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Ž Ž . .J. T. Stafford 1978, J. London Math. Soc. 2 18, 429]442 proved that any
Ž .left ideal of the Weyl algebra A K over a field K of characteristic 0 can ben

generated by two elements. In general, there is the problem of determining
whether any left ideal of a Noetherian simple domain can be generated by two
elements. In this work we show that this property holds for some crossed products
of a simple ring with a supersolvable group and also for the tensor product of
generalized Weyl algebras. We also prove that these rings are stably generated by
2 elements and that their finitely generated torsion left modules can be generated
by two elements. Some results about stably 2-generated rings were found by

Ž .V. A. Artamonov 1994, Math. Sb. 185, No. 7, 3]12 . Q 1999 Academic Press

1. PRELIMINARIES

All rings considered throughout this paper will have an identity. Also,
Ž .we denote by U S the unit group of a ring S and by S* the set of

non-zero elements of S.

w xDEFINITION 5 . Let S be a ring and G a group. A crossed product of S
and G is a G-graded ring

A s S)G s A[ g
ggG

Ž .such that A s S e is the identity element in G and, for any g g G,e
there is an element g g A which is a unit in A.g

Note that, under the conditions of the definition, A s Sg s gS. So anyg
element of S)G can be written as Ý s g, where the elements s belongg g g
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MODULES OVER CROSSED PRODUCTS 115

to S and only finitely many of them are non-zero. Thus in order to
describe the multiplication in S)G it suffices to give the products of the

Ž .Ž .form s g s h . For any element g g G we define an automorphism of Sg h
y1Ž . Ž .by means of t s s gsg , so that the formula gs s t s g holds for everyg g

s g S and g g G. On the other hand, if g, h g G we define the element
y1Ž . Ž .a s g h gh g U S , so that g h s a gh. Then we haveg , h g , h

s g s h s s t s a gh.Ž .Ž . Ž .g h g g h g , h

Ž .We say that the maps t : G ª Aut S and a : G = G ª U S given by
Ž . Ž .t g s t and a g, h s a form a crossed system of the crossed prod-g g , h

uct S)G.
If U is a subring of S we denote

Fix U s g g G there exists s g S such that us s st u for all u g U .Ž . Ž .½ 5g

In the next sections, we shall use several times Propositions 1.1, 1.2, and
1.3, sometimes without mentioning them explicitly.

w xPROPOSITION 1.1 7, Proposition 1.1.6 . Let S be a left Noetherian ring
and G a supersol̈ able group. Then S)G is also left Noetherian.

Ž .Throughout this paper KK S is the left Krull dimension of S. We shalll
say that a left module has finite length if it is both left Noetherian and left
Artinian. Recall that this happens when the module has a composition
series. In this case, the length of a composition series will be called the
length of the module. It is clear that if S is a ring and for any non-zero left
ideal I of S the module SrI has finite length, then S is left Noetherian

Ž .and KK S F 1. In the next result we see that the converse is true when Sl
has no zero-divisors.

w xPROPOSITION 1.2 6, Lemma 6.3.9 . Suppose that S is a left Noetherian
Ž .ring without zero-dï isors and KK S s 1. Then for any non-zero left ideal I ofl

S, SrI has finite length.

w x Ž .PROPOSITION 1.3 8 . Let M be a left semisimple S-module, B s End MS
Ž .and f g End M . Then for e¨ery u , u , . . . , u g M there exists x g S suchB 1 2 n

Ž .that f u s xu .i i

We say that a multiplicative subset U : S* has the left Ore condition in
S if U has no zero-divisors and for every u g U, s g S there are ¨ g U,
t g S such that ¨s s tu. This condition permits the construction of the left
ring of quotients Uy1S. The right Ore condition for U in S is defined
symmetrically and enables us to construct SUy1. As is well known, if U
satisfies both Ore conditions then the corresponding left and right rings of
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quotients of S are isomorphic: Uy1S ( SUy1. We say that the ring S has
Ž .the left or right Ore condition if that condition holds for S*. It follows

from Goldie’s Theorem that a left Noetherian ring without zero-divisors
necessarily has the left Ore condition. As a consequence of this result and
Propositions 1.1 we obtain the following result, which shall be used freely
in the paper: if S is a left Noetherian ring, G is a supersolvable group, and
S)G has no zero-divisors, then S)G satisfies the left Ore condition.

w y1 xIf a is an automorphism of S, we denote by S x, x , a the Ore
w xextension of S x, a localized at the powers of x.

Next we introduce the concept of an almost simple ring, which appears
naturally in the course of some proofs.

Ž . � 4DEFINITION. A ring S is called almost simple if I l Z S / 0 for any
� 4 Ž .two-sided ideal I / 0 of S, where Z S denotes the center of S.

It is clear that if S is almost simple and has no zero-divisors, then the
Ž Ž . .y1ring of quotients Z S * S is simple.

2. CROSSED PRODUCTS

The main results of this section are Theorem 2.1 and Corollary 2.19.

THEOREM 2.1. Let T be either a dï ision ring or a left Noetherian simple
Ž .ring with the right Ore condition and KK T s 1, G a supersol̈ able group, andl

C s T )G a crossed product of T and G. Suppose that C is simple and has
no zero-dï isors. Then for any a, b, c g C and s , s g C* there are f , f g C1 2 1 2

Ž . Ž .such that a, b, c g C a q s f c q C b q s f c .1 1 2 2

This theorem is based on the following proposition:

PROPOSITION 2.2. Let S be an almost simple ring, G a supersol̈ able1
group, and C s S )G a crossed product of S and G. Consider a multiplica-1 1
tï e subset U : SU satisfying both Ore conditions in S and let S s Uy1S be1 1 1
the corresponding ring of quotients. Suppose that the following conditions
hold:

Ž .i C is simple and has no zero-dï isors.
Ž . Ž .ii For any g g G and u g U, t u g U.g

Ž . Ž .iii S is left Noetherian and KK S s 1.l

Define now A s Uy1 C, which is a crossed product of S and G. Then for any
� 4left ideal I / 0 of S and any u g A, 0 / ¨ g A, there exists f g C such that

Ž .AI q A u q ¨f s A.
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We prove Proposition 2.2 arguing in three steps, which correspond to
Subsections 2.1, 2.2, and 2.3.

Ž .Step 1. We prove the existence of f in A, satisfying AI q A u q ¨f
s A. In fact, it follows immediately from the next proposition:

PROPOSITION 2.3. Let A s S)G be a crossed product of a left Noetherian
Ž .ring S with KK S s 1 and a supersol̈ able group G. We suppose that A isl

� 4simple and has no zero-dï isors. Then if I / 0 is a left ideal of S, for any
Ž .u g A and 0 / ¨ g A there exists f g A such that AI q A u q ¨f s A.

Ž .Step 2. We prove the existence of f in C, satisfying AI q A u q ¨f s
A, in the case S is simple.1

Step 3. We finish the proof of Proposition 2.2 in the general case.

In order to derive Theorem 2.1 from Proposition 2.2 we need to prove
that some particular rings are almost simple. We do this in Subsection 2.4,
where we provide several families of almost simple rings. Finally, in
Subsection 2.5 we prove Theorem 2.1 and its corollary.

2.1. Step 1

Throughout this subsection, we maintain the notation given in the
statement of Proposition 2.3. We begin by considering the case in which I
is a maximal left ideal of S, which is the key to the proof in the general

Ž .case. We have that AI s [ gI s [ t I g is a G-graded left idealg g G g g G g
of A and ArAI is a G-graded A-module. If we consider ArAI as an
S-module then

ArAI s Sgrt I g ( Srt I .Ž . Ž .[ [g g
ggG ggG

Thus ArAI is a sum of simple S-modules and we have the following
result.

LEMMA 2.4. ArAI is a semisimple S-module.

For any ring R, if M and M are two left R-modules and M s Rm is1 2 1
Ž .cyclic, Hom M , M can be embedded in M via the Z-module homo-R 1 2 2

Ž . Ž . Ž .morphism f : Hom M , M ª M defined by f f s m f, and we canR 1 2 2
Ž .identify the homomorphisms in Hom M , M with their images. InR 1 2

Ž .particular, if we define M s ArAI and A s End M , we identify any1 A
Ž .endomorphism f g A with its image 1 q AI f g M. Under this identifi-1

cation,

� 4A s a q AI N Ia : AI . 1Ž .1
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Ž .We also define F s End SrI and make a similar identification of the1 S
elements of F with the corresponding elements in SrI.1

LEMMA 2.5. A is isomorphic to a crossed product F ) H of the dï ision1 1
ring F and a subgroup H of G. In particular A is left and right Noetherian.1 1

Ž .Proof. Let Ý s g q AI g A . From 1 and AI being G-graded, we geti i i 1
that s g q AI g A for any i, so thati i 1

� 4A s A , where A s A l ArAI s sg q AI g A .Ž . Ž . Ž . g[ g g1 1 1 1 1
ggG

We rule out the trivial components in this decomposition by defining

H s g g G N A / 0Ž .� 4g1

s g g G N 's g S _ t I such that sg q AI g A .Ž .� 4g 1

Ž .Then A s [ A as an abelian group. We have to prove that H is1 hg H 1 h
a subgroup of G and that this decomposition is an H-graduation of A .1

Ž .First of all, we see that any non-zero element sh q AI g A is a unit1 h
Ž . Ž .in A . Indeed, we have s g S _ t I and Ish : AI. Then Is : t I and1 h h

Ž . Ž Ž .. Ž .so s q t I g Hom SrI, Srt I . Since SrI and Srt I are twoh S h h
Ž .simple S-modules, it follows that s q t I is an isomorphism and we canh

Ž Ž . . Ž .consider its inverse r q I g Hom Srt I , SrI . Then t I r : I, sr ' 1S h h
y1Ž . Ž Ž .. Ž . Ž .mod I and rs ' 1 mod t I . Now since I h r : At I r : AI, weh h

y1Ž .have h r q AI g A and it is the inverse of sh q AI in A . We also1 1
Ž . � 4 y1

y1deduce that A / 0 and h g H.1 h
Ž . Ž .On the other hand, let h , h g H, s g S _ t I , s g S _ t I and1 2 1 h 2 h1 2

Ž . Ž .suppose that a s s h q AI g A and a s s h q AI g A . Then1 1 1 1 h 2 2 2 1 h1 2

1 q AI a a s s t s h h q AI g A .Ž . Ž . Ž . Ž .Ž . h h1 2 1 h 2 1 2 1 1 21

Note that this element is not 0, since it is a product of two units in A .1
Ž .This proves that h h g H and that the decomposition A s [ A1 2 1 hg H 1 h

is an H-graduation.
Ž .Finally, it can be easily checked that A ( F and so A is isomorphic1 e 1 1

to a crossed product of the form F ) H.1

Ž .We define B s End M .S

LEMMA 2.6. Let f g B. Then for any g g G there exists a g A such that1
Ž . Ž .sg q AI f s sg a for all s g S.

Ž . Ž . Ž .Proof. We have sg q AI f s s g q AI f s sg a, where

y1a s g g q AI f .Ž . Ž .
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y1Ž . Ž .Ž . Ž .Since t I g : AI, it follows that t I g q AI f : AI, whence I g ?g g
y1Ž . Ž . Ž .g q AI f : AI and we conclude that a s g g q AI f g A .1

In the next lemma, we regard M as a right B- and A -module.1

LEMMA 2.7. M can be decomposed as a direct sum of submodules M ,i
Ž . Ž .where each M is of the form M s s g q AI B s s g q AI A for somei i i i i i 1

s g S and g g G.i i

Proof. We consider a maximal direct sum of submodules M , each ofi
them generated over B by some s g q AI. We suppose that there existi i

Ž .s g S, g g G, and b g B such that sg q AI f [ M but 0 / sg q AI bi i
g [ M . By Lemma 2.6, this means that there exist non-zero elementsi i
a, a g A such thati 1

sg a s s g a . 2Ž . Ž .Ž .Ý i i i
i

We can decompose the elements a, a according to the graduation of Mi
and each homogeneous component will be an element in A . Let a be a1 h
non-zero homogeneous component of a. If we compare the gh-compo-

Ž .nents on both sides of equality 2 we get that

sg a s s g c ,Ž . Ž .Ýh i i i
i

for some c g A . Since a is invertible in A , it follows that sg q AI gi 1 h 1
[ M , which is a contradiction. This proves that M s [ M .i i i i

LEMMA 2.8. Let m s Ý m be an element of M written according to thei i
decomposition of Lemma 2.7. Then there exist elements p g S such thati
p m s m .i i

Proof. Write M s [ M as in Lemma 2.7. We denote by f theB i i i
Ž .projection of M over M . Since f g End M , we can apply Propositioni i B

Ž .1.3 and find elements p g S such that p m s f m s m .i i i i

LEMMA 2.9. Proposition 2.3 holds if I is a maximal left ideal of S.

Proof. As we have mentioned in the Introduction, A satisfies the left
� 4Ore condition: for any 0 / a and 0 / b g A, it holds Aa l Ab / 0 .

Then if u / 0, there exists t / 0 such that tu g AI. Note that if we prove
the existence of an element f such that AI q Aẗ f s A, then we have

Ž .AI q A u q ¨f s A. Thus, without loss of generality, we can suppose that
u s 0.

We decompose M s [ M as in Lemma 2.7. Then we can writeA i i1

each m g M in the form m s Ý m with m g M . If we set supp m si i i i
� 4i N m / 0 , it follows from Lemma 2.8 thati

Am s Am . 3Ž .Ý i
igsupp m
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� 4Choose now t g ¨M such that At is maximal in the set Am N m g ¨M .
Note that we can do this because M is a left Noetherian A-module. Let

Ž .N s ¨M l [ M and suppose z g N. If z f At then according toif supp t i
Ž . Ž .3 we have At ; At q Az s A t q z and we obtain a contradiction with
the maximality of At. So N : At. We have that

¨M ¨M l M ( ¨M q M M[ [ [i i iž / ž / ž /ž / ž /ifsupp t ifsupp t ifsupp t

can be embedded in [ M . Hence ¨MrN is finitely generated overig supp t i
� 4A because A is right Noetherian. Then, there is a finite set a g ¨M1 1 j

such that

¨M s a A q N : a A q At .Ý Ýj 1 j 1
j j

Ž .Since KK S s 1 and M is a semisimple S-module, we can choose 0 / s g Sl
such that sa s 0 in M for all j and consequently s¨M : At. Since A hasj
no zero-divisors we have s¨ / 0. It follows from the simplicity of A that
As̈ A s A, so

M s AM s As̈ AM : At .

Thus if we write t s ¨f q AI we obtain AI q A¨f s A.

Proof of Proposition 2.3. We proceed now by induction on the length
of the S-module SrI. The case when I is maximal has been demonstrated
in Lemma 2.9. We suppose now that I is not a maximal left ideal. By
Proposition 1.2 we know that SrI is a left S-module of finite length and so
there exists a left ideal I of S such that I ; I ; S and I rI is a simple2 2 2
module over S. We have I s Sa q I for a suitable a g I . Set I s2 2 2 2 1
� 4t g S N ta g I . This is a maximal left ideal of S. The length of the2
module SrI is smaller than that of SrI and so by the inductive hypothe-2
sis there exists f g A such that2

AI q A u q ¨f s A.Ž .2 2

Let u s u q ¨f . We can find t, u g A such that tu s u a and there1 2 2 1 2 2
exists f g A such that1

AI q A u q ẗ f s A.Ž .1 2 1

Then

Aa : AI a q A u q ẗ f a : AI q At u q ¨f a .Ž . Ž .2 1 2 2 1 2 1 1 2
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Ž .Hence AI q A u q ¨f a contains AI, Aa , and Au . But we have A s1 1 2 2 1
Ž .AI q A u q ¨f : AI q Aa q Au and so2 2 2 1

AI q A u q ¨ f q f a s A.Ž .Ž .2 1 2

2.2. Step 2

In the following we suppose that S is a simple ring without zero-divisors1
and C s S )G is a crossed product of S and G. Consider a multiplicative1 1
subset U : SU satisfying both Ore conditions in S and let S s Uy1S be1 1 1
the corresponding ring of quotients. Suppose that for any g g G and

Ž .u g U, t u g U. Then we have that U satisfies both Ore conditions in C,g
y1 y1 w xand U C ( CU is a crossed product of S and G 7, Lemma 37.7 .

y1Ž .We write g f g if there exists t g S such that ft s tt (t f for all1 2 1 g g1 2
Ž . � 4f g S . Set H s Fix S s h g G N h f e , which is a normal subgroup1 1

of G. From the definition of f it follows that for any h g H there exists
Ž .t g S such that ft s t t f for all f g S . Since S is a simple ring, th 1 h h h 1 1 h

Ž .is invertible. By substituting h by t h we obtain that h g C S for anyh C 1
Ž Ž . .h g H here C S is the centralizer of S in C . Obviously, a g K sC 1 1 h, g

Ž . Ž .Z S for every h, g g H and it follows that C S is isomorphic to a1 C 1
w xcrossed product of K and H in a natural way 5, Proposition 2.4.1 . In the

sequel, when we write K ) H we refer to this crossed product. It is then
straightforward to check that g f g if and only if g gy1 g H.1 2 1 2

Let ¨ g C. Write ¨ in the form ¨ s Ý s g , where s g S . Set T si i i i 1 ¨
TŽ .Ý S g , K 9 s S l Z C , and let N be the left module over S m Si, s / 0 1 i 1 ¨ 1 K 9 1i

s m p ¨ s s ¨p .Ý Ýi i i iž /
i i

Ž T .Here S denotes the opposite ring of S . It can be easily seen that1 1
N s S ¨S .¨ 1 1

LEMMA 2.10. Let 0 / s g S and t g S. Then N s N and ¨t g SN .1 s¨ ¨ ¨
TProof. Since S is simple, then S g is a simple S m S -module for1 1 1 K 9 1

any g g G and so T is a semisimple left S m ST-module. Suppose that¨ 1 K 9 1
Tthere exists an isomorphism f of S m S -modules between S g and1 K 9 1 1 i

S g . Then we have1 j

y1 y1ff g s f f g s f g t f s f g t fŽ . Ž .Ž . Ž .Ž . Ž .i i i g i gi i

y1Ž . Ž Ž ..for all f g S . If f g s tg , it follows that ft s tt t f , that is,1 i j g gj i

g f g . Also it can be easily checked that if g f g then S g ( S g .j i j i 1 i 1 j
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� 4Consequently, by changing the numbering in g we can writei

k

T s T , where T s S g .[ [¨ i i 1 i , j
g fgis1 i , j i , 1

Thus
k

T TEnd T s End T .[S m S ¨ S m S i1 K 9 1 1 K 9 1
is1

Ž . y1Set H s Fix S . Since g g g H, we can write ¨ in the form ¨ s1 i, j i, 1
kÝ ¨ g , where ¨ g g T and ¨ g S ) H. According to Propositionis1 i i, 1 i i, 1 i i 1

T1.3, for any i there exists p g S m S such that p ¨ s ¨ g andi 1 K 9 1 i i i, 1
consequently ¨ g g V .i i, 1 ¨

We can represent each ¨ in the form Ýk i s l , with l g K ) H andi js1 i, j i, j i, j
� 4s g S N j s 1, . . . , k an independent set over K. We now apply thei, j 1 i

Tdensity theorem to S g , which is a simple S m S -module, to assure1 i, 1 1 K 9 1
the existence of elements q g S m ST such thati, j 1 K 9 1

g , if k s j;i , 1q s g sŽ .i , j i , k i , 1 ½ 0, if k / j.

It then follows that

q ¨ g s q s l g s l q s g s l g ,Ž . Ž .Ž .Ý Ýi , j i i , 1 i , j i , k i , k i , 1 i , k i , j i , k i , 1 i , j i , 1ž /
k k

Ž .since l g C S . Hence N contains the elements l g and is gener-i, j C 1 ¨ i, j i, 1
ated by them as an S m ST-module. Thus1 K 9 1

N s S l g S s S l g .Ý Ý¨ 1 i , j i , 1 1 1 i , j i , 1
i , j i , j

From this we can deduce the lemma. First, N s N for any 0 / s g S .s¨ ¨ 1
k k iThis follows from the equalities s¨ s Ý s¨ g and s¨ s Ý ss l ,is1 i i, 1 i js1 i, j i, j

� 4where ss N j s 1, . . . , k is also an independent set over K because Si, j i 1
has no zero-divisors. Hence arguing as before we obtain

N s S l g s N .Ýs¨ 1 i , j i , 1 ¨
i , j

Second, ¨t g SN for any t g S, since¨

N t s S l g t s S t t l g : SN .Ž .Ý Ý¨ 1 i , j i , 1 1 g i , j i , 1 ¨i , 1
i , j i , j
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Ž .Note that in the proof of the last lemma we have shown that C¨C l
Ž . � 4 Ž . Ž .K ) H / 0 , because l g C¨C l K ) H . Using this fact we cani, j
prove

LEMMA 2.11. Let S be a simple ring, G a finite group, and C s S )G a1 1
crossed product of S and G. We suppose that C has no zero-dï isors. Then C1
is simple.

Ž . Ž .Proof. Let I be a non-zero ideal of C. Let K s Z S and H s Fix S .1 1
As H is finite and C has no zero-divisors, K ) H is a division ring. Then
I s K.

Ž .Suppose now in addition that KK S ) 0.l

LEMMA 2.12. Let M be a submodule of the S-module ST such that¨
ST rM has finite length. Then there exists f g S such that M q SN s M q¨ 1 ¨
S¨f.

ŽProof. We argue by induction on the length of the S-module M q
.SN rM. If it is not zero, then there exists f g S such that S¨f  M.¨ 1 1 1

Choose M9 such that M ; M9 : M q S¨f and M9rM is a simple S-mod-1
Ž .ule. As KK S ) 0 we can find 0 / t g S with ẗ f g M. Since N s N ,l 1 1 ¨ t¨

from the inductive hypothesis there exists f g S such that2 1

M q SN s M9 q SN s M9 q SN s M9 q Sẗ f .¨ ¨ t¨ 2

If M q S¨f s M q SN, we are done. Otherwise, we have2

M q Sẗ f : M q S¨f ; M9 q Sẗ f2 2 2

and

M9 q Sẗ f r M q Sẗ f ( M9r M q Sẗ f l M9Ž . Ž . Ž .Ž .2 2 2

Ž .is simple. Consequently M q Sẗ f s M q S¨f . Set N s M q S¨ f q f2 2 1 2
: M q SN . From ẗ f g M it follows that ẗ f g N. We then have the¨ 1 2
following chain of implications:

Sẗ f : N « M q Sẗ f : N « S¨f : N « S¨f : N « M9 : N.2 2 2 1

Then M q SN s M9 q Sẗ f : N.¨ 2

Proof of Step 2. As in Lemma 2.9, we can suppose u s 0 and ¨ g C.
From Proposition 2.3 we derive the existence of f s f uy1 g A with1
f g C and u g U such that AI q A¨f uy1 s A. We can use the previous1 1
lemma with ¨f g C in place of ¨ and M s AI l ST . Note that since1 ¨ f1
Ž .KK S s 1 and S has no zero-divisors, ST rM has finite length. Thenl ¨ f1

there exists f g S such that SN : AI q A¨f f . But we know, by2 1 ¨ f 1 21y1Lemma 2.10, that ¨f u g SN . Then AI q A¨f f s A.1 ¨ f 1 21
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2.3. Step 3

Proof of Proposition 2.2. We can suppose u s 0 and ¨ g C.
We first consider the case when I is a maximal left ideal of S. Set

Ž .K s Z S . If I l K contains an element q / 0, then Proposition 2.3 gives1
f s f sy1 g A with f g C, s g U such that Aq q A¨f s A. Since q and s1 1
commute, we have Aq q A¨f s A.1

y1� 4 Ž .So we can suppose I l K s 0 . Denote S s K* S , C s S )G,1 1 1
y1S s U S , and A s S)G. S is a simple ring and, according to Step 2,1 1

y1there exists f s f m g C with f g C, m g K* such that A s AI q A¨f.1 1
Ž .Since I commutes with m we have A s AI q A¨f and AI q A¨f l1 1

� 4 � 4K / 0 . As I is a maximal left ideal of S and I l K s 0 , then AI q
A¨f s A.1

If I is an arbitrary left ideal of S, we argue by induction on the length of
the module SrI, as in Proposition 2.3.

2.4. Almost Simple Rings

In this section we give some examples of almost simple rings. In
Ž .particular, the example of Proposition 2.17, part iii , will be needed in the

proof of Theorem 2.1.

LEMMA 2.13. Let G be a finite group, S a ring without zero-dï isors, and
Ž . Ž . � 4A s S)G. Set K s Z S and suppose Fix K s e . Let I be an ideal
� 4 � 4nof A such that I l K / 0 . If h g G is a family of distinct elements,i is1

� 4n Ž .c g S and Ý c t a s 0 for all a g I l K, then c s 0 for all i.i is1 i i h ii

� 4Proof. We argue by way of contradiction. From all possible families hi
giving a counterexample, we choose one with minimum cardinality. We can

Ž .suppose h s e. Then c a q ??? qc t a s 0 for all a g I l K and con-1 1 n hn

sequently,

c ab q ??? qc t ab s bc a q ??? qt b c t a s 0Ž . Ž . Ž .1 n h 1 h n hn n n

for any a g I l K and for any b g K. From the minimality of the family
� 4 Ž .h it follows that t b c s bc for any b g K. Since S has no zero-i h n nn

Ž . � 4divisors and Fix K s e , we must have h s e, a contradiction.n

If A s S)G is a crossed product, for any g g G we have defined the
y1Ž .automorphism t of S by means of t s s gsg . Clearly this definitiong g

can be extended to the whole of A and we can then consider t as ang
inner automorphism of A.

LEMMA 2.14. Let S be a simple ring, G a supersol̈ able group, and
Ž . ² 2suppose that A s S)G has no zero-dï isors. Set K s Z S , G s g N0

: Ž .g g G and H : Fix S a normal subgroup of G. Then for any two-sided
� 4 Ž .ideal I / 0 of the ring K ) H such that t I s I for all g g G , thereg 0

Ž .exists 0 / a g I such that t a s a for any g g G .g 0
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Proof. Since H is a normal subgroup of G and G is a supersolvable
� 4group, there is a series e s H ; ??? ; H s H of normal subgroups of0 k

G such that H rH is cyclic for each i. We prove the lemma for K ) Hi iy1 m
� 4by induction on m. Suppose it is true for K ) H . Let I / 0 be aiy1

Ž .two-sided ideal of the ring K ) H such that t I s I for all g g G .i g 0
Ž .Suppose first that H rH is finite. Since K ) H s K ) H )i iy1 i iy1

Ž .H rH , it follows thati iy1

y1
K ) H * K ) HŽ . Ž .Ž .iy1 i

� 4is a division ring and consequently K ) H l I / 0 . Then it suffices toiy1
² :apply the inductive hypothesis. If H rH s hH is infinite theni iy1 iy1

y1w xK ) H s K ) H z, z , a , where z s h. Consider the set of elementsi iy1
c s c q ??? qc z n of I, with c g K ) H , for which n is minimal. The0 n j iy1
coefficients of degree 0 in z of these elements form a non-zero ideal

� n 4J s c N c s c q ??? qc z g I of K ) H . Since H and H are0 0 n iy1 iy1 i
Ž . "1normal subgroups of G, t z s p z , where p g K ) H forg g g iy1

Ž . Ž .any g g G and then t z s p z for any g g G . We deduce that t J s Jg g 0 g
for any g g G . By the inductive hypothesis, there is c with c s c q ??? q0 0 0

n Ž .c z g I such that t c s c for all g g G . Now, the minimality of nn g 0 0 0
Ž .yields t c y c s 0 for all g g G .g 0

Ž .LEMMA 2.15. Let A 1 F i F n be simple rings and K a ring which cani
Ž . Ž .nbe embedded in e¨ery Z A . Then the tensor product A s m A isi K is1 i

almost simple.

Proof. We will prove this lemma in the case n s 2. The proof of the
general case is similar. Let ¨ be a non-zero element of A m A . We can1 K 2
write ¨ in the form

¨ s c m 1 d ,Ž .Ý i i
i

� 4 Ž . Ž .where c g A is an independent set over Z A and d g Z A m A .i 1 1 i 1 K 2
If we consider A as an A m AT-module, then by the density theo-1 1 ZŽ A . 11

rem, we can find t s Ý e m f g A m AT such that tc s 1 andj j j 1 ZŽ A . 1 11

tc s 0 for i / 1. Thereforei

d s e ¨f g A ¨A .Ý1 j j 1 1
j

Ž .Here we identify A with A m 1.1 1 K
In the same way we can prove that

� 4Z A m Z A l A d A / 0 .Ž . Ž .Ž .1 K 2 2 1 2
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Ž . Ž . Ž .Since Z A m Z A : Z A m A , then1 K 2 1 K 2

� 4A m A ¨ A m A l Z A m A / 0 .Ž . Ž . Ž .1 K 2 1 K 2 1 K 2

Ž .Then A m A is almost simple.1 K 2

Ž .LEMMA 2.16. Let R be a ring and let U : Z R * be a multiplicatï e
subset of regular elements. Suppose that Uy1R is almost simple. Then R is
almost simple.

Proof. Let I be a non-zero ideal of R. Then we have

� 4 y1 y1 y1 y10 / U I l Z U R s U I l U Z R .Ž . Ž .
Ž . � 4Hence I l Z R / 0 .

PROPOSITION 2.17. The following rings are almost simple:

Ž .i Any commutatï e ring.
Ž .ii The ring A s S)G, where S is an almost simple ring, G is a finite

group, and A has no zero-dï isors.
Ž .iii The ring A s S)G, where S is simple, G is a supersol̈ able group,

and A has no zero-dï isors.
Ž . Ž .niv The ring A s m A , where A is an almost simple ringK is1 i i

Ž .without zero-dï isors and K : Z A .i

Ž .Proof. i It is immediate.
Ž . � 4 Ž . Ž .y1ii Let I / 0 be a two-sided ideal of A. Set K s Z S , F s K* S,

Ž .y1and T s K* A, which is a crossed product of F and G. Since F is
� 4simple, then from Lemma 2.11 we obtain that TI s T , and so K l I / 0 .

Ž .We proceed now by induction on the order of G. Set H s Fix K . We
Ž .first see that S) H is almost simple. Since K : Z S) H , we have

Ž . � 4Z S) H l I / 0 for any two-sided ideal I of S) H.
Ž . Ž .Since H is a normal subgroup of G then A s S)G ( S) H ) GrH .

� 4If H / e we can apply the inductive hypothesis. Thus we can suppose
Ž . � 4Fix K s e . From Lemma 2.13 we deduce that there is a g I l K such

Ž . Ž .that c s Ý t a / 0. It is clear that c g I l Z A .g g G g
Ž . Ž . ² 2 : Ž .iii Set K s Z S , G s g N g g G , and H s Fix S l G . Let I0 0
� 4/ 0 be any two-sided ideal of S)G . Since S is simple, we have0

� 4 Ž .K ) H l I / 0 . According to Lemma 2.14 there is 0 / a g Z S)G l I.0
Hence S)G is almost simple. Since G is a normal subgroup of G of0 0

Ž .finite index, it follows from part ii of this proposition that A s S)G is
almost simple.

y1 y1Ž . Ž Ž . . Ž .iv Set A s Z A * A , Q s K* K andi i i

ny1 y1
A s Z A * ??? Z A * A ( m A .Ž . Ž .Ž . Ž . Ž .ž /1 n Q iis1
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Ž .Since A is simple then by Lemma 2.15, A is almost simple. As Z A :i i
Ž . Ž . Ž .Z A , by Lemma 2.15, A is almost simple. As Z A : Z A , by Lemmai

2.16, A is also almost simple.

COROLLARY 2.18. Let A s S)G be a crossed product without zero-di-
¨isors, where S is a simple ring and G is a supersol̈ able group. Then A is

Ž .simple if and only if Z A is a field.

Proof. We prove sufficiency. According to Proposition 2.17, A is almost
Ž .simple. So if Z A is a field, A is simple.

2.5. Main Theorem

We can now proceed to prove our main result, Theorem 2.1, following
the lines of the proof of Stafford for the analogous result in the case of

w xWeyl algebras 9, Theorem 3.1 .

Proof of Theorem 2.1. The case c s 0 is immediate, so we suppose
c / 0. We can also assume that a, b / 0 after replacing if necessary a by
a q s c and b by b q s c.1 2

Since G is a supersolvable group, there is a series of normal subgroups
� 4of G, e s G ; ??? ; G s G such that G rG is cyclic. Define0 n kq1 k

� 4T s T )G , so that T s T and T s C, and set T s 1 . We prove byi i 0 n y1
induction on k the existence of elements d , e g C and non-zero q g Tk k k

Ž . Ž .such that qc g C a q s d c q C b q s e c for k s n, . . . , y1. Observe1 k 2 k
that this result for k s y1 proves the theorem.

ŽIf k s n, d , e and q exist because C has the left Ore condition forn n
� 4.example, Ca l Cc / 0 . Suppose now they exist for some k G 0. We

simplify the notation by writing a and b instead of a q s d c and1 k
b q s e c.2 k

Then qc g Ca q Cb and q g T . First suppose that k ) 0. As Gk ky1
Ž U .y1is normal in G, we can consider the ring A s T C. Set S sky1

Ž U .y1 Ž .T T . We have that S s F ) G rG , where F sky1 k ky1 k ky1 ky1
Ž U .y1T T is the division ring of quotients of T . Since C (ky1 ky1 ky1

Ž . Ž .T ) GrG , we have A ( S) GrG .k k k
If G rG is finite, then S is a division ring. Hence there existsk ky1

Ž X .q9 g T such that q9q g T and q q c g Ca q Cb, as desired.k ky1
Ž .So we can suppose that G rG is infinite cyclic, so that KK S s 1.k ky1 l

Write qc s h a q h b, where we can suppose h , h / 0 because Ca l1 2 1 2
� 4Cb / 0 . Since T satisfies the right Ore condition, then C satisfies the

w xright Ore condition 7, Lemma 9.3.8 and there are g g C and g g C,1 2
different from zero, such that h s g q h s g s 0. Also, we can find1 1 1 2 2 2
non-zero elements s g C and t g C such that sqc s tb. Note that, by
Proposition 2.17, T is almost simple and therefore we can apply Proposi-k
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Ž .tion 2.2. So there is f g C such that Aq q A sq q ts g f s A. Set L s2 2
Ž . Ž .A a q s g fc q A b q s g fc . Then1 1 2 2

qc s h a q h b s h a q h b q h s g q h s g fcŽ .1 2 1 2 1 1 1 2 2 2

s h a q s g fc q h b q s g fc g L,Ž . Ž .1 1 1 2 2 2

and

sqc q ts g fc s t b q s g fc g L.Ž .2 2 2 2

Hence c g L and there are q9 g T and e , d g C such thatky1 ky1 ky1

q9c g C a q s d c q C b q s e c .Ž . Ž .1 ky1 2 ky1

If k s 0 we can put A s C, S s T , and use the same arguments.

Let R be a left Noetherian ring without zero-divisors and Q its left
quotient ring. Let M be a finitely generated left R-module. Then we
define rank M as the integer k such that Q m M ( Qk.R

DEFINITION. Define a left R-module M over a ring R to be stably
m-generated if for any r G m and a , . . . , a g M such that M s Ýrq1 Ra1 rq1 is1 i

r Ž .there exist f g R such that M s Ý R a q f a .i is1 i i rq1

w xThe results of the following corollary can be proved as in 9 by using
Theorem 2.1.

COROLLARY 2.19. Let T be either a dï ision ring or a left Noetherian
Ž .simple ring with the right Ore condition and KK T s 1, G a supersol̈ ablel

group, and C s T )G a crossed product of T and G. We suppose that C is
simple and has no zero-dï isors. Then the next propositions hold.

Ž .i Any left ideal of C is stably two-generated.
Ž .ii Any left stably free module P with rank P G 2 is free.
Ž . kiii Let M be a finitely generated left C-module. Then M ( N [ C ,

where N is a module with rank N F 1. If N is torsion-free, then N is
isomorphic to a left ideal of C.

Ž .iv Let M be a finitely generated torsion left C-module. Then M ( IrJ,
where I is a projectï e left ideal of A. In particular, M is stably two-generated.

Remark 2.20. All proofs remain true if we suppose that G has a series
� 4e s G ; G ; ??? ; G s G of normal subgroups of G such that0 1 n
G rG is infinite cyclic or finite. Note that a policyclic-by-finite groupk ky1
does not necessarily have a series like this. Most of the propositions
remain true if we suppose that G is a policyclic-by-finite group. Neverthe-

Ž .less, for example, in Proposition 2.17 iii and Theorem 2.1 we cannot do
this substitution.
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3. GENERALIZED WEYL ALGEBRAS

In this section we obtain the same results as in the preceding one, for
tensor products of generalized Weyl algebras of degree 1.

DEFINITION 2. A generalized Weyl algebra of degree 1 is a ring A s
Ž . w xD a , a s D x, y, a , a generated by a commutative Noetherian ring D

without zero-divisors with Krull dimension 1, and elements x, y such that

yx s a g D , xy s a a , xd s a d x , and yd s ay1 d yŽ . Ž . Ž .

for all d g D, where a is a ring automorphism of D.

w xMany examples of generalized Weyl algebras can be found in 3 .
Note that A is a Z-graded ring, where the k-component of A is

¡ kDx for k ) 0,~D for k s 0,A sŽ . k ¢ ykDy for k - 0.

We shall use the following two propositions, whose proofs can be found
w xin 2 .

w x Ž .PROPOSITION 3.1 2, Theorem 3 . Let A s D a , a be a generalized Weyl
algebra of degree 1. Then A is simple if and only if for any maximal ideal P of
D and any 0 / n g Z the following conditions hold:

Ž . nŽ .i a P / P,
Ž . nŽ .ii a f a P l P.

w x Ž .PROPOSITION 3.2 2, Theorem 2 . Let A s D a , a be a generalized Weyl
nŽ .algebra of degree 1. Suppose that a P / P for all 0 / n g Z and any

Ž .maximal ideal P of D. Then KK A s 1.l

Ž . w xIf A s D a , a s D x, y, a , a is a generalized Weyl algebra of degree
k k Žk . Ž k . w k k k x1, we set a s y x and A s D a , a s D x , y , a , a , which is thek k k

algebra generated by D and the elements x k and y k.

Ž . w xLEMMA 3.3. Let A s D a , a s D x, y, a , a be a simple generalized
Weyl algebra of degree 1. Then AŽk . is simple for any k ) 0.

Proof. We have to verify the hypotheses of Proposition 3.1. The first
nkŽ .condition is obvious. Suppose that a g a P l P for some maximalk

yn kŽ .ideal P of D and some n / 0. Then a and a a belong to P. Sincek k

a s aykq1 a ??? ay1 a a g P ,Ž . Ž .k

ayn k a s ayŽ nq1.kq1 a ??? ayn k a g PŽ . Ž . Ž .k
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� 4 � Ž . 4and the sets yk q 1, . . . , y1, 0 and y n q 1 k q 1, . . . , ynk are dis-
m1Ž . m2Ž .joint, there exist m / m such that a a , a a g P. This is a contra-1 2

diction because A is simple.

Ž . w xLet A s D a , a s D x, y, a , a be a simple generalized Weyl algebra
Ž .of degree 1, where D is finitely generated over a field K : Z A . Let

Ž .z g Z A *. Note that z is invertible. Since D has no zero-divisors and A
is Z-graded, then z g D. As D is finitely generated over K, we have that

Ž .z is an algebraic element over K. Then Z A is a subset of algebraic
elements of D. We will apply several times this fact, sometimes without
further mention.

Ž .LEMMA 3.4. Let A s D a , a be a simple generalized Weyl algebra of
Ž . Ž .degree 1 and suppose D is finitely generated o¨er K s Z A and U D s K.

Then, for any field extension Q of K the tensor product Q m D has noK
zero-dï isors and its Krull dimension is 1.

w x w xProof. Since D ( K x , . . . , x rJ, then Q m D ( Q x , . . . , x rQJ.1 p K 1 p
The Krull dimension of D is 1, so there exists z g D such that D is

w xfinitely generated as a K z -module. Hence Q m D is finitely generatedK
w x Ž .as a Q z -module and therefore KK Q m D s 1.l K

Let Q be a maximal subfield of Q such that Q m D has no zero-di-1 1 K
visors and take an element t g Q _ Q . If t is not an algebraic element1

Ž . Ž .w xŽ w x .y1over Q , then D m Q t ( D m Q t Q t * has no zero-divisors.1 K 1 K 1 1
We suppose now that t is an algebraic element over Q . Let h be an1

irreducible polynomial over Q such that t is root of h. Set D s Q m D1 1 1 K
w x w xand D s Q t m D ( Q t m D . We want to prove that D has no2 1 K 1 Q 1 21

zero-divisors. Let P be the field of quotients of the ring D and T s1
Ž U .y1 w x w xD D . It is clear that T ( P z rP z h. The automorphism a can be2 1

extended to an automorphism of the ring T. Let h s h ??? h be the1 s
decomposition of the polynomial h, where the factors h are irreduciblei

w x w xpolynomials over P. Since D x, y, a , a s Q t m A is a simple ring,2 1 K
w y1 xthen T x, x , a is also a simple ring and hence, the Jacobson radical of

T is zero. So, all the polynomials h are different. Then T ( [s T ,i is1 i
w x w xwhere T ( P z rP z h is a field. Let p be the identity element of T .i i 1

The number of idempotent elements of T is finite. Then there exists k
kŽ . Ž k k k . Ž .such that a p s p. By Lemma 3.3, D a , y x is simple. Since U D s

Ž Ž k k k .. w x Ž k k k .K, then Z D a , y x s K. Hence Q t m D a , y x is simple and1 K
w y1 k xwe deduce that T x, x , a is also simple. Then T s T , and this means1

that D does not contain any zero-divisors.2

Ž .nNow we can prove a criterion for C s m A to be a simple ringK is1 i
without zero-divisors.
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Ž .PROPOSITION 3.5. For each 1 F i F n, let A s D a , a si i i i
w xD x , y , a , a be a simple generalized Weyl algebra of degree 1, where D is ai i i i i i

Ž .finitely generated ring o¨er a field K : Z A . Then the following conditionsi
are equï alent:

Ž . Ž .ni C s m A has no zero-dï isors.K is1 i

Ž . Ž .nii D s m D has no zero-dï isors.K is1 i

Ž . Ž .niii U s m U has no zero-dï isors, where U is the set of algebraicK is1 i i
elements of D o¨er K.i

Also, if any of these conditions holds, then C is simple.

Ž . Ž . Ž .Proof. The implications i « ii « iii are obvious.
Ž . Ž .Let us prove ii « i . Each A is a Z-graded ring. Then C is ai

Zn-graded ring with

C s A m ??? m A .Ž . Ž .k kŽk , . . . , k . 1 K K n1 n1 n

Ž . Ž . nLet k s k , . . . , k and m s m , . . . , m g Z . We will write k - m if1 n 1 n
w xthere is an integer l g 1, n such that k s m for i s 1, . . . , l y 1 andi i

k - m . Suppose that k , k , k , k g Zn and k F k , k - k . Then it isl l 1 2 3 4 1 2 3 4
clear that k q k - k q k .1 3 2 4

Let a, b g C. We can write a and b according to the graduation of C,

a s a q a , b s b q b ,Ý Ýk i m i
i-k i-m

where a , b g C and a / 0, b / 0. Theni i i k m

ab s a b q c , for some c g C .Ýk m i i 1
i-kqm

Ž .nIf ab s 0 then a b s 0, which is impossible, because D s m D hask m K is1 i
Ž . Ž .no zero-divisors. Then ii « i .

Ž . Ž . Ž .Now we prove the implication iii « ii . First note that U s U D ,i i
because D is finitely generated over K. Seti

niM s m D m m U .Ž . Ž .ž /js1 jsiq1ž /i K j K K j

Arguing by induction on i we prove that M has no zero-divisors. Supposei
that M has no zero-divisors. Since D is finitely generated over K theniy1 i

mŽ . Ž Žm..there exists m such that a u s u for any u g U . Hence Z A si i i
Ž . Žm.U s U D and A satisfies the conditions of Lemma 3.4. Thereforei i i

M ( D m M has no zero-divisors.i i U iy1i
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Ž . Ž . Ž .Now suppose that one of the conditions i , ii , or iii holds. Since D isi
finitely generated over K, by the remark before Lemma 3.4 we have
Ž . Ž . Ž .n Ž .Z A : U . Hence Z C s m Z A is a field. By Proposition 2.17,i i K is1 i

C is almost simple and consequently it is also simple.

Ž .nPROPOSITION 3.6. Let C s m A be a ring without zero-dï isors,K is1 i
Ž . w xwhere A s D a , a s D x , y , a , a is a simple generalized Weyl algebrai i i i i i i i i

Ž .of degree 1 and D is finitely generated o¨er a field K : Z A . Set T si i m
ŽŽ .m . ŽŽ .n . Ž U .y1m A m m D for 0 F m - n, S s T T , andK is1 i K K ismq1 i mq1 m

Ž U .y1 � 4A s C T . Then for any left ideal I / 0 of S and elements u g A,m
Ž .0 / ¨ g A, there exists an element f g C such that AI q A u q ¨f s A.

Proof. We can suppose that u s 0. It is clear that A ( S)Znymy1. Set

y1n
C s C m D * .Ž .Ž .Ž .K iismq2

nymy1 n y1ŽŽŽ . . .Then C ( S )Z , where S s T m D * . By Proposi-1 1 mq1 K ismq2 i
tion 2.17, T is almost simple, and so S is almost simple. Then bymq 1 1
Proposition 2.2, there exists f g C such that AI q A¨f s A, where f s

y1 Ž .ncd , c g C and d g m D . As d commutes with S then AI qK ismq2 i 1
A¨c s A.

Ž .nPROPOSITION 3.7. Let C s m A be a ring without zero-dï isors,K is1 i
Ž . w xwhere A s D a , a s D x , y , a , a is a simple generalized Weyl algebrai i i i i i i i i

Ž .of degree 1 and D is finitely generated o¨er a field K : Z A . Set U si i m
Ž .m Ž U .y1m D with 1 F m - n, Q s U U , S s Q m A , D s Q mK is1 i m m K mq1 K

Ž U .y1 � 4D , and A s C U . Then for any left ideal I of S such that D l I / 0mq 1 m
and for any elements u g A, 0 / ¨ g A there exists an element f g C such

Ž .that AI q A u q ¨f s A.

Ž . Ž .Proof. First of all we prove that KK S s 1. We have Z S s Q ml K
Ž . Ž .Z A and Z A is finitely generated and algebraic over K. Hencemq 1 mq1
Ž .Z S is finitely generated and algebraic over Q and it must be a field,

because it has no zero-divisors. Since S is almost simple, it follows that
S is simple. On the other hand D s Q m D has Krull dimension 1K mq1

w xand consequently S s D x , y , 1 m a , 1 m a is a generalizedmq 1 mq1 mq1 mq1
Weyl algebra of degree 1. We conclude now from Propositions 3.1 and 3.2

Ž .that KK S s 1.l
Again we suppose that u s 0 and I is a maximal left ideal of S. It is

m ŽŽ .n .clear that A ( S)Z m m A . As in Lemma 2.5 we haveK K ismq2 i

n
End ArAI ( F ) H m m A ,Ž . Ž . Ž .Ž .A K K iismq2

Ž . m Ž .where F ( End SrI and H : Z . Hence End ArAI is left and rightS A
Noetherian.
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Reasoning as in the proofs of Lemma 2.9 and Proposition 2.3, it follows
� 4that for any left ideal I / 0 of S we can find an element f g A such that

AI q A¨f s A.
Ž .Set J s S ? I l D . Then there exists f g A such that AJ q A¨f s A,

where f s cdy1, c g C, d g U . As d commutes with D then AJ qm
A¨c s A and so AI q A¨c s A.

Note that the conclusion in the previous proposition is also true for
� 4U s 1 if we define S s A , D s D , and A s C.0 1 1

Ž .nTHEOREM 3.8. Let C s m A be such that C has no zero-dï isors,K is1 i
Ž . w xwhere A s D a , a s D x , y , a , a is a simple generalized Weyl algebrai i i i i i i i i

Ž .of degree 1 and D is a finitely generated ring o¨er a field K : Z A . Theni i
for any a, b, c g C and s , s g C* there are f , f g C such that a, b, c g1 2 1 2
Ž . Ž .C a q s f c q C b q s f c .1 1 2 2

Proof. The proof is as in Theorem 2.1, working with the series

� 41 s U : U : ??? : U : T : T : ??? : T s C0 1 ny1 0 1 n

and using both Propositions 3.6 and 3.7.

The next corollary can be proved in a similar way to Corollary 2.19.

Ž .nCOROLLARY 3.9. Let C s m A be such that C has no zero-di-K is1 i
Ž . w x¨isors, where A s D a , a s D x , y , a , a is a simple generalized Weyli i i i i i i i i

Ž .algebra of degree 1 and D is a finitely generated ring o¨er a field K : Z A .i i
Then the next propositions hold.

Ž .i Any left ideal of C is stably two-generated.
Ž .ii Any left stably free module P with rank P G 2 is free.
Ž . kiii Let M be a finitely generated left C-module. Then M ( N [ C ,

where N is a module with rank N F 1. If N is torsion-free, then N is
isomorphic to a left ideal of C.

Ž .iv Let M be a finitely generated torsion left C-module. Then M ( IrJ,
where I is a projectï e left ideal of A. In particular, M is stably two-generated.
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