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Abstract—In this paper, we consider the optimal control of a finite dam using P}, policies;

assuming that the dam has capacity v, the water input is a diffusion process reflected at 0, v. The
release rates depend on the water content in the dam. There is a certain cost of maintaining the dam
as well as a reward received. We obtain an explicit formulas for the total discounted cost over the
infinite horizon as well as the long-run average cost per a unit of time. © 2006 Elsevier Ltd. All
rights reserved.
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1. INTRODUCTION AND SUMMARY

Abdel-Hameed and Nakhi [1] discuss the optimal control of a finite dam using P)ﬁ policies
(defined below). They use both the total-discounted cost as well as the long-run average cost
per a unit time criterion. They assume that the water input is a Wiener process and Wiener
process reflected at 0. Abdel-Hameed [2] treats the case of an infinite dam where the input
process is a compound Poisson process. Bae, Kim and Lee [3] treat the case of a finite dam with
a compound Poisson input; they only discuss the long-run average cost per a unit time case.
Faddy {4] considers the case of a finite dam with Wiener input and PM policy.

In all of the above papers, it is always assumed that the release rates are constants and do not
depend on the water content in the dam. In this paper, we consider the case of a finite dam where
the input process is a diffusion process and the release rates are state dependent. Specifically,
consider a finite dam with capacity v and assume that the water input I = {I;; t € Ry} is a
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diffusion process reflected at 0, v, and diffusion coefficients,

o2 (z — v)° N plv—2)”

#(Z) = Y] ) )
4
o2 (2) = 02(0_2—@

where p is a real number and o2 is a nonnegative number. It follows that I has state space [0,v).
Throughout, we will let R4 be the set of nonnegative real numbers. Suppose that a dam has
capacity v. Let Z = (Z;; t € Ry) be the process describing the content of the dam. We
restrict ourselves to policies in which the release rate is zero until the water level reaches level A
{0 < A < v), when the water is released at rate

until it rcaches level 7, (0 < 7 < A). Once the level 7 is reached, the release rate remains zero
until the level A is reached again, and the cycle is repeated. It is clear that the content process
is a delayed regenerative process with regeneration points being the times of successive visits to
state A. During a given cycle, the water content is a diffusion process reflected at v with diffusion
coefficients,

o’ (z=v)’  ut(v—2)

2 +
v v

Bl

p(z) =
where pu* = o — M and 0?(z), denoted by I* = {I}; t € R, }, and remains so until it drops to
level 7; from then on and until it reaches )\ again the content of the dam behaves like a diffusion
process with diffusion coefficients u(z) and 0%(z). At any time the release rate increases from 0
to M (z) a starting cost K1 M is incurred, and at any time the release rate is decreased from M (z)
to 0 a closing cost KyM is incurred. Moreover, for each unit of output, a reward A (which can
be assumed to be 1) is received, and there is a penalty cost which accrues at a rate f, where f
is a bounded measurable function.

In Section 2, we describe the content process and give basic and main formulas for computing
the cost functionals. In section 3, we give explicit expressions for the total discounted cost over
the infinite horizon as well the long-run average cost per a unit of time.

2. BASIC AND MAIN RESULTS

Throughout, we will let R = (R;; t € Ry) and Z = (Z;; t € R.) denote the dam content
and the release rates, respectively. The content process is best described by the bivariate process
B = (Z, R), from the definition of the type of control policies dealt with, we have By = (0,0). It
should be clear that the process has state space,

E= (1A x{0hu([r,V)x{M}),

where [ denotes the lower bound of the state space of I.
The penalty cost occurs at a rate given by

9(2), (zr)e(l,A) x {0},
flar)=9",
g (z), (z,r)e[r,V]x {M},
where g : (I,A) — Ry and ¢* : [r,V] — R, are bounded measurable functions. Define the
following stopping times,
T(;\ :inf{t€R+ : Zg =/\},
Tg =inf{t€7?,+ : Zt =T},
T,’L\zinf{tZT,’l\_I:thx\},
Tr=inf{t>T):Z, =1}, n>1.
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It follows that the sequence of stopping times (7,) forms regeneration points of the content
process Z.

Let C§(x,)\),C$ (A, 7) be the expected discounted penalty costs during the intervals [0, 73")
starting at z, and during the interval [T§',T¢) respectively, 0 < o < oo. The corresponding

functions, when a = 0, are written Co(z, A) and Cps (A, 7). It follows that

T/\
O (z, ) = Ex/ " e=otg (1) dt,
0

-
c (A7) =E,\/ *ematy (I7) dt,
0 (2.2)

s
Co(z,)) = E, / g () dt,
0
75
Crs (A7) = B / g(I}) dt.
0

To compute the functionals indicated in (2.2) and other related functionals, we define the
diffusion process killed at A, as follows

From the theory of Markov processes we know that the process X is a strong Markov process.
It has state space [0, A). It follows that its generator is of the form,

Af (@) = ——f"(2) + (=) f' (z)
and (2.3)
Af(A)=0.

It can be shown that the domain of the generator (D(A)) is of the form,
D(A)=22{0,0)n{f (0) =0}.
For any number z we let Z = z/(v — z). We note that for any x in the state space,
Cg (z,A) = Uag (2)

where U, is the resolvent operator of the process X defined above. Let U,(x,y) be a-potential
kernel of X. To find U,, we define ¢,{(x) as follows,

bo (x) = Uy (e7%7),

where 6 is a fixed real number. Since the range of the resolvent operator is equal to the domain of
the generator A, and (ol — A)pq(z) = €79, It follows that ¢4 (z) is the solution of the boundary
value problem,

0.2
Q(I) v (@) + 1 (z) ¢ (z) — agq (z) = —e7%, (24)

where ¢/,(0) = 0 and ¢o(A_) = 0.
For the computation of U,(z,y), we have the following.
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THEOREM 1. Let Uy(x,y) be a-potential kernel of X, and v = (1% 4+ 2a0?)1/2, then for z and y
in the state space,

Un (e.y) = —-U—2exp (@ - %) pjo?) [(i;“) e(mr+mi)/o* e((v—u);\)/az} -1

Y(v—1y) tu

x [(7—k 'u> e (FY@HD+H(v=mX) o _ (v(i4+8) - (v+w)d) /o? (2.5)
v

+e(i=gl+(v=w}) /o _ <7_—/i) e(vlﬂ—il—(v+u)5\)/02] .
T+ u

PROOF. It can be shown that the homogenous part of equation (2.4) is of the form,
¢2 (z) = cle—(v(vﬂt))/(az(v—:t)) + C2e(v(7—#))/(02(v—$)) ,

where ¢; and ¢; will be determined later. Let

61 () = e~ (v(r+m) /(o® (v-2)) ’
b2 (z) = (W= (e*(w-2))

and

2 2
h(z) = ——v—4e_9””.

o?(v—1zx)
Using differential equation techniques, the general solution of (2.4) is
T h
0 (@) = 161 (2) + cxta @)+ u a) | [ 2SO iy - g1 o) | [ WD ] (2

where
2

w = P19y — Ppagp] = %%052
o?(v—1)

is the Wronskain of ¢; and ¢». Thus, (2.6) becomes

T U¢1—1 (y) e_ey L o ’U¢2_1 (y) e—ey
&1 (I)/O Wdy P2 (x)/o —"_(U_y)g dy} :

Denoting the Laplace transform of a function f by L(f), the above equation can be written as

Pa (T) = 101 (T) + c2¢p2 (x) + —

$a (x) = 101 (Z) + c202 (x)

= ¢1(x)L{I(0<y<x)wl_—l(y§}—¢2(z)L{I(0<y<$)MH-
(v—1y) (v—y)

Using the boundary conditions ¢/,(0) = 0 and ¢4(A_) = 0, it follows that

— -1 . !
o =2 [T a6 00 0+ 001 [¢2<A>L<1(’¢2_;))> mum(%f‘_—;)@”

and

o
R
Il

;;Z 62 (0) ¢7* (0) cz. 2.7)
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Substituting (2.7) into (2.6), we have

ba (2) = &3 D 92007 (0061 (N) + 2 (A)]

o1(z) L I(0<y<$)M — ¢z (z) L I(O<y<$)v¢2_1(y) )
( 2 — 5

1
+z 2
i v=y) (v-v)

Inverting the left-hand side of the above equation with respect to 8, the result follows.
We have

A
C§ (@) = [ 9wV (zn) dv (2.)
0
Letting o — 0, in (2.5), we get
v T .
ﬁ[/\Vy—TVy}, if u =0,
S R T
oy v —ui-9))/e _ g (2e() )1
— e + —e + , ifu#0.
plv—y)

We put this next as a proposition.

PROPOSITION 1. Let Cy{z,A) be the nondiscounted cost in [0,T§'). Assume that the input
process is a diffusion process with parameters p(z) and 0%(z). Then, for p > 0,

2 v - )

pfoA——(v_ )zg(y)[/\vy—T\/y] dy, if =0,
Co(mA) =4 4 Y ) . (2.9)

T—17 2 - -y o .

=y — 79 (¥) [6_(2“(T_y)+)/" o (r(3-9).)/ dy, if u#0.

B (v -y)
Let 1(z) = Ijp »)(z), from (2.15) of Abdel-Hameed and Nakhi |2}, we know that

Ee °To =1 - aU,1 (z) (2.10)

and we have the following proposition.

PRrROPOSITION 2. Assume that the input process is a diffusion process with parameters yi(z).and
02(z). Let T3 be as defined in (2.1), and C§(z,\) be as defined in (2.2). Then,

(v - 1) e~ {(v+misa®} | (7 + ) el-me/a®}

(’Y - H) 6_{(74’#)5\/02} + (7 + N) e{(—y_u);\/az} . (211)

Ege=oTo =

From (2.10), we have that
E. T3 = lim Us1 (z)
x—

and we have the following corollary.

COROLLARY 1. Assume that the input process is a diffusion process with parameters u(z) and
0%(z), and let T§* be the time of first entrance in state \. Then,

32 _ =2
Yo if =0,
ETp=¢5 .7 ) (2.12)
AT | 9 [o-(2Mw)/o* _ g-@miie?] | ifu 0
pwoooo2u?

We now compute C$, (A, 1), Ex(e=2T5), Cps (X, 7), and ExTy . Define

X* = (I} t<TY).
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It follows that X ™ is a standard Markov process with state space [7,v). We note that for z < A,
Cror A7) =Uag" (A),

*
where U} is the resolvent operator of the process X* defined above. Let Uy (z,y) be a-potential

kernel of X*. In order to determine Uy (z,y), we define

*

b (z) = U (e7°7)

where 6 lies in [0,00). By an argument similar to the one used to establish (2.8), é)a (x) is the
solution of the following boundary value problem,
0'2 r)* * *, * _
—2(—) "(Z) + i (3) ¢ () — aga (z) = €777, (2.13)
where ¢o(7-) =0 and ¢, (v_) = 0.
We have the following theorem.

THEOREM 2. Let v = (;12 + 2a0?)Y/2, then for x and y in the state space of X*,
Ua(2,v) = e TR/ [e“:’lg_i‘/”2 - eﬁ"w”’/"z} : (2.14)
(v —y)

PROOF. As shown in the proof of Theorem 1, the general solution of (2.17) is

. 3=1 . * 1
¢1(x) L I(a,y)t(”i@ — o (z) L I(a,y)v¢2 ()

b () = 161 (x) + oy () + ; .
v—-y) (v—y)

S

where

;51 (;1;) = e_(5(§+ﬁ))/02(v‘1), b2 (x) = e({)(:{_;‘)>/a2(1}—1),
a is an arbitrary point in [7,v) and I(a,y) = I{a < y < z). Imposing the boundary condition
¢l (v-) =0, it follows that ¢; = 0 and a = v. Thus,

] ) * -
2@ L Ty W 5 oy 1(a,y) W)

Pl man (v— )’ E—L

(2.15)

x| =

3
Imposing the boundary condition ¢,{7_} = 0 on the last equation above, we get

y U;JEI (v) . vé7' (y)
1(f)L | ———==% | — YL | —=—=
] ( ) ('U — y)2 o2 ( ) ('U _ y)2

Cc1 =

2 k| =

Taking the Laplace inverse with respect to 8 in equation (2.15) the result follows.
The proof of the following proposition follows in a manner similar to the proof of Proposition 2,
and hence, is omitted.

PROPOSITION 3. Assume that the input process is a diffusion process with parameters ﬁ(z) and
0%(z). Let T§ be as defined in (2.1), and C§(\, 7) be as defined in (2.2). Then,

Boe-oTs = ¢ {(+2)(3-1)}/" (2.16)

Letting @ — 0 in (2.16), it follows that, for L <0, Ty < oo, w.p.1, while Ty = oo with
probability 1 — 6_2‘.‘(/\_;), for ﬁ > 0. The proof of the following corollary is similar to the proof
of Corollary 1, and is also omitted.
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COROLLARY 2. Assume that the input process is a diffusion process with parameters ji(z) and
0%(z), and let T} be the time of first entrance in state 7. Then,

00, if 1> 0,

E\Ty =< 7 -} . 2.17
ATo T2 #h<o 217

* 3

i
In order to find Cps (A, 7), we first have the following proposition which follows from Theorem 2.

PROPOSITION 4. Let U,(z,y) be the a-potential kernel given in Theorem 2. Then, for any z,
and y € [1,v],

UO (xvy) =

*

plv—
Using the Lebesgue dominated convergence theorem, we have the following.
PROPOSITION 5. Let Cp(A, 7) be the cost functional defined in (2.2). Then, for ji < 0,

CM (/\’7-) — l /'” v 5(:’!) ':(, (2;‘(3./—7-')+)/‘72 — 6(2‘1(5_5\)+>/02] dy (218)

i (v—y)?

For 11 > 0, we conjecture the following.

PROPOSITION 6. Let Cps(A, 7) be the cost functional defined in (2.2). Then, for L >0,

el [TV sy oG9,/ (-2aG-9).) /] g,
o=t [ i e : | a

3. THE EXPECTED TOTAL DISCOUNTED
AND LONG-RUN AVERAGE COSTS

Consider the finite dam controlled by the P)‘\VT with a diffusion process, reflected at 0 and v,
as described in Section 1. Let a be the discounting factor. Let C, (X, ) be the expected total
discounted cost over the infinite horizon, while C§(0, ) and Ci,4 (A, 7) are the expected dis-
counted costs in the intervals [0,7]') and [T§, TV), respectively. It follows that the expected
total discounted cost is

Eq lexp (—aT§) Ey [Cia (A, 7))

Co (A7) =Cg(0,A) + , 3.1
( ) 0 ( ) l—E)\ [exp(_awl)] ( )
where Wy = T{> — T. It follows, from the strong Markov property, that
E\ [exp (—aW))] = E) [exp (—aT3)) E; [exp (—aTy)) (3.2)
and
T
E)\[Cra (A, 1)) :M{K1 + KL E) [exp (—aTg)] —EA/ e_o“dt} (3.3)
0 .

+Ey [exp (—aT3)] Cg (1,A) + Cyy (A, 7).

Now, substituting (2.5), (2.8), and (2.14) into (3.3}, we obtain the expected total discounted cost
over the infinite horizon Co (A, 7).
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Let C1(), 7) be the cost incurred in the interval [T}, T{*), C(), 7) be the long-rum average cost
per a unit of time and K = K + K3. Using the relation C(X, 7) = limg_g @Cy (A, 7), we have

CAr) = Eégz—v%ﬂ (3.4)

From the strong Markov property, it follows that

E\(W1) = E\(Tg) + E- (Ty),
Ex[C1L(M\T)] = MK = Ex (T)] + Co (1, A) + Cas (M 7).

Now, substituting (2.9), (2.17), and (2.18) into (3.4), the long-run average cost per a unit of time
can be determined explicitly.
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