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The critical point T(5) symmetry for the spherical to triaxially deformed shape phase transition is 
introduced from the Bohr Hamiltonian by approximately separating variables at a given γ deformation 
with 0◦ ≤ γ ≤ 30◦. The resulting spectral and E2 properties have been investigated in detail. The results 
indicate that the original X(5) and Z(5) critical point symmetries can be naturally realized within the 
T(5) model in the γ = 0◦ and γ = 30◦ limit, respectively, which thus provides a dynamical connection 
between the two symmetries. Comparison of the theoretical calculations for 148Ce, 160Yb, 192Pt and 194Pt 
with the corresponding experimental data is also made, which indicates that, to some extent, possible 
asymmetric deformation may be involved in these transitional nuclei.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Critical point symmetries (CPSs) in nuclear structure have at-
tracted a lot of attention [1–10], since these models may provide 
parameter-free (up to an overall scale) predictions about the struc-
tural properties of nuclei in the phase transitional region [11,12]. 
These CPSs include, for example, the critical point of the spherical 
to γ -unstable shape phase transition E(5) [1], the critical point of 
the spherical to axially deformed shape phase transition X(5) [2], 
and the critical point of the prolate to oblate shape phase tran-
sition Z(5) [4] (also serving as the CPS for the shape transition 
from the spherical to the triaxial deformation at γ = 30◦), etc., 
which have been widely confirmed in experiment [13–20]. Gener-
ally, these CPS models are constructed from the Bohr Hamiltonian 
by separating the collective β and γ variables, and by making 
different assumptions about the potentials in β and γ . Specifi-
cally, separation of variables in the Bohr Hamiltonian for the X(5) 
model is achieved by assuming γ = 0◦ [2], which represents an 
axially-symmetric situation, while that in the Z(5) model has been 
achieved by separating variables at γ = 30◦ [4] corresponding to 
the maximally-triaxial situation. Moreover, in both models the po-
tential in β is assumed to be an infinite square well, while the 
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potential in γ is assumed to be a harmonic oscillator having a 
minimum at γ = 0◦ for X(5) or γ = 30◦ for Z(5).

The purpose of this work is to propose a Bohr Hamiltonian 
with a potential in γ having minimum at any given γ value with 
γ ∈ [0◦, 30◦]. The resulting model, which is called T(5), may pro-
vide a connection between the X(5) and Z(5) CPSs [2,4], which thus 
serves as the CPS for the transition from the spherical to a triaxial 
shape with 0◦ ≤ γ ≤ 30◦ since the X(5) and Z(5) symmetries can 
be used to describe the transitions from the spherical to axially de-
formed shape at γ = 0◦ [2] and the spherical to triaxial-deformed 
shape at γ = 30◦ [4], respectively. It should be mentioned that 
the spherical to triaxial-deformed shape phase transition can be 
alternatively analyzed within the interacting boson model [21] by 
introducing high-order terms in the Hamiltonian [22–25] since a 
rigid triaxial structure with a given γ deformation can principally 
be defined in such cases [24,25].

2. The model

The original Bohr Hamiltonian [26] is written as

H = − h̄2
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where β and γ are the deformation variables, B is the collective 
mass parameter, and L′

k (k = 1, 2, 3) are the projections of the an-
gular momentum on the body-fixed k-axis. In the present case, it 
is assumed [1–5] that

V (β,γ ) = V (β) + V (γ ), (2)

in which the potential V (β) is taken to be an infinite square 
well [2] with

V (β) =
{

0, β ≤ βW ,

∞, β > βW ,
(3)

whereas the potential V (γ ) is taken to be harmonic around γ = γe

[4] with

V (γ ) = 1

2
C(γ − γe)

2. (4)

As the potential has a minimum at γ = γe , the rotational term of 
Eq. (1) is approximated as
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Notably, the approximation used in (5) was also adopted in the 
X(5) and Z(5) models, but with γe = 0◦ and γe = 30◦ respectively. 
By introducing the reduced energy ε = 2B E/h̄2 and reduced po-
tentials u = 2B V /h̄2 [2,4], the corresponding Schrödinger equation 
can be separately written as

[− 1

β4

∂
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β4 ∂
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+ rL

4β2
+ u(β)]ηL(β) = εβηL(β), (6)
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+ u(γ )]φ(γ ) = εγ φ(γ ), (7)

where rL is the eigenvalue of R L , 〈β2〉 is the average of β2 over 
η(β) [2], and ε = εβ + εγ . The total wave function can be con-
structed as

	(β,γ , θi) = ηL(β)φ(γ )ϕL
M,s(θi) (8)

with

R Lϕ
L
M,s(θi) = rLsϕ

L
M,s(θi). (9)

The rotational wave function ϕL
M,s(θ) can be expanded in terms 

of the Wigner D-functions with
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where D L
M,K (θi) is the Wigner D-function, the expanding coeffi-

cients C L
s,K are determined from the eigenvalue equation (9), and 

s is used to label the s-th eigenstate for given L and M , which is 
given as

s = 1,2,3, . . . ,
L + 2

2
, L = even,

s = 1,2,3, . . . ,
L − 1

, L = odd. (12)

2

It should be noted that eigenvalue equation (9) can be analytically 
solved at γe = 0◦ or γe = 30◦ , in which the values of rL are respec-
tively given as [2,4]

rL(0◦) = 4

3
[L(L + 1) − K 2] + K 2

sin2(γe)|γe→0◦
(13)

and

rL(30◦) = 4L(L + 1) − 3α2 (14)

with α being the projection of the angular momentum on the 
body-fixed 1-axis. The resulting models just correspond to the X(5) 
and Z(5) CPSs, respectively. On the other hand, it should be noted 
that the last term K 2

sin2(γe)|γe→0◦ in (13) contributes nothing in the 

case of K = 0 [2] but an infinite number in the case of K = 0. To 
avoid such a situation, this term in the original X(5) model was 
absorbed into Eq. (7) [2]. Therefore, the γe = 0 situation shown 
in (13) only applies to the K = 0 case, while K = 0 cases have al-
ready been discussed in [2,27]. Generally, the rL values, which are 
the eigenvalues of a triaxial rotor Hamiltonian, can only be numer-
ically solved from (9) when 0◦ < γe < 30◦ . But for a few of the 
lowest L values, rLs can be solved analytically from (9) as shown 
in [28,29], which are given as

r0s=1(γe) = 0, (15)
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Substituting F (β) = β3/2η(β) and z = βkβ with kβ = √
εβ [2,4], 

one can transform Eq. (6) inside the well into the Bessel equation

d2 F

dz2
+ 1

z

dF
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+ [1 − v2

z2
]F = 0 (21)

with
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√
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4
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Then the boundary condition η(βW ) = 0 determines the eigenval-
ues

εβ; ξ,s,L = (kξ,v)2, kξ,v = (
xξ,v

βW
), (23)

and the eigenfunction

ηξ,s,L(β) = cξ,vβ−3/2 J v(kξ,vβ), (24)

where xξ,v is the ξ -th zero of the Bessel function J v(z), and the 
normalization constants cξ,v are determined by

∞∫
β4η2

ξ,s,L(β)dβ = 1. (25)
0
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For the γ -part of the T(5) model, sin(3γ ) in Eq. (7) is ap-
proximately replaced by sin(3γe) for simplicity since we consider 
the harmonic oscillator potential having a minimum at γ = γe [4]
and the system behaving a small-amplitude oscillations around the 
equilibrium point γe . Then, Eq. (7) can approximately be rewritten 
as

[− 1

〈β2〉
∂2

∂γ 2
+ 1

2
c(γ − γe)

2]φ(γ ) = εγ φ(γ ) (26)

with c = 2BC/h̄2. By taking γ̃ = γ −γe [4], the above equation can 
be further transformed into the form

[− ∂2

∂γ̃ 2
+ 1

2
c〈β2〉γ̃ 2]φ(γ̃ ) = εγ̃ 〈β2〉φ(γ̃ ), (27)

which is very similar to the corresponding equation in the Z(5) 
CPS [4] except for that the potential here is taken as u(γ ) ∝
(γ − γe)

2. Then the energy eigenvalues and eigenfunctions are 
shown as [4]
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where the normalization constant is given as
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One thus obtains the general expression of the total energy

E(ξ, s, L,nγ̃ ) = E0 + A′(xξ,L)
2 + B ′nγ̃ , (32)

where E0, A′ , and B ′ are the corresponding parameters [4].
B(E2) transition rates can be calculated by taking the quadru-

pole operator
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where t is a scale factor. Specifically, B(E2) transition rates are 
given as
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In the calculation of reduced matrix elements in (34), the same ap-
proximation used for the Hamiltonian, γ ≈ γe , is also used for the 
quadrupole operator defined in (33) [2]. Then the integral over γ̃
only contributes δnγ̃ i

nγ̃ f
due to the orthonormality of φnγ̃

(γ̃ ) [4], 
which indicates that the E2 transitional rate calculated in the 
present scheme will not be affected by the form of φ(γ ) no mat-
ter φ(γ ) is directly solved from (7) or after some approximations 
solved from (26). The integral over β takes the form
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while the integral over the Euler angles θi can be obtained by us-
ing the formula involving three Wigner functions [30]. The final 
result is given as
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Since the rotational function ϕL
M,s(θi) with L = 0, 2, 3, 5 defined 

in (10) can be analytically solved from (9) [29], one can get some 
analytical expressions of B(E2) values, such as
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)
. (38)

It is clear that the results for the ground band and γ band are 
given as those with ξ = 1 and nγ̃ = 0, while the results for the β
band are those with ξ = 2 and nγ̃ = 0. In the following, we will 
only consider the low-lying states in the bands with nγ̃ = 0.

3. Numerical examination

As mentioned previously, the T(5) CPS provides a possible dy-
namical connection between the X(5) and Z(5) CPSs. To demon-
strate the connection, some typical energy ratios and B(E2) ra-
tios in the related models are listed in Table 1. As shown in 
Table 1, the T(5) results in the γe = 0◦ and γe = 30◦ limits cor-
respond exactly to those of the X(5) and Z(5) CPSs, respectively. 
Specifically, the ratios E L1/E21 and E Lβ /E21 in the T(5) model de-
crease monotonously from the X(5) limit (γe = 0◦) to the Z(5) limit 
(γe = 30◦). In addition, it is shown in Table 1 that approximate 
degeneracy of 61 and 02 level appears in the T(5) model for all 
γe values indicating that the approximate degeneracy may be re-
garded as a signal of the T(5) CPS.
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Table 1
Typical energy ratios and B(E2) ratios for the ground band and β band calculated in the T(5) model with different γe compared with the corresponding quantities in X(5) 
and Z(5) CPSs [2,4].

X(5) T(5) Z(5)

γe = 0◦ γe = 5◦ γe = 10◦ γe = 15◦ γe = 20◦ γe = 25◦ γe = 30◦

E41 /E21 2.90 2.90 2.90 2.89 2.83 2.71 2.48 2.35 2.35
E61 /E21 5.43 5.43 5.42 5.37 5.17 4.73 4.22 3.98 3.98
E81 /E21 8.48 8.48 8.47 8.33 7.86 7.03 6.24 5.88 5.88
E61 /E02 0.96 0.96 0.97 1.00 1.04 1.04 1.02 1.02 1.02
E81 /E02 1.50 1.50 1.52 1.56 1.58 1.54 1.51 1.50 1.50
E02 /E21 5.65 5.65 5.57 5.34 4.99 4.55 4.12 3.91 3.91
E2β

/E21 7.45 7.45 7.37 7.27 6.78 6.34 5.91 5.70 5.70
E4β

/E21 10.69 10.69 10.60 10.59 9.89 9.22 8.40 7.96 7.96
B(E2; 41→21)
B(E2; 21→01)

1.60 1.60 1.60 1.61 1.64 1.67 1.63 1.59 1.59
B(E2; 61→41)
B(E2; 21→01)

1.98 1.98 1.99 2.02 2.10 2.22 2.27 2.20 2.20
B(E2; 81→61)
B(E2; 21→01)

2.28 2.28 2.28 2.34 2.50 2.71 2.73 2.64 2.64
B(E2; 02→21)
B(E2; 21→01)

0.62 0.62 0.63 0.64 0.66 0.69 0.73 0.75 0.75
B(E2; 2β →02)

B(E2; 21→01)
0.80 0.80 0.79 0.79 0.79 0.78 0.78 0.77 0.77

B(E2; 4β →22)

B(E2; 21→01)
1.20 1.20 1.20 1.19 1.22 1.24 1.22 1.19 1.19

Fig. 1. The energy ratios E0n /E21 and E0n /E02 with n = 2,3,4,5 calculated from the T(5) model for γe = 5◦,15◦,25◦ .
On the other hand, the analysis shown in [31,32] indicates that 
all 0+ bandhead energies, E0n , in the CPS models should obey a 
universal law. However, it can be observed from Table 1 that the 
ratio E02/E21 decreases with the increasing of γe . As a further 
analysis, the ratios E0n /E21 and E0n/E02 calculated from the T(5) 
CPS with several typical γe values are shown in Fig. 1. As shown in 
panel (a) of Fig. 1, the bandhead energies E0n with n = 2, 3, 4, 5 all 
monotonically increase with the decreasing of γe if they are nor-
malized to E21 . However, if these bandhead energies are normal-
ized to E02 as shown in panel (b), they all keep to be a constant 
independent of γe , which indeed coincide with the rule [31,32]

E0n = A(n − 1)(n + 2), (39)

where A is an overall scale factor independent of γe . In fact, one 
can deduce from (15) and (22) that the bandhead energies E0n are 
only determined from Eq. (21) with v = 3/2, which is independent 
of the γe value in contrast to excited energies E Ln with L = 0. It 
thus explains why the bandhead energies, E0n , obey the same law 
independent of γe .

Since the X(5) and Z(5) CPSs can be realized within the T(5) 
model in the γe = 0◦ and γe = 30◦ limit, respectively, it is expected 
that the T(5) model may play a role of the CPS for the transition 
from the spherical to triaxial deformation within 0◦ ≤ γ ≤ 30◦ (or 
equivalently the CPS of the transition from the spherical vibrator 
to a triaxial rotor). To elucidate this point, we compare level ener-
gies and the intraband B(E2) values in the ground band of the T(5) 
model with those obtained from the vibrator and the triaxial ro-
tor at typical γe values. The results are shown in Fig. 2, in which 
the vibrator results are obtained from the U(5) limit (vibrational 
limit) of the interacting boson model [21], which is generally con-
sidered as an algebraic vibrator, while those of the triaxial rotor 
are obtained from the Davydov–Fillipov rotor model [28], of which 
the Hamiltonian is proportional to R L defined in (5) [26]. It can 
be clearly seen from Fig. 2 that the results obtained from the T(5) 
model all fall in between those from the vibrator and the triaxial 
rotor with any γ deformation, which indicates that the T(5) model 
is indeed qualified to be regarded as the CPS of the shape phase 
transition from the vibrator to the triaxial rotor.

In order to check the sensitiveness of the T(5) model on γe
further, several typical quantities as functions of γe are calculated, 
which are shown in Fig. 3. It can be observed in Fig. 3 that the T(5) 
model generally produces lower energy ratios and larger B(E2)

ratios in comparison to the corresponding results of the rigid tri-
axial rotor model. It is thus confirmed that the T(5) model may 
behave as a soft triaxial rotor [27]. Particularly, the B(E2) ratio 
B(E2 : 3γ → 2γ )/B(E2; 21 → 01) in the rotor model remains to 
be a constant independent of γe , while this quantity in the T(5) 
model decreases monotonically as a function of γe . In addition, it 
is shown that the energy ratio E2γ /E21 may be taken as an in-
dicator of γe value for the T(5) CPS because this quantity is very 
sensitive to γe , which is also relatively easily to be measured. Once 
γe is fixed by fitting the experimental energy ratio E2γ /E21 , the 
whole spectral structure is determined by the model up to an over-
all scale factor. It should be emphasized that all the energy ratios 
and B(E2) ratios in the T(5) model shown in Fig. 3 at γe = 30◦
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Fig. 2. (Color online.) The excited energies and B(E2) values in the ground band calculated from the T(5) model (T(5)), those of the vibrational limit of the interacting 
boson model (Vib.) and those of the rotor model (Rot.) at γe = 5◦, 15◦, 25◦ , respectively, where the excited energies have been normalized to E21 , and the B(E2) values are 
normalized to B(E2; 21 → 01).

Fig. 3. (Color online.) Typical energy ratios and B(E2) ratios calculated from the T(5) model and the rigid rotor model (the Davydov–Fillipov rotor [28]) as functions of γe .
coincide with those in the Z(5) CPS [4]. However, the quantities 
related to the γ band in the X(5) CPS cannot be derived from the 
present T(5) description in the γe = 0◦ limit. For example, the ra-
tio E2γ /E21 tends to infinity in the T(5) model as γ → 0◦ , while 
it is a harmonic strength-dependent quantity in the X(5) model [2,
27]. In order to reproduce the X(5)-like γ band in the T(5) model 
at γe = 0◦ , one has to regroup the quantities in (6) and (7) by 
absorbing the term K 2

sin2(γe)|γe→0◦ into (7) as mentioned previously, 

which will be further explored in our future work.
4. Comparison to experiment

As shown in previous section, the T(5) model may provide a 
dynamical connection between the X(5) CPS [2] and Z(5) CPS [4], 
which thus offers a more flexible description of nuclei in between 
the two CPSs, such as either those supposed to be the candidates 
of the X(5) CPS with the neutron number N = 90 [33], or the can-
didates of the Z(5) CPS in the Pt isotopic chain [4]. To test the va-
lidity of the model, 148Ce [34], 160Yb [35], 192Pt [36] and 194Pt [37]
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Table 2
Typical energy ratios and B(E2) ratios for 148Ce [34], 160Yb [35], 192Pt [36] and 
194Pt [37], and those calculated from the T(5) model with the γe value fitted to the 
ratio E2γ /E21 , where “—” denotes the corresponding quantity is not determined 
experimentally.

(γe,nuclei)

(13◦, 148Ce) (19◦, 160Yb) (26◦, 192Pt) (28◦, 194Pt)

E41 /E21 (2.86,2.86) (2.74,2.63) (2.44,2.48) (2.37,2.47)

E61 /E21 (5.27,5.30) (4.84,4.72) (4.14,4.31) (4.03,4.30)

E81 /E21 (8.11,8.14) (7.20,7.14) (6.12,6.38) (5.94,6.04)

E101 /E21 (11.29,11.31) (9.85,9.76) (8.34,7.96) (8.11,—)

E61 /E02 (1.03,1.09) (1.04,1.06) (1.02,1.14) (1.02,1.11)

E2γ /E21 (6.78,6.25) (3.46,3.37) (2.04,1.94) (1.89,1.89)

E3γ /E21 (7.38,7.05) (4.58,4.14) (2.79,2.91) (2.64,2.81)

E4γ /E21 (8.19,7.72) (5.16,—) (4.32,3.80) (4.36,3.74)

E5γ /E21 (9.12,8.98) (6.06,—) (4.81,4.68) (4.68,4.56)

B(E2; 41→21)
B(E2; 21→01)

(1.63,—) (1.67,1.39) (1.62,1.56) (1.60,1.72)

B(E2; 61→41)
B(E2; 21→01)

(2.06,—) (2.20,1.80) (2.26,1.23) (2.22,1.36)

B(E2; 2γ →01)

B(E2; 21→01)
(0.04,—) (0.07,—) (0.03,0.01) (0.01,0.01)

B(E2; 2γ →21)

B(E2; 21→01)
(0.11,—) (0.36,—) (1.19,1.91) (1.49,1.81)

B(E2; 3γ →2γ )

B(E2; 21→01)
(2.55,—) (2.32,—) (2.19,1.77) (2.18,—)

B(E2; 4γ →41)

B(E2; 21→01)
(0.15,—) (0.39,—) (0.39,—) (0.35,0.41)

B(E2; 4γ →2γ )

B(E2; 21→01)
(0.84,—) (0.70,—) (0.57,—) (0.63,0.45)

are chosen as candidates of the T(5) model. Notably, the γe value 
for each nucleus is obtained by fitting the experimental energy ra-
tio E2γ /E21 since this ratio is very sensitive to γe as discussed 
previously. Then the spectral structure of the T(5) model is thus 
fixed up to a scale factor for each nucleus. Specifically, some typi-
cal energy ratios and B(E2) ratios calculated from the T(5) model 
for these nuclei are listed in Table 2, which are compared with 
the corresponding experimental data. It is clearly shown in Table 2
that the results of each nucleus are well reproduced in the T(5) 
model with the γe value fitted to the experimental energy ratio 
E2γ /E21 . Particularly, while the ratio E2γ /E21 changes noticeably 
as a function of γe from nucleus to nucleus, the ratio E61/E02 ∼ 1
indeed keeps almost unchanged as predicted in the T(5) model. In 
addition, it can also be observed that the ideal value of γe in the 
T(5) model for 192Pt and 194Pt is very close to 30◦ , which indicates 
that the original Z(5) description of these nuclei [4] is robust. Any-
way, it seems that the T(5) model with the γe parameter fitted to 
the energy ratio E2γ /E21 indeed provides a reasonable description 
for these transitional nuclei.

5. Summary

In summary, the critical point symmetry, called T(5), has been 
introduced by approximately separating variables in the Bohr 
Hamiltonian for any given γ value. It was shown that the T(5) 
model provides a dynamical connection between the original X(5) 
and Z(5) CPSs [2,4], of which the two CPSs just correspond to 
the limiting cases of the T(5) model. It was also shown that the 
model provides a better description of the spectral patterns of 
148Ce, 160Yb, 192Pt, and 194Pt, which in turn indicates that pos-
sible triaxial deformation may be involved to some extent in these 
transitional nuclei. In addition, it is shown that the T(5) model 
provides the energy and the B(E2) ratios in between those of the 
vibrator and the rigid triaxial rotor, indicating that the model may 
also serve as the CPS description for the spherical to the triaxial 
deformed shape phase transition [12,21].

Finally, our recent work has shown that the E(5) and X(5) CPSs
dynamics may be algebraically realized with the Euclidean dynam-
ical symmetry [38,39]. It should be interesting to see whether the 
T(5) model description can also be unified in the Euclidean dy-
namical symmetry description by using similar algebraic technique. 
On the other hand, based on the successful CPS descriptions in 
even–even system, the CPS concept was also extended to odd–A 
systems [40–46]. However, these extensions of the CPSs are mostly 
focused on the axially symmetric situation. The T(5) model de-
scription may provide a new starting point to establish the CPS 
description for the triaxial deformation in the transitional odd–A 
nuclei. On the other hand, new methods have been developed to 
obtain accurate numerical solutions for a diverse range of collective 
Hamiltonians [47–51], from which the validity of the approximate 
separation of variables introduced with the X(5) CPS has been ex-
amined by Caprio [52]. It should also be possible and necessary to 
further check the validity of the present approximate solutions of 
the T(5) model in a similar way [52]. Related work in this direction 
is in progress.
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