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J. T. Stafford (1978, J. London Math. Soc. (2) 18, 429-442) proved that any
left ideal of the Weyl algebra A4,(K) over a field K of characteristic 0 can be
generated by two elements. In general, there is the problem of determining
whether any left ideal of a Noetherian simple domain can be generated by two
elements. In this work we show that this property holds for some crossed products
of a simple ring with a supersolvable group and also for the tensor product of
generalized Weyl algebras. We also prove that these rings are stably generated by
2 elements and that their finitely generated torsion left modules can be generated
by two elements. Some results about stably 2-generated rings were found by
V. A. Artamonov (1994, Math. Sb. 185, No. 7, 3-12).  © 1999 Academic Press

1. PRELIMINARIES

All rings considered throughout this paper will have an identity. Also,
we denote by U(S) the unit group of a ring S and by S* the set of
non-zero elements of S.

DeriNITION [5].  Let S be aring and G a group. A crossed product of S
and G is a G-graded ring

A=8+G= @ 4,
geG

such that A, = § (e is the identity element in G) and, for any g € G,
there is an element g € 4, which is a unit in A.

Note that, under the conditions of the definition, 4, = Sg = gS. So any
element of S+ G can be written as ¥, s, g, where the elements s, belong
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to S and only finitely many of them are non-zero. Thus in order to
describe the multiplication in S = G it suffices to give the products of the
form (sgg)(s,]z). For any element g € G we define an automorphism of S
by means of 7,(s) = gsg~*, so that the formula gs = 7,(s)g holds for every
s € S and g € G. On the other hand, if g, # € G we define the element
a, , =gh(gh)™* € U(S), so that gh = a, , gh. Then we have

(sgg)(shﬁ) = 5,7,(5,) a, , 8h.

We say that the maps 7: G - AutS and a: G X G - U(S) given by
7(g) = 7, and a(g, h) = a, , form a crossed system of the crossed prod-
uct S =G.

If U is a subring of S we denote
Fix(U) = {g € G |there exists s € S such that us = s,(u) forall u € U}.

In the next sections, we shall use several times Propositions 1.1, 1.2, and
1.3, sometimes without mentioning them explicitly.

ProposiTION 1.1 [7, Proposition 1.1.6]. Let S be a left Noetherian ring
and G a supersolvable group. Then S = G is also left Noetherian.

Throughout this paper .7/(S) is the left Krull dimension of S. We shall
say that a left module has finite length if it is both left Noetherian and left
Artinian. Recall that this happens when the module has a composition
series. In this case, the length of a composition series will be called the
length of the module. It is clear that if S is a ring and for any non-zero left
ideal 7 of S the module S/I has finite length, then § is left Noetherian
and .7,(S) < 1. In the next result we see that the converse is true when S
has no zero-divisors.

ProposITION 1.2 [6, Lemma 6.3.9]. Suppose that S is a left Noetherian
ring without zero-divisors and %, (S) = 1. Then for any non-zero left ideal I of
S, S/1I has finite length.

PROPOSITION 1.3[8].  Let M be a left semisimple S-module, B = End (M)
and ¢ € Endz(M). Then for every u,, u,, ..., u, € M there exists x € S such
that ¢(u;) = xu,.

We say that a multiplicative subset U C S* has the left Ore condition in
S if U has no zero-divisors and for every u € U, s € § there are v € U,
t € § such that vs = fu. This condition permits the construction of the left
ring of quotients U~1S. The right Ore condition for U in S is defined
symmetrically and enables us to construct SU L. As is well known, if U
satisfies both Ore conditions then the corresponding left and right rings of
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quotients of S are isomorphic: U™ 1S = SU!. We say that the ring S has
the left (or right) Ore condition if that condition holds for S*. It follows
from Goldie’s Theorem that a left Noetherian ring without zero-divisors
necessarily has the left Ore condition. As a consequence of this result and
Propositions 1.1 we obtain the following result, which shall be used freely
in the paper: if S is a left Noetherian ring, G is a supersolvable group, and
S = G has no zero-divisors, then § x G satisfies the left Ore condition.

If « is an automorphism of S, we denote by S[x,x !, «] the Ore
extension of S[x, a] localized at the powers of x.

Next we introduce the concept of an almost simple ring, which appears
naturally in the course of some proofs.

DerINITION. A ring S is called almost simple if I N Z(S) # {0} for any
two-sided ideal I # {0} of S, where Z(S) denotes the center of S.

It is clear that if S is almost simple and has no zero-divisors, then the
ring of quotients (Z(S)*)~1S is simple.

2. CROSSED PRODUCTS

The main results of this section are Theorem 2.1 and Corollary 2.19.

THEOREM 2.1. Let T be either a division ring or a left Noetherian simple
ring with the right Ore condition and Z(T) = 1, G a supersolvable group, and
C =T =G a crossed product of T and G. Suppose that C is simple and has
no zero-divisors. Then for any a, b, c € C and s, s, € C* there are f,, f, € C
such that a,b,c € C(a + s, f;c) + C(b + s, f,¢).

This theorem is based on the following proposition:

PrRoposITION 2.2. Let S, be an almost simple ring, G a supersolvable
group, and C = §; * G a crossed product of S, and G. Consider a multiplica-
tive subset U C S¥ satisfying both Ore conditions in S, and let S = U~'S, be
the corresponding ring of quotients. Suppose that the following conditions
hold:

(i) C is simple and has no zero-divisors.
(i) Foranyge Gandu € U, 7,(u) € U.
(iii) S is left Noetherian and %/(S) = 1.
Define now A = U~C, which is a crossed product of S and G. Then for any

left ideal I # {0} of S and any u € A, 0 #+ v € A, there exists f € C such that
Al + A(u + of) = A.
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We prove Proposition 2.2 arguing in three steps, which correspond to
Subsections 2.1, 2.2, and 2.3.

Step 1. We prove the existence of f in A, satisfying AI + A(u + vf)
= A. In fact, it follows immediately from the next proposition:

PROPOSITION 2.3.  Let A = S * G be a crossed product of a left Noetherian
ring S with %(S) = 1 and a supersolvable group G. We suppose that A is
simple and has no zero-divisors. Then if I # {0} is a left ideal of S, for any
u<cAand 0 # v € A there exists f € A such that AI + A(u + vf) = A.

Step 2. We prove the existence of f in C, satisfying AI + A(u + vf) =
A, in the case S, is simple.

Step 3. We finish the proof of Proposition 2.2 in the general case.

In order to derive Theorem 2.1 from Proposition 2.2 we need to prove
that some particular rings are almost simple. We do this in Subsection 2.4,
where we provide several families of almost simple rings. Finally, in
Subsection 2.5 we prove Theorem 2.1 and its corollary.

2.1. Step 1

Throughout this subsection, we maintain the notation given in the
statement of Proposition 2.3. We begin by considering the case in which 71
is a maximal left ideal of S, which is the key to the proof in the general
case. We have that AT = &, _;8l = @, ;7,(1)g is a G-graded left ideal
of 4 and A/AIl is a G-graded A-module. If we consider 4/AI as an
S-module then

A/al= @ sg/r(Dg= D S/m (D).
g€l g€G

Thus A/AIl is a sum of simple S-modules and we have the following
result.

LEMMA 2.4. A /Al is a semisimple S-module.

For any ring R, if M, and M, are two left R-modules and M, = Rm is
cyclic, Hom,(M,, M,) can be embedded in M, via the Z-module homo-
morphism f: Homz(M,, M,) — M, defined by f(¢$) = (m)¢, and we can
identify the homomorphisms in Hom (M, M,) with their images. In
particular, if we define M = A/AI and A, = End (M), we identify any
endomorphism ¢ € A4, with its image (1 + AI)¢ € M. Under this identifi-
cation,

A, = {a + Al | Ia C Al}. (1)
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We also define F, = End(S/I) and make a similar identification of the
elements of F, with the corresponding elements in S/I.

LEMMA 2.5. A, is isomorphic to a crossed product F, * H of the division
ring F, and a subgroup H of G. In particular A, is left and right Noetherian.

Proof. LetY;s;g; + AI € A,. From (1) and AI being G-graded, we get
that 5,5, + Al € A, for any i, so that

A, = @D (A4),,  where (A),=A, N (A/Al), = {sg + Al € A}.
geG

We rule out the trivial components in this decomposition by defining
H={g€GI(A),+0}
={g€ G35 €S\ 7,(1)suchthat sg + Al € A,}.

Then 4, = &, ,(A4,), as an abelian group. We have to prove that H is
a subgroup of G and that this decomposition is an H-graduation of A,.

First of all, we see that any non-zero element sh + AI € (A,), is a unit
in A,. Indeed, we have s € S\ 7,(I) and Ish c AL Then Is C 7,(I) and
so s+ 7,(I) € Hom(S/I,S/7,(I)). Since S/I and S/7,(I) are two
simple S-modules, it follows that s + 7,(I) is an isomorphism and we can
consider its inverse r + I € Homy(S/7,(1),S/I). Then 7,(Dr c 1, sr=1
(mod 1) and rs =1 (mod 7,(I)). Now since I(h)~*r c Ar,(I)r C Al, we
have (h)~'r + AI € A, and it is the inverse of sh + AI in A,. We also
deduce that (A4,),+ # {0} and A~ € H.

On the other hand, let h;,h, € H, 5, € S\ 7,(I), 5, € S\ 7,(I) and
suppose that a, = s,hy + Al € (4,), and a, = s,h, + Al € (A,), . Then

(1 +Al)(aya;) = 5,7, (5,) (hih,) + AL € (A1),

Note that this element is not 0, since it is a product of two units in A;.
This proves that 4,4, € H and that the decomposition 4, = &, ,(4,),
is an H-graduation.

Finally, it can be easily checked that (A4,), = F; and so A, is isomorphic
to a crossed product of the form F,« H. |

We define B = Endg(M).

LEMMA 2.6. Let ¢ € B. Then for any g € G there exists a € A, such that
(sg + AD¢ = (sg)a for all s € S.

Proof. We have (sg + AD¢ = s(g + A = (sg)a, where

a=(g) (g+Al)o.
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Since 7,(1)g C Al, it follows that 7,(IXg + AI)$ c Al, whence I(g)~*-
(g + A¢ < AI and we conclude that a = (g) (g + ADP € A,. 1

In the next lemma, we regard M as a right B- and A;-module.

LEMMA 2.7. M can be decomposed as a direct sum of submodules M;,
where each M, is of the form M; = (s;§; + ADB = (s;§; + AI) A, for some
s; €Sand g, € G.

Proof. We consider a maximal direct sum of submodules M;, each of
them generated over B by some s,g; + AI. We suppose that there exist
s€S, g€ G,and b € B such that sg + Al € ©,;M,; but 0 # (sg + ADb
€ ©,;M,. By Lemma 2.6, this means that there exist non-zero elements
a,a; € A, such that

(s8)a = Z(Sigi)ai' (2)

12
We can decompose the elements a, a; according to the graduation of M
and each homogeneous component will be an element in A4,. Let a, be a
non-zero homogeneous component of a. If we compare the gh-compo-
nents on both sides of equality (2) we get that

(sg)a, = Z(Sigi)civ

L

for some c; € A,. Since a,, is invertible in A,, it follows that sg + Al €
@, M., which is a contradiction. This proves that M = & . M,. |

LEMMA 2.8. Let m = X; m; be an element of M written according to the
decomposition of Lemma 2.7. Then there exist elements p;, € S such that
pim = m;.

Proof. Write My = ©,M; as in Lemma 2.7. We denote by ¢, the
projection of M over M,. Since ¢; € Endz(M), we can apply Proposition
1.3 and find elements p, € S such that p;m = ¢,(m) = m;. 1

LEMMA 2.9.  Proposition 2.3 holds if I is a maximal left ideal of S.

Proof. As we have mentioned in the Introduction, A4 satisfies the left
Ore condition: for any 0 +a and 0 # b € A, it holds A4a N Ab # {0}.
Then if u # 0, there exists ¢ # 0 such that ru € AI. Note that if we prove
the existence of an element f such that Al + Arwf = A, then we have
Al + A(u + vf) = A. Thus, without loss of generality, we can suppose that
u=0.

We decompose M, = @ ;M; as in Lemma 2.7. Then we can write
each m € M in the form m = X, m; with m; € M,. If we set suppm =
{i | m; # 0}, it follows from Lemma 2.8 that

Am = Y, Am,. (3)

iesupp m
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Choose now ¢ € vM such that At is maximal in the set {Am | m € vM}.
Note that we can do this because M is a left Noetherian 4-module. Let
N =0vM N (D, ,,, M) and suppose z € N. If z & At then according to
(3) we have At c At + Az = A(t + z) and we obtain a contradiction with
the maximality of At. So N C At. We have that

ouf (@ w))/ @ u)

can be embedded in &, ,,,,M;. Hence vM /N is finitely generated over
A, because A, is right Noetherian. Then, there is a finite set {a; € vM}
such that

UMm( D Mi));

i&supp ¢

vM =Y a;A, + N C Y a;A, + At.
J J

Since #Z,(S) = 1and M is a semisimple S-module, we can choose 0 # s € S
such that sa; = 0 in M for all j and consequently suM C At. Since A has
no zero-divisors we have sv # 0. It follows from the simplicity of A4 that
AsvA = A, so

M = AM = AsvAM C At.

Thus if we write ¢t = vf + AI we obtain A + Avf=A. |

Proof of Proposition 2.3. We proceed now by induction on the length
of the S-module S /I. The case when I is maximal has been demonstrated
in Lemma 2.9. We suppose now that 7 is not a maximal left ideal. By
Proposition 1.2 we know that S /I is a left S-module of finite length and so
there exists a left ideal 7, of S such that / c I, c S and I,/I is a simple
module over S. We have I, = Sa, + I for a suitable a, € I,. Set I, =
{t € S|ta, €I} This is a maximal left ideal of S. The length of the
module S /I, is smaller than that of S /I and so by the inductive hypothe-
sis there exists f, € A such that

Al, + A(u + uf,) = A.

Let u, = u + vf,. We can find ¢,u, € A such that fwu; = u,a, and there
exists f; € A such that

Al + A(u, + tof,) = A.
Then

Aa, C AlLa, + A(u, + tvf,)a, € Al + At(u, + vfia,).
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Hence AI + A(u, + vf,a,) contains AI, Aa,, and Au,. But we have 4 =
AL, + A(u + vf,) € Al + Aa, + Au, and so

Al + A(u + v(f, + f1a,)) = A.

2.2. Step 2

In the following we suppose that S, is a simple ring without zero-divisors
and C = S, * G is a crossed product of §; and G. Consider a multiplicative
subset U C S5 satisfying both Ore conditions in S, and let § = U~'S, be
the corresponding ring of quotients. Suppose that for any g € G and
u € U, 7,(u) € U. Then we have that U satisfies both Ore conditions in C,

and U 'C = CU ! is a crossed product of S and G [7, Lemma 37.7].

We write g, = g, if there exists # € S, such that f = 7, o frg‘zl(f) for all
feS,. Set H=Fix(S,) ={h € G| h = e}, which is a normal subgroup
of G. From the definition of = it follows that for any A € H there exists
t, € S, such that ft, =1,7,(f) for all f€ S,. Since S, is a simple ring, #,
is invertible. By substituting / by ¢, we obtain that & € C.(S,) for any
h € H (here C(S,) is the centralizer of S, in C). Obviously, @, , € K =
Z(S,) for every h,g € H and it follows that C.(S,) is isomorphic to a
crossed product of K and H in a natural way [5, Proposition 2.4.1]. In the
sequel, when we write K = H we refer to this crossed product. It is then
straightforward to check that g, = g, if and only if g,g,* €

Let v € C. erte v in the form v = L, 5,8, where s; € S Set T, =
Yis+0518 K' =8, nZ(C),and let N, be the left module over S, & S5

(Zsi ®P5)U = ZSiUPi-
i i

(Here S; denotes the opposite ring of S,.) It can be easily seen that
N, = S,vS8;.

LEMMA 2.10. Let 0 #s € S, andt € S. Then N, = N, and vt € SN,.

Proof.  Since §; is simple, then §,g is a simple S; ®. S7-module for
any g € G and so 7T, is a semisimple left S; ®.. S7-module. Suppose that

v

there exists an isomorphism ¢ of S, ®. S7-modules between S,3; and
$18;- Then we have

fo(3) = ¢(f8) = (37, (f)) = ¢(&8) 7, (f)

for all fesS,. If ¢(g) =g, it follows that fr = i7,(7, (f)), that is,
g; = & Also it can be easny checked that if g; =g, then $:18, = 8,8



122 A. JAIKIN-ZAPIRAIN

Consequently, by changing the numbering in {g,} we can write

k
T,= @ 7T, whereTl,= @D 53,
i=1 8i,j=8i1

Thus

k
Ends,e.s; T, = @1 Endg,o,s; Ti-
im

Set H = Fix(S,). Since g ;gi'1 € H, we can write v in the form v =
¥ 108 ., where v,g,, €T, and v; € S, * H. According to Proposition
13, for any i there exists p, € S, & S such that p =v;g,;, and
consequently v,;g;,, € V.

We can represent each v, in the form 2521 s; jl; jywith [, - € K= H and
{s;; €8 1j=1,...,k} an independent set over K. We now apply the
density theorem to §,g; ,, which is a simple S; & S7-module, to assure

the existence of elements g, ; € §; & S7 such that
_ oy | & ifk=J;
Qi,j(si,kgi,l) - 0’ if k qéjl

It then follows that
qi,j(vigi,l) = qz',j(zsi,kli,kg’i,l) = Zli,k(qz',j(si,kgi,l)) = li,jgi,ll
k k

since /; ; € Cc(S;). Hence N, contains the elements /; ;g; ; and is gener-
ated by them as an S, ®. S7-module. Thus

N, = Zslli,jgi,lsl = ZSllingivl'
ij i

From this we can deduce the lemma. First, N,, = N, for any 0 # s € S,.
This follows from the equalities sv = Lf_, sv,g; , and sv; = X5, ss; 1, ),
where {ss; ; |j =1,...,k;} is also an independent set over K because S,

has no zero-divisors. Hence arguing as before we obtain

N;, = Zslli,jgi,l =N,.
i,
Second, vt € SN, for any ¢ € S, since

Nyt =281 ;8 1t = ZSITgivl(t)li,jgi,l C SN,
ij ij
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Note that in the proof of the last lemma we have shown that (CvC) N
(K =+ H) # {0}, because [, ; € (CvC) N (K= H). Using this fact we can
prove

LEMMA 2.11.  Let S, be a simple ring, G a finite group, and C = S, * G a
crossed product of S, and G. We suppose that C has no zero-divisors. Then C
is simple.

Proof. Let I be anon-zero ideal of C. Let K = Z(S,) and H = Fix(S,).
As H is finite and C has no zero-divisors, K = H is a division ring. Then
I=K 1

Suppose now in addition that .Z;(S) > 0.

LEMMA 2.12. Let M be a submodule of the S-module ST, such that
ST,/M has finite length. Then there exists f € S, such that M + SN, = M +
Suf.

Proof. We argue by induction on the length of the S-module (M +
SN,)/M. If it is not zero, then there exists f; € S; such that Suf; ¢ M.
Choose M’ such that M c M’ < M + Suf, and M’ /M is a simple S-mod-
ule. As #Z(S) > 0 we can find 0 # ¢ € S; with ff; € M. Since N, = N,
from the inductive hypothesis there exists f, € §; such that

M+ SN,=M' + SN, =M’ + SN,, = M' + Stf,.

v

If M+ Suvf, =M + SN, we are done. Otherwise, we have
M + Stof, < M + Suf, c M’ + Stf,

and
(M’ + Stf,) /(M + Stof,) = M' /(M + Stuf,) N M)

is simple. Consequently M + Stwf, = M + Suf,. Set N = M + Sv(f, + f,)
C M+ SN,. From rf, € M it follows that wf, € N. We then have the
following chain of implications:

Stof, €N = M + Stof, €N = Suf, CN = Sufy CN = M' CN.
Then M + SN, = M' + Stf, c N. |

Proof of Step 2. As in Lemma 2.9, we can suppose u = 0 and v € C.
From Proposition 2.3 we derive the existence of f=fu~' e A with
f, € C and u € U such that AI + Avf,u™* = A. We can use the previous
lemma with uf, € C in place of v and M = AI N ST,;. Note that since
#(8) =1 and S has no zero-divisors, ST,, /M has finite length. Then
there exists f, € §; such that SN, c Al + Auf,f,. But we know, by
Lemma 2.10, that vf;u™" € SN, Then Al + Avf,f, =A. 1
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2.3. Step 3

Proof of Proposition 2.2. We can suppose u = 0and v € C.

We first consider the case when I is a maximal left ideal of S. Set
K = Z(S)). If I N K contains an element g + 0, then Proposition 2.3 gives
f=fis"t €Awith f, € C, s € U such that Aq + Avf = A. Since q and s
commute, we have Aq + Avf, = A

So we can suppose I N K = {0}. Denote S, = (K*)7'S;, C =§,+G,
S=U1S,and A =S=G. S, is a simple ring and, according to Step 2,
there exists f = f,m~* € C W|th f, € C,m € K*such that A = AI + Auf.
Since I commutes with m we have 4 = Al + Auvf; and (Al + Avf;) N
K #{0}. As I is a maximal left ideal of S and I N K = {0}, then Al +
Avfy =

If I is an arbitrary left ideal of S, we argue by induction on the length of
the module S /I, as in Proposition 2.3. i

2.4. Almost Simple Rings

In this section we give some examples of almost simple rings. In
particular, the example of Proposition 2.17, part (iii), will be needed in the
proof of Theorem 2.1.

LEMMA 2.13. Let G be a finite group, S a ring without zero-divisors, and

=S+G. Set K= Z(S) and suppose FixX(K) ={e}. Let I be an ideal
of A such that I N K # {0}. If {h; € G}, is a family of distinct elements,
{c,eSY,and ¥, c Th’(a) =0 foralla e INK, then ¢, =0 forall i.

Proof. We argue by way of contradiction. From all possible families {4}
giving a counterexample, we choose one with minimum cardinality. We can
suppose i, = e. Then c;a + -+ +c,7,(a) = 0 for all a € I N K and con-
sequently,

ciab + -+ +c,7, (ab) = bcia + -+ + 1, (b)c,m,(a) =0

for any « € I N K and for any b € K. From the minimality of the family
{h;} it follows that 7, (b)c, = bc, for any b € K. Since S has no zero-
divisors and Fix(K) = {e}, we must have h, = e, a contradiction. |

If A =S=G is a crossed product, for any g € G we have defined the
automorphism 7, of S by means of 7,(s) = gsg~*. Clearly this definition
can be extended to the whole of 4 and we can then consider 7, as an
inner automorphism of A.

LEMMA 2.14. Let S be a simple ring, G a supersolvable group, and
suppose that A = S+ G has no zero-divisors. Set K = Z(S), G, = {(g* |
g € G) and H C Fix(S) a normal subgroup of G. Then for any two-sided
ideal I +# {0} of the ring K+ H such that 7,(I) = I for all g € G, there
exists 0 # a € I such that 7,(a) = a for any g € G,
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Proof. Since H is a normal subgroup of G and G is a supersolvable
group, there is a series {¢} = H, € -~ < H, = H of normal subgroups of
G such that H,/H,_, is cyclic for each i. We prove the lemma for K = H,,
by induction on m. Suppose it is true for K+ H,_;. Let I # {0} be a
two-sided ideal of the ring K = H; such that 7,(1) =1 for all g € G,.
Suppose first that H./H._, is finite. Since K#* H, = (K H._ )*
(H;/H;_,), it follows that

((K+*H,_1)*) (K=*H,)

is a division ring and consequently K = H,_, N I # {0}. Then it suffices to
apply the inductive hypothesis. If H,/H;,_, = (hH,_,) is infinite then
K+H =K=H,_ [z 2z «], where z =h. Consider the set of elements
c=c¢o+ - +c,z" of I, with ¢; € K+ H;_,, for which n is minimal. The
coefficients of degree 0 in z of these elements form a non-zero ideal
J={cylc=cy+ - +c,z" €I} of K+xH,_,. Since H,_, and H, are
normal subgroups of G, 7,(z) =p,z**, where p, € K+ H, ; for
any g € G and then 7,(z) = p,z for any g € G,,. We deduce that 7,(J) = J
for any g € G,,. By the inductive hypothesis, there is ¢, with ¢ = ¢; + -+ +
c,z" €1 such that 7,(c,) = ¢, for all g € G,. Now, the minimality of »
yields 7,(c) —c =0forall g€ G,. |

LEMMA 2.15. Let A; (1 < i < n) be simple rings and K a ring which can
be embedded in every Z(A;). Then the tensor product A = (& )/_, A, is
almost simple.

Proof. We will prove this lemma in the case n = 2. The proof of the
general case is similar. Let v be a non-zero element of 4A; ® A,. We can
write v in the form

v=2(c®1)d,

4

where {c; € A;} is an independent set over Z(A4,) and d; € Z(A,) ®& A,.
If we consider A, as an A, &, , A;-module, then by the density theo-
rem, we can find 1 =X, ¢e; ®f; €A, &4, A7 such that «; =1 and
tc; = 0 for i # 1. Therefore

d, = Zejufj € AA,.
J
(Here we identify 4, with 4, & 1.)
In the same way we can prove that

(Z(Al) ®K Z(AZ)) m142d1142 #* {O}
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Since Z(A,) &, Z(A,) c Z(A, & A,), then
(Ay & A)v( Ay & Ap) NZ(A, & A,) #+ {0}
Then (A, ® A,) is almost simple. ||

LEMMA 2.16. Let R be a ring and let U € Z(R)* be a multiplicative
subset of regular elements. Suppose that U™ 'R is almost simple. Then R is
almost simple.

Proof. Let I be a non-zero ideal of R. Then we have
{0} #U M INZ(U'R) =U"TNU'Z(R).
Hence I N Z(R) = {0}. 1
ProposITION 2.17.  The following rings are almost simple:

(i)  Any commutative ring.

(ii) The ring A = S = G, where S is an almost simple ring, G is a finite
group, and A has no zero-divisors.

(iii) The ring A = S = G, where S is simple, G is a supersolvable group,
and A has no zero-divisors.

(iv) The ring A = (® ) A;, where A, is an almost simple ring
without zero-divisors and K € Z(A,).

Proof. (i) It is immediate.

(ii) Let I + {0} be a two-sided ideal of A.Set K = Z(S), F = (K*)"1S,
and T = (K*)"14, which is a crossed product of F and G. Since F is
simple, then from Lemma 2.11 we obtain that 7T = T, and so K N I # {0}.

We proceed now by induction on the order of G. Set H = Fix(K). We
first see that S+ H is almost simple. Since K c Z(S* H), we have
Z(S = H) N I # {0} for any two-sided ideal I of S * H.

Since H is a normal subgroup of G then A =S+« G = (S« H)*(G/H).
If H # {e} we can apply the inductive hypothesis. Thus we can suppose
Fix(K) = {e}. From Lemma 2.13 we deduce that there is a € I N K such
that c = X, .5 7,(a) # 0. Itis clear that c € I N Z(A).

(i) Set K =Z(S), G, ={g%*lge G), and H = Fix(§) N G,. Let I
# {0} be any two-sided ideal of S§=*G,. Since S is simple, we have
K+ H N I # {0}. According to Lemma 2.14 there is0 # a € Z(S = Gy) N 1.
Hence S = G, is almost simple. Since G, is a normal subgroup of G of
finite index, it follows from part (ii) of this proposition that 4 = S+ G is
almost simple.

(iv) Set A, = (Z(A))*4,, QO = (K*)"'K and

T (20 (2(4)7) )4 = (3)]_, A,

I
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Since A, is simple then by Lemma 2.15, A4 is almost simple. As Z(A;) C
Z(A), by Lemma 2.15, A4 is almost simple. As Z(A4;) € Z(A), by Lemma
2.16, A is also almost simple. |

COROLLARY 2.18. Let A = S * G be a crossed product without zero-di-

visors, where S is a simple ring and G is a supersolvable group. Then A is
simple if and only if Z(A) is a field.

Proof. We prove sufficiency. According to Proposition 2.17, A is almost
simple. So if Z(A) is a field, A4 is simple. 1

2.5. Main Theorem

We can now proceed to prove our main result, Theorem 2.1, following
the lines of the proof of Stafford for the analogous result in the case of
Weyl algebras [9, Theorem 3.1].

Proof of Theorem 2.1. The case ¢ = 0 is immediate, so we suppose
¢ # 0. We can also assume that a, b # 0 after replacing if necessary a by
a +s,cand b by b + s,c.

Since G is a supersolvable group, there is a series of normal subgroups
of G, {¢J=G,c - cG,=G such that G,,,/G, is cyclic. Define
T.=T+G, sothat T,=T and T, = C, and set T_, = {1}. We prove by
induction on k the existence of elements d,, e, € C and non-zero g € T,
such that gc € C(a + s,d,c) + C(b + s,e,c) for k = n,..., —1. Observe
that this result for k = —1 proves the theorem.

If k=n,d, e, and g exist because C has the left Ore condition (for
example, Ca N Cc + {0}). Suppose now they exist for some k > 0. We
simplify the notation by writing a and b instead of a + s,d,c and
b+ s,e.c.

Then gc € Ca + Cb and g € T,. First suppose that k > 0. As G, _,
is normal in G, we can consider the ring 4 = (T ,))"'C. Set § =
(T )~ 'T,. We have that S =F,_,*(G,/G,_,), where F,_, =
(T} )~ 'T,_, is the division ring of quotients of T,_,. Since C =
T, (G /Gy), we have A = S (G /G)).

If G,/G,_, is finite, then § is a division ring. Hence there exists
q' € T, such that g'q € T,,_, and (¢'q)c € Ca + Cb, as desired.

So we can suppose that G, /G, _, is infinite cyclic, so that Z(S) = 1.
Write gc = h,a + h,b, where we can suppose h,, h, # 0 because Ca N
Cb + {0}. Since T satisfies the right Ore condition, then C satisfies the
right Ore condition [7, Lemma 9.3.8] and there are g, € C and g, € C,
different from zero, such that h,s g, + h,s,g, = 0. Also, we can find
non-zero elements s € C and ¢ € C such that sqgc = tb. Note that, by
Proposition 2.17, T, is almost simple and therefore we can apply Proposi-
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tion 2.2. So there is f € C such that Ag + A(sq + ts,8,f) = A. Set L =
Ala + s,g,fc) + A(b + 5,8, fc). Then

qgc =h,a +h,b="ha+h,b+ (hys,g, +h,s,8,)fc
=hy(a +s,8,fc) + hy(b +s,8,fc) €L,
and
sqc +ts,8,fc =t(b +s,8,fc) € L.

Hence ¢ € L and there are ¢’ € T,_, and ¢, _,,d,_, € C such that
q'c€C(a+sd,_ic) + C(b+s,e,_qc).
If k=0wecanput 4 =C, S =T, and use the same arguments. [i

Let R be a left Noetherian ring without zero-divisors and Q its left
guotient ring. Let M be a finitely generated left R-module. Then we
define rank M as the integer k such that Q ®, M = Q.

DeriniTioN.  Define a left R-module M over a ring R to be stably
m-generated if forany r > mand a,,...,a,,, € M suchthat M = Y/*1 Ra,
there exist f; € R such that M = X/_, R(a; + fa,, ;).

The results of the following corollary can be proved as in [9] by using
Theorem 2.1.

CoROLLARY 2.19. Let T be either a division ring or a left Noetherian
simple ring with the right Ore condition and Z(T) = 1, G a supersolvable
group, and C = T = G a crossed product of T and G. We suppose that C is
simple and has no zero-divisors. Then the next propositions hold.

(i) Any left ideal of C is stably two-generated.
(ii) Any left stably free module P with rank P > 2 is free.

(iii) Let M be a finitely generated left C-module. Then M = N & C*,
where N is a module with rank N < 1. If N is torsion-free, then N is
isomorphic to a left ideal of C.

(iv) Let M be a finitely generated torsion left C-module. Then M = 1/J,
where I is a projective left ideal of A. In particular, M is stably two-generated.

Remark 2.20. All proofs remain true if we suppose that G has a series
{e} =G,cG,c -+ €G,=G of normal subgroups of G such that
G,./G,_, is infinite cyclic or finite. Note that a policyclic-by-finite group
does not necessarily have a series like this. Most of the propositions
remain true if we suppose that G is a policyclic-by-finite group. Neverthe-
less, for example, in Proposition 2.17(iii) and Theorem 2.1 we cannot do
this substitution.
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3. GENERALIZED WEYL ALGEBRAS

In this section we obtain the same results as in the preceding one, for
tensor products of generalized Weyl algebras of degree 1.

DEFINITION 2. A generalized Weyl algebra of degree 1 is a ring A =
D(a,a) = Dlx,y, a,a] generated by a commutative Noetherian ring D
without zero-divisors with Krull dimension 1, and elements x, y such that

w=a€D, xy=a(a), xd=a(d)x, and yd=a '(d)y
for all d € D, where « is a ring automorphism of D.

Many examples of generalized Weyl algebras can be found in [3].
Note that A is a Z-graded ring, where the k-component of A4 is

Dx* for k > 0,
(A),=4D for k =0,
Dy~ * for k < 0.

We shall use the following two propositions, whose proofs can be found
in [2].

ProposITION 3.1 [2, Theorem 3]. Let A = D(a, a) be a generalized Weyl
algebra of degree 1. Then A is simple if and only if for any maximal ideal P of
D and any 0 # n € Z the following conditions hold.:

(i) a"(P)#P,
(i) a¢&a”(P)NP.
ProposITION 3.2 [2, Theorem 2]. Let A = D(«, a) be a generalized Weyl

algebra of degree 1. Suppose that o"(P) #+ P for all 0 + n € Z and any
maximal ideal P of D. Then %(A) = 1.

If A=D(a,a)=Dlx,y, a,a]is a generalized Weyl algebra of degree
1, we set a, = y*x* and AP = D(a*, a,) = D[x*, y*, a*, a,], which is the
algebra generated by D and the elements x* and y*.

LEMMA 3.3. Let A =D(a,a) = Dlx,y, a,al be a simple generalized
Weyl algebra of degree 1. Then A® is simple for any k > 0.

Proof. We have to verify the hypotheses of Proposition 3.1. The first
condition is obvious. Suppose that a, € a«"*(P) N P for some maximal
ideal P of D and some n # 0. Then a, and o "*(a,) belong to P. Since

a, =a**Y(a) - aY(a)a P,

afnk(ak) — af(n+1)k+1(a) afnk(a) =
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and the sets {—k + 1,..., —1,00and {—(n + Dk + 1,..., —nk} are dis-
joint, there exist m, # m, such that a"(a), a™2(a) € P. This is a contra-
diction because A is simple. |

Let 4 = D(a,a) = Dlx, y, a,a] be a simple generalized Weyl algebra
of degree 1, where D is finitely generated over a field K c Z(A4). Let
z € Z(A)*. Note that z is invertible. Since D has no zero-divisors and A
is Z-graded, then z € D. As D is finitely generated over K, we have that
z is an algebraic element over K. Then Z(A) is a subset of algebraic
elements of D. We will apply several times this fact, sometimes without
further mention.

LEMMA 3.4. Let A = D(a,a) be a simple generalized Weyl algebra of
degree 1 and suppose D is finitely generated over K = Z(A) and U(D) = K.
Then, for any field extension Q of K the tensor product Q ®; D has no
zero-divisors and its Krull dimension is 1.

Proof. Since D = K[xl,...,xp]/J, then Q ® D = Qlx,, .. .,xp]/QJ.
The Krull dimension of D is 1, so there exists z € D such that D is
finitely generated as a K[z]-module. Hence Q ®, D is finitely generated
as a Q[ z]-module and therefore #(Q &, D) = 1.

Let Q, be a maximal subfield of Q such that Q, ® D has no zero-di-
visors and take an element t € Q \ Q,. If ¢ is not an algebraic element
over Q,, then D & 0,(t) = (D ® O)ItIQ,[t1¥)~* has no zero-divisors.

We suppose now that ¢ is an algebraic element over Q,. Let & be an
irreducible polynomial over Q, such that ¢ is root of /. Set D, = O, & D
and D, = Qi[t] & D = Q,[t] ®, D,. We want to prove that D, has no
zero-divisors. Let P be the field of quotients of the ring D, and T =
D,(D¥)~*. It is clear that T = P[z]/P[z]h. The automorphism « can be
extended to an automorphism of the ring 7. Let & = h, --- h, be the
decomposition of the polynomial #, where the factors A, are irreducible
polynomials over P. Since D,[x,y, a,a]l = Q,[t] ® A is a simple ring,
then T[x, x~*, ] is also a simple ring and hence, the Jacobson radical of
T is zero. So, all the polynomials 4, are different. Then 7= ®;_, T,
where T; = P[z]/P[z]h; is a field. Let p be the identity element of T,.
The number of idempotent elements of T is finite. Then there exists k
such that a*(p) = p. By Lemma 3.3, D(a*, y*x*) is simple. Since U(D) =
K, then Z(D(a*, y*x*)) = K. Hence Q,[t] & D(a*, y*x*) is simple and
we deduce that T[x, x~*, «*]is also simple. Then T, = T, and this means
that D, does not contain any zero-divisors. [

Now we can prove a criterion for C = (® )!_, A, to be a simple ring
without zero-divisors.
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PRoOPOSITION 3.5. For each 1 <i <n, let A, = D(a;, a;) =
D/ x;, y;, a;, a;] be a simple generalized Weyl algebra of degree 1, where D; is a
finitely generated ring over a field K € Z(A;). Then the following conditions
are equivalent:

(i) C = (&), A; has no zero-divisors.
(i) D = (& )" D; has no zero-divisors.

(iii) U = (&) U. has no zero-divisors, where U, is the set of algebraic
elements of D; over K.

Also, if any of these conditions holds, then C is simple.

Proof. The implications (i) = (ii) = (iii) are obvious.
Let us prove (ii) = (i). Each A, is a Z-graded ring. Then C is a
Z"-graded ring with

C(k1 ..... k) (Al)k1 Q¢ -+ ®K(An)k,,‘

Let k = (ky,...,k,) and m = (my,...,m,) € Z7". We will write k < m if
there is an integer ! € [1, n] such that k, =m; for i=1,...,1 -1 and
k, < m,. Suppose that k,, k,, ks, k, € Z" and k, < k,, k; < k,. Then itis
clear that k, + k; <k, + k,.

Let a,b € C. We can write a and b according to the graduation of C,

a:ak+ Zai’ b:bm+2bi’

i<k i<m
where a,, b, € C; and a, # 0, b,, # 0. Then

ab=ab, + Y. ¢, forsomec; e C;.
i<k+m

If ab = 0 then a,b,, = 0, which is impossible, because D = (& ), D, has
no zero-divisors. Then (ii) = (i).

Now we prove the implication (iii) = (ii). First note that U. = U(D),),
because D; is finitely generated over K. Set

M; = (( ®K);:1Df) ®K((®K)7:H1Uj)'

Arguing by induction on i we prove that M, has no zero-divisors. Suppose
that M;_, has no zero-divisors. Since D; is finitely generated over K then
there exists m such that «/(u) = u for any u € U. Hence Z(A™) =
U = U(D,) and A{™ satisfies the conditions of Lemma 3.4. Therefore
M; = D; ®, M,;_, has no zero-divisors.

l
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Now suppose that one of the conditions (i), (i), or (iii) holds. Since D; is
finitely generated over K, by the remark before Lemma 3.4 we have
Z(A;) c U. Hence Z(C) = (& )"_,Z(A,) is a field. By Proposition 2.17,
C is almost simple and consequently it is also simple. i

ProrosITION 3.6. Let C = (& )'_,A; be a ring without zero-divisors,
where A; = D(«;,a;) = D] x,, y;, a;, a; ] is a simple generalized Weyl algebra
of degree 1 and D, is finitely generated over a field K € Z(A;). Set T, =
(€= A)®K ((®K)l” mi1D) for 0<m<n, S=T,, (T and
A= C(T*) Then for any left ideal I # {0} of S and elements u € A,
0+#veA, there exists an element f € C such that AI + A(u + of) =

Proof. We can suppose that u = 0. It is clear that 4 = §«Z""™ "1 Set

C= C((( ®K)?:m+2Di)*)71

Then C = S, 7" "% where S, = T, , ((® ), ,,D,)*)"*. By Proposi-
tion 2.17, T,,,, is almost S|mple and so S, is almost simple. Then by
Proposition 2.2, there exists f € C such that Al + Avf = A, where f =
cd*, ceCand de (&),  ,D. As d commutes with S, then Al +
Ave =A. |

ProrosITION 3.7. Let C = (®)!'_,A; be a ring without zero-divisors,
where A; = D(e;, a;) = D] x;, y;, o;, a; ] is a simple generalized Weyl algebra
of degree 1 and D; is finitely generated over a field K C Z(A,-). Set U, =
(&)™, D, wzth1<m<n 0=U,Ut S=0& A,.,, D=0 &
D,,, andA C(U)~* . Then for any left zdedllofS such that D N I # {0}

and for any elements u € A, 0 + v € A there exists an element f € C such
that AI + A(u + of ) =

Proof.  First of all we prove that Z/(S) = 1. We have Z(S) = Q &
Z(A,,,,) and Z(A,, ) is finitely generated and algebraic over K. Hence
Z(S) is finitely generated and algebraic over Q and it must be a field,
because it has no zero-divisors. Since § is almost simple, it follows that
S is simple. On the other hand D = Q ® D, ., has Krull dimension 1
and consequently S = D[x,,, 1, V11,1 ® @, ,1,1 ®a,, . ,]is ageneralized
Weyl algebra of degree 1. We conclude now from Propositions 3.1 and 3.2
that .7(S) = 1.

Again we suppose that u = 0 and I is a maximal left ideal of S. It is
clear that 4 = S+Z" & (&), ,,A4). Asin Lemma 2.5 we have

End,(A/Al) = (F*H) & ((8)]_,,.,4;).

where F = Endy(S/I) and H C Z™. Hence End ,(A /AI) is left and right
Noetherian.
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Reasoning as in the proofs of Lemma 2.9 and Proposition 2.3, it follows
that for any left ideal I # {0} of S we can find an element f € 4 such that
Al + Avf = A.

Set J = §-(I N D). Then there exists f € A such that AJ + Avf = A,
where f=cd',ceC,de U, As d commutes with D then AJ+
Ave = A and so Al + Avc = A. |

Note that the conclusion in the previous proposition is also true for
U, = {1} if we define S = A,, D=D,;,and 4 = C.

THEOREM 3.8. Let C = (&), A; be such that C has no zero-divisors,
where A, = D(«w;, a;) = D] x;,y;, o;, a;] is a simple generalized Weyl algebra
of degree 1 and D; is a finitely generated ring over a field K € Z(A,). Then
for any a,b,c € C and s,,s, € C* there are f,, f, € C such that a,b,c €
Cla + s,f1¢) + C(b + s,f,0).

Proof. The proof is as in Theorem 2.1, working with the series

{1} =,clccl,,cToclic - cT,=C

and using both Propositions 3.6 and 3.7. |
The next corollary can be proved in a similar way to Corollary 2.19.

CoROLLARY 3.9. Let C = (® )" A; be such that C has no zero-di-
visors, where A; = D(«;,a;) = D] x,,y;, a;,a;] is a simple generalized Weyl
algebra of degree 1 and D; is a finitely generated ring over a field K C Z(A)).
Then the next propositions hold.

(i)  Any left ideal of C is stably two-generated.
(i)  Any left stably free module P with rank P > 2 is free.

(i) Let M be a finitely generated left C-module. Then M = N & C*,
where N is a module with rank N < 1. If N is torsion-free, then N is
isomorphic to a left ideal of C.

(iv) Let M be a finitely generated torsion left C-module. Then M = 1/J,
where I is a projective left ideal of A. In particular, M is stably two-generated.
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