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A b s t r a c t - - I n  this paper, we consider the optimal control of a finite dam using PxM~ policies; 
assuming that  the dam has capacity v, the water input is a diffusion process reflected at 0, v. The 
release rates depend on the water content in the dam. There is a certain cost of maintaining the dam 
as well as a reward received. We obtain an explicit formulas for the total discounted cost over the 
infinite horizon as well as the long-run average cost per a unit of time. �9 2006 Elsevier Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

A b d e l - H a m e e d  a n d  N a k h i  [1] d i scuss  t h e  o p t i m a l  con t ro l  of a f in i te  d a m  us ing  P~,I r pol ic ies  

(def ined  be low) .  T h e y  use  b o t h  t h e  t o t a l - d i s c o u n t e d  cost  as well as t h e  l o n g - r u n  ave rage  cost  

pe r  a u n i t  t i m e  c r i t e r ion .  T h e y  a s s u m e  t h a t  t h e  w a t e r  i n p u t  is a W i e n e r  p roces s  a n d  W i e n e r  

p rocess  re f l ec ted  a t  0. A b d e l - H a m e e d  [2] t r e a t s  t h e  case  of a n  in f in i t e  d a m  w h e r e  t h e  i n p u t  

p rocess  is a c o m p o u n d  Po i s s on  process .  Bae ,  K i m  a n d  Lee [3] t r e a t  t h e  case  of  a f ini te  d a m  w i t h  

a c o m p o u n d  P o i s s o n  i n p u t ;  t h e y  o n l y  d iscuss  t h e  l o n g - r u n  ave rage  cost  pe r  a u n i t  t i m e  case. 

F a d d y  [4] cons ide r s  t h e  case  of a f in i te  d a m  w i t h  W i e n e r  i n p u t  a n d  p M  policy. 

In all of t h e  a b o v e  pape r s ,  i t  is a lways  a s s u m e d  t h a t  t h e  re lease  r a t e s  a re  c o n s t a n t s  a n d  do not  

d e p e n d  on  t h e  w a t e r  c o n t e n t  in  t h e  dam.  In  t h i s  p a p e r ,  we cons ide r  t h e  case  of a f in i te  d a m  w h e r e  

t he  i n p u t  p roces s  is a d i f fus ion  p rocess  a n d  t h e  re lease  r a t e s  a re  s t a t e  d e p e n d e n t .  Specifically,  

cons ide r  a f in i te  d a m  w i t h  c a p a c i t y  v a n d  a s s u m e  t h a t  t h e  w a t e r  i n p u t  I = {I t ;  t E T~+} is a 
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diffusion process reflected at  0, v, and diffusion coefficients, 

(z)  - ~2 (z  - v) 3 . (v - z)  2 
.V2 + V 

(72 (Z) -- (72 (V--  Z)4 
y2 

where # is a real number  and a 2 is a nonnegat ive number.  I t  follows t ha t  I has s ta te  space [0, v). 
Throughout ,  we will let 7~+ be the set of nonnegat ive real numbers.  Suppose  tha t  a dam has 

capaci ty  v. Let Z -- (Zt; t �9 ~ + )  be the  process describing the  content  of the  dam. We 
restr ict  ourselves to policies in which the release rate  is zero until  the  water  level reaches level ,\ 
(0 < A < v), when the water  is released at  ra te  

M ( z ) -  M ( v - z )  2, 
V 

until it  reaches level r ,  (0 _< r < A). Once the level r is reached, the  release ra te  remains zero 

until  the  level A is reached again, and the cycle is repeated.  I t  is clear t ha t  the  content  process 
is a delayed regenerat ive process with regenerat ion points  being the t imes of successive visits to 
s ta te  A. During a given cycle, the  water  content  is a diffusion process reflected at  v wi th  diffusion 
coefficients, 

~* (z)  - o2 (z  - v) a ~* (~ - z)  2 
V 2 + V 

where #* = # - M and cr2(z), denoted  by I* = {I~; t �9 ~ + } ,  and remains  so until  it  drops to 

level r ;  from then on and until  it  reaches A again the  content  of the dam behaves like a diffusion 

process wi th  diffusion coefficients #(z)  and o2(z). At any t ime the release ra te  increases from 0 
to M(z) a s ta r t ing  cost K1M is incurred, and at  any t ime the release ra te  is decreased from M(z) 
to 0 a closing cost K2M is incurred. Moreover, for each unit  of output ,  a reward A (which can 

be assumed to be 1) is received, and there is a penal ty  cost which accrues at  a ra te  f ,  where f 
is a bounded measurable  function. 

In Section 2, we describe the  content  process and give basic and main formulas for comput ing 

the cost functionals.  In section 3, we give explicit  expressions for the  to ta l  discounted cost over 
the infinite horizon as well the  long-run average cost per  a unit  of t ime. 

2 .  B A S I C  A N D  M A I N  R E S U L T S  

Throughout ,  we will let R = (Rt; t �9 7~+) and Z = (Zt; t E 7~+) denote  the  dam content 
and the release rates,  respectively. The  content  process is best  descr ibed by the  bivar ia te  process 
B = (Z, R),  from the definition of the  type  of control  policies deal t  with,  we have B0 = (0, 0). I t  
should be clear t ha t  the process has s ta te  space, 

E = ((l,X) • {0})U ([r, V) • { M } ) ,  

where l denotes  the  lower bound of the  s ta te  space of I .  
The pena l ty  cost occurs at  a ra te  given by 

f (Z, r) ---- ~" 
g ( z ) ,  

L g* ( z ) ,  

where g : (I,A) --+ ~ +  and g* : [r ,Y] -+ ~ +  

following s topping  times, 

(z ,  ~) �9 (/, ~) • { 0 } ,  

( z , r )  C [% V] x { M } ,  

are bounded measurable  functions. Define ti le 

T# = inf {t ETr : Zt = A}, 

T~ = i n f { t c T r  : Z t  = r } ,  

Tn A = inf {t >_ TnA_I : Zt = A},  

T,~ = i n f { t _ > T ~  : Z t = r } ,  n > l .  

(2.1) 
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It follows tha t  the sequence of stopping times (T,~) forms regeneration points of the content 

process Z. 
Let C~(x, ~), C~(A, T) be the expected discounted penalty costs during the intervals [0,T0 A) 

starting at x, and during the interval [ToA,T~) respectively, 0 _< c~ < oo. The corresponding 
functions, when a = 0, are written Co(x, ~) and CM(A, ~-). It follows tha t  

T: 
C~ (x, ~) = Ex e-~tg (It) dt, 

dO 

C~z (~, T) = E~ e-~tg (I;) dt, 

C0 (x, A) = E~ g (It) tit, 
dO 

CM (~, ~-) : E~ g (I;) dr. 

(2.2) 

To compute  the functionals indicated in (2.2) and other related functionals, we define the 

diffusion process killed at A, as follows 

x = ( I , ;  t < T $ ) .  

From the theory of Markov processes we know that  the process X is a strong Markov process. 
It h ~  state space [0, A). It follows that  its generator is of the form, 

~ (x) f,, (x) + ~ (~) f '  (x) A f  (x)  = 2 

and (2.3) 

A f  (~) = O. 

It, can be shown that  the domain of the generator (D(A)) is of the form, 

D (A) = c 2 [0, A) n { f '  (0) = 0}. 

For any number z we let 5 = z/(v - z). We note tha t  for any x in the state space, 

c ~  (x, ;9 = u~g (x) ,  

where Us is the resolvent operator of the process X defined above. Let Us(x, y) be a-potential  

kernel of X. To find Us, we define Ca(x) as follows, 

r (~) = us  (~-0~),  

where ~ is a fixed real number. Since the range of the resolvent operator is equal to the domain of 
tile generator A, and ( a I - A ) r  = e -ex. It  follows that  Ca(x) is the solution of the boundary 

value problem, 
~2 (~) ,, 

r (x) + # (x) r (x) - a r  (z) = - e  -8~, (2.4) 

where r = 0 and r = 0. 
For the computat ion of Ua(x, y), we have the following. 
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TItEOREM 1. Let U~(x, y) be a-potential kernel of X ,  and 7 = (#2 + 2a(72)1/2, then for x and y 
in the state space, 

u~ (z, y) - 

(2.5) 

PROOF. It can be shown that  the homogenous part of equation (2.4) is of the form, 

ch ( X ) = Cl e-(v('/+It) ) / ( ~ z) ) -{- C2e(v('f-") ) / (~ x) ) , 

where ct and c2 will be determined later. Let 

r (X) = e -(v('/+l~))/(a2(v-x) 

and 

2y 2 

h (x )  : 0 .2 (11 - x )  4 e-~ 

Using differential equation techniques, the general solution of (2.4) is 

Oct, ( X ) ~  C1r (X)-{-C2r ( X ) - I - r  (X) [L  x r w(Y) h(y)(y) dyl _ r  (x) [ L  x r w(Y) h(y)(y) dy] , 

w h e r e  

w = r162 - r162 = 
2~/v 

0.2 (v - x) 2r162 

is the Wronskain of r and r Thus, (2.6) becomes 

(2.G) 

r162162 1 [r162 ~ LXvr176 J 
7 (v - y) dy - r (x) (v - y) dy . 

Denoting the Laplace transform of a function f by L(f ) ,  the above equation can be written as 

r  (x) = c~r (x) + c2r (z)  

1I { } { + -  r  L I ( O < y < x )  vr  ~ : y  - r  L s (0  < y < x )  Vr 

# Using the boundary conditions r = 0 and Ca(A-) = 0, it follows that  

1 ' ]-* 
c2 = - (o) r  (o) r (,x) + r (~) 

J t, Ty) 
and 

Cl z 7 - ~r  (0) r  -~ (0) c~. (2.7) 
~ / + #  
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Substi tuting (2.7) into (2.6), we have 

[~/ -- ]d'(p2 (0) (~1 1 (0) (~1 (~) -I- r (/~)] r ( z )  = c2 [ 7  + 

+ - r  I ( O < y < x ) - ( ~ v Z T j  ~ - r  I ( O < y < x )  vr  

Inverting the left-hand side of the above equation with respect to 0, the result follows. 
We have 

cg (x,  ~) : g (y) u~ (~, y) @. (zs) 
Letting c~ --* 0, in (2.5), we get 

2v ~ live)-- s V~] if r = O, 
~2 (v - y)" L J ' 

Uo(~,y): ___i_~ [e-(~.(~-~)+)/-~ e-(~"(~-~)+)/"~] 
- i f p C O .  

( v -  y) k 

We put this next as a proposition. 

PROPOSITION 1. Let C0(x,A) be the nondiscounted cost in [0, ToA). Assume that the input 
process is a diffusion process with parameters #(z) and cr2(z). Then, for # > O, 

C o ( r , A ) :  { ~ f :  ( v J y ) 2 9 ( Y ) [ A V ! l - - T V ~ ] ]  dY' i f p : O ,  

(v - y) L 

Let l (x)  = I[o,~)(x), from (2.15) of Abdel-Hameed and Nakhi [2], we know tha t  

E:~e -aT:  = 1 - e~U~I (x) (2.10) 

and we have the following proposition. 

PROPOSITION 2. Assume that the input process is a diffusion process with parameters #(z),and 
a2(z). Let T~ be as defined in (2.1), and C~(x,A) be as defined in (2.2). Then, 

Eze -aT~ = ( " / -  #) e-{('r+**)~/~2} + (3' + #) e{('r-t*)~/~} (2.11) 

(~ - ~ )  e - {<  " + " ) x / ~ }  + (~ + ~ )  c { ( ~ - " ) ~ / ~ O  " 

From (2.10), we have that 
ExT~ = lira U~I (x) 

o~ ---,0 

and we have the following corollary. 

COROLLARY 1. Assume that the input process is a diffusion process with parameters #(z) and 
a2(z), and let T~ be the time of first entrance in state A. Then, 

. . . .  i f #  = 0 ,  
E.T$ = ~2 ' (9.19) 

+ - -  e - ( 2 ~ " ) / ~  - e - (2§ if # 7~ O. p 2,u 2 

We now compute C~I(A, T), E~(e-aT~ ), CM(A,T), and E~T o. Define 

X* a r* 
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I t  follows tha t  X* is a s tandard Markov process with s tate  space [7, v). We note tha t  for x < A, 

c ~  (~, .) = u ~ g *  (~), 

where Uc~ is the resolvent opera tor  of the process X* defined above. Let Ua(x, y) be c~-potential 

kernel of X*. In order to determine Uc~(x, y), we define 

~ (x) : u .  ( e - ~  

where 0 lies in [0, Pc). By an argument  similar to the one used to establish (2.8), ; a ( x )  is the 
solution of the following boundary  value problem, 

~ z )  ; , ,  (x) + ~ (x) r (x) - 5 r 1 7 6  (.~) = _ ~ - 0 ~ ,  (2.13) 
2 a 

where r = 0 and r  = 0. 
We have the following theorem. 

THEOREM 2. Let ~ = (~2 + 2a~r2)l/2 then for x and y in the s ta te  space of X*, 

* v e(9-~);/a~ e_.,}lg_i.l/a: _ e2.,t-r ,v(y+z)/a 2 
u s  (z ,  v)  - 7 (~ u) ~ 

PaOOF. As shown in the proof of Theorem 1, the general solution of (2.17) is 

{ �9 } { �9 }] - * * 1 v r  ~ (y) * 
O ~ ( x ) = c ~ r 1 6 2  l(x)  L I ( a , y ) ~ - - ~ - ~  - r  L I (a ,y )  vr  

where 

r  ; ~+; ~(~-~), r  

a is an arbi t rary  point in [T, v) and I(a, y) = I(a < y < x). Imposing the boundary  condition 

r  = 0, it follows tha t  c2 = 0 and a = v. Thus, 

{ " / { * }] * * 1 v r  1 ( y )  * 
r 1 6 2  2(x) L I ( a , y ) - - - - - - - ~  - r  L I (a ,y )  vr  (2.15) m 

Imposing the boundary  condition r  = 0 on the last equat ion above, we get 

1 [ / v ; 2 - 1 ( y ) )  " / v ; ~ l ( y ) ~ ]  
C1 = "-~,.,[ ;1 (T) L [(,o__y)2 - - ~ ) 2 ( T ) /  ~k(--VV_--~/j  " 

Taking the Laplace inverse with respect to 0 in equation (2.15) the result follows. 

The proof of the following proposit ion follows in a manner  similar to the proof of Proposit ion 2, 
and hence, is omitted.  

PROPOSITION 3. Assume that the input process is a diffusion process with parameters ~(z) and 
a2(z).  Let  T~ be as defined in (2.1), and C~'~(,~, T) be as defined in (2.2). Then, 

Exe- ~Tg = e -{ (5+h) (~ - § }/a~. (2.16) 

Lett ing c~ --* 0 in (2.16), it follows that ,  for ~t _< 0, T~ < oo, w.p.1, while T~ = oo with 

probabil i ty 1 - e -2 ; ( i -§  for ~ > 0. The  proof of the following corollary is similar to the proof 
of Corollary 1, and is also omitted.  
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Assume that the input process is a diffusion process with parameters ~(z) and 

oo, if/~ _> O, 

ExT~ = ? - ~  if p < 0 .  (2.17) 

In order to find CM (A, v), we first have the following proposition which follows from Theorem 2. 

PROPOSITION 4. Let U~(x, y) be the a-potential kernel given in Theorem 2. Then, for any x, 
and y C IT, V], 

v e(-~;(~-~)+)/"~-~(-~;(~-~)+)/"~ , ;>0 ,  
9o(~,y)= ;(v y)~[ ] - 

[e (-~;(~-~)+)/"~- e (-~;(~-~)+)/~], ;<0  
; (v- y)~ 

(2.1s)  

Using the Lebesgue dominated convergence theorem, we have the following. 

PROPOSITION 5. Let CM(A, r) be the cost functionM defined in (2.2). Then, for ~ < 0, 

For ~ _> 0, we conjecture the following. 

PROPOSITION 6. Let CM()~, T) be the cost functional de/ined in (2.2). Then, for [z > O, 

CM()~,T) = 1 ~  (v- -y)2  
# 

3. T H E  E X P E C T E D  T O T A L  D I S C O U N T E D  
A N D  L O N G - R U N  A V E R A G E  C O S T S  

Consider the finite dam controlled by the P~,~T with a diffusion process, reflected at 0 and 'v, 
as described in Section 1. Let c~ be the discounting factor. Let Ca(A, T) be the expected total 
discounted cost over the infinite horizon, while C~(0, A) and C1,~ (A, 7-) are the expected dis- 
counted costs in the intervals [0, T0 A) and [To A, T~), respectively. It follows that the expected 
total discounted cost is 

Ca (~, ~-) = Cg (0, A) + E0 [exp (-c~T0 A) Ea [Cl,a (A, 7)] (3.1) 
1 - E~ [exp ( - ~ w ~ ) ]  ' 

where W1 = T~ - To A. It follows, from the strong Markov property, that 

EA [exp (-ctW1)] = E~ [exp (-aT$)] E. [exp (--aToA)] (3.2) 

and { /: } Ea [C1,~ (,k, r)] = M Kt + K2Ea [exp ( -aTg)]  - Ex e -at dt (3.3) 

+E~ [exp ( -aTe) ]  Cg (% A) + C~4 (A, T). 

Now, substituting (2.5), (2.8), and (2.14) into (33), we obtain the expected total discounted cost 
over the infinite horizon Ca(A, T). 
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Let CI(A, ~-) be the cost incurred in the interval [To A, T~),  C(A, r )  be the long-rum average cost 
per a unit of t ime and K = K1 + K2. Using the relation C(A, 7) = lim~-~0 a C a ( A ,  T); we have 

c (a, ~) - E~ [C1 (A, ~)1 (a4) 
EA (Wl )  

From the strong Markov property, it follows tha t  

E~ (Wl) = E~ (To*) + Er (T0~), 

E~ [C1 (~, ~)] = M [K - E~ (To*)] + C0 (~, ~) + C .  (A, ~ )  

Now, subst i tut ing (2.9), (2.17), and (2.18) into (3.4), the long-run average cost per a unit of t ime 
can be determined explicitly. 
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