M odules over Crossed Products

A. Jaikin-Z apirain

metadata, citation and similar papers at core.ac.uk

Communicated by J. T. Stafford
Received M arch 13, 1997
J. T. Stafford (1978, J. London Math. Soc. (2) 18, 429-442) proved that any left ideal of the Weyl algebra $A_{n}(K)$ over a field K of characteristic 0 can be generated by two elements. In general, there is the problem of determining whether any left ideal of a Noetherian simple domain can be generated by two elements. In this work we show that this property holds for some crossed products of a simple ring with a supersolvable group and also for the tensor product of generalized Weyl algebras. We also prove that these rings are stably generated by 2 elements and that their finitely generated torsion left modules can be generated by two elements. Some results about stably 2 -generated rings were found by V. A . A rtamonov (1994, Math. Sb. 185, No. 7, 3-12). © 1999 A cademic Press

1. PRELIMINARIES

All rings considered throughout this paper will have an identity. Also, we denote by $U(S)$ the unit group of a ring S and by S^{*} the set of non-zero elements of S.

Definition [5]. Let S be a ring and G a group. A crossed product of S and G is a G-graded ring

$$
A=S * G=\bigoplus_{g \in G} A_{g}
$$

such that $A_{e}=S$ (e is the identity element in G) and, for any $g \in G$, there is an element $\bar{g} \in A_{g}$ which is a unit in A.

Note that, under the conditions of the definition, $A_{g}=S \bar{g}=\bar{g} S$. So any element of $S * G$ can be written as $\sum_{g} s_{g} \bar{g}$, where the elements s_{g} belong
to S and only finitely many of them are non-zero. Thus in order to describe the multiplication in $S * G$ it suffices to give the products of the form $\left(s_{g} \bar{g}\right)\left(s_{h} \bar{h}\right)$. For any element $g \in G$ we define an automorphism of S by means of $\tau_{g}(s)=\bar{g} s \bar{g}^{-1}$, so that the formula $\bar{g} s=\tau_{g}(s) \bar{g}$ holds for every $s \in S$ and $g \in G$. On the other hand, if $g, h \in G$ we define the element $\alpha_{g, h}=\bar{g} \bar{h}(g h)^{-1} \in U(S)$, so that $\bar{g} \bar{h}=\alpha_{g, h} \overline{g h}$. Then we have

$$
\left(s_{g} \bar{g}\right)\left(s_{h} \bar{h}\right)=s_{g} \tau_{g}\left(s_{h}\right) \alpha_{g, h} \overline{g h} .
$$

We say that the maps $\tau: G \rightarrow$ Aut S and $\alpha: G \times G \rightarrow U(S)$ given by $\tau(g)=\tau_{g}$ and $\alpha(g, h)=\alpha_{g, h}$ form a crossed system of the crossed product $S * G$.

If U is a subring of S we denote
$\operatorname{Fix}(U)=\left\{g \in G \mid\right.$ there exists $s \in S$ such that $u s=s \tau_{g}(u)$ for all $\left.u \in U\right\}$.
In the next sections, we shall use several times Propositions 1.1, 1.2, and 1.3 , sometimes without mentioning them explicitly.

Proposition 1.1 [7, Proposition 1.1.6]. Lee S be a left Noetherian ring and G a supersolvable group. Then $S * G$ is also left Noetherian.

Throughout this paper $\mathscr{K}_{l}(S)$ is the left Krull dimension of S. We shall say that a left module has finite length if it is both left Noetherian and left Artinian. Recall that this happens when the module has a composition series. In this case, the length of a composition series will be called the length of the module. It is clear that if S is a ring and for any non-zero left ideal I of S the module S / I has finite length, then S is left Noetherian and $\mathscr{K}_{l}(S) \leq 1$. In the next result we see that the converse is true when S has no zero-divisors.

Proposition 1.2 [6, Lemma 6.3.9]. Suppose that S is a left Noetherian ring without zero-diwisors and $\mathscr{K}_{l}(S)=1$. Then for any non-zero left ideal I of S, S/I has finite length.

Proposition $1.3[8]$. Let M be a left semisimple S-module, $B=\operatorname{End}_{S}(M)$ and $\phi \in \operatorname{End}_{B}(M)$. Then for every $u_{1}, u_{2}, \ldots, u_{n} \in M$ there exists $x \in S$ such that $\phi\left(u_{i}\right)=x u_{i}$.

We say that a multiplicative subset $U \subseteq S^{*}$ has the left Ore condition in S if U has no zero-divisors and for every $u \in U, s \in S$ there are $v \in U$, $t \in S$ such that $v s=t u$. This condition permits the construction of the left ring of quotients $U^{-1} S$. The right Ore condition for U in S is defined symmetrically and enables us to construct $S U^{-1}$. As is well known, if U satisfies both O re conditions then the corresponding left and right rings of
quotients of S are isomorphic: $U^{-1} S \cong S U^{-1}$. We say that the ring S has the left (or right) Ore condition if that condition holds for S^{*}. It follows from Goldie's Theorem that a left Noetherian ring without zero-divisors necessarily has the left Ore condition. A s a consequence of this result and Propositions 1.1 we obtain the following result, which shall be used freely in the paper: if S is a left Noetherian ring, G is a supersolvable group, and $S * G$ has no zero-divisors, then $S * G$ satisfies the left Ore condition.

If α is an automorphism of S, we denote by $S\left[x, x^{-1}, \alpha\right]$ the Ore extension of $S[x, \alpha]$ localized at the powers of x.
Next we introduce the concept of an almost simple ring, which appears naturally in the course of some proofs.

Definition. A ring S is called almost simple if $I \cap Z(S) \neq\{0\}$ for any two-sided ideal $I \neq\{0\}$ of S, where $Z(S)$ denotes the center of S.

It is clear that if S is almost simple and has no zero-divisors, then the ring of quotients $\left(Z(S)^{*}\right)^{-1} S$ is simple.

2. CROSSED PRODUCTS

The main results of this section are Theorem 2.1 and Corollary 2.19.
Theorem 2.1. Let T be either a division ring or a left Noetherian simple ring with the right Ore condition and $\mathscr{K}_{1}(T)=1, G$ a supersolvable group, and $C=T * G$ a crossed product of T and G. Suppose that C is simple and has no zero-divisors. Then for any $a, b, c \in C$ and $s_{1}, s_{2} \in C^{*}$ there are $f_{1}, f_{2} \in C$ such that $a, b, c \in C\left(a+s_{1} f_{1} c\right)+C\left(b+s_{2} f_{2} c\right)$.

This theorem is based on the following proposition:
Proposition 2.2. Let S_{1} be an almost simple ring, G a supersolvable group, and $C=S_{1} * G$ a crossed product of S_{1} and G. Consider a multiplicative subset $U \subseteq S_{1}^{*}$ satisfying both Ore conditions in S_{1} and let $S=U^{-1} S_{1}$ be the corresponding ring of quotients. Suppose that the following conditions hold:
(i) C is simple and has no zero-divisors.
(ii) For any $g \in G$ and $u \in U, \tau_{g}(u) \in U$.
(iii) S is left Noetherian and $\mathscr{K}_{l}(S)=1$.

Define now $A=U^{-1} C$, which is a crossed product of S and G. Then for any left ideal $I \neq\{0\}$ of S and any $u \in A, 0 \neq v \in A$, there exists $f \in C$ such that $A I+A(u+v f)=A$.

We prove Proposition 2.2 arguing in three steps, which correspond to Subsections 2.1, 2.2, and 2.3.

Step 1. We prove the existence of f in A, satisfying $A I+A(u+v f)$ $=A$. In fact, it follows immediately from the next proposition:

Proposition 2.3. Let $A=S * G$ be a crossed product of a left Noetherian ring S with $\mathscr{K}_{l}(S)=1$ and a supersolvable group G. We suppose that A is simple and has no zero-divisors. Then if $I \neq\{0\}$ is a left ideal of S, for any $u \in A$ and $0 \neq v \in A$ there exists $f \in A$ such that $A I+A(u+v f)=A$.

Step 2. We prove the existence of f in C, satisfying $A I+A(u+v f)=$ A, in the case S_{1} is simple.

Step 3. We finish the proof of Proposition 2.2 in the general case.
In order to derive Theorem 2.1 from Proposition 2.2 we need to prove that some particular rings are almost simple. We do this in Subsection 2.4, where we provide several families of almost simple rings. Finally, in Subsection 2.5 we prove Theorem 2.1 and its corollary.

2.1. Step 1

Throughout this subsection, we maintain the notation given in the statement of Proposition 2.3. We begin by considering the case in which I is a maximal left ideal of S, which is the key to the proof in the general case. We have that $A I=\oplus_{g \in G} \bar{g} I=\oplus_{g \in G} \tau_{g}(I) \bar{g}$ is a G-graded left ideal of A and $A / A I$ is a G-graded A-module. If we consider $A / A I$ as an S-module then

$$
A / A I=\bigoplus_{g \in G} S \bar{g} / \tau_{g}(I) \bar{g} \cong \bigoplus_{g \in G} S / \tau_{g}(I)
$$

Thus $A / A I$ is a sum of simple S-modules and we have the following result.
Lemma 2.4. $A / A I$ is a semisimple S-module.
For any ring R, if M_{1} and M_{2} are two left R-modules and $M_{1}=R m$ is cyclic, $\operatorname{Hom}_{R}\left(M_{1}, M_{2}\right)$ can be embedded in M_{2} via the \mathbb{Z}-module homomorphism $f: \operatorname{Hom}_{R}\left(M_{1}, M_{2}\right) \rightarrow M_{2}$ defined by $f(\phi)=(m) \phi$, and we can identify the homomorphisms in $\operatorname{Hom}_{R}\left(M_{1}, M_{2}\right)$ with their images. In particular, if we define $M=A / A I$ and $A_{1}=\mathrm{End}_{A}(M)$, we identify any endomorphism $\phi \in A_{1}$ with its image $(1+A I) \phi \in M$. Under this identification,

$$
\begin{equation*}
A_{1}=\{a+A I \mid I a \subseteq A I\} . \tag{1}
\end{equation*}
$$

We also define $F_{1}=\operatorname{End}_{S}(S / I)$ and make a similar identification of the elements of F_{1} with the corresponding elements in S / I.

Lemma 2.5. $\quad A_{1}$ is isomorphic to a crossed product $F_{1} * H$ of the division ring F_{1} and a subgroup H of G. In particular A_{1} is left and right Noetherian.

Proof. Let $\sum_{i} s_{i} \bar{g}_{i}+A I \in A_{1}$. From (1) and $A I$ being G-graded, we get that $s_{i} \bar{g}_{i}+A I \in A_{1}$ for any i, so that

$$
A_{1}=\bigoplus_{g \in G}\left(A_{1}\right)_{g}, \quad \text { where }\left(A_{1}\right)_{g}=A_{1} \cap(A / A I)_{g}=\left\{s \bar{g}+A I \in A_{1}\right\}
$$

We rule out the trivial components in this decomposition by defining

$$
\begin{aligned}
H & =\left\{g \in G \mid\left(A_{1}\right)_{g} \neq 0\right\} \\
& =\left\{g \in G \mid \exists s \in S \backslash \tau_{g}(I) \text { such that } s \bar{g}+A I \in A_{1}\right\} .
\end{aligned}
$$

Then $A_{1}=\oplus_{h \in H}\left(A_{1}\right)_{h}$ as an abelian group. We have to prove that H is a subgroup of G and that this decomposition is an H-graduation of A_{1}.

First of all, we see that any non-zero element $s \bar{h}+A I \in\left(A_{1}\right)_{h}$ is a unit in A_{1}. Indeed, we have $s \in S \backslash \tau_{h}(I)$ and $I s \bar{h} \subseteq A I$. Then $I s \subseteq \tau_{h}(I)$ and so $s+\tau_{h}(I) \in \operatorname{Hom}_{s}\left(S / I, S / \tau_{h}(I)\right)$. Since S / I and $S / \tau_{h}(I)$ are two simple S-modules, it follows that $s+\tau_{h}(I)$ is an isomorphism and we can consider its inverse $r+I \in \operatorname{Hom}_{S}\left(S / \tau_{h}(I), S / I\right)$. Then $\tau_{h}(I) r \subseteq I, s r \equiv 1$ $(\bmod I)$ and $r s \equiv 1\left(\bmod \tau_{h}(I)\right)$. Now since $I(\bar{h})^{-1} r \subseteq A \tau_{h}(I) r \subseteq A I$, we have $(\bar{h})^{-1} r+A I \in A_{1}$ and it is the inverse of $s \bar{h}+A I$ in A_{1}. We also deduce that $\left(A_{1}\right)_{h^{-1}} \neq\{0\}$ and $h^{-1} \in H$.

On the other hand, let $h_{1}, h_{2} \in H, s_{1} \in S \backslash \tau_{h_{1}}(I), s_{2} \in S \backslash \tau_{h_{2}}(I)$ and suppose that $a_{1}=s_{1} \bar{h}_{1}+A I \in\left(A_{1}\right)_{h_{1}}$ and $a_{2}=s_{2} \bar{h}_{2}+A I \in\left(A_{1}\right)_{h_{2}}$. Then

$$
(1+A I)\left(a_{1} a_{2}\right)=s_{1} \tau_{h_{1}}\left(s_{2}\right)\left(\bar{h}_{1} \bar{h}_{2}\right)+A I \in\left(A_{1}\right)_{h_{1} h_{2}} .
$$

Note that this element is not 0 , since it is a product of two units in A_{1}. This proves that $h_{1} h_{2} \in H$ and that the decomposition $A_{1}=\oplus_{h \in H}\left(A_{1}\right)_{h}$ is an H -graduation.

Finally, it can be easily checked that $\left(A_{1}\right)_{e} \cong F_{1}$ and so A_{1} is isomorphic to a crossed product of the form $F_{1} * H$.

We define $B=\mathrm{End}_{S}(M)$.
Lemma 2.6. Let $\phi \in B$. Then for any $g \in G$ there exists $a \in A_{1}$ such that $(s \bar{g}+A I) \phi=(s \bar{g}) a$ for all $s \in S$.
Proof. We have $(s \bar{g}+A I) \phi=s(\bar{g}+A I) \phi=(s \bar{g}) a$, where

$$
a=(\bar{g})^{-1}(\bar{g}+A I) \phi .
$$

Since $\tau_{g}(I) \bar{g} \subseteq A I$, it follows that $\tau_{g}(I)(\bar{g}+A I) \phi \subseteq A I$, whence $I(\bar{g})^{-1}$. $(\bar{g}+A I) \phi \subseteq A I$ and we conclude that $a=(\bar{g})^{-1}(\bar{g}+A I) \phi \in A_{1}$.

In the next lemma, we regard M as a right B - and A_{1}-module.
Lemma 2.7. M can be decomposed as a direct sum of submodules M_{i}, where each M_{i} is of the form $M_{i}=\left(s_{i} \bar{g}_{i}+A I\right) B=\left(s_{i} \bar{g}_{i}+A I\right) A_{1}$ for some $s_{i} \in S$ and $g_{i} \in G$.

Proof. We consider a maximal direct sum of submodules M_{i}, each of them generated over B by some $s_{i} \bar{g}_{i}+A I$. We suppose that there exist $s \in S, g \in G$, and $b \in B$ such that $s \bar{g}+A I \notin \oplus_{i} M_{i}$ but $0 \neq(s \bar{g}+A I) b$ $\in \oplus_{i} M_{i}$. By Lemma 2.6, this means that there exist non-zero elements a, $a_{i} \in A_{1}$ such that

$$
\begin{equation*}
(s \bar{g}) a=\sum_{i}\left(s_{i} \bar{g}_{i}\right) a_{i} . \tag{2}
\end{equation*}
$$

We can decompose the elements a, a_{i} according to the graduation of M and each homogeneous component will be an element in A_{1}. Let a_{h} be a non-zero homogeneous component of a. If we compare the $g h$-components on both sides of equality (2) we get that

$$
(s \bar{g}) a_{h}=\sum_{i}\left(s_{i} \bar{g}_{i}\right) c_{i}
$$

for some $c_{i} \in A_{1}$. Since a_{h} is invertible in A_{1}, it follows that $s \bar{g}+A I \in$ $\oplus_{i} M_{i}$, which is a contradiction. This proves that $M=\oplus_{i} M_{i}$.
Lemma 2.8. Let $m=\sum_{i} m_{i}$ be an element of M written according to the decomposition of Lemma 2.7. Then there exist elements $p_{i} \in S$ such that $p_{i} m=m_{i}$.

Proof. Write $M_{B}=\oplus_{i} M_{i}$ as in Lemma 2.7. We denote by ϕ_{i} the projection of M over M_{i}. Since $\phi_{i} \in \operatorname{End}_{B}(M)$, we can apply Proposition 1.3 and find elements $p_{i} \in S$ such that $p_{i} m=\phi_{i}(m)=m_{i}$.

Lemma 2.9. Proposition 2.3 holds if I is a maximal left ideal of S.
Proof. As we have mentioned in the Introduction, A satisfies the left Ore condition: for any $0 \neq a$ and $0 \neq b \in A$, it holds $A a \cap A b \neq\{0\}$. Then if $u \neq 0$, there exists $t \neq 0$ such that $t u \in A I$. N ote that if we prove the existence of an element f such that $A I+\operatorname{Atvf}=A$, then we have $A I+A(u+v f)=A$. Thus, without loss of generality, we can suppose that $u=0$.

We decompose $M_{A_{1}}=\oplus_{i} M_{i}$ as in Lemma 2.7. Then we can write each $m \in M$ in the form $m=\sum_{i} m_{i}$ with $m_{i} \in M_{i}$. If we set supp $m=$ $\left\{i \mid m_{i} \neq 0\right\}$, it follows from Lemma 2.8 that

$$
\begin{equation*}
A m=\sum_{i \in \operatorname{supp} m} A m_{i} \text {. } \tag{3}
\end{equation*}
$$

Choose now $t \in v M$ such that $A t$ is maximal in the set $\{A m \mid m \in v M\}$. Note that we can do this because M is a left Noetherian A-module. Let $N=v M \cap\left(\oplus_{i \notin \operatorname{supp} t} M_{i}\right)$ and suppose $z \in N$. If $z \notin A t$ then according to (3) we have $A t \subset A t+A z=A(t+z)$ and we obtain a contradiction with the maximality of $A t$. So $N \subseteq A t$. We have that

$$
v M /\left(v M \cap\left(\underset{i \notin \operatorname{supp} t}{\bigoplus} M_{i}\right)\right) \cong\left(v M+\left(\underset{i \notin \operatorname{supp} t}{\bigoplus} M_{i}\right)\right) /\left(\underset{i \notin \operatorname{supp} t}{\bigoplus} M_{i}\right)
$$

can be embedded in $\oplus_{i \in \operatorname{supp} t} M_{i}$. Hence $v M / N$ is finitely generated over A_{1} because A_{1} is right Noetherian. Then, there is a finite set $\left\{a_{j} \in v M\right\}$ such that

$$
v M=\sum_{j} a_{j} A_{1}+N \subseteq \sum_{j} a_{j} A_{1}+A t .
$$

Since $\mathscr{K}_{l}(S)=1$ and M is a semisimple S-module, we can choose $0 \neq s \in S$ such that $s a_{j}=0$ in M for all j and consequently $s v M \subseteq A t$. Since A has no zero-divisors we have $s v \neq 0$. It follows from the simplicity of A that Asv $A=A$, so

$$
M=A M=A s v A M \subseteq A t
$$

Thus if we write $t=v f+A I$ we obtain $A I+A v f=A$.
Proof of Proposition 2.3. We proceed now by induction on the length of the S-module S / I. The case when I is maximal has been demonstrated in Lemma 2.9. We suppose now that I is not a maximal left ideal. By Proposition 1.2 we know that S / I is a left S-module of finite length and so there exists a left ideal I_{2} of S such that $I \subset I_{2} \subset S$ and I_{2} / I is a simple module over S. We have $I_{2}=S a_{2}+I$ for a suitable $a_{2} \in I_{2}$. Set $I_{1}=$ $\left\{t \in S \mid t a_{2} \in I\right\}$. This is a maximal left ideal of S. The length of the module S / I_{2} is smaller than that of S / I and so by the inductive hypothesis there exists $f_{2} \in A$ such that

$$
A I_{2}+A\left(u+v f_{2}\right)=A
$$

Let $u_{1}=u+v f_{2}$. We can find $t, u_{2} \in A$ such that $t u_{1}=u_{2} a_{2}$ and there exists $f_{1} \in A$ such that

$$
A I_{1}+A\left(u_{2}+t v f_{1}\right)=A .
$$

Then

$$
A a_{2} \subseteq A I_{1} a_{2}+A\left(u_{2}+t v f_{1}\right) a_{2} \subseteq A I+A t\left(u_{1}+v f_{1} a_{2}\right) .
$$

Hence $A I+A\left(u_{1}+v f_{1} a_{2}\right)$ contains $A I, A a_{2}$, and $A u_{1}$. But we have $A=$ $A I_{2}+A\left(u+v f_{2}\right) \subseteq A I+A a_{2}+A u_{1}$ and so

$$
A I+A\left(u+v\left(f_{2}+f_{1} a_{2}\right)\right)=A .
$$

2.2. Step 2

In the following we suppose that S_{1} is a simple ring without zero-divisors and $C=S_{1} * G$ is a crossed product of S_{1} and G. Consider a multiplicative subset $U \subseteq S_{1}^{*}$ satisfying both Ore conditions in S_{1} and let $S=U^{-1} S_{1}$ be the corresponding ring of quotients. Suppose that for any $g \in G$ and $u \in U, \tau_{g}(u) \in U$. Then we have that U satisfies both Ore conditions in C, and $U^{-1} C \cong C U^{-1}$ is a crossed product of S and G [7, Lemma 37.7].

W e write $g_{1} \approx g_{2}$ if there exists $t \in S_{1}$ such that $f t=t \tau_{g_{1}} \circ \tau_{g_{2}}^{-1}(f)$ for all $f \in S_{1}$. Set $H=\operatorname{Fix}\left(S_{1}\right)=\{h \in G \mid h \approx e\}$, which is a normal subgroup of G. From the definition of \approx it follows that for any $h \in H$ there exists $t_{h} \in S_{1}$ such that $f t_{h}=t_{h} \tau_{h}(f)$ for all $f \in S_{1}$. Since S_{1} is a simple ring, t_{h} is invertible. By substituting \bar{h} by $t_{h} \bar{h}$ we obtain that $\bar{h} \in C_{C}\left(S_{1}\right)$ for any $h \in H$ (here $C_{C}\left(S_{1}\right)$ is the centralizer of S_{1} in C). Obviously, $\alpha_{h, g} \in K=$ $Z\left(S_{1}\right)$ for every $h, g \in H$ and it follows that $C_{C}\left(S_{1}\right)$ is isomorphic to a crossed product of K and H in a natural way [5, Proposition 2.4.1]. In the sequel, when we write $K * H$ we refer to this crossed product. It is then straightforward to check that $g_{1} \approx g_{2}$ if and only if $g_{1} g_{2}^{-1} \in H$.

Let $v \in C$. Write v in the form $v=\sum_{i} s_{i} \bar{g}_{i}$, where $s_{i} \in S_{1}$. Set $T_{v}=$ $\sum_{i, s_{i} \neq 0} S_{1} \bar{g}_{i}, K^{\prime}=S_{1} \cap Z(C)$, and let N_{v} be the left module over $S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$

$$
\left(\sum_{i} s_{i} \otimes p_{i}\right) v=\sum_{i} s_{i} v p_{i}
$$

(Here S_{1}° denotes the opposite ring of S_{1}.) It can be easily seen that $N_{v}=S_{1} v S_{1}$.

Lemma 2.10. Let $0 \neq s \in S_{1}$ and $t \in S$. Then $N_{s v}=N_{v}$ and $v t \in S N_{v}$.
Proof. Since S_{1} is simple, then $S_{1} \bar{g}$ is a simple $S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$-module for any $g \in G$ and so T_{v} is a semisimple left $S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$-module. Suppose that there exists an isomorphism ϕ of $S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$-modules between $S_{1} \bar{g}_{i}$ and $S_{1} \bar{g}_{j}$. Then we have

$$
f \phi\left(\bar{g}_{i}\right)=\phi\left(f \bar{g}_{i}\right)=\phi\left(\bar{g}_{i} \tau_{g_{i}}^{-1}(f)\right)=\phi\left(\bar{g}_{i}\right) \tau_{g_{i}}^{-1}(f)
$$

for all $f \in S_{1}$. If $\phi\left(\bar{g}_{i}\right)=t \bar{g}_{j}$, it follows that $f t=t \tau_{g_{i}}\left(\tau_{g_{i}}^{-1}(f)\right)$, that is, $g_{j} \approx g_{i}$. Also it can be easily checked that if $g_{j} \approx g_{i}$ then $S_{1} \bar{g}_{i} \cong S_{1} \bar{g}_{j}$.

Consequently, by changing the numbering in $\left\{\bar{g}_{i}\right\}$ we can write

$$
T_{v}=\bigoplus_{i=1}^{k} T_{i}, \quad \text { where } T_{i}=\bigoplus_{g_{i, j} \approx g_{i, 1}} S_{1} \bar{g}_{i, j}
$$

Thus

$$
\operatorname{End}_{S_{1} \otimes_{K} S_{1}^{\circ}} T_{v}=\bigoplus_{i=1}^{k} \operatorname{End}_{S_{1} \otimes_{K} S_{1}^{\circ}} T_{i} .
$$

Set $H=\operatorname{Fix}\left(S_{1}\right)$. Since $g_{i, j} g_{i, 1}^{-1} \in H$, we can write v in the form $v=$ $\sum_{i=1}^{k} v_{i} \bar{g}_{i, 1}$, where $v_{i} \bar{g}_{i, 1} \in T_{i}$ and $v_{i} \in S_{1} * H$. According to Proposition 1.3, for any i there exists $p_{i} \in S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$ such that $p_{i} v=v_{i} \bar{g}_{i, 1}$ and consequently $v_{i} \bar{g}_{i, 1} \in V_{v}$.

We can represent each v_{i} in the form $\sum_{j=1}^{k_{i}} s_{i, j} l_{i, j}$, with $l_{i, j} \in K * H$ and $\left\{s_{i, j} \in S_{1} \mid j=1, \ldots, k_{i}\right\}$ an independent set over K. We now apply the density theorem to $S_{1} \bar{g}_{i, 1}$, which is a simple $S_{1} \otimes_{K^{\prime}} S_{1}^{o}$-module, to assure the existence of elements $q_{i, j} \in S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$ such that

$$
q_{i, j}\left(s_{i, k} \bar{g}_{i, 1}\right)= \begin{cases}\bar{g}_{i, 1}, & \text { if } k=j ; \\ 0, & \text { if } k \neq j\end{cases}
$$

It then follows that

$$
q_{i, j}\left(v_{i} \bar{g}_{i, 1}\right)=q_{i, j}\left(\sum_{k} s_{i, k} l_{i, k} \bar{g}_{i, 1}\right)=\sum_{k} l_{i, k}\left(q_{i, j}\left(s_{i, k} \bar{g}_{i, 1}\right)\right)=l_{i, j} \bar{g}_{i, 1},
$$

since $l_{i, j} \in C_{C}\left(S_{1}\right)$. Hence N_{v} contains the elements $l_{i, j} \bar{g}_{i, 1}$ and is generated by them as an $S_{1} \otimes_{K^{\prime}} S_{1}^{\circ}$-module. Thus

$$
N_{v}=\sum_{i, j} S_{1} l_{i, j} \bar{g}_{i, 1} S_{1}=\sum_{i, j} S_{1} l_{i, j} \bar{g}_{i, 1} .
$$

From this we can deduce the lemma. First, $N_{s v}=N_{v}$ for any $0 \neq s \in S_{1}$. This follows from the equalities $s v=\sum_{i=1}^{k} s v_{i} \bar{g}_{i, 1}$ and $s v_{i}=\sum_{j=1}^{k_{i}} s s_{i, j} l_{i, j}$, where $\left\{s s_{i, j} \mid j=1, \ldots, k_{i}\right\}$ is also an independent set over K because S_{1} has no zero-divisors. Hence arguing as before we obtain

$$
N_{s v}=\sum_{i, j} S_{1} l_{i, j} \bar{g}_{i, 1}=N_{v} .
$$

Second, $v t \in S N_{v}$ for any $t \in S$, since

$$
N_{v} t=\sum_{i, j} S_{1} l_{i, j} \bar{g}_{i, 1} t=\sum_{i, j} S_{1} \tau_{g_{i, 1}}(t) l_{i, j} \bar{g}_{i, 1} \subseteq S N_{v} .
$$

Note that in the proof of the last lemma we have shown that (CvC) \cap $(K * H) \neq\{0\}$, because $l_{i, j} \in(C v C) \cap(K * H)$. Using this fact we can prove

Lemma 2.11. Let S_{1} be a simple ring, G a finite group, and $C=S_{1} * G$ a crossed product of S_{1} and G. We suppose that C has no zero-divisors. Then C is simple.

Proof. Let I be a non-zero ideal of C. Let $K=Z\left(S_{1}\right)$ and $H=$ Fix $\left(S_{1}\right)$. As H is finite and C has no zero-divisors, $K * H$ is a division ring. Then $I=K$.

Suppose now in addition that $\mathscr{K}_{l}(S)>0$.
Lemma 2.12. Let M be a submodule of the S-module $S T_{v}$ such that $S T_{v} / M$ has finite length. Then there exists $f \in S_{1}$ such that $M+S N_{v}=M+$ Suf.

Proof. We argue by induction on the length of the S-module ($M+$ $\left.S N_{v}\right) / M$. If it is not zero, then there exists $f_{1} \in S_{1}$ such that $S u f_{1} \nsubseteq M$. Choose M^{\prime} such that $M \subset M^{\prime} \subseteq M+S v f_{1}$ and M^{\prime} / M is a simple S-module. A s $\mathscr{K}_{1}(S)>0$ we can find $0 \neq t \in S_{1}$ with $t v f_{1} \in M$. Since $N_{v}=N_{t v}$, from the inductive hypothesis there exists $f_{2} \in S_{1}$ such that

$$
M+S N_{v}=M^{\prime}+S N_{v}=M^{\prime}+S N_{t v}=M^{\prime}+S t u f_{2}
$$

If $M+S v f_{2}=M+S N$, we are done. Otherwise, we have

$$
M+S t v f_{2} \subseteq M+S v f_{2} \subset M^{\prime}+S t v f_{2}
$$

and

$$
\left(M^{\prime}+\operatorname{Stvf}_{2}\right) /\left(M+\operatorname{Stvf}_{2}\right) \cong M^{\prime} /\left(\left(M+\operatorname{Stv}_{2}\right) \cap M^{\prime}\right)
$$

is simple. Consequently $M+\operatorname{Stuf}_{2}=M+\operatorname{Svf} f_{2}$. Set $N=M+\operatorname{Sv}\left(f_{1}+f_{2}\right)$ $\subseteq M+S N_{v}$. From tuf $\in M$ it follows that $t v f_{2} \in N$. We then have the following chain of implications:

$$
S t v f_{2} \subseteq N \Rightarrow M+S t v f_{2} \subseteq N \Rightarrow S v f_{2} \subseteq N \Rightarrow S v f_{1} \subseteq N \Rightarrow M^{\prime} \subseteq N .
$$

Then $M+S N_{v}=M^{\prime}+S t v f_{2} \subseteq N$.
Proof of Step 2. As in Lemma 2.9, we can suppose $u=0$ and $v \in C$. From Proposition 2.3 we derive the existence of $f=f_{1} u^{-1} \in A$ with $f_{1} \in C$ and $u \in U$ such that $A I+A v f_{1} u^{-1}=A$. We can use the previous lemma with $v f_{1} \in C$ in place of v and $M=A I \cap S T_{v f_{1}}$. Note that since $\mathscr{K}_{l}(S)=1$ and S has no zero-divisors, $S T_{v f_{1}} / M$ has finite length. Then there exists $f_{2} \in S_{1}$ such that $S N_{v f_{1}} \subseteq A I+A v f_{1} f_{2}$. But we know, by Lemma 2.10, that $v f_{1} u^{-1} \in S N_{v f_{1}}$. Then $A I+A v f_{1} f_{2}=A$.

2.3. Step 3

Proof of Proposition 2.2. We can suppose $u=0$ and $v \in C$.
We first consider the case when I is a maximal left ideal of S. Set $K=Z\left(S_{1}\right)$. If $I \cap K$ contains an element $q \neq 0$, then Proposition 2.3 gives $f=f_{1} s^{-1} \in A$ with $f_{1} \in C, s \in U$ such that $A q+A v f=A$. Since q and s commute, we have $A q+A v f_{1}=A$.

So we can suppose $I \cap K=\{0\}$. Denote $\bar{S}_{1}=\left(K^{*}\right)^{-1} S_{1}, \bar{C}=\bar{S}_{1} * G$, $\bar{S}=U^{-1} \bar{S}_{1}$, and $\bar{A}=\bar{S} * G . \bar{S}_{1}$ is a simple ring and, according to Step 2, there exists $f=f_{1} m^{-1} \in \bar{C}$ with $f_{1} \in C, m \in K^{*}$ such that $\bar{A}=\overline{A I}+\bar{A} v f$. Since I commutes with m we have $\bar{A}=\bar{A} I+\bar{A} v f_{1}$ and $\left(A I+A v f_{1}\right) \cap$ $K \neq\{0\}$. As I is a maximal left ideal of S and $I \cap K=\{0\}$, then $A I+$ $A v f_{1}=A$.

If I is an arbitrary left ideal of S, we argue by induction on the length of the module S / I, as in Proposition 2.3.

2.4. Almost Simple Rings

In this section we give some examples of almost simple rings. In particular, the example of Proposition 2.17, part (iii), will be needed in the proof of Theorem 2.1.

Lemma 2.13. Let G be a finite group, S a ring without zero-divisors, and $A=S * G$. Set $K=Z(S)$ and suppose $\mathrm{Fix}(K)=\{e\}$. Let I be an ideal of A such that $I \cap K \neq\{0\}$. If $\left\{h_{i} \in G\right\}_{i=1}^{n}$ is a family of distinct elements, $\left\{c_{i} \in S\right\}_{i=1}^{n}$ and $\sum_{i} c_{i} \tau_{h_{i}}(a)=0$ for all $a \in I \cap K$, then $c_{i}=0$ for all i.

Proof. We argue by way of contradiction. From all possible families $\left\{h_{i}\right\}$ giving a counterexample, we choose one with minimum cardinality. We can suppose $h_{1}=e$. Then $c_{1} a+\cdots+c_{n} \tau_{h_{n}}(a)=0$ for all $a \in I \cap K$ and consequently,

$$
c_{1} a b+\cdots+c_{n} \tau_{h_{n}}(a b)=b c_{1} a+\cdots+\tau_{h_{n}}(b) c_{n} \tau_{h_{n}}(a)=0
$$

for any $a \in I \cap K$ and for any $b \in K$. From the minimality of the family $\left\{h_{i}\right\}$ it follows that $\tau_{h_{n}}(b) c_{n}=b c_{n}$ for any $b \in K$. Since S has no zerodivisors and $\operatorname{Fix}(K)=\{e\}$, we must have $h_{n}=e$, a contradiction.

If $A=S * G$ is a crossed product, for any $g \in G$ we have defined the automorphism τ_{g} of S by means of $\tau_{g}(s)=\bar{g} s \bar{g}^{-1}$. Clearly this definition can be extended to the whole of A and we can then consider τ_{g} as an inner automorphism of A.

Lemma 2.14. Let S be a simple ring, G a supersolvable group, and suppose that $A=S * G$ has no zero-divisors. Set $K=Z(S), G_{0}=\left\langle g^{2}\right\rangle$ $g \in G\rangle$ and $H \subseteq \operatorname{Fix}(S)$ a normal subgroup of G. Then for any two-sided ideal $I \neq\{0\}$ of the ring $K * H$ such that $\tau_{g}(I)=I$ for all $g \in G_{0}$, there exists $0 \neq a \in I$ such that $\tau_{g}(a)=a$ for any $g \in G_{0}$.

Proof. Since H is a normal subgroup of G and G is a supersolvable group, there is a series $\{e\}=H_{0} \subset \cdots \subset H_{k}=H$ of normal subgroups of G such that H_{i} / H_{i-1} is cyclic for each i. We prove the lemma for $K * H_{m}$ by induction on m. Suppose it is true for $K * H_{i-1}$. Let $I \neq\{0\}$ be a two-sided ideal of the ring $K * H_{i}$ such that $\tau_{g}(I)=I$ for all $g \in G_{0}$. Suppose first that H_{i} / H_{i-1} is finite. Since $K * H_{i}=\left(K * H_{i-1}\right) *$ (H_{i} / H_{i-1}), it follows that

$$
\left(\left(K * H_{i-1}\right)^{*}\right)^{-1}\left(K * H_{i}\right)
$$

is a division ring and consequently $K * H_{i-1} \cap I \neq\{0\}$. Then it suffices to apply the inductive hypothesis. If $H_{i} / H_{i-1}=\left\langle h H_{i-1}\right\rangle$ is infinite then $K * H_{i}=K * H_{i-1}\left[z, z^{-1}, \alpha\right]$, where $z=\bar{h}$. Consider the set of elements $c=c_{0}+\cdots+c_{n} z^{n}$ of I, with $c_{j} \in K * H_{i-1}$, for which n is minimal. The coefficients of degree 0 in z of these elements form a non-zero ideal $J=\left\{c_{0} \mid c=c_{0}+\cdots+c_{n} z^{n} \in I\right\}$ of $K * H_{i-1}$. Since H_{i-1} and H_{i} are normal subgroups of $G, \tau_{g}(z)=p_{g} z^{ \pm 1}$, where $p_{g} \in K * H_{i-1}$ for any $g \in G$ and then $\tau_{g}(z)=p_{g} z$ for any $g \in G_{0}$. We deduce that $\tau_{g}(J)=J$ for any $g \in G_{0}$. By the inductive hypothesis, there is c_{0} with $c=c_{0}+\cdots+$ $c_{n} z^{n} \in I$ such that $\tau_{g}\left(c_{0}\right)=c_{0}$ for all $g \in G_{0}$. Now, the minimality of n yields $\tau_{g}(c)-c=0$ for all $g \in G_{0}$.

Lemma 2.15. Let $A_{i}(1 \leq i \leq n)$ be simple rings and K a ring which can be embedded in every $Z\left(A_{i}\right)$. Then the tensor product $A=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ is almost simple.

Proof. We will prove this lemma in the case $n=2$. The proof of the general case is similar. Let v be a non-zero element of $A_{1} \otimes_{K} A_{2}$. We can write v in the form

$$
v=\sum_{i}\left(c_{i} \otimes 1\right) d_{i},
$$

where $\left\{c_{i} \in A_{1}\right\}$ is an independent set over $Z\left(A_{1}\right)$ and $d_{i} \in Z\left(A_{1}\right) \otimes_{K} A_{2}$. If we consider A_{1} as an $A_{1} \otimes_{Z\left(A_{1}\right)} A_{1}^{\circ}$-module, then by the density theorem, we can find $t=\sum_{j} e_{j} \otimes f_{j} \in A_{1} \otimes_{Z\left(A_{1}\right)} A_{1}^{\circ}$ such that $t c_{1}=1$ and $t c_{i}=0$ for $i \neq 1$. Therefore

$$
d_{1}=\sum_{j} e_{j} v f_{j} \in A_{1} v A_{1} .
$$

(Here we identify A_{1} with $A_{1} \otimes_{K}$ 1.)
In the same way we can prove that

$$
\left(Z\left(A_{1}\right) \otimes_{K} Z\left(A_{2}\right)\right) \cap A_{2} d_{1} A_{2} \neq\{0\} .
$$

Since $Z\left(A_{1}\right) \otimes_{K} Z\left(A_{2}\right) \subseteq Z\left(A_{1} \otimes_{K} A_{2}\right)$, then

$$
\left(A_{1} \otimes_{K} A_{2}\right) v\left(A_{1} \otimes_{K} A_{2}\right) \cap Z\left(A_{1} \otimes_{K} A_{2}\right) \neq\{0\} .
$$

Then $\left(A_{1} \otimes_{K} A_{2}\right)$ is almost simple.
Lemma 2.16. Let R be a ring and let $U \subseteq Z(R)^{*}$ be a multiplicative subset of regular elements. Suppose that $U^{-1} R$ is almost simple. Then R is almost simple.

Proof. Let I be a non-zero ideal of R. Then we have

$$
\{0\} \neq U^{-1} I \cap Z\left(U^{-1} R\right)=U^{-1} I \cap U^{-1} Z(R) .
$$

Hence $I \cap Z(R) \neq\{0\}$.
Proposition 2.17. The following rings are almost simple:
(i) Any commutative ring.
(ii) The ring $A=S * G$, where S is an almost simple ring, G is a finite group, and A has no zero-divisors.
(iii) The ring $A=S * G$, where S is simple, G is a supersolvable group, and A has no zero-divisors.
(iv) The ring $A=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$, where A_{i} is an almost simple ring without zero-divisors and $K \subseteq Z\left(A_{i}\right)$.

Proof. (i) It is immediate.

(ii) Let $I \neq\{0\}$ be a two-sided ideal of A. Set $K=Z(S), F=\left(K^{*}\right)^{-1} S$, and $T=\left(K^{*}\right)^{-1} A$, which is a crossed product of F and G. Since F is simple, then from Lemma 2.11 we obtain that $T I=T$, and so $K \cap I \neq\{0\}$.
We proceed now by induction on the order of G. Set $H=\mathrm{Fix}(K)$. We first see that $S * H$ is almost simple. Since $K \subseteq Z(S * H)$, we have $Z(S * H) \cap I \neq\{0\}$ for any two-sided ideal I of $S * H$.

Since H is a normal subgroup of G then $A=S * G \cong(S * H) *(G / H)$. If $H \neq\{e\}$ we can apply the inductive hypothesis. Thus we can suppose Fix $(K)=\{e\}$. From Lemma 2.13 we deduce that there is $a \in I \cap K$ such that $c=\sum_{g \in G} \tau_{g}(a) \neq 0$. It is clear that $c \in I \cap Z(A)$.
(iii) Set $K=Z(S), G_{0}=\left\langle g^{2} \mid g \in G\right\rangle$, and $H=\mathrm{Fix}(S) \cap G_{0}$. Let I $\neq\{0\}$ be any two-sided ideal of $S * G_{0}$. Since S is simple, we have $K * H \cap I \neq\{0\}$. A ccording to Lemma 2.14 there is $0 \neq a \in Z\left(S * G_{0}\right) \cap I$. Hence $S * G_{0}$ is almost simple. Since G_{0} is a normal subgroup of G of finite index, it follows from part (ii) of this proposition that $A=S * G$ is almost simple.
(iv) Set $\overline{A_{i}}=\left(Z\left(A_{i}\right)^{*}\right)^{-1} A_{i}, Q=\left(K^{*}\right)^{-1} K$ and

$$
\bar{A}=\left(\left(Z\left(A_{1}\right)^{*}\right)^{-1} \cdots\left(Z\left(A_{n}\right)^{*}\right)^{-1}\right) A \cong\left(\otimes_{Q}\right)_{i=1}^{n} \overline{A_{i}} .
$$

Since \bar{A}_{i} is simple then by Lemma 2.15, \bar{A} is almost simple. As $Z\left(A_{i}\right) \subseteq$ $Z(A)$, by Lemma 2.15, \bar{A} is almost simple. A s $Z\left(A_{i}\right) \subseteq Z(A)$, by Lemma 2.16, A is also almost simple.

Corollary 2.18. Let $A=S * G$ be a crossed product without zero-divisors, where S is a simple ring and G is a supersolvable group. Then A is simple if and only if $Z(A)$ is a field.

Proof. We prove sufficiency. A ccording to Proposition 2.17, A is almost simple. So if $Z(A)$ is a field, A is simple.

2.5. Main Theorem

We can now proceed to prove our main result, Theorem 2.1, following the lines of the proof of Stafford for the analogous result in the case of W eyl algebras [9, Theorem 3.1].

Proof of Theorem 2.1. The case $c=0$ is immediate, so we suppose $c \neq 0$. We can also assume that $a, b \neq 0$ after replacing if necessary a by $a+s_{1} c$ and b by $b+s_{2} c$.

Since G is a supersolvable group, there is a series of normal subgroups of $G,\{e\}=G_{0} \subset \cdots \subset G_{n}=G$ such that G_{k+1} / G_{k} is cyclic. Define $T_{i}=T * G_{i}$, so that $T_{0}=T$ and $T_{n}=C$, and set $T_{-1}=\{1\}$. We prove by induction on k the existence of elements $d_{k}, e_{k} \in C$ and non-zero $q \in T_{k}$ such that $q c \in C\left(a+s_{1} d_{k} c\right)+C\left(b+s_{2} e_{k} c\right)$ for $k=n, \ldots,-1$. Observe that this result for $k=-1$ proves the theorem.

If $k=n, d_{n}, e_{n}$ and q exist because C has the left Ore condition (for example, $C a \cap C c \neq\{0\}$). Suppose now they exist for some $k \geq 0$. We simplify the notation by writing a and b instead of $a+s_{1} d_{k} c$ and $b+s_{2} e_{k} c$.
Then $q c \in C a+C b$ and $q \in T_{k}$. First suppose that $k>0$. As G_{k-1} is normal in G, we can consider the ring $A=\left(T_{k-1}^{*}\right)^{-1} C$. Set $S=$ $\left(T_{k-1}^{*}\right)^{-1} T_{k}$. We have that $S=F_{k-1} *\left(G_{k} / G_{k-1}\right)$, where $F_{k-1}=$ $\left(T_{k-1}^{*}\right)^{-1} T_{k-1}$ is the division ring of quotients of T_{k-1}. Since $C \cong$ $T_{k} *\left(G / G_{k}\right)$, we have $A \cong S *\left(G / G_{k}\right)$.
If G_{k} / G_{k-1} is finite, then S is a division ring. Hence there exists $q^{\prime} \in T_{k}$ such that $q^{\prime} q \in T_{k-1}$ and $\left(q^{\prime} q\right) c \in C a+C b$, as desired.

So we can suppose that G_{k} / G_{k-1} is infinite cyclic, so that $\mathscr{K}_{l}(S)=1$. Write $q c=h_{1} a+h_{2} b$, where we can suppose $h_{1}, h_{2} \neq 0$ because $C a \cap$ $C b \neq\{0\}$. Since T satisfies the right Ore condition, then C satisfies the right Ore condition [7, Lemma 9.3.8] and there are $g_{1} \in C$ and $g_{2} \in C$, different from zero, such that $h_{1} s_{1} g_{1}+h_{2} s_{2} g_{2}=0$. Also, we can find non-zero elements $s \in C$ and $t \in C$ such that $s q c=t b$. Note that, by Proposition 2.17, T_{k} is almost simple and therefore we can apply Proposi-
tion 2.2. So there is $f \in C$ such that $A q+A\left(s q+t s_{2} g_{2} f\right)=A$. Set $L=$ $A\left(a+s_{1} g_{1} f c\right)+A\left(b+s_{2} g_{2} f c\right)$. Then

$$
\begin{aligned}
q c & =h_{1} a+h_{2} b=h_{1} a+h_{2} b+\left(h_{1} s_{1} g_{1}+h_{2} s_{2} g_{2}\right) f c \\
& =h_{1}\left(a+s_{1} g_{1} f c\right)+h_{2}\left(b+s_{2} g_{2} f c\right) \in L,
\end{aligned}
$$

and

$$
s q c+t s_{2} g_{2} f c=t\left(b+s_{2} g_{2} f c\right) \in L
$$

Hence $c \in L$ and there are $q^{\prime} \in T_{k-1}$ and $e_{k-1}, d_{k-1} \in C$ such that

$$
q^{\prime} c \in C\left(a+s_{1} d_{k-1} c\right)+C\left(b+s_{2} e_{k-1} c\right)
$$

If $k=0$ we can put $A=C, S=T$, and use the same arguments.
Let R be a left Noetherian ring without zero-divisors and Q its left quotient ring. Let M be a finitely generated left R-module. Then we define rank M as the integer k such that $Q \otimes_{R} M \cong Q^{k}$.
Definition. Define a left R-module M over a ring R to be stably m-generated if for any $r \geq m$ and $a_{1}, \ldots, a_{r+1} \in M$ such that $M=\sum_{i=1}^{r+1} R a_{i}$ there exist $f_{i} \in R$ such that $M=\sum_{i=1}^{r} R\left(a_{i}+f_{i} a_{r+1}\right)$.
The results of the following corollary can be proved as in [9] by using Theorem 2.1.

Corollary 2.19. Let T be either a division ring or a left Noetherian simple ring with the right Ore condition and $\mathscr{K}_{l}(T)=1, G$ a supersolvable group, and $C=T * G$ a crossed product of T and G. We suppose that C is simple and has no zero-divisors. Then the next propositions hold.
(i) Any left ideal of C is stably two-generated.
(ii) Any left stably free module P with rank $P \geq 2$ is free.
(iii) Let M be a finitely generated left C-module. Then $M \cong N \oplus C^{k}$, where N is a module with rank $N \leq 1$. If N is torsion-free, then N is isomorphic to a left ideal of C.
(iv) Let M be a finitely generated torsion left C-module. Then $M \cong I / J$, where I is a projective left ideal of A. In particular, M is stably two-generated.

Remark 2.20. All proofs remain true if we suppose that G has a series $\{e\}=G_{0} \subset G_{1} \subset \cdots \subset G_{n}=G$ of normal subgroups of G such that G_{k} / G_{k-1} is infinite cyclic or finite. Note that a policyclic-by-finite group does not necessarily have a series like this. Most of the propositions remain true if we suppose that G is a policyclic-by-finite group. Nevertheless, for example, in Proposition 2.17 (iii) and Theorem 2.1 we cannot do this substitution.

3. GENERALIZED WEYL ALGEBRAS

In this section we obtain the same results as in the preceding one, for tensor products of generalized W eyl algebras of degree 1.

Definition 2. A generalized Weyl algebra of degree 1 is a ring $A=$ $D(\alpha, a)=D[x, y, \alpha, a]$ generated by a commutative Noetherian ring D without zero-divisors with K rull dimension 1, and elements x, y such that

$$
y x=a \in D, \quad x y=\alpha(a), \quad x d=\alpha(d) x, \quad \text { and } \quad y d=\alpha^{-1}(d) y
$$

for all $d \in D$, where α is a ring automorphism of D.
M any examples of generalized W eyl algebras can be found in [3].
Note that A is a \mathbb{Z}-graded ring, where the k-component of A is

$$
(A)_{k}= \begin{cases}D x^{k} & \text { for } k>0 \\ D & \text { for } k=0 \\ D y^{-k} & \text { for } k<0\end{cases}
$$

We shall use the following two propositions, whose proofs can be found in [2].

Proposition 3.1 [2, Theorem 3]. Let $A=D(\alpha, a)$ be a generalized Weyl algebra of degree 1 . Then A is simple if and only if for any maximal ideal P of D and any $0 \neq n \in \mathbb{Z}$ the following conditions hold:
(i) $\alpha^{n}(P) \neq P$,
(ii) $\quad a \notin \alpha^{n}(P) \cap P$.

Proposition 3.2 [2, Theorem 2]. Let $A=D(\alpha, a)$ be a generalized Weyl algebra of degree 1. Suppose that $\alpha^{n}(P) \neq P$ for all $0 \neq n \in \mathbb{Z}$ and any maximal ideal P of D. Then $\mathscr{K}_{l}(A)=1$.

If $A=D(\alpha, a)=D[x, y, \alpha, a]$ is a generalized Weyl algebra of degree 1 , we set $a_{k}=y^{k} x^{k}$ and $A^{(k)}=D\left(\alpha^{k}, a_{k}\right)=D\left[x^{k}, y^{k}, \alpha^{k}, a_{k}\right]$, which is the algebra generated by D and the elements x^{k} and y^{k}.
Lemma 3.3. Let $A=D(\alpha, a)=D[x, y, \alpha, a]$ be a simple generalized Weyl algebra of degree 1. Then $A^{(k)}$ is simple for any $k>0$.
Proof. We have to verify the hypotheses of Proposition 3.1. The first condition is obvious. Suppose that $a_{k} \in \alpha^{n k}(P) \cap P$ for some maximal ideal P of D and some $n \neq 0$. Then a_{k} and $\alpha^{-n k}\left(a_{k}\right)$ belong to P. Since

$$
\begin{gathered}
a_{k}=\alpha^{-k+1}(a) \cdots \alpha^{-1}(a) a \in P \\
\alpha^{-n k}\left(a_{k}\right)=\alpha^{-(n+1) k+1}(a) \cdots \alpha^{-n k}(a) \in P
\end{gathered}
$$

and the sets $\{-k+1, \ldots,-1,0\}$ and $\{-(n+1) k+1, \ldots,-n k\}$ are disjoint, there exist $m_{1} \neq m_{2}$ such that $\alpha^{m_{1}}(a), \alpha^{m_{2}}(a) \in P$. This is a contradiction because A is simple.

Let $A=D(\alpha, a)=D[x, y, \alpha, a]$ be a simple generalized W eyl algebra of degree 1 , where D is finitely generated over a field $K \subseteq Z(A)$. Let $z \in Z(A)^{*}$. N ote that z is invertible. Since D has no zero-divisors and A is \mathbb{Z}-graded, then $z \in D$. As D is finitely generated over K, we have that z is an algebraic element over K. Then $Z(A)$ is a subset of algebraic elements of D. We will apply several times this fact, sometimes without further mention.

Lemma 3.4. Let $A=D(\alpha, a)$ be a simple generalized Weyl algebra of degree 1 and suppose D is finitely generated over $K=Z(A)$ and $U(D)=K$. Then, for any field extension Q of K the tensor product $Q \otimes_{K} D$ has no zero-divisors and its Krull dimension is 1.

Proof. Since $D \cong K\left[x_{1}, \ldots, x_{p}\right] / J$, then $Q \otimes_{K} D \cong Q\left[x_{1}, \ldots, x_{p}\right] / Q J$. The Krull dimension of D is 1 , so there exists $z \in D$ such that D is finitely generated as a $K[z]$-module. Hence $Q \otimes_{K} D$ is finitely generated as a $Q[z]$-module and therefore $\mathscr{K}_{l}\left(Q \otimes_{K} D\right)=1$.

Let Q_{1} be a maximal subfield of Q such that $Q_{1} \otimes_{K} D$ has no zero-divisors and take an element $t \in Q \backslash Q_{1}$. If t is not an algebraic element over Q_{1}, then $D \otimes_{K} Q_{1}(t) \cong\left(D \otimes_{K} Q_{1}\right)[t]\left(Q_{1}[t]^{*}\right)^{-1}$ has no zero-divisors.

We suppose now that t is an algebraic element over Q_{1}. Let h be an irreducible polynomial over Q_{1} such that t is root of h. Set $D_{1}=Q_{1} \otimes_{K} D$ and $D_{2}=Q_{1}[t] \otimes_{K} D \cong Q_{1}[t] \otimes_{Q_{1}} D_{1}$. We want to prove that D_{2} has no zero-divisors. Let P be the field of quotients of the ring D_{1} and $T=$ $D_{2}\left(D_{1}^{*}\right)^{-1}$. It is clear that $T \cong P[z] / P[z] h$. The automorphism α can be extended to an automorphism of the ring T. Let $h=h_{1} \cdots h_{s}$ be the decomposition of the polynomial h, where the factors h_{i} are irreducible polynomials over P. Since $D_{2}[x, y, \alpha, a]=Q_{1}[t] \otimes_{K} A$ is a simple ring, then $T\left[x, x^{-1}, \alpha\right]$ is also a simple ring and hence, the J acobson radical of T is zero. So, all the polynomials h_{i} are different. Then $T \cong \oplus_{i=1}^{s} T_{i}$, where $T_{i} \cong P[z] / P[z] h_{i}$ is a field. Let p be the identity element of T_{1}. The number of idempotent elements of T is finite. Then there exists k such that $\alpha^{k}(p)=p$. By Lemma 3.3, $D\left(\alpha^{k}, y^{k} x^{k}\right)$ is simple. Since $U(D)=$ K, then $Z\left(D\left(\alpha^{k}, y^{k} x^{k}\right)\right)=K$. Hence $Q_{1}[t] \otimes_{K} D\left(\alpha^{k}, y^{k} x^{k}\right)$ is simple and we deduce that $T\left[x, x^{-1}, \alpha^{k}\right]$ is also simple. Then $T_{1}=T$, and this means that D_{2} does not contain any zero-divisors.

Now we can prove a criterion for $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ to be a simple ring without zero-divisors.

Proposition 3.5. For each $1 \leq i \leq n$, let $A_{i}=D_{i}\left(\alpha_{i}, a_{i}\right)=$ $D_{i}\left[x_{i}, y_{i}, \alpha_{i}, a_{i}\right]$ be a simple generalized Weyl algebra of degree 1 , where D_{i} is a finitely generated ring over a field $K \subseteq Z\left(A_{i}\right)$. Then the following conditions are equivalent:
(i) $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ has no zero-divisors.
(ii) $D=\left(\otimes_{K}\right)_{i=1}^{n} D_{i}$ has no zero-divisors.
(iii) $U=\left(\otimes_{K}\right)_{i=1}^{n} U_{i}$ has no zero-divisors, where U_{i} is the set of algebraic elements of D_{i} over K.
Also, if any of these conditions holds, then C is simple.
Proof. The implications $(\mathrm{i}) \Rightarrow$ (ii) \Rightarrow (iii) are obvious.
Let us prove (ii) \Rightarrow (i). Each A_{i} is a \mathbb{Z}-graded ring. Then C is a \mathbb{Z}^{n}-graded ring with

$$
C_{\left(k_{1}, \ldots, k_{n}\right)}=\left(A_{1}\right)_{k_{1}} \otimes_{K} \cdots \otimes_{K}\left(A_{n}\right)_{k_{n}} .
$$

Let $k=\left(k_{1}, \ldots, k_{n}\right)$ and $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$. We will write $k<m$ if there is an integer $l \in[1, n]$ such that $k_{i}=m_{i}$ for $i=1, \ldots, l-1$ and $k_{l}<m_{l}$. Suppose that $k_{1}, k_{2}, k_{3}, k_{4} \in \mathbb{Z}^{n}$ and $k_{1} \leq k_{2}, k_{3}<k_{4}$. Then it is clear that $k_{1}+k_{3}<k_{2}+k_{4}$.

Let $a, b \in C$. We can write a and b according to the graduation of C,

$$
a=a_{k}+\sum_{i<k} a_{i}, \quad b=b_{m}+\sum_{i<m} b_{i},
$$

where $a_{i}, b_{i} \in C_{i}$ and $a_{k} \neq 0, b_{m} \neq 0$. Then

$$
a b=a_{k} b_{m}+\sum_{i<k+m} c_{i}, \quad \text { for some } c_{i} \in C_{1} .
$$

If $a b=0$ then $a_{k} b_{m}=0$, which is impossible, because $D=\left(\otimes_{K}\right)_{i=1}^{n} D_{i}$ has no zero-divisors. Then (ii) \Rightarrow (i).

Now we prove the implication (iii) \Rightarrow (ii). First note that $U_{i}=U\left(D_{i}\right)$, because D_{i} is finitely generated over K. Set

$$
M_{i}=\left(\left(\otimes_{K}\right)_{j=1}^{i} D_{j}\right) \otimes_{K}\left(\left(\otimes_{K}\right)_{j=i+1}^{n} U_{j}\right) .
$$

A rguing by induction on i we prove that M_{i} has no zero-divisors. Suppose that M_{i-1} has no zero-divisors. Since D_{i} is finitely generated over K then there exists m such that $\alpha_{i}^{m}(u)=u$ for any $u \in U_{i}$. Hence $Z\left(A_{i}^{(m)}\right)=$ $U_{i}=U\left(D_{i}\right)$ and $A_{i}^{(m)}$ satisfies the conditions of Lemma 3.4. Therefore $M_{i} \cong D_{i} \otimes_{U_{i}} M_{i-1}$ has no zero-divisors.

Now suppose that one of the conditions (i), (ii), or (iii) holds. Since D_{i} is finitely generated over K, by the remark before Lemma 3.4 we have $Z\left(A_{i}\right) \subseteq U_{i}$. Hence $Z(C)=\left(\otimes_{K}\right)_{i=1}^{n} Z\left(A_{i}\right)$ is a field. By Proposition 2.17, C is almost simple and consequently it is also simple.

Proposition 3.6. Let $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ be a ring without zero-divisors, where $A_{i}=D_{i}\left(\alpha_{i}, a_{i}\right)=D_{i}\left[x_{i}, y_{i}, \alpha_{i}, a_{i}\right]$ is a simple generalized Weyl algebra of degree 1 and D_{i} is finitely generated over a field $K \subseteq Z\left(A_{i}\right)$. Set $T_{m}=$ $\left(\left(\otimes_{K}\right)_{i=1}^{m} A_{i}\right) \otimes_{K}\left(\left(\otimes_{K}\right)_{i=m+1}^{n} D_{i}\right)$ for $0 \leq m<n, \quad S=T_{m+1}\left(T_{m}^{*}\right)^{-1}$, and $A=C\left(T_{m}^{*}\right)^{-1}$. Then for any left ideal $I \neq\{0\}$ of S and elements $u \in A$, $0 \neq v \in A$, there exists an element $f \in C$ such that $A I+A(u+v f)=A$.

Proof. We can suppose that $u=0$. It is clear that $A \cong S * \mathbb{Z}^{n-m-1}$. Set

$$
\bar{C}=C\left(\left(\left(\otimes_{K}\right)_{i=m+2}^{n} D_{i}\right)^{*}\right)^{-1}
$$

Then $\bar{C} \cong S_{1} * \mathbb{Z}^{n-m-1}$, where $S_{1}=T_{m+1}\left(\left(\left(\otimes_{K}\right)_{i=m+2}^{n} D_{i}\right)^{*}\right)^{-1}$. By Proposition 2.17, T_{m+1} is almost simple, and so S_{1} is almost simple. Then by Proposition 2.2, there exists $f \in \bar{C}$ such that $A I+A v f=A$, where $f=$ $c d^{-1}, c \in C$ and $d \in\left(\otimes_{K}\right)_{i=m+2}^{n} D_{i}$. As d commutes with S_{1} then $A I+$ $A v c=A$.

Proposition 3.7. Let $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ be a ring without zero-divisors, where $A_{i}=D_{i}\left(\alpha_{i}, a_{i}\right)=D_{i}\left[x_{i}, y_{i}, \alpha_{i}, a_{i}\right]$ is a simple generalized Weyl algebra of degree 1 and D_{i} is finitely generated over a field $K \subseteq Z\left(A_{i}\right)$. Set $U_{m}=$ $\left(\otimes_{K}\right)_{i=1}^{m} D_{i}$ with $1 \leq m<n, Q=U_{m}\left(U_{m}^{*}\right)^{-1}, S=Q \otimes_{K} A_{m+1}, D=Q \otimes_{K}$ D_{m+1}, and $A=C\left(U_{m}^{*}\right)^{-1}$. Then for any left ideal I of S such that $D \cap I \neq\{0\}$ and for any elements $u \in A, 0 \neq v \in A$ there exists an element $f \in C$ such that $A I+A(u+v f)=A$.

Proof. First of all we prove that $\mathscr{K}_{l}(S)=1$. We have $Z(S)=Q \otimes_{K}$ $Z\left(A_{m+1}\right)$ and $Z\left(A_{m+1}\right)$ is finitely generated and algebraic over K. Hence $Z(S)$ is finitely generated and algebraic over Q and it must be a field, because it has no zero-divisors. Since S is almost simple, it follows that S is simple. On the other hand $D=Q \otimes_{K} D_{m+1}$ has Krull dimension 1 and consequently $S=D\left[x_{m+1}, y_{m+1}, 1 \otimes \alpha_{m+1}, 1 \otimes a_{m+1}\right]$ is a generalized W eyl algebra of degree 1 . We conclude now from Propositions 3.1 and 3.2 that $\mathscr{K}_{l}(S)=1$.

A gain we suppose that $u=0$ and I is a maximal left ideal of S. It is clear that $A \cong S * \mathbb{Z}^{m} \otimes_{K}\left(\left(\otimes_{K}\right)_{i=m+2}^{n} A_{i}\right)$. A s in Lemma 2.5 we have

$$
\operatorname{End}_{A}(A / A I) \cong(F * H) \otimes_{K}\left(\left(\otimes_{K}\right)_{i=m+2}^{n} A_{i}\right),
$$

where $F \cong \mathrm{End}_{S}(S / I)$ and $H \subseteq \mathbb{Z}^{m}$. Hence $\mathrm{End}_{A}(A / A I)$ is left and right N oetherian.

Reasoning as in the proofs of Lemma 2.9 and Proposition 2.3, it follows that for any left ideal $I \neq\{0\}$ of S we can find an element $f \in A$ such that $A I+A v f=A$.

Set $J=S \cdot(I \cap D)$. Then there exists $f \in A$ such that $A J+A v f=A$, where $f=c d^{-1}, c \in C, d \in U_{m}$. As d commutes with D then $A J+$ $A v c=A$ and so $A I+A v c=A$.

Note that the conclusion in the previous proposition is also true for $U_{0}=\{1\}$ if we define $S=A_{1}, D=D_{1}$, and $A=C$.

Theorem 3.8. Let $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ be such that C has no zero-divisors, where $A_{i}=D_{i}\left(\alpha_{i}, a_{i}\right)=D_{i}\left[x_{i}, y_{i}, \alpha_{i}, a_{i}\right]$ is a simple generalized Weyl algebra of degree 1 and D_{i} is a finitely generated ring over a field $K \subseteq Z\left(A_{i}\right)$. Then for any $a, b, c \in C$ and $s_{1}, s_{2} \in C^{*}$ there are $f_{1}, f_{2} \in C$ such that $a, b, c \in$ $C\left(a+s_{1} f_{1} c\right)+C\left(b+s_{2} f_{2} c\right)$.

Proof. The proof is as in Theorem 2.1, working with the series

$$
\{1\}=U_{0} \subseteq U_{1} \subseteq \cdots \subseteq U_{n-1} \subseteq T_{0} \subseteq T_{1} \subseteq \cdots \subseteq T_{n}=C
$$

and using both Propositions 3.6 and 3.7.
The next corollary can be proved in a similar way to Corollary 2.19.
Corollary 3.9. Let $C=\left(\otimes_{K}\right)_{i=1}^{n} A_{i}$ be such that C has no zero-divisors, where $A_{i}=D_{i}\left(\alpha_{i}, a_{i}\right)=D_{i}\left[x_{i}, y_{i}, \alpha_{i}, a_{i}\right]$ is a simple generalized Weyl algebra of degree 1 and D_{i} is a finitely generated ring over a field $K \subseteq Z\left(A_{i}\right)$. Then the next propositions hold.
(i) Any left ideal of C is stably two-generated.
(ii) Any left stably free module P with rank $P \geq 2$ is free.
(iii) Let M be a finitely generated left C-module. Then $M \cong N \oplus C^{k}$, where N is a module with rank $N \leq 1$. If N is torsion-free, then N is isomorphic to a left ideal of C.
(iv) Let M be a finitely generated torsion left C-module. Then $M \cong I / J$, where I is a projective left ideal of A. In particular, M is stably two-generated.

ACKNOWLEDGMENTS

I thank Professor A. V era López for his helpful comments. I also thank Professor Gustavo A. Fernández-A lcober for his suggestions in the writing of this paper.

REFERENCES

1. V. A. Artamonov, The projective modules over quantum polynomial algebras, Math. Sb. 185, No. 7, 3-12. [In Russian]
2. V. V. Bavula, Simple $D[X, Y, \sigma, a]$-modules, Ukrainian Math. J. 44, No. 12 (1992), 1500-1511.
3. V. V. Bavula and F. van Oystaeyen, The simple modules of certain generalized crossed products, J. Algebra 193 (1997), 521-566.
4. K. R . Goodearl and R . B. W arfield, "A I Introduction to Noncommutative R ings," London M athematical Society Student Texts, Vol. 16, Cambridge Univ. Press, Cambridge, U.K., 1989.
5. G. Karpilovsky, "The Algebraic Structure of Crossed Products," North-H olland M athematics Studies, V ol. 142, N orth-H olland, A msterdam, 1987.
6. J. C. McConnell and J. C. Robson, "Noncommutative Noetherian Rings," Wiley, New Y ork, 1987.
7. D. S. Passman, "Infinite Crossed Products," Pure and Applied Mathematics, V ol. 135, A cademic Press, San Diego, 1989.
8. R. S. Pierce, "A ssociative Algebras," Springer-V erlag, New Y ork/H eidelberg/Berlin, 1982.
9. J. T. Stafford, M odule structure of Weyl algebras, J. London Math. Soc. (2) $\mathbf{1 8}$ (1978), 429-442.
