZ ∈ U(k) andW ∈ U(n) such thatX∗1A = ZRW∗
andBY = WKZ∗, whereR = [DA 0] ∈ Mk,n andKT = [PDB 0] ∈ Mk,n,DA =
diag(a1, . . . , ak), DB = diag(b1, . . . , bk), andP is some permutation matrix. The
usual interchange argument using tr

(
X∗1A

)
(BY1) =∑k

i=1 aibi ensures that thebi
are in the correct position when theai are distinct, or thatthey can be put into correct
positionvia a harmless permutation (which is then absorbed intoW) when someai
are repeated. The conclusion is that there areZ ∈ U(k) andW = [W1 W2] ∈ U(n)
such thatW1 ∈ Mn,k, X∗1A = ZRW∗ = ZDAW∗1 , andBY = WKZ∗ = W1DBZ

∗.
Compute

X∗AW=
[
X∗1
X∗2

]
A
[
W1 W2

] = [X∗1AW1 X∗1AW2

X∗2AW1 ∗

]

=
 ZDAW

∗
1W1 ZDAW

∗
1W2

X∗2A
(
A∗X1ZD

−1
A

)
∗

 = [ZDA 0

0 ∗

]

sinceW∗1W2 = 0 andX∗2AA∗X1 = 0. Finally,
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(
Z∗ ⊕ In−k

)
X∗AW =

[
DA 0

0 ∗

]
is a representation of the required form. A similar argument gives a representation of
the desired form forB.

Now suppose thatk1 = rankA 6 rankB andk > k1. Then rankAB 6 k1, so
ci = 0 if i > k1, and

k1∑
i=1

ci =
k∑
i=1

ci =
k∑
i=1

aibi =
k1∑
i=1

aibi.

The preceding argument ensures that there are unitaryU andV such that

U∗AV =
[
DA 0

0 0

]
and U∗BV =

[
DB 0

0 B2

]
,

whereDA,DB ∈ Mk1. LetB2 = V3DW∗3 be a singular value decomposition. Then

U1
(
I ⊕ V ∗3

)
U∗AV (I ⊕W3) =

[
DA 0

0 0

]
and (

I ⊕ V ∗3
)
U∗BV (I ⊕W3) =

[
DB 0

0 D

]
is a representation of the desired form for allk > k1.

The converse is clear. �

Let us prove now an inequality with subtracted term satisfied by the singular
values of a product of matrices and the singular values of the factors.

Lemma 4. LetA,B ∈ Mn with singular valuesa1 > · · · > an, b1 > · · · > bn, re-
spectively. Denote byc1 > · · · > cn the singular values of AB. Then

c1+ · · · + cn−1− cn 6 a1b1+ · · · + an−1bn−1− anbn.

Proof. We know that c1 · · · ck 6 a1b1 · · · akbk, k = 1, . . . , n, with equality when
k = n.

cn = 0 impliesanbn = 0 and there is nothing to prove. So, assumecn 6= 0. Thus,

cn = a1b1 · · · anbn
c1 · · · cn−1

,

and

c1+ · · · + cn−1− cn=c1+ · · · + cn−1 − a1b1 · · · anbn
c1 · · · cn−1
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6c1+ · · · + cn−1 − anbn
6a1b1+ · · · + an−1bn−1− anbn,

since

−1

c1 · · · cn−1
6 −1

a1b1 · · · an−1bn−1
. �

The equality case of the previous result is given now.

Lemma 5. LetA,B ∈ Mn with singular valuesa1 > · · · > an, b1 > · · · > bn, re-
spectively. Denote byc1 > · · · > cn the singular values of AB. Then

c1+ · · · + cn−1− cn = a1b1+ · · · + an−1bn−1 − anbn
if and only if, there areU,V,W ∈ U(n) such thatU∗AV = diag(a1, . . . , an−1)⊕
eiθan andV ∗BW = diag(b1, . . . , bn−1)⊕ eiδbn for some real numbersθ andδ.

Proof. If cn 6= 0, as in the proof of Lemma 4, we have

a1b1+ · · · + an−1bn−1 − anbn=c1+ · · · + cn−1 − cn
6c1+ · · · + cn−1 − anbn.

Therefore,

c1+ · · · + cn−1 = a1b1+ · · · + an−1bn−1,

andcn = anbn, and the result follows from Lemma 3. Ifcn = 0, we do not have a
subtracted term and again we can use Lemma 3.

For the converse, ifcn = 0 thenanbn = 0 and the result follows from Lemma 3.
If cn 6= 0, then

c1+ · · · + cn 6 a1b1+ · · · + anbn = c1+ · · · + cn−1 − cn + 2anbn

and thuscn 6 anbn. Consequently,

a1b1+ · · · + an−1bn−1 − anbn=c1+ · · · + cn−1 − anbn
6c1+ · · · + cn−1 − cn

and we have equality from the previous lemma.�

Now, we proceed with the main results.

Theorem 2. Let A and B be inMn with singular valuesa1 > · · · > an and b1 >
· · · > bn, respectively. Let the diagonal elements of AB be denoted byd1, . . . , dn
and numbered in order of decreasing absolute values. Let16 k 6 n, then

|d1| + · · · + |dk| = a1b1+ · · · + akbk
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if and only if there areU,V,W ∈ U(n) such thatU∗AV = diag(a1, . . . , ak)⊕ A2
andV ∗BW = diag(b1, . . . , bk)⊕ B2 for someA2, B2 ∈ Mn−k, andAB=(AB)1⊕
(AB)2 where(AB)1 ∈ Mk and there exists a diagonal matrixD ∈ U(k) such that
D(AB)1 is a positive semidefinite matrix with eigenvaluesa1b1, . . . , akbk.

Proof. We have|d1| + · · · + |dk| = c1+ · · · + ck = a1b1+ · · · + akbk. Lemma 3
gives us the structure forA andB, and Lemma 1 decomposesABas(AB)1⊕ (AB)2
and producesD ∈ U(k) so thatD(AB)1 has eigenvaluesc1, . . . , ck. Multiplying A
andB gives us

AB = (AB)1⊕ (AB)2 = U(DADB ⊕ A2B2)W
∗

where

DA = diag(a1, . . . , ak), and DB = diag(b1, . . . , bk).

Consequently, the eigenvalues ofD(AB)1 area1b1, . . . , akbk.

The converse is clear. �

Theorem 3. Let A and B be inMn with singular valuesa1 > · · · > an and b1 >
· · · > bn, respectively. Let the diagonal elements of AB be denoted byd1, . . . , dn
and numbered in order of decreasing absolute values. Then

|d1| + · · · + |dn−1| − |dn| = a1b1+ · · · + an−1bn−1− anbn
if and only if there areU,V,W ∈ U(n) such thatU∗AV = diag(a1, . . . , an−1)⊕
eiθan andV ∗BW = diag(b1, . . . , bn−1)⊕ eiδbn for some real numbersθ andδ, and
there exists a diagonal matrixD ∈ U(n) such thatD(AB) is hermitian with diagonal
elements|d1|, . . . , |dn−1|,−|dn| and eigenvaluesa1b1, . . . , an−1bn−1,−anbn.

Proof. We have

|d1| + · · · + |dn−1| − |dn|=c1+ · · · + cn−1 − cn
=a1b1+ · · · + an−1bn−1− anbn.

Lemma 5 gives us the structure forA andB, and Lemma 2 produces a unitary diag-
onal matrixD such thatD(AB) is hermitian with diagonal entries|d1|, . . . , |dn−1|,
−|dn| and eigenvaluesc1, . . . , cn−1,−cn. The eigenvalues ofD(AB) area1b1, . . . ,

an−1bn−1,−anbn. This follows from the proof of Lemma 5.
The converse is trivial. �

Comments.
1. The theorems remain valid whenA andB are real matrices. This is because the

real version of the diagonal elements–singular values relation is proved in [12].
2. These results can be extended to more than two matrices since Theorem 1 was be

generalized by Tam [11].
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3. The trace of a matrix can be viewed as the sum of the eigenvalues. This is one
of the reasons why Miranda and Thompson [8] proved Theorem 2 to study the
inequalities satisfied by the eigenvalues of the product of two matrices in terms
of the singular values of the factors. It would be interesting to study the equality
cases in this context.

4. It would also be of interest to consider the diagonal elementsd1, . . . , dn of the
sumA+ B. It is clear that

k∑
i=1

|di | 6
k∑
i=1

(ai + bi), k = 1, . . . , n.

What is the complete characterization of the diagonal elements ofUAV +WBX
whereU,V,W,X run over the unitary group independently? What happens with
the extremal characterization in this case? Finally, one can also consider the ex-
tremal characterization for the real parts of the diagonal elements of the sum of
two matrices since we have

k∑
i=1

|Redi | 6
k∑
i=1

(ai + bi), k = 1, . . . , n.

5. Another possibility to explore in the future, instead of the additive equality which
appears in Lemma 3, is to study equality cases in product inequalities like in the
case

∏k
i=1 ci =

∏k
i=1 aibi . It is important to note that the same characterization

does not work since the additive inequality does not imply the multiplicative one.
A sufficient condition is given by the decompositionA = A1⊕ A2 andB = B1⊕
B2, whereA1 andB1 ∈ Mk havea1, . . . , ak andb1, . . . , bk, respectively, as their
singular values.
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