Semi-parallel time-like surfaces in Lorentzian spacetime forms

Ülo Lumiste ${ }^{1}$
University of Tartu, Department of Mathematics, Vanemuise 46, EE2400 Tartu, Estonia
Communicated by A. Gray
Received 30 January 1995

Abstract

Abstrart: The classification of semi-parallel surfaces in Euclidean space (by Deprez 1985) and in Riemannian space forms (by Mercuri 1991) is extended to the case of time-like surfaces in Lorentzian spacetime forms. Existence and geometry of such surfaces are investigated, especially of the exceptional and minimal ones in de Sitter spacetimes; here the minimal surfaces are the subjects of the geometrical string theory.

Keywords: Semi-parallel surfaces, time-like surfaces, minimal surfaces, strings.
MS classification: 53B30, 53C42, 83E30.

1. Introduction

1.1. Lorentzian spacetime forms. Let $N_{s}^{n}(c)$ be a space form with $d s^{2}=-\left(\omega^{1}\right)^{2}-\cdots-\left(\omega^{s}\right)^{2}+$ $\left(\omega^{s+1}\right)^{2}+\cdots+\left(\omega^{n}\right)^{2}$ of constant curvature c, Riemannian if $s=0$ (or $s=n$) and pseudoRiemannian if $0<s<n$ (see [23]). In particular, $N_{1}^{n}(c)$ is called the Lorentzian spacetime form, having in mind the interpretation in the general relativity (see [8]). The standard models [23, 8] are (for $s=0$, or $s=1$, or $0<s<n$, respectively)
$c=0$ Euclidean space E^{n}, or Minkowski spacetime E_{1}^{n}, or pseudo-Euclidean space E_{s}^{n},
$c>0$ hypersphere $S^{n}(r) \subset E^{n+1}, r=(\sqrt{c})^{-1}$, or de Sitter spacetime of the 1st kind $S_{1}^{n}(r) \subset$ E_{1}^{n+1}, or $S_{s}^{n}(r) \subset E_{s}^{n+1}$ (the latter two as hyperspheres of real radius $\left.r=(\sqrt{c})^{-1}\right)$,
$c<0$ hyperbolic $H^{n}(r) \subset E_{1}^{n+1}$, or de Sitter spacetime of the 2 nd kind (anti-de Sitter spacetime $[2,21]$) $H_{1}^{n}(r) \subset E_{2}^{n+1}$, or $H_{s}^{n}(r) \subset E_{s+1}^{n+1}$ (as hyperspheres of imaginary radius ir $\left.=(\sqrt{c})^{-1}\right)$.
1.2. Semi-parallel submanifolds. Let M_{q}^{m} be a submanifold in $N_{s}^{n}(c)$ with $d s_{M}^{2}=-\left(\omega_{M}^{1}\right)^{2}-$ $\cdots-\left(\omega_{M}^{q}\right)^{2}+\left(\omega_{M}^{q+1}\right)^{2}+\cdots+\left(\omega_{M}^{m}\right)^{2}$. Such M_{q}^{m} is said to be parallel if its second fundamental form h satisfies $\bar{\nabla} h=0$ (i.e., is parallel with respect to the van der Waerden-Bortolotti connection $\bar{\nabla}=\nabla \oplus \nabla^{\perp}$) and semi-parallel if the integrability condition $\bar{R} \circ h=0$ of $\bar{\nabla} h=0$ is satisfied (where \bar{R} is the curvature operator of $\bar{\nabla}$).

A complete parallel submanifold M_{q}^{m} in $N_{s}^{n}(c)$ is a symmetric orbit in the sense that M_{q}^{m} is symmetric with respect to every its normal subspace and is an orbit of some Lie group acting in $N_{s}^{n}(c)$ by isometries (see [7,18] for $s=0$ and [15,2] for $0<s<n$).

[^0]A semi-parallel submanifold M_{q}^{m} in $N_{s}^{n}(c)$ is a $2 n d$ order envelope of symmetric orbits \widetilde{M}_{q}^{m} in $N_{s}^{n}(c)$ (for $s=0$ see [11], where "semi-symmetric" is used as a synonym of "semi-parallel"; the generalization to the case $0<s<n$ is obvious).
1.3. Semi-parallel surfaces, Riemannian case. The notion of a semi-parallel submanifold is introduced in [5], where also all semi-parallel surfaces M^{2} in Euclidean spaces (i.e., for $c=0$) are completely classified; recently this classification is extended to the case of $c \neq 0$ in $[14,1]$.

Theorem A (Deprez [5], Mercuri [14]). Let M^{2} be a semi-parallel surface in $N^{n}(c)$. There exists an open and dense part U of M^{2} such that the connected components of U are of the following types:
(i) open parts of totally umbilical $N^{2}(k)$ in $N^{n}(c), k=c o n s t \geqslant c$ (in particular, of totally geodesic $N^{2}(c)$, if $k=c$),
(ii) surfaces with flat ∇ (i.e., locally Euclidean surfaces with flat normal connection ∇^{\perp}),
(iii) isotropic surfaces with nonflat ∇^{\perp} and with $\|H\|^{2}=3 k-c$, where k is the Gaussian curvature and H is the mean curvature vector.

Here a surface M^{2} in $N^{n}(c)$ is said to be isotropic if at every fixed point $x \in M^{2}$ for arbitrary unit tangent vector $X \in T_{x} M^{2}$ the length of $h(X, X)$ does not depend on X.

The type (i) gives parallel surfaces, which are the parts of such symmetric orbits as spheres, horospheres etc. The other types give the 2nd order envelopes of symmetric orbits (see [11]) and can be described as follows. A surface of (ii) has diagonalizable h and thus an orthogonal net of curvature lines, hence the surface is a 2 nd order envelope of products of curvature circles (or horocycles or equidistant curves, if $c<0$) of these lines. A surface of (iii) is a 2nd order envelope of Veronese surfaces. It is shown (see [11] if $c=0$, and [1] if $c \neq 0$) that for $n=5$ such an envelope is a single Veronese surface or its part and thus a parallel surface. In [14, Remark 4] a conjecture is formulated that this holds also for $n>5$, however in [12,17] it is proved that this is not true.

A Veronese surface in E^{5} belongs to a hypersphere S^{4} and is minimal here, i.e., its mean curvature vector H with respect to S^{4} vanishes. In [1, Proposition 3.6] it is shown that vice versa a minimal semi-parallel surface M^{2} in $S^{n}(r)$ with nonflat normal connection ∇^{\perp}, thus $n \geqslant 4$, turns out to be a Veronese surface or its part, hence parallel. In the proof the assertion (iii) of Theorem A is used together with a result from [3] that a minimal M^{2} in $S^{n}(r)$ with constant Gaussian curvature $k=\frac{1}{3} r^{2}$ is a part of a Veronese surface. Note that the following more general result (for a special case $n=4$) is established in [9]: any minimal M^{2} with some constant k in $S^{4}(r)$ is a part of a Veronese surface. Recall also the well known fact that in $N^{n}(c)$ with $c \leqslant 0$ the only minimal M^{2} with constant k are the totally geodesic surfaces, and then $k=c$.
1.4. Results of the present paper. Here the semi-parallel surfaces M_{1}^{2} (called time-like) in $N_{1}^{n}(c)$ (called Lorentzian spacetime forms) are investigated. The main result is as follows.

Theorem B. Let M_{1}^{2} be a semi-parallel time-like surface in a Lorentzian spacetime form $N_{1}^{n}(c)$. There exists an open and dense part U of M_{1}^{2} such that the connected components of U are of the following types:
(i) open parts of totally umbilical $N_{1}^{2}(k)$ in $N_{1}^{n}(c)$ (in particular, of totally geodesic $N_{1}^{2}(c)$),
(ii) surfaces with flat $\bar{\nabla}$.

As one can see, there is no analogue to the type (iii) of Theorem A. It is compensated by the fact that the type (ii) is here much more rich than that of Theorem A. It is caused by the fact that besides the principal case, when an adapted orthonormal frame field can be fixed on M_{1}^{2} with flat ∇^{\perp} by means of h (the principal field), there exists an exceptional case when this cannot be done. (In the situation of Theorem A, type (ii), such an exceptional case is not possible; here M^{2} with flat ∇^{\perp} always carries a unique net of curvature lines.)

Consequently, the type (ii) of Theorem B can be divided into several subcases. For every subcase also the corresponding parallel time-like surfaces are determined, the semi-parallel M_{1}^{2} of these subcases are their 2 nd order envelopes, sometimes trivially. In particular, several parallel time-like surfaces with flat ∇^{\perp} lie minimally in their spacetime forms. On the other hand, all minimal semi-parallel time-like surfaces in $N_{1}^{n}(c)$ are found out. The results are formulated in two propositions of the last section.

Note that bcforc only some first steps were made in the classification of parallel and semiparallel time-like surfaces in Lorentzian spacetime forms, concerning the parallel surfaces of low codimensions; they were made in the course of the study of parallel submanifolds with signature $(1, n-1)$ in $N_{1}^{n}(c)$ (see [13], where some interesting examples are given; also [21,2]).

In the present paper a complete classification of all such surfaces is given. Among them the results on minimal surfaces can be of some interest for the geometrical string theory, important for the theoretical particle physics [6] and cosmology [22]. (Acknowledgement is given to Professor P. Kuusk, who indicated me these two excellent survey papers on strings.)

2. Adapted frame bundle

A frame bundle $O_{1}\left(N_{1}^{n}(c)\right)$ of the orthonormal frames $\left\{x, e_{I}\right\}$ in $N_{1}^{n}(c)(I, J$ etc. run $1, \ldots, n)$ is said to be reduced to a subbundle $O_{1}\left(M_{1}^{2}, N_{1}^{n}(c)\right)$ of frames, adapted to a time-like surface $M_{1}^{2} \subset N_{1}^{n}(c)$, if $e_{i} \in T_{x} M_{1}^{2}, e_{\alpha} \in T_{x}^{\perp} M_{1}^{2}(i, j$ etc. run 1,2 and α, β ctc. run $3, \ldots, n)$ so that $\left\langle e_{1}, e_{1}\right\rangle=-1,\left\langle e_{2}, e_{2}\right\rangle=1$; of course $\left\langle e_{1}, e_{2}\right\rangle=0,\left\langle e_{i}, e_{\alpha}\right\rangle=0,\left\langle e_{\alpha}, e_{\beta}\right\rangle=\delta_{\alpha \beta}$. In the general formulae for the frame bundle $O_{1}\left(N_{1}^{n}(c)\right)$,

$$
\begin{array}{ll}
d x=e_{I} \omega^{I}, & d e_{I}=-c x g_{I J} \omega^{J}+e_{J} \omega_{I}^{J},
\end{array} \quad g_{I J}=\left\langle e_{I}, e_{J}\right\rangle,
$$

(where the point x is identified with its radius vector in E_{1}^{n}, if $c=0$, or in E_{1}^{n+1}, if $c>0$, or in E_{2}^{n+1}, if $c<0$, in the last two cases having the origin in the centre of the standard model of $\left.N_{1}^{n}(c)\right)$ then $-g_{11}=g_{22}=1, g_{12}=0, g_{i \alpha}=0, g_{\alpha \beta}=\delta_{\alpha \beta}$, thus $\omega_{1}^{1}=0, \omega_{1}^{I}=\omega_{l}^{1}(I \neq 1)$, $\omega_{l}^{J}=-\omega_{J}^{I}(I \neq 1, J \neq 1)$, and for the frames of $O_{1}\left(M_{1}^{2}, N_{1}^{n}(c)\right)$

$$
\omega^{\alpha}=0
$$

This, after exterior differentiation, due to Cartan's lemma, gives $\omega_{i}^{\alpha}=h_{i j}^{\alpha} \omega^{j}$, where $h_{i j}^{\alpha}$, the components of the second fundamental form $h=e_{\alpha} h_{i j}^{\alpha} \omega^{i} \omega^{j}$, are symmetric with respect to i, j. Now a similar procedure leads to $\bar{\nabla} h_{i j}^{\alpha}=h_{i j k}^{\alpha} \omega^{k}$, where $\bar{\nabla} h_{i j}^{\alpha}=d h_{i j}^{\alpha}-h_{k j}^{\alpha} \omega_{i}^{k}-h_{i k}^{\alpha} \omega_{j}^{k}+h_{i j}^{\beta} \omega_{\beta}^{\alpha}$ are the components of the covariant differential $\bar{\nabla} h$ of h and $h_{i j k}^{\alpha}\left(=\bar{\nabla}_{k} h_{i j}^{\alpha}\right)$ are symmetric also
with respect to j, k (i.e., $\bar{\nabla}_{k} h_{i j}^{\alpha}=\bar{\nabla}_{j} h_{i k}^{\alpha}$, the Peterson-Codazzi identities). The same $h_{i j k}^{\alpha}$ are the components of the third fundamental form $\bar{\nabla} h=e_{\alpha} h_{i j k}^{\alpha} \omega^{i} \omega^{j} \omega^{k}$ of M_{1}^{2} in $N_{1}^{n}(c)$. The next step gives

$$
\begin{equation*}
\bar{\nabla} h_{i j k}^{\alpha} \wedge \omega^{k}=-h_{k j}^{\alpha} \Omega_{i}^{k}-h_{i k}^{\alpha} \Omega_{j}^{k}+h_{i j}^{\beta} \Omega_{\beta}^{\alpha}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{i}^{j}:=d \omega_{i}^{j}-\omega_{i}^{k} \wedge \omega_{k}^{j}=-c g_{i k} \omega^{k} \wedge \omega^{j}-g_{\alpha \beta} g^{j m} h_{i k}^{\alpha} h_{m l}^{\beta} \omega^{k} \wedge \omega^{l} \\
& \Omega_{\alpha}^{\beta}:=d \omega_{\alpha}^{\beta}-\omega_{\alpha}^{\gamma} \wedge \omega_{\gamma}^{\beta}=-g_{\alpha \gamma} g^{i j} h_{j k}^{\gamma} h_{i l}^{\beta} \omega^{k} \wedge \omega^{l}
\end{aligned}
$$

are the curvature 2-forms, respectively, of ∇ (with connection forms ω_{i}^{j}) and of ∇^{\perp} (with connection forms ω_{α}^{β}). Here the reduced coefficients at $\omega^{k} \wedge \omega^{l}$ are the components of the curvature tensors (operators) R and R^{\perp} of ∇ and ∇^{\perp}, respectively. Together they give the curvature operator $\bar{R}=R \oplus R^{\perp}$ of the van der Waerden-Bortolotti connection $\bar{\nabla}=\nabla \oplus \nabla^{\perp}$.

In particular, for a M_{1}^{2} in $N_{1}^{n}(c)$,

$$
\begin{align*}
& \Omega_{1}^{1}=\Omega_{2}^{2}=0, \quad \Omega_{1}^{2}=\Omega_{2}^{1}=\left[c-\left(\left\langle h_{11}, h_{22}\right\rangle-h_{12}^{2}\right)\right] \omega^{1} \wedge \omega^{2}, \tag{2.2}\\
& \Omega_{\alpha}^{\beta}=-\left[h_{12}^{\alpha}\left(h_{11}^{\beta}+h_{22}^{\beta}\right)-h_{12}^{\beta}\left(h_{11}^{\alpha}+h_{22}^{\alpha}\right)\right] \omega^{1} \wedge \omega^{2}, \tag{2.3}
\end{align*}
$$

where $h_{i j}=e_{\alpha} h_{i j}^{\alpha}$.
If $\Omega_{i}^{j}=0$ or $\Omega_{\alpha}^{\beta}=0$ or $\Omega_{i}^{j}=\Omega_{\alpha}^{\beta}=0$, the connections, ∇ or ∇^{\perp} or $\bar{\nabla}$, respectively, are said to be flat. Note that for a M_{1}^{2} in $N_{1}^{n}(c)$ the so called normal connection ∇^{\perp} is flat (i.e., M_{1}^{2} is normally flat) if and only if $h_{11}+h_{22}$ and h_{12} are collinear; it follows obviously from (2.3).

3. Reduction of adapted frame bundle

3.1. Transformation formulae. In the adapted frame bundle $O_{1}\left(M_{1}^{2}, N_{1}^{n}(c)\right)$ the tangent part $\left\{e_{1}, e_{2}\right\}$ of the frame at a point $x \in M_{1}^{2}$ transforms according to

$$
e_{1}^{\prime}=\varepsilon_{1}\left(e_{1} \cosh \varphi+e_{2} \sinh \varphi\right), \quad e_{2}^{\prime}=\varepsilon_{2}\left(e_{1} \sinh \varphi+e_{2} \cosh \varphi\right),
$$

where $\varepsilon_{1}^{2}=\varepsilon_{2}^{2}=1$. This leads to

$$
\omega^{1}=\varepsilon_{1}\left(\omega^{1^{\prime}} \cosh \varphi+\omega^{2^{\prime}} \sinh \varphi\right), \quad \omega^{2}=\varepsilon_{2}\left(\omega^{1^{\prime}} \sinh \varphi+\omega^{2^{\prime}} \cosh \varphi\right)
$$

and for $h=h_{i j} \omega^{i} \omega^{j}$

$$
\begin{aligned}
& h_{11}^{\prime}=h_{11} \cosh ^{2} \varphi+2 h_{12} \sinh \varphi \cosh \varphi+h_{22} \sinh ^{2} \varphi, \\
& h_{12}^{\prime}=\varepsilon_{1} \varepsilon_{2}\left[\left(h_{11}+h_{22}\right) \sinh \varphi \cosh \varphi+h_{12}\left(\cosh ^{2} \varphi+\sinh ^{2} \varphi\right)\right], \\
& h_{22}^{\prime}=h_{11} \sinh ^{2} \varphi+2 h_{12} \sinh \varphi \cosh \varphi+h_{22} \cosh ^{2} \varphi .
\end{aligned}
$$

Denoting $\frac{1}{2}\left(h_{11}+h_{22}\right)=A, h_{12}=B, \frac{1}{2}\left(-h_{11}+h_{22}\right)=H$ one has

$$
A^{\prime}=A \cosh 2 \varphi+B \sinh 2 \varphi, \quad B^{\prime}=\varepsilon_{1} \varepsilon_{2}(A \sinh 2 \varphi+B \cosh 2 \varphi), \quad H^{\prime}=H,
$$

thus the vector subspace of $T_{x}^{\perp} M_{1}^{2}$, spanned by A and B, is invariant and H is an invariant vector (the mean curvature vector of M_{1}^{2}). Further

$$
\left\langle A^{\prime}, B^{\prime}\right\rangle=\varepsilon_{1} \varepsilon_{2}\left[\langle A, B\rangle \cosh 4 \varphi+\frac{1}{2}\left(A^{2}+B^{2}\right) \sinh 4 \varphi\right] .
$$

Since $\operatorname{span}\{A, B\}$ lies in a Euclidean vector space, normal to M_{1}^{2} in $N_{1}^{n}(c)$, it holds $\langle A, B\rangle^{2} \leqslant$ $A^{2} \cdot B^{2}$. For any two real numbers a and b from $\left(a^{2}-b^{2}\right)^{2} \geqslant 0$ it follows $4 a^{2} b^{2} \leqslant\left(a^{2}+b^{2}\right)^{2}$, thus $\langle A, B\rangle^{2} \leqslant \frac{1}{4}\left(A^{2}+B^{2}\right)^{2}$. Here the equality is equivalent to $A=\varepsilon B, \varepsilon= \pm 1$. Indeed, it is trivial if $A=0$ or $B=0$ because then both parts of the equivalence give $A=B=0$. If $A \neq 0$, $B \neq 0$ then the equality (i.e., instead of \leqslant stands $=$) yields that for $\|A\|^{2} \cdot\|B\|^{-2}=\lambda$ there holds $\cos ^{2} \alpha=\frac{1}{4}\left(\lambda+\lambda^{-1}+2\right)$ and this gives that $\lambda^{2}-2\left(2 \cos ^{2} \alpha-1\right) \lambda+1=0$ has a real root; thus $\cos \alpha= \pm 1$ and $\lambda=1$. The converse is obvious.
3.2. Principal case. In general $A \neq \varepsilon B$ and there exists φ_{0} such that $\left\langle A^{\prime}, B^{\prime}\right\rangle=0$; this φ_{0} is a root of $\tanh ^{2} 4 \varphi=4\langle A, B\rangle^{2}\left(A^{2}+B^{2}\right)^{-2}<1$. The corresponding basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ is determined up to redirecting its vectors. Let this transformation be already done, i.e., let in the considered principal case further $\langle A, B\rangle=0$.

In general $A \nVdash B$ and $H \notin \operatorname{span}\{\Lambda, B\}$. (Here and further \nmid and $\|$ mcan, correspondingly, "non-collinear" and "collinear".) The first three basic vectors in $T_{x} M_{1}^{2}$ can be taken so that $A=\frac{1}{2}\left(h_{11}+h_{22}\right)=a e_{3}, B=h_{12}=b e_{4}, H=\frac{1}{2}\left(-h_{11}+h_{22}\right)=\alpha e_{3}+\beta e_{1}+\gamma e_{5}$, where $a>0, b>0$, and then

$$
\begin{equation*}
h_{11}=(a-\alpha) e_{3}-\beta e_{4}-\gamma e_{5}, \quad h_{12}=b e_{4}, \quad h_{22}=(a+\alpha) e_{3}+\beta e_{4}+\gamma e_{5} . \tag{3.1}
\end{equation*}
$$

The same with $\gamma=0$ holds if $A \nVdash B$ and $H \in \operatorname{span}\{A, B\}$.
If $A \| B, A \neq \varepsilon B$ then due to $\langle A, B\rangle=0$ either $A=\frac{1}{2}\left(h_{11}+h_{22}\right)=0, B \neq 0$ or $A \neq 0$. $B=h_{12}=0$.

In the first case, if $H \nVdash B$, then e_{3} and e_{4} can be taken so that $B=h_{12}=b e_{3}, H=$ $\frac{1}{2}\left(-h_{11}+h_{22}\right)=\beta e_{3}+\gamma e_{4}$ and thus

$$
\begin{equation*}
h_{11}=-\beta e_{3}-\gamma e_{4}, \quad h_{12}=b e_{3}, \quad h_{22}=\beta e_{3}+\gamma e_{4}, \quad b>0 \tag{3.2}
\end{equation*}
$$

this can be considered as a particular limit case of (3.1) for $a=\alpha=0$, if the indices of e_{3} and e_{4} are increased by 1 . The first case with $H \| B$ corresponds to $\gamma=0$.

In the second case, if $H \sharp A$ one can obtain $A=\frac{1}{2}\left(h_{11}+h_{22}\right)=a e_{3}, H=\alpha e_{3}+\gamma e_{4}$; this is a particular limit case of (3.1) for $a>0, b=\beta=0$, if e_{4} is replaced with e_{5}. The second case with $H \| A$ corresponds to $\gamma=0$.

Hence (3.1) includes all possibilities of this principal case $A \neq \varepsilon B$ (after some renumbering, if needed).
3.3. Exceptional case. This is a case when $A=\varepsilon B$ and thus $A^{\prime}=\varepsilon \varepsilon_{1} \varepsilon_{2} B^{\prime}$ for every φ. One can obtain $A^{\prime}=B^{\prime}$; let this be already done, i.e., let $A=B$.

If $A=B \neq 0$ and $H \nVdash B$, then e_{3} and e_{4} can be taken so that $H=\frac{1}{2}\left(-h_{11}+h_{22}\right)=\alpha e_{3}+\beta e_{4}$, $A=B=\frac{1}{2}\left(h_{11}+h_{22}\right)=h_{12}=b e_{4}, b>0$, thus

$$
\begin{equation*}
h_{11}=-\alpha e_{3}+(b-\beta) e_{4}, \quad h_{12}=b e_{4}, \quad h_{22}=\alpha e_{3}+(b+\beta) e_{4} . \tag{3.3}
\end{equation*}
$$

If $A=B \neq 0$ and $H \| B$ then here $\alpha=0$ (and it is suitable to replace e_{1} with e_{3}).
The subcase $A=B=0, H \neq 0$ can be included into (3.3) as a limit case by $b=\beta=0$ and the subcase $A=B=H=0$ into the latter by $\alpha=0$ (then $h_{i j}=0$).

4. Proof of Theorem B

4.1. Preliminaries. In the framework of Section 2 the condition $\bar{\nabla} h=0$ for the parallel surfaces M_{1}^{2} in $N_{1}^{n}(c)$ is $\bar{\nabla} h_{i j}^{\alpha}=0$, i.e., $h_{i j k}^{\alpha}=0$. From (2.1) it follows that then

$$
\begin{equation*}
h_{k j}^{\alpha} \Omega_{i}^{k}+h_{i k}^{\alpha} \Omega_{j}^{k}-h_{i j}^{\beta} \Omega_{\beta}^{\alpha}=0 . \tag{4.1}
\end{equation*}
$$

This characterizes the semi-parallel surfaces; its short operator form is $\bar{R} \cdot h=0$.
A trivial consequence is that a M_{1}^{2} in $N_{1}^{n}(c)$ with flat $\bar{\nabla}$ (i.e., with $\bar{R}=0$ or, equivalently, with $\Omega_{i}^{j}=\Omega_{\alpha}^{\beta}=0$) is semi-parallel.

Further let U be an open and dense part of M_{1}^{2}, so that on every its connected component one of the cases or subcases of the previous section holds identically. The following considerations are made on one of these components, denoted often simply by M_{1}^{2}.
4.2. Proof for principal case. In this case (3.1) yields

$$
\begin{array}{lll}
\omega_{1}^{3}=(a-\alpha) \omega^{1}, & \omega_{1}^{4}=-\beta \omega^{1}+b \omega^{2}, & \omega_{1}^{5}=-\gamma \omega^{1}, \\
\omega_{2}^{3}=(a+\alpha) \omega_{1}^{\varrho}, & \omega_{2}^{4}=b \omega^{1}+\beta \omega^{2}, & \omega_{2}^{5}=\gamma \omega^{2}, \tag{4.3}\\
\omega_{2}^{\varrho}=0
\end{array}
$$

$(\varrho, \sigma$ etc. run $6, \ldots, n)$. Hence in (2.2) and (2.3) $\Omega_{1}^{2}=\left(c-a^{2}+b^{2}+H^{2}\right) \omega^{1} \wedge \omega^{2}, H^{2}=$ $\alpha^{2}+\beta^{2}+\gamma^{2}, \Omega_{3}^{4}=-\Omega_{4}^{3}=2 a b \omega^{1} \wedge \omega^{2}$, all other Ω_{α}^{β} are zero, and semi-parallelity conditions (4.1) reduce to

$$
\begin{aligned}
& a b \beta=0 \\
& 2 a\left(c-a^{2}+2 b^{2}+H^{2}\right)=0 \\
& 2 b\left(c-2 a^{2}+b^{2}+a \alpha+H^{2}\right)=0 \\
& 2 b\left(c-2 a^{2}+b^{2}-a \alpha+H^{2}\right)=0
\end{aligned}
$$

The last two imply $a b \alpha=0$. Here $a b \neq 0$ is impossible because then $\alpha=\beta=0, c-a^{2}+$ $2 b^{2}+\gamma^{2}=c-2 a^{2}+b^{2}+\gamma^{2}=0$, but this leads to a contradiction $a^{2}+b^{2}=0$. If $a>0$, $b=0$ or $a=0, b>0$ then $\Omega_{1}^{2}=\Omega_{3}^{4}=0$, i.e., $\bar{\nabla}$ is flat.
4.3. Proof for exceptional case. Then (3.3) yields

$$
\begin{array}{lll}
\omega_{1}^{3}=-\alpha \omega^{1}, & \omega_{1}^{4}=(b-\beta) \omega^{1}+b \omega^{2}, & \omega_{1}^{\zeta}=0 \\
\omega_{2}^{3}=\alpha \omega^{2}, & \omega_{2}^{4}=b \omega^{1}+(b+\beta) \omega^{2}, & \omega_{2}^{\zeta}=0
\end{array}
$$

(ζ, η etc. run $5, \ldots, n$); hence $\Omega_{1}^{2}=\left(c+\alpha^{2}+\beta^{2}\right) \omega^{1} \wedge \omega^{2}, \Omega_{3}^{4}=0$, all other $\Omega_{\alpha}^{\beta}=0$, thus ∇^{\perp} is flat. Now (4.1) reduce to $b\left(c+\alpha^{2}+\beta^{2}\right)=0$.

If $b>0$, here $c+\alpha^{2}+\beta^{2}=0$ and ∇ is also flat, i.e., $\bar{\nabla}$ is flat.
In the limit case $b=0$ one can make $\beta=0$ and $h_{11}=-\alpha e_{3}, h_{22}=\alpha e_{3}, h_{12}=0$. By $\alpha \neq 0$ M_{1}^{2} is totally umbilic, by $\alpha=0$ totally geodesic.

All this proves Theorem B.

5. Existence and geometry of semi-parallel surfaces M_{1}^{2} in $N_{1}^{\boldsymbol{n}}(c)$

5.1. Type (i). Here $\omega_{1}^{3}=-\alpha \omega^{1}, \omega_{2}^{3}=\alpha \omega^{2}$, all other ω_{i}^{α} are zero.'By exterior differentiation one obtains $d \alpha \wedge \omega^{1}=d \alpha \wedge \omega^{2}=0$, thus $d \alpha=0$. If $\alpha \neq 0$, then for $y=x+e_{3} / \alpha$ it follows $d y=0$.

Let $c=0$. The point with radius vector y in E_{1}^{n} is fixed, as well as a E_{1}^{3}, spanned by this point and vectors e_{1}, e_{2}, e_{3}. Thus M_{1}^{2} is a sphere $S_{1}^{2}(r)$ with real radius $r=\alpha^{-1}$ in $E_{1}^{3} \subset E_{1}^{n}$, or its open part. In this case M_{1}^{2} is parallel, has nonflat ∇ with constant curvature and flat ∇^{\perp}, and if complete, it is an orbit of a 3-parametric group of isometries of E_{1}^{3} with a fixed point y. If $\alpha=0$ then M_{1}^{2} is a plane E_{1}^{2} or its part.

Let $c \neq 0$. The point with radius vector y in E_{1}^{n+1} or E_{2}^{n+1} is fixed, as well as E_{1}^{4} or E_{2}^{4}, spanned by this point and vectors x, e_{1}, e_{2}, e_{3}. This E_{1}^{4} or E_{2}^{4} intersects, correspondingly, $S_{1}^{n}(r)$ or $H_{l}^{n}(r)$, and similar conclusions as above can be made; the details are left to the reader.
5.2. Type (ii), principal case. Here the existence of semi-parallel non-parallel M_{1}^{2} will be established and then the corresponding parallel time-like surfaces found, whose 2 nd order envelope is M_{1}^{2}. For this purpose the compatibility of the Pfaff system (4.2), (4.3) is to be considered for two cases of Section 4.2. The results will be summarized below in Section 7.1, Proposition C.

Subcase ($i i_{1}$). Existence. Let $a=0, b>0$. Then it can be made $\alpha=0$ and $c+b^{2}+\beta^{2}+\gamma^{2}=0$; thus such an M_{1}^{2} can exist only for $c<0$, i.e., in a de Sitter space-time of the 2 nd kind $H_{1}^{n}(r)$ and is determined, due to (3.2), by the Pfaff system

$$
\begin{array}{lll}
\omega_{1}^{3}=-\beta \omega^{1}+b \omega^{2}, & \omega_{1}^{4}=-\gamma \omega^{1}, & \omega_{1}^{\zeta}=0 \\
\omega_{2}^{3}=b \omega^{1}+\beta \omega^{2}, & \omega_{2}^{4}=\gamma \omega^{2}, & \omega_{2}^{\zeta}=0
\end{array}
$$

(ζ, η etc. run $5, \ldots, n$). Exterior differentiation leads to

$$
\begin{aligned}
& \left(d \beta+2 b \omega_{1}^{2}-\gamma \omega_{3}^{4}\right) \wedge \omega^{1}-d b \wedge \omega^{2}=0 \\
& d b \wedge \omega^{1}+\left(d \beta-2 b \omega_{1}^{2}-\gamma \omega_{3}^{4}\right) \wedge \omega^{2}=0 \\
& \left(d \gamma+\beta \omega_{3}^{4}\right) \wedge \omega^{1}-b \omega_{3}^{4} \wedge \omega^{2}=0 \\
& b \omega_{3}^{4} \wedge \omega^{1}+\left(d \gamma+\beta \omega_{3}^{4}\right) \wedge \omega^{2}=0 \\
& \left(\beta \omega_{3}^{\zeta}+\gamma \omega_{4}^{\zeta}\right) \wedge \omega^{1}-b \omega_{3}^{5} \wedge \omega^{2}=0 \\
& b \omega_{3}^{\zeta} \wedge \omega^{1}+\left(\beta \omega_{3}^{\zeta}+\gamma \omega_{4}^{\zeta}\right) \wedge \omega^{2}=0
\end{aligned}
$$

where $d b=-b^{-1}(\beta d \beta+\gamma d \gamma)$. Due to Cartan's lemma

$$
\begin{aligned}
& d \beta+2 b \omega_{1}^{2}-\gamma \omega_{3}^{4}=S \omega^{1}+T \omega^{2} \\
& -d b=T \omega^{1}+U \omega^{2}, \\
& -d \beta+2 b \omega_{1}^{2}+\gamma \omega_{3}^{4}=U \omega^{1}+V \omega^{2} \\
& d \gamma+\beta \omega_{3}^{4}=P \omega^{1}+Q \omega^{2}, \quad \beta \omega_{3}^{\zeta}+\gamma \omega_{4}^{\zeta}=X^{\zeta} \omega^{1}+Y^{\zeta} \omega^{2} \\
& -b \omega_{3}^{4}=Q \omega^{1}-P \omega^{2}, \quad-b \omega_{3}^{\zeta}=Y^{\zeta} \omega^{1}-X^{\zeta} \omega^{2}
\end{aligned}
$$

The basis of left sides consists of $d \beta, d \gamma, \omega_{1}^{2}, \omega_{3}^{4}, \omega_{3}^{5}, \omega_{4}^{5}$, the rank s_{1} of the polar system is $4+2(n-4)=2(n-2)$. Among the 6 first coefficients on the right sides there exist 2 independent relations, which follow from the expression of $d b$, thus the number of all independent coefficients is the same $s_{1}=2(n-2)$. Cartan's criterion is satisfied, this Pfaff system is compatible and determines M_{1}^{2} in $H_{1}^{n}(r)$ with arbitrariness of $2(n-2)$ real functions of 1 argument.

Subcase ($i i_{1}$). Geometry. First consider the corresponding parallel time-like surface. Then the coefficients on the right hand side, as components of $h_{i j k}^{\alpha}$, are zero. The Pfaff system for this surface consists of the previous equations and of the new ones,

$$
d \beta=d \gamma=d b=\omega_{1}^{2}=\omega_{3}^{4}=\omega_{3}^{\zeta}=\omega_{4}^{\zeta}=0
$$

This extended system is completely integrable.
Since $d \omega^{1}=0, d \omega^{2}=0$, at least locally $\omega^{1}=d u^{1}, \omega^{2}=d u^{2}$ and for this parallel surface

$$
\begin{aligned}
& d x=e_{1} d u^{1}+e_{2} d u^{2} \\
& d e_{1}=\left(c x-\gamma e_{4}\right) d u^{1}+\left(-\beta d u^{1}+b d u^{2}\right) e_{3} \\
& d e_{2}=-\left(c x-\gamma e_{4}\right) d u^{2}+\left(b d u^{1}-\beta d u^{2}\right) e_{3} \\
& d\left(c x-\gamma e_{4}\right)=\left(c+\gamma^{2}\right) d x \\
& d e_{3}=\left(-\beta d u^{1}+b d u^{2}\right) e_{1}-\left(b d u^{1}+\beta d u^{2}\right) e_{2}
\end{aligned}
$$

It is seen that this surface lies in an E_{2}^{4} spanned by the point x and mutually orthogonal vectors $e_{1}, e_{2}, c x-\gamma e_{4}, e_{3}$, two of which are time-like, since $e_{1}^{2}=-1,\left(c x-\gamma e_{4}\right)^{2}=-\left(b^{2}+\beta^{2}\right)<0$, two others are space-like. The u^{1} - and u^{2}-lines are orthogonal geodesics of this surface.

The point $z \in E_{2}^{4}$ with radius vector $z=x-\left(c+\gamma^{2}\right)^{-1}\left(c x-\gamma e_{4}\right)$ is fixed for the surface, since $d z=0$. The distance between x and z is, due to $(x-z)^{2}=-\left(b^{2}+\beta^{2}\right)^{-1}$, an imaginary constant $\tilde{r}=i\left(b^{2}+\beta^{2}\right)^{-\frac{1}{2}}$. Hence this parallel surface belongs to an $H_{1}^{3}(\tilde{r}) \subset E_{2}^{4}$. Note, that in the formulae above $c x-\gamma e_{4}=\tilde{c} \tilde{x}$, where $\tilde{c}=\tilde{r}^{-2}$ and $\tilde{x}=x-z$. The asymptotic lines of the surface, with respect to the projective structure in $H_{1}^{3}(\tilde{r})$, are determined by $d u^{1}\left(-\beta d u^{1}+b d u^{2}\right)+$ $d u^{2}\left(b d u^{1}+\beta d u^{2}\right)=0$ or

$$
\left[\left(b-\sqrt{b^{2}+\beta^{2}}\right) d u^{1}+\beta d u^{2}\right]\left[\left(b+\sqrt{b^{2}+\beta^{2}}\right) d u^{1}+\beta d u^{2}\right]=0
$$

The tangent vectors of these lines are

$$
\tilde{e}_{1}=\beta e_{1}-\left(b-\sqrt{b^{2}+\beta^{2}}\right) e_{2}, \quad \tilde{e}_{2}=-\beta e_{1}+\left(b+\sqrt{b^{2}+\beta^{2}}\right) e_{2}
$$

and they are linearly independent iff $\beta \neq 0$. For these vectors

$$
\begin{aligned}
d \widetilde{e}_{1}=\widetilde{c} \tilde{x} & {\left[\beta d u^{1}+\left(b-\sqrt{b^{2}+\beta^{2}}\right) d u^{2}\right] } \\
& +e_{3} \sqrt{b^{2}+\beta^{2}}\left[\left(b-\sqrt{b^{2}+\beta^{2}}\right) d u^{1}+\beta d u^{2}\right] \\
d \widetilde{e}_{2}= & -\widetilde{c} \tilde{x}\left[\beta d u^{1}+\left(b+\sqrt{b^{2}+\beta^{2}}\right) d u^{2}\right] \\
& +e_{3} \sqrt{b^{2}+\beta^{2}}\left[\left(b+\sqrt{b^{2}+\beta^{2}}\right) d u^{1}+\beta d u^{2}\right]
\end{aligned}
$$

On the first line $d \widetilde{x}=\beta^{-1} \widetilde{e}_{1} d u^{1}, d \widetilde{e}_{1}=-\beta^{-1} \widetilde{e}_{1}^{2} \cdot \widetilde{c x} d u^{1}$, on the second line $d \tilde{x}=\beta^{-1} \widetilde{e}_{2} d u^{1}$, $d \widetilde{e}_{2}=-\beta^{-1} \widetilde{e}_{2}^{2} \cdot \tilde{c} \tilde{x} d u^{1}$, where $\tilde{e}_{1}^{2}=2 b\left(b-\sqrt{b^{2}+\beta^{2}}\right)<0, \tilde{e}_{2}^{2}=2 b\left(b+\sqrt{b^{2}+\beta^{2}}\right)>0$. It is seen that these asymptotic lines are geodesics of $H_{1}^{3}(\tilde{r})$, i.e., the straight lines of the projective structure of $H_{1}^{3}(\tilde{r})$; hence the considered parallel surface is projectively a quadric, but from the point of view of the metric in $H_{1}^{3}(\tilde{r})$ it is an orbit of a 2-parametric subgroup of isometries of $H_{1}^{3}(\tilde{r})$.

The limit case, when $\beta=0$ and the parallel surface in $H_{1}^{3}(\tilde{r})$ is a minimal surface of $H_{1}^{3}(\tilde{r})$, is considered further in Section 6.

Independently from β the semi-parallel M_{1}^{2} in $H_{1}^{n}(r)$ of the subcase (ii ${ }_{1}$) is a 2 nd order envelope of these parallel surfaces.

Subcase (iii2). Existence. Let $a>0, b=0$. Then it can be made $\beta=0$ and $c-a^{2}+\alpha^{2}+\gamma^{2}=0$. This semi-parallel M_{1}^{2} can exist in $N_{1}^{n}(c)$ by every value of c and is determined by the Pfaff system

$$
\begin{array}{lll}
\omega_{1}^{3}=(a-\alpha) \omega^{1}, & \omega_{1}^{4}=-\gamma \omega^{1}, & \omega_{1}^{\zeta}=0 \\
\omega_{2}^{3}=(a+\alpha) \omega^{2}, & \omega_{2}^{4}=\gamma \omega^{2}, & \omega_{2}^{\zeta}=0
\end{array}
$$

Similar differential prolongation as above leads to

$$
\begin{array}{ll}
d(a-\alpha)+\gamma \omega_{3}^{4}=S \omega^{1}+T \omega^{2}, & \\
-2 a \omega_{1}^{2}=T \omega^{1}+U \omega^{2}, & \\
d(a+\alpha)-\gamma \omega_{3}^{4}=U \omega^{1}+V \omega^{2}, & \\
d \gamma-(a-\alpha) \omega_{3}^{4}=P \omega^{1}, & d \gamma+(a+\alpha) \omega_{3}^{4}=Q \omega^{2}, \\
(a-\alpha) \omega_{3}^{\zeta}-\gamma \omega_{4}^{\zeta}=X^{\zeta} \omega^{1}, & (a+\alpha) \omega_{3}^{\zeta}+\gamma \omega_{4}^{\zeta}=Y^{\zeta} \omega^{2}
\end{array}
$$

and the result is the same: M_{1}^{2} in $N_{1}^{n}(c)$ exists with the arbitrariness of $2(n-2)$ real functions of one argument.

Subcase (i_{2}). Geometry. For the corresponding parallel surface the equations $d a=d \alpha=$ $d \gamma=\omega_{1}^{2}=\omega_{3}^{4}=\omega_{3}^{\zeta}=\omega_{4}^{\zeta}=0$ are to be added. The extended system is completely integrable and yields

$$
\begin{array}{ll}
d x=e_{1} d u^{1}+e_{2} d u^{2} \\
d e_{1}=\left[a e_{3}+(c x-H)\right] d u^{1}, & d\left[a e_{3}+(c x-H)\right]=2 a(a-\alpha) e_{1} d u^{1} \\
d e_{2}=\left[a e_{3}-(c x-H)\right] d u^{2}, & d\left[a e_{3}-(c x-H)\right]=-2 a(a+\alpha) e_{2} d u^{2}
\end{array}
$$

The vectors in square brackets are orthogonal due to $a^{2}-\left(c+H^{2}\right)=0$, thus in general this parallel surface lies in a $E_{1}^{4}, E_{1,1}^{4}$ or E_{2}^{4}, spanned by x and the mutually orthogonal vectors e_{1}, e_{2}, $e_{3}, c x-\gamma e_{4}$, and in the case of E_{1}^{4} or E_{2}^{4} is a product of two plane lines of constant curvature. Here $\left(c x-\gamma e_{4}\right)^{2}=c+\gamma^{2}=\alpha^{2}-a^{2}$ can be positive, zero or negative and $d\left(c x-\gamma e_{4}\right)=\left(c+\gamma^{2}\right) d x$.

If $c+\gamma^{2} \neq 0$, the point z with radius vector $z=x-\left(c+\gamma^{2}\right)^{-1}\left(c x-\gamma e_{4}\right)$ in E_{1}^{4} or E_{2}^{4} is a fixed point, since $d z=0$. The distance between x and z, is due to $(x-z)^{2}=\left(c+\gamma^{2}\right)^{-1}$, a constant \tilde{r}, real for E_{1}^{4} and imaginary for E_{2}^{4}. Hence this parallel surface belongs to an $S_{1}^{3}(\widetilde{r}) \subset E_{1}^{4}$ or an $H_{1}^{3}(\tilde{r}) \subset E_{2}^{4}$.

If $c+\gamma^{2}=0$ then $\alpha^{2}=a^{2}$ and $d\left(c x-\gamma e_{4}\right)=0$. Let, for example $\alpha=a$; then $d e_{1}=$ $\left(c x-\gamma e_{4}\right) d u^{1}, d e_{2}=\left[-\left(c x-\gamma e_{4}\right)+2 a e_{3}\right] d u^{2}$. The lines $u^{2}=\mathrm{const}$ on the parallel surface
have $d x / d u^{1}=e_{1}, d^{2} x /\left(d u^{1}\right)^{2}=k_{1}=$ const $\left(=c x-\gamma e_{4}\right)$, thus $x=\frac{1}{2} k_{1}\left(u^{1}\right)^{2}+k_{2} u^{1}+k_{3}$ and they are congruent parabolas which differ only by translations: The lines $u^{1}=\mathrm{const}$ are due to $d\left[-\left(c x-\gamma e_{4}\right)+2 a e_{3}\right]=-4 a^{2} e_{2} d u^{2}$ the congruent circles of the curvature $2 a$ on the parallel planes E^{2}, spanned by x, e_{2} and $-\left(c x-\gamma e_{4}\right)+2 a e_{3}$. Hence the parallel surface is a translation surface of a parabola on $E_{1,1}^{2}$ and a circle on E^{2} with totally orthogonal $E_{1,1}^{2}$ and E^{2} in $E_{1,1}^{4}$.

The semi-parallel M_{1}^{2} of this subcase (ii_{2}) is a 2 nd order envelope of these parallel product- or translation surfaces. Its h is diagonalizable, thus it has a set of curvature lines, enveloped by the generating plane lines of these parallel surfaces.
5.3. Type (ii), exceptional case. This is the case of Section 4.3 for $b \neq 0, c+\alpha^{2}+\beta^{2}=0$. The corresponding M_{1}^{2} can exist only if $c \leqslant 0$, i.e., $S_{1}^{n}(r)$ is excluded.

The Pfaff system in Section 4.3 gives, after exterior differentiation and some rearrangement,

$$
\begin{aligned}
& \left(d \alpha-\beta \omega_{3}^{4}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0 \\
& \left(d \beta+\alpha \omega_{3}^{4}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0 \\
& \left(d \alpha-\beta \omega_{3}^{4}\right) \wedge\left(\omega^{1}-\omega^{2}\right)+2 b \omega_{3}^{4} \wedge\left(\omega^{1}+\omega^{2}\right)=0 \\
& \left(d \beta+\alpha \omega_{3}^{4}\right) \wedge\left(\omega^{1}-\omega^{2}\right)-2\left(d b-2 b \omega_{1}^{2}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0 \\
& \left(\alpha \omega_{3}^{5}+\beta \omega_{4}^{5}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0 \\
& \left(\alpha \omega_{3}^{\zeta}+\beta \omega_{4}^{5}\right) \wedge\left(\omega^{1}-\omega^{2}\right)-2 b \omega_{4}^{\zeta} \wedge\left(\omega^{1}+\omega^{2}\right)=0
\end{aligned}
$$

where $\alpha\left(d \alpha-\beta \omega_{3}^{4}\right)+\beta\left(d \beta+\alpha \omega_{3}^{4}\right)=0$, due to $c+\alpha^{2}+\beta^{2}=0$.
Subcase (iiz). Existence. Let $\alpha \beta \neq 0$. Then $c<0$. The basic forms are $\stackrel{*}{\omega}^{1}=\omega^{1}+\omega^{2}$, $\stackrel{*}{\omega}^{2}=\omega^{1}-\omega^{2}$ and a basis of secondary forms consists of $d \alpha, \omega_{3}^{4}, d b-2 b \omega_{1}^{2}, \omega_{3}^{\zeta}$ and ω_{4}^{ζ}. The rank of the polar system is $s_{1}=3+2(n-4)=2 n-5$. Due to the Cartan's lemma

$$
\begin{aligned}
& d \alpha-\beta \omega_{3}^{4}=P \stackrel{*}{\omega}^{1} \\
& 2 b \omega_{3}^{4}=Q \stackrel{*}{\omega}{ }^{1}+P \stackrel{*}{\omega}^{2} \\
& 2 \beta\left(d b-2 b \omega_{1}^{2}\right)=S \stackrel{*}{\omega}^{1}+\alpha P \stackrel{*}{\omega}^{2} \\
& \alpha \omega_{3}^{\zeta}+\beta \omega_{4}^{\zeta}=X^{\zeta} \stackrel{*}{\omega}^{1} \\
& 2 b \omega_{4}^{\zeta}=Y^{\zeta} \stackrel{*}{\omega}^{1}-X^{\zeta} \stackrel{*}{\omega}^{2}
\end{aligned}
$$

The number of independent coefficients on the right hand sides is the same $2 n-5$. Cartan's criterion is satisfied, this Pfaff system is compatible and determines the considered M_{1}^{2} in $H_{1}^{n}(r)$ with arbitrariness of $2 n-5$ real functions of 1 argument.

Subcase (ii ${ }_{3}$). Geometry. Due to the system of Section 4.3 for M_{1}^{2}

$$
\begin{aligned}
d x & =e_{1} \omega^{1}+e_{2} \omega^{2} \\
d e_{1} & =c x \omega^{1}+e_{2} \omega_{1}^{2}-\alpha e_{3} \omega^{1}+e_{4}\left[(b-\beta) \omega^{1}+b \omega^{2}\right] \\
d e_{2} & =-c x \omega^{2}+e_{1} \omega_{1}^{2}+\alpha e_{3} \omega^{2}+e_{4}\left[b \omega^{1}+(b+\beta) \omega^{2}\right]
\end{aligned}
$$

thus the lines with $\omega^{2}=-\omega^{1}$ on M_{1}^{2} are light-like straight lines, because for them $d x=$ $\left(e_{1}-e_{2}\right) \omega^{1}, d\left(e_{1}-e_{2}\right)=-\left(e_{1}-e_{2}\right) \omega_{1}^{2},\left(e_{1}-e_{2}\right)^{2}=0$. Hence M_{1}^{2} is a ruled surface with
light-like generators in E_{2}^{n+1} and lies in $H_{1}^{n}(r) \subset E_{2}^{n+1}$. For the corresponding parallel surface the following equations are to be added:

$$
d \alpha=d \beta=\omega_{3}^{4}=d b-2 b \omega_{1}^{2}=\omega_{3}^{\zeta}=\omega_{4}^{\zeta}=0
$$

So the extended system is completely integrable.
This parallel surface belongs to E_{2}^{4} spanned by x and mutually orthogonal vectors e_{1}, e_{2}. $c x-\alpha e_{3}, e_{4}$ with $e_{1}^{2}=-1, e_{2}^{2}=e_{4}^{2}=1,\left(c s-\alpha e_{3}\right)^{2}=c+\alpha^{2}=-\beta^{2}<0$. Moreover, $d\left(c x-\alpha e_{3}\right)=\left(c+\alpha^{2}\right) d x=-\beta^{2} d x$.

The point z with radius vector $z=x+\beta^{-2}\left(c x-\alpha e_{3}\right)$ is a fixed point for this parallel surface in the constant imaginary distance $i|\beta|^{-1}$ from x. Hence the surface lies on $H_{1}^{3}(\bar{r})$.

Its asymptotic lines with respect to the projective structure in $H_{1}^{3}(\bar{r})$ are determined by $h_{i j} \omega^{i} \omega^{j}=0$, i.e., by

$$
\left(\omega^{1}+\omega^{2}\right)\left[(b-\beta) \omega^{1}+(b+\beta) \omega^{2}\right]=0
$$

One family consists of light-like straight lines, considered above. A line of the other family has the tangent vector $(b+\beta) e_{1}-(b-\beta) e_{2}$ with scalar square $-2 \beta b$ and with

$$
d\left[(b+\beta) e_{1}-(b-\beta) e_{2}\right]=-\beta^{2}(x-z) \theta+\left[(b+\beta) e_{1}-(b-\beta) e_{2}\right] \omega_{1}^{2}
$$

hence these lines are geodesics of $H_{1}^{3}(\bar{r})$, i.e., the straight lines of the projective structure of $H_{1}^{3}(\bar{r})$, and the considered parallel surface is projectively a quadric.

The semi-parallel M_{1}^{2} in E_{1}^{n} or $H_{1}^{n}(r)$ of the subcase (ii ${ }_{3}$) is a 2 nd order envelope of these parallel surfaces.

Subcase (ii4). Let $\alpha=0, \beta \neq 0$. Then $c+\alpha^{2}+\beta^{2}=0$ gives $\beta^{2}=-c=$ const. In (3.3) there is suitable to replace e_{4} by e_{3} and thus the corresponding Pfaff system is

$$
\begin{array}{ll}
\omega_{1}^{3}=(b-\beta) \omega^{1}+b \omega^{2}, & \omega_{1}^{\zeta}=0, \\
\omega_{2}^{3}=b \omega^{1}+(b+\beta) \omega^{2}, & \omega_{2}^{\zeta}=0,
\end{array}
$$

(ζ runs $4, \ldots, n$). Exterior differentiation gives now

$$
\left(d b-2 b \omega_{1}^{2}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0, \quad \omega_{3}^{\zeta} \wedge \omega_{1}^{3}=0, \quad \omega_{3}^{\zeta} \wedge \omega_{2}^{3}=0
$$

hence $d b-2 b \omega_{1}^{2}=P\left(\omega^{1}+\omega^{2}\right), \omega_{3}^{\zeta}=0$, because ω_{1}^{3} and ω_{2}^{3} are linearly independent since $(b-\beta)(b+\beta)-b^{2}=-\beta^{2} \neq 0$. The next step gives $\left(d P-3 P \omega_{1}^{2}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0$. All this shows that in this subcase the semi-parallel surfaces M_{1}^{2} with flat $\bar{\nabla}$ exist with arbitrariness of 1 real function of 1 argument and every of them lies in an $H_{1}^{3}(r) \subset E_{2}^{4}$, where E_{2}^{4} is spanned by the point x and vectors $e_{1}, e_{2}, c x, e_{3}$.

The geometry of the corresponding parallel surface is the same as for the parallel surface of the subcase (ii_{3}).

The semi-parallel M_{1}^{2} of subcase (ii ${ }_{4}$) in $H_{1}^{3}(r)$ is a 2 nd order envelope of the parallel quadrics, every of which has two families of straight generators, one of them consisting of light-like straight lines. This M_{1}^{2}, like in the case ($\mathrm{ii} \mathrm{i}_{3}$), is a ruled surface with light-like generators.

Subcase (ii5). Existence. Let $\alpha \neq 0, \beta=0$. Then $c+\alpha^{2}=0$, thus $c=-\alpha^{2}<0$ and $d \alpha=0$. The system in Section 4.3 reduces to $\omega_{1}^{3}=-\alpha \omega^{1}, \omega_{2}^{3}=\alpha \omega^{2}, \omega_{1}^{4}=\omega_{2}^{4}=b\left(\omega^{1}+\omega^{2}\right)$ and after
exterior differentiation gives

$$
\begin{array}{ll}
\omega_{3}^{4} \wedge \stackrel{*}{\omega}^{1}=0, & 2\left(d b-2 b \omega_{1}^{2}\right) \wedge \stackrel{*}{\omega}^{1}-\alpha \omega_{3}^{4} \wedge \stackrel{*}{\omega}^{2}=0 \\
\omega_{3}^{\zeta} \wedge \stackrel{*}{\omega}^{1}=0, & 2 b \omega_{4}^{\zeta} \wedge \stackrel{*}{\omega}^{1}-\alpha \omega_{3}^{\zeta} \wedge \stackrel{*}{\omega}^{2}=0
\end{array}
$$

where $\stackrel{*}{\omega}^{1}=\omega^{1}+\omega^{2}, \stackrel{*}{\omega}^{2}=\omega^{1}-\omega^{2}$. A basis of secondary forms consists of $\omega_{3}^{4}, d b-2 b \omega_{1}^{2}$, ω_{3}^{ζ} and ω_{4}^{ζ} and the rank of the polar system is $s_{1}=2+2(n-4)=2(n-3)$. Due to Cartan's lemma $\omega_{3}^{4}=Q \stackrel{*}{\omega}^{1}, 2\left(d b-2 b \omega_{1}^{2}\right)=U \stackrel{*}{\omega}^{1}-\alpha Q \stackrel{*}{\omega}^{2}, \alpha \omega_{3}^{\zeta}=X^{\zeta} \stackrel{*}{\omega}^{1}, 2 b \omega_{4}^{\zeta}=Y^{\zeta} \stackrel{*}{\omega}^{1}-X^{\zeta} \stackrel{*}{\omega}^{2}$; here the number of coefficients is the same $2(n-3)$. The considered M_{1}^{2} in $H_{1}^{n}(r)$ exists with the arbitrariness of $2(n-3)$ real functions of 1 argument.

Subcase (iij). Geometry. Here the first part is the same as in subcase (ii_{3}). The one difference is that now among the mutually orthogonal vectors $e_{1}, e_{2}, e_{4}, c x-\alpha e_{3}$ the latter is light-like. Thus the corresponding parallel surface lies is a semi-euclidean space $E_{1,1}^{4}$ and for it $d\left(c x-\alpha e_{3}\right)=0$.

This parallel surface is a ruled surface with light-like generators, which is an algebraic surface of $E_{1,1}^{4}$ (see below Section 7, Remark 1) but not a quadric.

The semi-parallel M_{1}^{2} of the considered subcase (ii5) is a 2 nd order envelope of these algebraic ruled parallel surfaces and is a ruled surface in $H_{1}^{n}(r)$ with light-like generators.

6. Minimal semi-parallel M_{1}^{2} in $N_{1}^{n}(c)$

6.1. Exceptional case. Let here M_{1}^{2} be of type (i); then it is minimal iff this M_{1}^{2} is a totally geodesic surface.

For type (ii) in exceptional case one more subcase (ii ${ }_{6}$) is to be considered, when $\alpha=\beta=0$ and thus $c=0$, i.e., when M_{1}^{2} is a minimal surface of E_{1}^{n}. Then the Pfaff system is the same as by (ii $)$, but with $\beta=0$, i.e., now $\omega_{1}^{3}=\omega_{2}^{3}=b\left(\omega^{1}+\omega^{2}\right), \omega_{1}^{\zeta}=\omega_{2}^{\zeta}=0$. After exterior differentiation it gives

$$
\left(d b-2 b \omega_{1}^{2}\right) \wedge\left(\omega^{1}+\omega^{2}\right)=0, \quad \omega_{3}^{\zeta} \wedge\left(\omega^{1}+\omega^{2}\right)=0 .
$$

This minimal M_{1}^{2} in E_{1}^{n} exists with arbitrariness of $n-2$ real functions of 1 argument. For this M_{1}^{2}

$$
\begin{array}{ll}
d x=e_{1} \omega^{1}+e_{2} \omega^{2}, & d e_{1}=e_{2} \omega_{1}^{2}+b e_{3}\left(\omega^{1}+\omega^{2}\right) \\
d e_{2}=e_{1} \omega_{1}^{2}+b e_{3}\left(\omega^{1}+\omega^{2}\right), & d e_{3}=b\left(e_{1}-e_{2}\right)\left(\omega^{1}+\omega^{2}\right)
\end{array}
$$

thus $d\left(e_{1}-e_{2}\right)=-\left(e_{1}-e_{2}\right) \omega_{1}^{2}$. It follows, that this minimal M_{1}^{2} in E_{1}^{n} is a cylinder with light-like generators in the direction of $e_{1}-e_{2}$.

Here, recall, $\Omega_{1}^{2}=0$, i.e., $d \omega_{1}^{2}=0$. Hence at least locally $\omega_{1}^{2}=d \lambda$ on this M_{1}^{2}. Further, $d\left(e^{\lambda} \stackrel{*}{\omega}^{1}\right)=0, d\left(e^{-\lambda} \stackrel{*}{\omega}^{2}\right)=0$, where $\stackrel{*}{\omega}^{1}=\omega^{1}+\omega^{2}, \stackrel{*}{\omega}^{2}=\omega^{1}-\omega^{2}$ and at least locally $e^{\lambda} \stackrel{*}{\omega}^{1}=d u, e^{-\lambda} \stackrel{*}{\omega}^{2}=d v$. Denoting $\frac{1}{2} e^{-\lambda}\left(e_{1}+e_{2}\right)=e_{1}^{*}, \frac{1}{2} e^{\lambda}\left(e_{1}-e_{2}\right)=e_{2}^{*}$, one obtains

$$
d x=e_{1}^{*} d u+e_{2}^{*} d v, \quad d e_{1}^{*}=b_{0} e_{3} d u, \quad d e_{2}^{*}=0
$$

where $b_{0}=e^{-2 \lambda} b$. It is seen that v-lines are the light-like generators of this cylinder M_{1}^{2}, but u-lines are its light-like geodesics.

For the corresponding parallel surface $d b-2 b \omega_{1}^{2}=0, \omega_{3}^{\zeta}=0$. Thus this surface lies in a E_{1}^{3} and on it $d b_{0}=0$. The system above can be now integrated. Namely, $e_{2}^{*}=\partial x / \partial v$ is a constant
vector p_{0}, thus $x=p_{0} v+q(u)$. Further, $e_{1}^{*}=\partial x / \partial u=\dot{q}$ and $\ddot{q}=\partial e_{1}^{*} / \partial u=b_{0} e_{3}$. Since now $d e_{3}=2 b_{0} p_{0} d u$, so $\dddot{q}=2 b_{0}^{2} p_{0}$ and $q=\frac{1}{3} b_{0}^{2} p_{0} u^{3}+\frac{1}{2} p_{1} u^{2}+p_{2} u+p_{3}$. Consequently

$$
x=p_{0}\left(v+\frac{1}{3} b_{0} u^{3}\right)+\frac{1}{2} p_{1} u^{2}+p_{2} u+p_{3}
$$

The line, determined by $v+\frac{1}{3} b_{0} u^{3}=0$ on this minimal parallel cylinder, is a parabola. Thus this cylinder with light-like generators in E_{1}^{3} is errected on a parabola.

The minimal semi-symmetric cylindrical M_{1}^{2} of this subcase (iii) is a 2 nd order envelope of these parabolic cylinders.
6.2. Principal case. Here two subcases (ii_{1}) and (ii_{2}) are to be considered. It turns out that in both these subcases minimal scmi-parallel M_{1}^{2} in $N_{1}^{n}(c)$ exist and are parallel surfaces in $H_{1}^{3}(r)$ and $S_{1}^{3}(r)$, respectively.

For the subcase (ii) the condition $H=0$ implies $\beta=\gamma=0, b=\sqrt{-c}$ and then $T=U=$ $P=Q=X^{\zeta}=Y^{\zeta}=0$. The first two give $2 b \omega_{1}^{2}=S \omega^{1}=V \omega^{2}$, thus $\omega_{1}^{2}=0$; the other yield $\omega_{3}^{4}=\omega_{3}^{\zeta}=0$. As the result $d x=e_{1} \omega^{1}+e_{2} \omega^{2}, d e_{1}=c x \omega^{1}+b e_{3} \omega^{2}, d e_{2}=-c x \omega^{2}+b e_{3} \omega^{1}$, $d e_{3}=b\left(e_{1} \omega^{2}-e_{2} \omega^{1}\right)$. Due to $b^{2}=-c$ this Pfaff system is completely integrable and determines, up to congruence, a minimal parallel M_{1}^{2} in $H_{1}^{3}(r)$. This M_{1}^{2} is an orbit of the group $O(2) \times O^{1}(2)$ and carries an orthogonal net of geodesic lines of $H_{1}^{3}(r)$ (i.e., straight lines in the inner geometry of $H_{1}^{3}(r)$; one family is determined by $\omega^{2}=0$, the other by $\omega^{1}=0$). Hence M_{1}^{2} is a quadric.

This is the particular case of (ii $)$, namely the case of the parallel surface with $\beta=0$ (see Section 5, Subcase (ii_{1}), Geometry).

For the subcase (ii ${ }_{2}$) the condition $H=0$ implies $\alpha=\gamma=0, a=\sqrt{c}$ and then $S=$ $T=U=V=0$, thus $\omega_{1}^{2}=0$; further $a \omega_{3}^{4}=-P \omega^{1}=Q \omega^{2}, a \omega_{3}^{\zeta}=X^{\zeta} \omega^{1}=Y^{\zeta} \omega^{2}$, hence $P=Q=X^{\zeta}=Y^{\zeta}=0$ and $\omega_{3}^{4}=\omega_{3}^{\zeta}=0$. As a result $d x=e_{1} \omega^{1}+e_{2} \omega^{2}, d e_{1}=c x \omega^{1}+a e_{3} \omega^{1}$, $d e_{2}=-c x \omega^{2}+a e_{3} \omega^{2}, d e_{3}=a\left(e_{1} \omega^{1}-e_{2} \omega^{2}\right)$. Due to $a^{2}=c$ this Pfaff system is completely integrable and determines, up to congruence, a minimal parallel M_{1}^{2} in $S_{1}^{3}(r)$. This M_{1}^{2} is an orbit of the group $O^{1}(2) \times O(2)$ and carries an orthogonal net of its geodesic curvature lines, which in the inner geometry of $S_{1}^{3}(r)$ are the plane lines of constant curvature; one family is determined by $\omega^{2}=0$, the other by $\omega^{1}=0$.

7. Propositions and concluding remarks

7.1. Surfaces with flat $\bar{\nabla}$. The results of Section 5, concerning the non-minimal surfaces M_{1}^{2} of Theorem B, type (ii), i.e., non-minimal surfaces M_{1}^{2} with flat $\bar{\nabla}$ in $N_{1}^{n}(c)$, can be summarized now as follows.

Proposition C. Let M_{1}^{2} be a non-minimal time-like surface with flat $\bar{\nabla}$ in a Lorentzian spacetime form $N_{1}^{n}(c)$. There exists an open and dense part U of M_{1}^{2} such that every connected component of U is of one of the following types.
(ii ${ }_{1}$) A 2nd order envelope in $H_{1}^{n}(r)$ of parallel surfaces, every of which is projectively a ruled quadric in some $H_{1}^{3}(\tilde{r})$, whose one family of generators consists of time-like, the other of space-like geodesics of $H_{1}^{3}(\tilde{r})$.
(iii $)^{\prime}$ A 2nd order envelope in E_{1}^{n} or $S_{1}^{n}(r)$ of parallel surfaces, every of which lies in a $S_{1}^{3}(\widetilde{r}) \subset$ E_{1}^{4} and is in E_{1}^{4} a product of two plane lines of constant curvature, one time- and the other
space-like (i.e., the latter is a circle in a E^{2}).
$\left(\mathrm{ii}_{2}\right)^{\prime \prime}$ A 2 nd order envelope in $H_{1}^{n}(r)$ of parallel surfaces, every of which either lies in a $S_{1}^{3}(\tilde{r}) \subset E_{1}^{4}$ or in a $H_{1}^{3}(\tilde{r}) \subset E_{2}^{4}$ and is in E_{1}^{4} or E_{2}^{4} a product of two plane lines of constant curvature, one time- and other space-like, or lies in a $E_{1,1}^{4}$ and is a translation surface of a timelike parabola with light-like diameters on a plane $E_{1,1}^{2}$ and of a circle on a plane E^{2}, orthogonal to this $E_{1,1}^{2}$.
(ii ${ }_{3}$) \& (ii i_{4}) A 2 nd order envelope in $H_{1}^{n}(r)$ of parallel surfaces, every of which is projectively a ruled quadric in some $H_{1}^{3}(\tilde{r})$, whose one family of generators consists of light-like, the other of time- or space-like geodesics of $H_{1}^{3}(\vec{r})$. This envelope is a part of a ruled surface with light-like generators (straight lines of E_{2}^{n+1}, lying in $H_{1}^{n}(r)$).
(ii5) A 2 nd order envelope in $H_{1}^{n}(r)$ of parallel surfaces, every of which lies in a $E_{1,1}^{4}$ and is a certain ruled algebraic non-quadric surface with light-like generators (see Remark 1 below). This envelope is a part of a ruled surface with generating light-like straight lines of E_{2}^{n+1}.

Remark 1. Note that Theorem B, type (i), and Proposition C together list also all cases for semiparallel time-like surfaces in Lorentzian space forms $N_{1}^{n}(c)$, except the minimal ones, considered separately in Section 6. Some of them (e.g., lying in $E_{1,1}^{4}$) were determined previously in [13].

The only assertion, which is not proved above, concerns the parallel surface of the last subcase (ii5). It remains to show that it is an algebraic non-quadric surface and to determine this surface. This can be done if to integrate the system of the corresponding derivation equations, which in notation of Section 6.1 is as follows (see the system of these equations of subcase (i_{1}), where now $\alpha^{2}=-c=$ const, $\beta=0$ and for a parallel surface $b_{0}=e^{-2 \lambda} b=$ const):

$$
\begin{array}{ll}
d x=e_{1}^{*} d u+e_{2}^{*} d v, & d\left(c x-\alpha e_{3}\right)=0 \\
d e_{1}^{*}=\frac{1}{2}\left(c x-\alpha e_{3}\right) d v+b_{0} e_{4} d u, & d e_{2}^{*}=\frac{1}{2}\left(c x-\alpha e_{3}\right) d u \\
d e_{4}=2 b_{0} e_{2}^{*} d u . &
\end{array}
$$

It follows that $e_{2}^{*}=\partial x / \partial v$ and $\partial e_{2}^{*} / \partial v=0$; thus $\partial x / \partial v=y(u)$ and $x=y(u) v+z(u)$. Further, $\partial e_{2}^{*} / \partial u=\frac{1}{2}\left(c x-\alpha e_{3}\right)$ and so $\partial^{2} e_{2}^{*} / \partial u \partial u=0$. This gives $\ddot{y}=0$, consequently $y=p_{1} u+p_{2}$, where p_{1} and p_{2} are some constant vectors of E_{2}^{n+1}. Similarly, $e_{1}^{*}=\partial x / \partial u, \partial e_{1}^{*} / \partial u=b_{0} e_{4}$, $\partial^{2} e_{1}^{*} / \partial u \partial u=2 b_{0}^{2} y$, hence $\ddot{z}=2 b_{0}^{2}\left(p_{1} u+p_{2}\right)$ and so

$$
x=\left(p_{1} u+p_{2}\right) v+2 b_{0}^{2}\left(\frac{1}{24} p_{1} u^{4}+\frac{1}{6} p_{2} u^{3}+\frac{1}{2} p_{3} u^{2}+p_{4} u+p_{5}\right)
$$

where p_{3}, p_{4} and p_{5} are some new constant vectors.
Here the surface is contained in $H_{1}^{n}(r)$, thus $\langle x, x\rangle=c^{-1}$ is satisfied identically with respect to u and v. This yields that the matrix of $\left\langle p_{\varphi}, p_{\psi}\right\rangle$ (φ and ψ run $1, \ldots, 5$), is

$$
\left(\begin{array}{rrrrr}
0 & 0 & 0 & 0 & \varkappa \\
0 & 0 & 0 & -\varkappa & 0 \\
0 & 0 & \varkappa & 0 & 0 \\
0 & \varkappa & 0 & 0 & 0 \\
\varkappa & 0 & 0 & 0 & k
\end{array}\right),
$$

where $k=\left(4 c b_{0}^{2}\right)^{-1}$ and \varkappa is a nonzero real number. The coordinates of $x-2 b_{0}^{2} p_{5}$ with respect to the basis $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ satisfy $4 b_{0}^{2} \zeta_{3}-\zeta_{4}^{2}=0,4 b_{0}^{2} \zeta_{1}-2 \zeta_{2} \zeta_{4}+\zeta_{3}^{2}=0$, thus this parallel
surface in $E_{1,1}^{4}$ (see Section 5.3, Subcase (ii $)$. Geometry) is an algebraic surface, an intersection: of two quadrics.
7.2. Minimal semi-parallel surfaces. The results in Section 6 can be summarized as follows.

Proposition D. Let M_{1}^{2} be a minimal semi-parallel time-like surface in a Lorentzian spacetime form $N_{1}^{n}(c)$. There exists an open and dense part U of M_{1}^{2} such that every connected component of U is of one of the following types.
(i) ${ }^{\text {min }} A$ totally geodesic surface.
(ii $\left.i_{1}\right)^{\text {min }}$ A ruled quadric in $H_{1}^{3}(r)$, whose generating net of geodesic lines of $H_{1}^{3}(r)$ is orthogonal, or its open part.
$\left(\mathrm{ii}_{2}\right)^{\mathrm{min}}$ A surface in $S_{1}^{3}(r)$, whose curvature lines are geodesics and have the same constant curvature (a product of these lines in E_{1}^{4}).
(ii $)^{\text {min }}$ A cylinder in E_{1}^{n} with light-like generators or its open part.
These components are parallel, except $\left(i i_{6}\right)^{\text {min }}$, which can be non-parallel; if parallel, every of the latter is a parabolic cylinder with light-like generators in E_{1}^{3}.

Remark 2. The fact, that a time-like surface with flat $\bar{\nabla}$ in E_{1}^{3} is minimal iff it is a cylinder with light-like generators, is proved in [20, Theorem 3] (see also [19], where among the ruled minimal time-like surfaces in E_{1}^{3} the so called flat B-scrolls over light-like curves are considered; actually they give these cylinders.) Now this fact is generalized to the higher codimension, i.e., to the case of E_{1}^{n}. Also the corresponding parallel surfaces are determined (described in [13] as B-scrolls over the null (i.e., light-like) cubics; cf. above Section 6.1).

Remark 3. The special study of some minimal time-like surfaces in Section 6 is motivated by the possible applications in the geometrical string theory. The minimal time-like surfaces, considered here, are simple models of strings, which play an important role in the theoretical particle physics [6] and cosmology [22].

References

[1] A.C. Asperti and F. Mercuri, Semi-parallel immersions into space forms, Boll. Unione Mat. Ital., B 8 (1994) 833-895.
[2] C. Blomstrom, Symmetric immersions in pscudo-Ricmannian space forms, in: Lect. Notes Math. 1156 (Springer, Berlin, 1985) 30-45.
[3] R. Bryant, Minimal surfaces of constant curvature in S^{n}, Trans. Amer. Math. Soc. 290 (1985) 259-271.
[4] Q.M. Cheng, Space-like surfaces in an anti-de Sitter space, Colloq. Math. 66 (1994) 201-208.
[5] J. Deprez, Semi-parallel surfaces in Euclidean space, J. Geom. 25 (1985) 192-200.
[6] E. D'Hoker and D.H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys. 60 (1988) 917-1065.
[7] D. Ferus, Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980) 81-93.
$[81$ S.W. Hawking and G.F. Ellis, The Large Scale Structure of Spacetime (Cambridge Univ. Press, Cambridge, 1973).
[9| Ü. Lumiste, Zur Theorie der zweidimensionalen Minimalfächen, II. Flächen fester Krïmmung, Tartu Ülik. Toimetised. Acta et Comm. Univ. Tartu 102 (1962) 16-28 (in Russian, summary in German).
[10] Ü. Lumiste, Semi-symmetric submanifolds with maximal first normal space, Proc. Estonian Acad. Sci., Phys. Math. 38 (1989) 453-457.
[11] Ü. Lumiste, Semi-symmetric submanifold as the second order envelope of symmetric submanifolds, Proc. Estonian Acad. Sci., Phys. Math. 39 (1990) 1-8.
[12] Ü. Lumiste, Second order envelopes of m-dimensional Veronese submanifolds, Tartu Ưlik. Toimetised. Acta et comm. Univ. Tartu 930 (1991) 35-46.
[13] M.A. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math. 8 (1984) 31-54.
[14] F. Mercuri, Parallel and semi-parallel immersions into space forms, Riv. Mat. Univ. Parma 17 (1991) 91-108.
[15] H. Naitoh, Pseudo-Riemannian symmetric R-spaces, Osaka J. Math. 21 (1984) 733-764.
[16] A. Rääbis, Semi-symmetric pseudo-Riemannian surfaces in n-dimensional de Sitter spaces, Master's thesis, University of Tartu, 1994 (in Estonian).
[17] K. Riives, Second order envelope of congruent Veronese surfaces in E^{6}, Tartu Ülik. Toimetised. Acta et Comm. Univ. Tartu 930 (1991) 47-52.
[18] M. Takeuchi, Parallel submanifolds of space forms, in: Manifolds and Lie groups, Papers in honor of Y. Matsushima (Birkhauser, Basel, 1981) 429-447.
[19] I. Van de Wocstijnc, Minimal surfaces of the 3-dimensional Minkowski space, in: Geometry and Topology of Submanifolds II (World Scient., Singapore et al., 1990) 344-369.
[20] J. Varik, Extremal surfaces in Minkowski space ${ }^{1} E_{3}$, Tartu Ülik. Toimetised. Acta et Comm. Univ. Tartu 930 (1991) 53-61.
[21] M.H. Vernon, Semi-symmetric hypersurfaces of anti-de Sitter spacetime that are S^{1}-invariant, Tensor 50 (1991) 99-105.
[22] A. Vilenkin, Cosmic strings and domain walls, Phys. Rep. 121 (1985) 263-315.
[23] J.A. Wolf, Spaces of Constant Curvature (Univ. California, Berkley, 1972).

[^0]: ${ }^{1}$ Partially supported by ESF Grant 139/305. Some of the statements in their preliminary versions are formulated in the thesis [16] written under author's supervision.

