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This study aimed to improve the accuracy and robustness of a real-time assistive human machine

interface system by classifying between the controlled movements related tongue-movement ear

pressure (TMEP) signals and the interfering signals. The controlled movement TMEP signals were

collected during left, right, up, down, flicking and pushing tongue motions. The TMEP signals were

processed and classified using detection, segmentation, feature extraction and classification. The

segmented signals were decomposed into the time-scale domain using a wavelet packet transform.

The variance of the wavelet packet coefficients and its ratio between low-to-high scales were defined as

features and the intended tongue movement commands and interfering signals were classified using

both a Bayesian and support vector machine (SVM) classifiers for comparison. The average classification

accuracy for discriminating between the controlled movements and the interfering signals achieved

97.8% (Bayesian) and 98.5% (SVM). The classifiers were robust remaining at a similar performance level

when generalised interferences from all subjects were used. It was shown that the Bayesian classifier

performed better than the SVM in a real-time environment. The approach of combining the Bayesian

classifier and the wavelet packet transform provides a robust and efficient method for a real-time

assistive human machine interface based on tongue-movement ear pressure signals.

& 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

A wide range of research has been conducted to develop various
human-machine interfaces (HMI) based on human physiological
signals for hands-free communication to assist physically impaired
patients [1–6]. Specific hands-free communication and control
devices are essential for an individual who has limited mobility or
severe motor dysfunctions, for example due to spinal cord injury,
congenital limb deformities or arthritis [5,7,8]. In spite of significant
progress made in the development of techniques and devices for
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HMI systems, current products have not yet fully addressed patient-
specific requirements and better interfaces between the patient and
peripheral devices are still greatly needed [1,4,5,9]. Recently a novel
hands-free communication concept based on tongue-movement ear
pressure (TMEP) signals has been introduced [4,10,11]. Users
express their intention by making impulsive actions of the tongue,
which create unique acoustic pressure signals within the ear canal.
These pressure signals can be recorded easily using a microphone
earpiece positioned non-invasively within the ear canal [4]. The
advantage of utilising the tongue is that it has an inherent capability
for fine motor control, involving multiple degrees of freedom, as it
has evolved to perform sophisticated motions during speech and
mastication [1,4]. The system also has the additional benefits of
being simple, cheap and non-invasive. Individuals with limited
control of their limbs are able to use these prescribed tongue
movements to communicate with computers and control assistive
devices through the sensing of bio-acoustic pressure signals.

Previously, different types of tongue movements recorded
from healthy subjects relating to the controlled (intended) actions
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have been classified using a decision fusion algorithm [4]. The
performance of the classifier reached an average of 97% correct
accuracy using time domain features and large training sets. The
performance of this classifier was shown to be better than three
other strategies using time domain information, namely, the
matched filter (86%), the parametric autoregressive (AR) Gaussian
classifier (85.98%) and the nonlinear alignment classifier (96.27%) [4].
Moreover, to improve the classification performance a single channel
independent component analysis (ICA) was used to isolate the
critical components of TMEP signals, which are associated with four
different tongue motions [10]. This method robustly extracted
features and may be more useful when a higher number of move-
ment commands are required or the signals are contaminated with
noise. However, the higher computational load makes it unsuitable
for real-time applications.

To explore the real-time implementation of a TMEP signal based
assistive communication system, several challenges need to be
addressed. One significant challenge is the ability of the system to
classify TMEP signals in real environments under the influence of
interference, including external noise from the surrounding envir-
onment (e.g. conversation, road noise), motion artifacts (e.g. head
movements), internal noise or artifacts due to natural tongue
movements (e.g. speech, mastication). Such interference problems
are generally challenging in any human machine interface system.
Superior performance of TMEP signal classification has been
achieved in the data sets collected in controlled environments [4].
However, significant degradation was experienced when the TMEP
signals were contaminated with noise [12,13]. A de-noising algo-
rithm based on discrete wavelet thresholding was applied to
improve the quality of signals [11]. Another challenge is that only
a limited number of signals are available to train and calibrate the
classifier in real environments [12,13]. On the other hand, the
accuracy and robustness of a classification algorithm depends highly
on its input and therefore optimal selection of its features is very
important, especially in noisy environments.

As the TMEP signals of movement actions exhibit transient
behaviour in the order of tens of milliseconds, the wavelet packet
transform (WPT) should be able to reliably extract features in a
multi-scale manner for the classification between movement
commands and interferences. The WPT can capture localised
time-frequency information of signals and has been implemented
widely in signal analysis and modelling [14–18], with significant
successful application in diverse fields such as signal detection,
classification, compression, noise reduction and image processing
[19–21]. To improve the classification accuracy in the presence of
external interferences, the WPT was applied to extract features
for classification of TMEP controlled actions [12,13,22]. Based on
these WPT features, the classification performance has achieved a
97% recognition rate in a simulated noisy environment in com-
parison to poor performance (88%) with time domain features. In
order to further improve the accuracy, reliability and robustness
of the assistive HMI system based on TMEP signals, controlled
movement related TMEP signals should be discriminated from a
wide range of interfering signals that occur in daily life. These
interfering signals can be categorised into non-controlled move-
ment or interference related TMEP signals such as speech,
swallowing, coughing, eating, drinking, and external artifacts such
as the individual’s heart beat, remote muscular activity, limb
tremor and environmental sounds.

This study aimed to identify controlled movement related TMEP
signals from a variety of interferences. The features were extracted
using a WPT to capture the transient changes in the TMEP signals
and were optimally selected according to statistical distributions of
the wavelet packet coefficients so as to maximise the separability
between movement commands and interferences. Two types of
classifiers, a Bayesian and support vector machine (SVM), were
implemented to perform the classification between two classes of
commands and interferences. Their performance was evaluated in
both offline and online conditions using both subject specific and
generalised interference for training. This work has significantly
improved the accuracy and robustness of both offline and online
real-time assistive human machine interface systems based on
TMEP signals.
2. Experimental paradigm and signal acquisition

2.1. Participants

Ten healthy subjects (6 males, 4 females) ranging from 20–45
years (30.776.4; mean71 SD) participated in the experiment. It
is noted that within this subject group, five subjects (S6–S10)
were well trained to perform the controlled TMEP actions whilst
the remaining five subjects (S1–S5) had only half an hour practice
prior to data collection. The experiment was approved by the ISVR
Human Experimentation Safety and Ethics Committee of the
University of Southampton. Participants gave their written
informed consent before taking part in the study.

2.2. Experiment and signal recording

The oral cavity is connected to the ear via the Eustachian tube.
Tongue movements cause pressure changes within the ear canal,
which can be detected by a sensor. The sensor includes a shielded
housing plug and an internal microphone. The microphone was
inserted into the ear canal and connected to an amplifier. The
pressure change was picked up by the microphone and digitised
and stored in a computer similarly as in [4]. The distinct move-
ment related actions can be differentiated from signatures of the
recorded ear pressure signals.

In the present study the classification was performed between
controlled movement commands and interference related TMEP
signals. TMEP signals were recorded when subjects performed six
types of controlled tongue movement: moving the tongue from
the neutral position to the top/front centre of the roof of the
mouth (‘up’), touching the tongue to the bottom/front centre of
the mouth (‘down’), the front/right side of the mouth (‘right’), the
front/left side of the mouth (‘left’), flicking the tongue up and
down once (‘flicking’) and moving the tongue to the outside of the
oral cavity in a straight manner with closed lips (‘pushing’). TMEP
signals during these six intended tongue actions were defined as
controlled or intended movement related TMEP signals.

In contrast, non-controlled movement or interference related
TMEP signals were collected while subjects were speaking,
coughing, drinking or resting. The speech activity included utter-
ances of words consisting of numbers from 0 to 9, and words
‘start’, ‘stop’, ‘open’, ‘close’, ‘on’ and ‘off’. The drinking activity was
to drink 15 ml of water from a glass, whilst the resting activity
was recorded during normal relaxation. This set of words repre-
sents a wide range of tongue movement patterns.

Each subject was seated in a comfortable armchair with a
recording microphone sensor inserted into the ear canal. Prior to
the experiment, the selection of ear (left or right) to insert the
earpiece was made by the participants according to individual
preference. The signals were recorded using custom made soft-
ware written in Microsoft C# running on a laptop computer.

A visual cue was presented on a computer screen to instruct
the subjects to perform a specific tongue movement action.
Subjects were instructed to move their tongue in the respective
direction as much as possible, so as to perform each action
correctly. The cues were represented by text as well as direction,
via a moving circle on the screen. Before making each movement,
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the participant was instructed to always place the tongue back
into its neutral position. Each action was randomly repeated
every 5 s, to minimise the possible effects of fatigue or learning.
Each controlled (six) and non-controlled (nineteen) movement
were repeated 100 and 20 times, respectively. After each move-
ment, the direction or type of movement was labelled by the
subject and indexed in customised software for classification
analysis. Signals were sampled at 8000 Hz and then digitally
down-sampled to 2000 Hz for further analysis.
C
lassification

Classifier Performance Evaluation  
(Repeat classification process twenty times and average classification 

performance as measures of accuracy, sensitivity and specificity)  

Pre-processing and Feature E
xtraction 

TMEP Signal 

Detection and Segmentation of TMEP Signal 
(Compute short-term signal energy, detect start and end point for segmentation 
based on threshold, defined as 50% of maximum average energy of all signal) 

Feature Extraction using Wavelet Packet Transform 
 (Sym7 wavelet filter with scale 4 applied, 16 channel wavelet packet 

coefficients extracted with frequency band of 62.5 Hz)  

Feature Computation and Selection 
(Calculate the power of each channel 1-8 and power ratio between channel 1 

and each of channels 9-16)

(Select the training and testing set according to the 
classification setting and trained the selected classifier) 

SVM 
Classifier Training

Multivariate Bayesian 
Classifier Training

(Testing set classified using selected classifier) 

SVM 
Classifier Testing

Multivariate Bayesian 
Classifier Testing

Fig. 1. Flowchart for controlled movement commands and interferences related

TMEP signal classification.
3. Signal analysis methods

3.1. Discrete WPT for feature extraction

The discrete WPT represents a generalisation of multi-resolu-
tion analysis to decompose a signal into sub-bands and presents
both approximation and detail spaces in a binary tree [23,24]. The
wavelet packet coefficients at one scale can be recursively
decomposed into the coefficients at the next scale using a low-
pass and high-pass analysing filter. To compute the WPT coeffi-
cients of scale levels j¼1, y , J, it filters the WPT coefficients
recursively at the previous stage. Let Wj,p kð Þ, p¼0, y, 2j

�1
represent the WPT coefficients at level j. Then the following two
wavelet packet orthogonal bases equations are used to compute
the wavelet packet coefficients:

Wj,2pðkÞ ¼
XL�1

l ¼ 0

hðlÞWj�1,pð2kþ1�l mod Np�1Þ ð1Þ

Wj,2pþ1ðkÞ ¼
XL�1

l ¼ 0

gðlÞWj�1,pð2kþ1�l mod Np�1Þ ð2Þ

where k¼1,y, N and Np¼N/2p. h(l) and g(l) are the impulse
responses of scaling and wavelet filters, which represents low-
pass and high-pass filters, respectively. They are quadrature
mirror filters and have only finite non-zero filter coefficients,
which results in an efficient way to compute the WPT coefficients.

3.2. Wavelet filter selection

The efficacy of the wavelet packet transformation is dependent
on the wavelet basis or filter. One common approach to specifying
the wavelet filter is to select one with minimum reconstruction error
according to an entropy cost function [24–26]. This is considered
optimal for signal compression, but may be inappropriate for signal
classification. A modified algorithm was proposed to maximise the
discriminant ability of the WPT using a class separability cost
function [27]. More often the wavelet filter selection was performed
empirically according to the above criteria [25]. In this study the
selection of wavelet filter was made with the criteria (1) properties of
the wavelet filter and (2) a class separability based objective function
for evaluation amongst all possible wavelets in the following
families: Daubechies, Coiflets and Symlets. These families of wavelets
were considered due to their properties of (1) orthogonal transform,
(2) compact support and (3) optimal number of vanishing moments.
A Symlet wavelet filter of order seven (Sym7) was selected as it gave
the best classification performance based on a Euclidean distance
measure among the available wavelet families [12]. A few other
wavelets, i.e., Daubechies with order 5, Coiflet with order 4 and
Symlet with order 5 also achieved comparable performance.

3.3. Bayesian classification

The naive Bayesian classifier classifies a pattern into one of a set
of classes by maximising the posterior probability pðci9xÞ ¼ pðx9ciÞ
pðciÞ=pðxÞ, where ci is the ith class, and x is a test pattern defined
by features from the measured signals. If the features are
independent given the class, the likelihood pðx9ciÞ can be decom-
posed into the product of pðx19ciÞ,. . .pðxn9ciÞ and the posterior
becomes

pðci9xÞ ¼
pðciÞ

pðxÞ

Yn

k ¼ 1
pðxk9ciÞ ð3Þ

In this study, the discriminant function of the Bayesian classifier
was derived under multivariate Gaussian assumptions [21,28].

3.4. SVM classification

The SVM estimates the optimal boundary in the feature space
by combining a maximal margin strategy with a kernel method.
The machine is trained according to the structural risk minimisa-
tion criterion [21,29]. The decision boundaries are directly
derived from the training data set by learning. The SVM maps
the inputs into a high-dimensional feature space through a
selected kernel function. It then constructs an optimal separating
hyper-plane in the feature space. To obtain optimal performance
of the SVM classifier, selection of a proper kernel function is
essential [29]. The optimal kernel function is dependent on the
specific data and linear or radial basis function (RBF) kernel is
generally used in bio-signal classification [30]. In this study, a RBF
kernel was selected as it performed much better than a linear
kernel. The hyperparameters of a SVM classifier, i.e., the regular-
isation parameter C and the RBF kernel parameter g, were
estimated during training to optimise classification performance.

3.5. TMEP signal classification

The classification of controlled actions and interferences
related TMEP signals consisted of signal activity detection,



Fig. 3. Controlled movement (a, moving left action) and interferences (b, cough and c, speech of ‘close’) related segmented TMEP signals and their 16 channels wavelet

packet transform coefficients at level 4 for subject #5.

Fig. 2. Superimposed segmented TMEP traces for controlled movements (Left, Right, Up, Down, Flicking and Pushing) and interferences (Cough, Drink and Speech-‘Close’)

related signals for Subject #5. The duration of each segment is 0.25 s and each activity repeated 100 and 20 times for controlled movement and interference, respectively.
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segmentation, feature extraction, feature selection and classifica-
tion. The flowchart of these stages is shown in Fig. 1. The TMEP
signals during tongue movement actions need to be detected and
segmented appropriately. The detection method is similar to that
in automatic speech recognition systems by setting a threshold on
the short-term energy of the incoming signal. The threshold was
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determined for each subject as 50% of the maximum average peak
energy across training TMEP signals during tongue movement
commands calibration. The signal is then segmented to a section
with 512 samples, which is slightly longer than the typical 0.2 s
duration of the TMEP signal during a controlled movement.
Details of detection and segmentation methods are available in
[4,31]. The superimposed segmented TMEP traces of controlled
movement and interferences have large variation in shape, dura-
tion and frequency (Fig. 2).

To extract features, segmented TMEP signals were decom-
posed into the WPT domain using a Sym7 wavelet filter at scale 4.
The selection of the decomposition scale was made by comparing
two other scales (3 and 5) based on their capability to localise
discriminative information. After transformation, 16 channels of
WPT coefficients at scale 4 were obtained, each with a frequency
bandwidth of approximately 62.5 Hz. An illustration of the WPT
coefficients of a controlled movement (left) and two interferences
(coughing and speech of ‘close’) related TMEP signal is presented
in Fig. 3. It has been found that the controlled movement related
Fig. 4. Feature distribution of controlled movements (circle, blue) and interferences (sta

computed as power of each WPT channel 1–8 (a) and feature 9–16 computed as power

feature 1–8 (c) and average power ratio for feature 9–16 (d) of controlled movements (b

presented on a logarithmic scale. (For interpretation of the references to color in this fi
TMEP signals have the majority of their energy located in the low
frequency band (0–62.5 Hz) [4,12], whereas the energy of inter-
fering TMEP signals is distributed at low and/or high frequency.
There are large variations of the energy distributions associated
with interferences. Some only have signal energy at low fre-
quency, such as drinking, and some have signal energy at low and
high frequencies. Therefore all channels of the WPT coefficients
were considered for feature definition. Sixteen discriminative
features ðx1,:::,x16Þ were computed as the absolute power and
low-to-high frequency power ratios. The power piof each WPT
channel was calculated as the variance of the wavelet coefficients.
The first eight features ðx1 ¼ p1,:::,x8 ¼ p8Þ were computed as the
absolute power of the WPT channels 1–8 (frequency range 1–
500 Hz). To isolate the discriminative information content
between controlled movement and interfering TMEP signals by
utilising the very low (0–62.5 Hz) and high (500Hz or more)
frequency WPT channels, the power ratios between channel 1 and
each of channels 9–16 were computed as the remaining eight
features ðx9 ¼ p1=p9,:::,x16 ¼ p1=p16Þ for each signal. These features
r, red) related TMEP signals among all training data set in Subject #5. Feature 1–8

ratio between the channel 1 and each of channel 9–16 (b). The average power for

lue, circle) and interferences (red, star) related TMEP signal were computed and are

gure legend, the reader is referred to the web version of this article).
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were determined based on maximised class separability to
provide optimal classification performance after comparison with
other channels and various combinations of their ratios and quan-
tities. The distribution of the 16 features related to TMEP controlled
movement and interferences for Subject #5 is shown in Fig. 4. In this
case, it was noted that the classes were almost linearly separable by
features 5 to 16, while features 1 and 2 overlapped significantly and
features 3 and 4 were only partially overlapping. However feature 1
(channel 1) is important as it carries most of the power of the signal
in both TMEP controlled movements and interferences (Figs. 3, 4c).

Based on the extracted features, a multivariate Bayesian classifier
and a SVM classifier were designed to classify the controlled move-
ment related signals from interferences. Each classifier was con-
structed in specific and generalised interference situations. In
specific interference situation, the classifier was trained and tested
using each subject’s specific TMEP controlled movements and
interference related features. The training and testing data sets of
the specific interference were selected randomly, with 60% from
each type of signal assigned to train the classifier and the rest (40%)
used to test the classifier. The training and testing data were
mutually exclusive. In the generalised interference situation, the
classifier was further extrapolated to be more robust to address a
wide variety of interferences from all subjects. As the characteristics
of the TMEP controlled movements are unique to each subject and
the types of the interference are not limited to them, the classifier
was constructed with subject specific TMEP controlled movements
and generalised interference related features. The training and
testing data sets of the generalised interference were selected
similarly to the specific interference for controlled movements,
and using a leave-one-subject-out cross-validation procedure (i.e.
data from one subject used for testing and the remaining subjects
used to train the classifier) for interferences.

The discriminant functions were used to separate different
classes in a Bayesian classifier [32]. Fig. 5 shows the discriminant
functions for classifying controlled movement TMEP signals from
the specific interferences situation. The discriminant function for
the controlled movement class was much higher than the inter-
ference class when the input was features of controlled move-
ment related TMEP signals in most cases. The opposite occurred
when the input was features of interferences related TMEP
Fig. 5. Discriminant functions of Bayesian classifier for the training and testing

data to identify the state of controlled movements (solid, blue) and interferences

(dotted, red) related TMEP signals in subject #5.
signals. It indicates a separation boundary existing between the
controlled movements and interferences related TMEP signals.

The classification between the controlled movements and
interferences related TMEP signals was further explored using a
SVM classifier in both specific and generalised interference situa-
tions. The optimal selection of SVM parameters (C and g) was
performed through a 5-fold cross-validation procedure [33]. The
SVM classifier was implemented using LIBSVM [34]. To statisti-
cally compare the performances among the classification methods
in specific and generalised interference situations, as well as
trained and un-trained groups, a Student’s t-test was performed
using SPSS (Ver. 15, Chicago, Illinois).
4. Results

The classification performance was evaluated with averaged
accuracy, sensitivity and specificity, by repeating the classifica-
tion process twenty times with random selection of the training
and testing data. Accuracy is defined as the percentage of
correctly classified instances. Sensitivity is defined as the ratio
of the number of true positives classified to the number of actual
total positive cases. Specificity is defined as the ratio of the
number of true negative classified to the number of actual total
negative cases. The Bayesian classifier and SVM classifier were
evaluated on the ten subjects in both the specific and generalised
situations.

The classification accuracy of the multivariate Bayesian classi-
fier was 97.872.1% (mean71 SD) across all 10 subjects when
subject specific interferences were used. The sensitivity and
specificity were 98.871.7% and 96.173.5%, respectively. The SVM
classifier achieved slightly better performance based on the classi-
fication accuracy, sensitivity and specificity of 98.571.9%, 99.27
1.0% and 99.373.7%, respectively. In the generalised interferences
situation, the performance remained at a similar level. The accuracy,
sensitivity and specificity were 96.473.8%, 98.771.5% and 94.57
6.0% for the Bayesian classifier, and 96.673.6%, 95.475.0% and
97.173.2% for the SVM classifier, respectively (Figs. 6a,b). In the
specific interference situation, the SVM classifier performed signifi-
cantly better than Bayesian in terms of accuracy (98.571.9% vs.
97.872.1% (t(9)¼�4.1, po0.05)) and specificity (99.373.7% vs.
96.173.5% (t(9)¼�2.3 po0.05)). In the generalised interference
situation, the Bayesian classifier performed significantly better than
the SVM in terms of sensitivity (98.771.5% vs. 95.475.0% (t(9)¼3,
po0.05)) although the SVM performed better in terms of specificity
(97.173.2% vs. 94.576.0% (t(9)¼�2.8, po0.05)). Overall these
two classifiers achieved similar level of performance.

The effect of training was further investigated. Among 10
subjects, half (S1–S5) had a short practice before the experiment
(un-trained group) and the other half (S6–S10) had intensive
training to adequately make tongue movement commands
(trained group). The trained group had significantly better per-
formance than the un-trained group: accuracy 99.370.3% vs.
96.372.0% (t(8)¼�3.4, po0.05), sensitivity 100.070.0% vs.
97.671.7 (t(8)¼�3.1, po0.05) and specificity 98.871.01% vs.
93.472.9% (t(8)¼�3.9, po0.05) in the Bayesian classifier (Fig. 6c),
and accuracy 99.870.2% vs. 97.171.8% (t(8)¼�3.3, po0.05),
sensitivity 99.970.1% vs. 98.570.9 (t(8)¼�3.7, po0.05) and
specificity 99.870.2% vs. 94.873.9% (t(8)¼�2.8, po0.05) in the
SVM classifier (Fig. 6d).
5. Real-time evaluation

In the above offline experiments various interferences of
speaking, coughing or drinking were investigated. In a real world
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implementation there will be a lot of other interferences, for
instance, free speech, and the algorithm needs to be incorporated
with the successive inter-command classification scheme. There-
fore the algorithm was further evaluated in a real-time environ-
ment. Both the Bayesian and SVM classifiers were trained with
generalised interferences from three randomly selected subjects
with a small training set and tested on an additional two subjects.
The training set has only 120 trials of controlled movements and
162 trials of interferences. The test subjects performed controlled
movements of ‘up’, ‘down’, ‘right’ and ‘left’ actions and interfer-
ences segmented during a 5-min newspaper reading, 1-min
conversation, swallowing, coughing and drinking. The testing
was carried out in a normal office environment and the signals
were detected, segmented and classified in real-time. The results
showed that the Bayesian classifier achieved 88.1% in accuracy,
95.0% in sensitivity and 85.9% in specificity, while the SVM
achieved only 68.6% in accuracy, 97.5% in sensitivity and 59.4%
in specificity. The SVM performed considerably worse than the
Bayesian classifier. It may be due to the fact that the classifier
parameters optimisation is only based on a small training set with
large variability. The SVM is more sensitive to the size of training
set than the Bayesian classifier. The small training size tends to
cause the SVM classifier to over-fit to the training data and
therefore have poor generalisation during testing [35,36]. After
rejecting interferences, the movement commands were further
identified and used to control a simulated wheelchair on a
computer screen [31]. The wheelchair was well controlled with
only a few false actions. In contrast, the wheelchair went quickly
out of control when no interference rejection procedure was
utilised. A demonstration video of the system is available at
http://www.swanglab.com/software.htm.
6. Discussion

Interference is one of the major challenges in developing
human machine interfaces, including brain computer interfaces,
due to its variety and uncertain sources [7,30]. In the present
study, robust identification of tongue movement commands from
interferences was explored using Bayesian and SVM classifiers
with features extracted by a WPT. The robustness of the classi-
fication was also tested in a real-time environment. Both classi-
fiers performed better offline, although the multivariate Bayesian
classifier achieved higher accuracy than the SVM in the real-time
system.

Previously the wavelet packet transform was used to extract
features for classifying tongue movement actions and achieved
better performance than time domain features in both clean and
noisy environments [12,13,32]. The WPT has been widely used for
feature extraction from bio-signals, such as ECG [37], MES [38] or
EEG [39,40], and has provided better performance for pattern
recognition over time and spectral domain features compared to
the wavelet transform and short-time Fourier transform [38]. This
may be owing to its capability to precisely localise the time-scale
information in non-stationary signal dynamics. To achieve opti-
mal performance, the wavelet filter and decomposition scale were
empirically determined by comparing several wavelet families

http://www.swanglab.com/software.htm
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and scales. It should be noted that some wavelet filters achieved
comparable performance to the selected Sym7.

Two classifiers were investigated in this study. The Bayesian
classifier is simple and computationally efficient, [28,30] while the
SVM is more complex due to its optimisation characteristics
[35,36]. The SVM performed slightly better than the Bayesian
classifier during offline classification of controlled movement
related TMEP signals and interferences (Figs. 6a,b). Both classifiers
were robust in both the subject specific and generalised inter-
ference situations. In the generalised interference situation, the
classifier requires no previous information about interfering signals
from the test subject. This implies that as it is trained with other
subjects’ signals, it does not require collecting a personalised
training set for interferences. The performance in the generalised
interference situation is slightly lower than in the specific inter-
ference case (Figs. 6a,b). Training for the subject associated with the
execution of the controlled actions can significantly improve the
classification performance (Figs. 6c,d). The classifiers were further
implemented in a real-time system using generalised interference
data for training. The Bayesian classifier performed much better
than SVM in a real-time system environment. The performance was
worse than that in an offline situation but the classifier made it
possible to control a simulated wheelchair precisely in real-time. As
a problem-specific application, it has been demonstrated that the
Bayesian classifier with features extracted using the wavelet packet
transform is suitable for a real-time system of identifying move-
ment commands from interferences, and potentially can be used
within the command classification algorithm as well. The reduction
of the performance in a real-time environment may be related to
the wide feature variation of the TMEP signals. The variance of
features of interfering signals is higher than those of the controlled
movement related signals. Such asymmetric distribution might be a
contributing factor to the higher specificity error than the sensitiv-
ity error in the Bayesian classifier in both offline and online
classification. Another possible cause of the high specificity error
may be that some interfering signals have energy concentrated at
very low frequencies, such as drinking, and they have comparable
signatures to the actual controlled actions (Fig. 2). Taking temporal
patterns into account could potentially reduce the error and
improve the overall performance.

This work provides an efficient approach for distinguishing
TMEP signals from varied interferences in both offline and online
systems. The Bayesian classifier is computationally efficient to be
applied to HMI or BCI systems (for instance, deep brain local field
potentials [41,42] or EEG signals [30,43]) to improve the accuracy
of the decision making. It may be the case that more features are
required when complex tasks are involved. In future work,
dynamic feature selection methods, such as principal component
analysis (PCA), singular value decomposition (SVD) or discrimi-
native common vector (DCV) techniques will be applied for
feature reduction and selection. This is expected to provide better
performance in more challenging tasks, such as movement
classification based on deep brain local field potentials [33,42].

In summary, the notable technical contributions that were
introduced in this paper are as follows:
�
 A wavelet packet based feature extraction and selection
approach developed to identify TMEP actions and interferences.

�
 The robustness of the identification method was evaluated with

various types of interference signals in subject specific and
generalised interference setting, and achieved high accuracy.

�
 Feasibility of robust identification of tongue movement com-

mands from interferences was also evaluated in a real-time
setting while considering a wide range of potentially interfer-
ing factors, for example free speech and was still able to
maintain a good performance level.
�
 Typical results from ten subjects in offline and two subjects in
real-time have demonstrated the success of the method.

�
 The effect of training to perform the task was also investigated

as a way of improving classification performance.

The Bayesian classifier with features extracted by the wavelet
packet transform can reliably distinguish controlled movement
related TMEP command signals from the interference signals both
offline and online. The rejection of various interfering signals has
significantly improved the robustness of the assistive HMI based
on TMEP signals and makes the real-time implementation and
application in real living environments possible.
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