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Abstract--The aim of this paper is to investigate a general class of explicit pseudo two-step Runge- 
Kutta-NystrSm methods (RKN methods) of arbitrarily high order for nonstiff problems for systems 
of special second-order differential equations y'(t) = f(y(t)). Order and stability considerations 
show that we can obtain for any given p, a stable pth-order explicit pseudo two-step RKN method 
requiring p - 2 right-hand side evaluations per step of which each evaluation can be obtained in 
parallel. Consequently, on a multiprocessor computer, only one sequential right-hand side evaluation 
per step is required. By a few widely-used test problems, we show the superiority of the methods 
considered in this paper over both sequential and parallel methods available in the literature. ~) 1999 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Consider the numerical solution of a nonstiff Initial Value Problem (IVP) for the system of special 
second-order Ordinary Differential Equations CODEs) 

y"(t) = f(y(t)), y(t0) = Y0, y'(t0) = y~, t e It0, T], (1.1) 

where y, f E R d. There are many important problems in celestial mechanics which are of form 
(1.1). The most efficient numerical methods for solving this problem are the explicit Runge-Kutta- 
NystrSm-type methods (RKN-type methods). In the literature, sequential explicit RKN methods 
up to order ten can be found in, e.g., [1-5]. In order to exploit the facilities of parallel computers, 
several classes of parallel RKN-type methods have been investigated in, e.g., [6-11]. A common 
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challenge in the latter-mentioned papers is to reduce, for a given order of accuracy, the required 
number of sequential f-evaluations per step, usiag parallel processors. In the present paper, we 
investigate a general class of Explicit Pseudo Two-step RKN methods (EPTRKN methods) for 
the numerical solution of problem (1.1). The two-step nature of the methods considered in this 
paper is similar to that of the methods investigated in [12,13] for first-order ODEs and in [9,14] 
for second-order ODEs. Specifically, these EPTRKN methods are similar to the explicit pseudo 
two-step RK methods considered in [15] but the EPTRKN methods are defined more simply. 
Our approach in this paper is to approximate the stage values of an implicit RKN method at the 
present step by an explicit formula using the stage values from the preceding step. In this way, 
we can obtain an s-stage EPTRKN method possessing order up to s + 2 and stage order up to 
s + 1, requiring s f-evaluations per step (see Section 2.1). However, each of these s f-evaluations 
can be obtained in parallel. Consequently, when an s-stage EPTRKN method is implemented 
on an s-processor computer, only one sequential f-evaluation per step is required. This cheap 
computational cost leads to increased efficiency of EPTRKN methods when compared to the 
parallel and sequential methods from the literature (see Section 3). Stability considerations reveal 
that for any EPTRKN method, the zero-stability requirement is verified. The stability regions of 
a number of specified EPTRKN methods used in the numerical experiments are effectively large 
for nonstiff problems (cf. Section 2.2 and Section 3). 

In the following sections, for the sake of simplicity of notation, we assume that the IVP (1.1) 
is a scalar problem. However, all considerations below can be straightforwardly extended to a 
system of ODEs, and therefore, also to nonautonomous equations. 

2. E X P L I C I T  P S E U D O  T W O - S T E P  R K N  M E T H O D S  

The definition of explicit pseudo two-step RKN methods (EPTRKN methods) can be directly 
worked out using collocation techniques as in [15] for first-order ODEs. In this paper, we apply 
a more simple approach by starting with an s-stage collocation Implicit RKN method (IRKN 
method) based on s-dimensional collocation vector c = (Cl,. . . ,  cs) T. This IRKN method will be 
referred to as the generating I R K N  method. For a scalar and autonomous problem of form (1.1), 
the generating IRKN method reads 

Un = une  + hu~nc + h 2 A N f  (Un),  (2.1a) 

Un+l -~ Un "~ hutn + h2bTf (Un),  (2.1b) 
! ! 

Un+l = un + hdV f (Un). (2.1c) 

Here, Un+l "~ y(tn+l) ,  Un+l' ,~ y' ( tn+l) ,  U n  ~ y ( t n e + c h )  = [y(tn +Clh) ,  . .. , y ( tn  +csh)] T at n th 
step, h is the stepsize, the s × s matrix AN,  and the s-dimensional vectors b and d are the RKN 
parameters, e is the s-dimensional vector with unit entries. Furthermore, in (2.1) and elsewhere 
in this paper, we use for any vector v = (Vl,... ,vs)T and any scalar function f the notation 
f (v)  := [ f (v l ) , . . . ,  f(vs)] T. 

Replacing the implicit stage vector equation (2.1a) in (2.1) by an explicit approximation formula 
using the stage vector from the preceding step leads us to the method 

Y n  = yne  + hyde  + h2A f (Yn-x),  (2.2a) 

Yn+l = Yn + hy~ + h2bTf (Yn), (2.2b) 

Y'+I = Y" + hdT f (Y,~) • (2.2c) 

Here as in (2.1), Y n + l  ~ y(tn+l) ,  ~ ~ ~ t ,v Yn+l "~ Y ( n + l ) ,  Y n  y ( tne  + ch). The method parameter 
matrix A will be determined by order conditions (see Section 2.1). Method (2.2) slightly differs 
from its generating IRKN method by the explicit relation (2.2a). This method is similar to a 
RKN method but it is not a RKN method nor a two-step RKN method of [9,14]. It has no implicit 



Pseudo Two-Step RKN Methods 19 

relation and carries the information from the preceding step, and therefore, will be termed s-stage 
explicit pseudo two-step Runge-Kutta-NystrSm method (EPTRKN method) based on collocation 
vector c. For convenience of presentation, we specify this EPTRKN method by the tableau: 

A c O 
Yn+x b T (2.3) 
Y',,+x dr  

In order to start method (2.2), an appropriate starting procedure is needed to generate a 
sufficiently accurate starting vector Y0 from Y0 and y~. This can be done, for example, by using 
an appropriate PIRKN-type or BPIRKN-type method (cf., e.g., [7,11,16]). 

For the EPTRKN method (2.2), at each step, we need to compute 2s f-evaluations of two 
s-dimensional vectors f (Yn-1)  and f(Yn).  However, s f-evaluations of f (Yn-1)  are already 
available from the preceding step so that only s f-evaluations of f (Yn)  are required. These s 
f-evaluations can be evaluated in parallel on s processors. Consequently, the s-stage EPTRKN 
method (2.2) implemented on an s-processor computer, requires just one sequential f-evaluation 
per step. 

The order of EPTRKN method (2.2) can be studied in the same way as the order of a RKN 
method. Thus suppose that Yn = y(tn) and Yn-X = y(tn-le  + hc). Then we have the following 
definition. 

DEFINITION 2.1. The EPTRKN method (2.2) will be of order p* ff 

y(tn+l) - yn+l = O (h"  +l) , 

y'(tn+l) ' ( )  --Yn+l = O  h p*+I , 

and stage order q* = min(p*,q}, ff in addition, 

y(tne + hc) - Yn = O (hq+l) . 

Notice that the local stage order equals q + 1. Now we shall consider the order conditions for the 
explicit approximation formula (2.2a). 

2.1. O r d e r  Condi t ions  

For the (fixed) stepsize h, the qth-order conditions for (2.2a) can be derived by replacing Yn-x, 
Yn, and Yn by the exact solution values y(tn- le + hc) = y(tne + h(c - e)), y(tn), and y (the + hc), 
respectively. On substitution of these exact solution values into (2.1), we are led to the relation 

y(tne + hc) - y(tn)e - hy'(tn)C - h2Ay"(tne + h(c - e)) = O (hq+l). (2.4) 

Using Taylor expansions in the neighbourhood of tn, we can expand the left-hand side of (2.4) in 
powers of h and obtain 

[exp (hc  d )  - e - h c d - h 2 A ~ - - - ~ e x p ( h ( c - e ) d ) ] y ( t n )  

q--1 
-~- Z c(J'{-1) (hal ~ 3+ly(tn) -{- c(q+l) (h d ~ q+l j=l \ dt]  \ -~] y(t*) = 0 (hq+l), 

(2.5) 

where, t* is a suitably chosen point in the interval [tn-1, tn+l], and 

C(j+I) = 1 [c j+l - j ( j  + 1)A(c - e) j - l ]  
(j  + 1)! 

j = 1 , . . . , q -  1. (2.6a) 
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The vectors C (j+l) represent the error vectors of the numerical stage approximations. From (2.5), 
we obtain the order conditions 

C (j+l) = 0, j = 1 , . . . , q -  1. (2.6b) 

The vector C (q+l) is the principal error vector of the stage numerical approximations in (2.2). 
Conditions (2.6) imply the following local order relation: 

y(tne + hc) - Yn = O (hq+l).  (2.7) 

THEOREM 2.1. Let p be the order of  the generating I R K N  method (2.1). I f  the function f is 
Lipschitz continuous, and ff  

c J+ 1 
A ( e -  e) j-1 = j ( j  + 1)' j = 1 , . . . , q -  1, (2.8) 

then the E P T R K N  method (2.2) has order p* = min{p,q + 1} and stage order q* = min(p*,q} 
for any collocation vector c with distinct abscissas ci. 

PROOF. Suppose that  Yn = y(tn) and Yn-1 = y ( t n - l e  + hc). Since conditions (2.6) and (2.8) 
are equivalent, f is Lipschitz continuous, and from (2.7), we obtain the following order relations: 

y(tn+l) - Yn+l = y(tn+l) - y(tn) - hy'(tn) - h2bTf  (y (the + he)) 

+ h2b T [f (y (the + he)) - f (Yn)] (2.9a) 

= O (h p+I) + O (h 2) [y(tne + hc) - Y~] = O (h p+I) + O (hq+3), 

y'(tn+l) - Y~+I = y'(tn+l) - y'(tn) - hdT f (y (the + hc)) 

+ hd T [f (y (the + hc)) - f (Vn)] (2.9b) 

---~ O (h p+I) -[- O ( h ) [ y ( t n e  -~- hE) - Vn] = O (h p+I) -~ O (hq+2) . 

In view of the order relations (2.9) Theorem 2.1 is proved. | 

In order to express the parameter matrix A explicitly in terms of the collocation vector c, we 
define the following matrices: 

(C2 C3 E 4 cs+l ~ 
P : =  2 '  3 '  4 " ' " s - + - 1 ] '  Q : = ( e ' 2 ( c - e ) ' 3 ( c - e ) 2 " ' " s ( c - e ) S - 1 ) "  

Then the order conditions (2.6) can be presented in the form 

AQ - P = O. (2.10) 

Since the components ei of the vector c are assumed to be distinct, the matrix Q is nonsingular, 
and from (2.10), we may write 

A = p Q - 1 .  (2.11) 

From condition (2.11) it follows that  

y(tne + hc) - Yn = O (h '+2).  (2.12) 

Moreover, the order investigations for collocation IRKN methods ensure that  the order p of the 
generating IRKN method (2.1) is at least equal to s (see, e.g., [17]). By a special choice of 
the collocation vector c, it is possible to increase the order p beyond s (superconvergence) by 
satisfying the orthogonality relation (see [18, p. 212]), that  is if the orthogonality relation 

fo Pj(1) --0, Pj(x)  := ~J-l H ( ~ - e i ) d ~ ,  j = 1 , 2 , . . . , l  (2.13) 
i----1 

is satisfied then p = s + I. The following theorem is a consequence of Theorem 2.1 and the order 
relation (2.12). 
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THEOREM 2.2. An  s-stage E P T R K N  method defined by (2.2) has order p* : s and stage order 

q* = s for any set of distinct collocation points ci. I t  has stage order q* = s + 1 and order 
p* = s + 1 or s + 2 ff  in addition, the orthogonality relation (2.13) is satisfied for I = 1 or I >_ 2, 

respectively. 

Thus, an s-stage EPTRKN method can attain the order p* = s + 2. 
According to the analysis of the local errors in this section, the starting values Y0 should be 

of local order s + 2 that is 
y(toe + he) - Y0 = 0 (hS+2) . 

In the following applications of EPTRKN methods, in the first step, the starting values of Y0 
and Yl of an EPTRKN method will be always generated by the associated PIRKN method using 
the collocation RKN corrector based on the same collocation vector c as the underlying EPTRKN 
method. 

REMARK 2.1. For determining the parameters of an EPTRKN method, the matrix A can be 
defined by using (2.11), the vectors b and d are defined as the corresponding parameters of the 
generating direct or indirect collocation IRKN methods (see [17]). 

REMARK 2.2. The method parameter matrix A defined by (2.11) can be used only for fixed 
stepsize implementations. With a variable stepsize strategy, the matrix A has to be recalculated 
when the stepsize changes. The entries of the variable matrix A are then, a function of the ratios 
of stepsizes. Variable stepsize strategy EPTRKN methods are the subject of [19]. 

A NUMERICAL TEST. We will test the theoretical order behaviour considered above of EPTRKN 
methods with some methods from a family of two-stage EPTRKN methods generated by the 
direct collocation IRKN method based on the vector c = (cl, c2) T. This family is defined by the 
following tableau (cf. [17], (2.3), (2.11)). 

C ~ ( 3 C 2 - - C l  -- 3) C~(3 -- 2Cl) 

6(C2--C1) 6(C2 -- C1) 

~ (2e2  - -3 )  4(C2 --3C1-}-3) 

6(C2 - e l )  6(C2--Cl)  

C1 

C2 

Yn-k l 

ytn+l 

0 0 

0 0 

3c2 -- 1 1 -- 3Cl 

6(C2--Cl)  6 ( c 2 - - e i )  

2c2 -- 1 1 -- 2Cl 

2(c2-cl) 2(e2-cD 

'(2.14) 

We consider the EPTRKN methods based on the following collocation vectors c: 

( 1 ,  1) T, ( 3 , 1 )  T , (0, 2 )  T , ( 3 - ~ . ~ ,  3 + V ~ )  T 

By a direct calculation using (2.14), we obtain the parameters of the resulting EPTRKN methods 
which are specified by the following tableaux. 

1 1 

24 
1 5 

0 0 

0 0 

2 1 

Y~+I 1 0 

(2.15a) 
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1 7 
108 108 

1 5 

1 
5 

1 

Yn+ l 

Y~+ I 

0 0 

0 0 

1 
0 

3 1 

(2.15b) 

0 0 

5 11 
27 27 

0 0 

2 
5 0 

1 
yn+, 

3 

(2.15c) 

5-3v~ 
18 

4 + 3 v ~  
36 

3V~-4 
36 

5+3v  
18 

3 -  

6 

3 + v ~  
6 

Yn+l 

yln+l 

0 0 

0 0 

3+v  3-v  
12 12 
1 l 

(2.15d) 

From Theorem 2.2 and the theoretical orders of the generating IRKN methods, method (2.15a) 
has p* = q* = 2; methods (2.15b) and (2.15c) have p* = q* = 3; and the last method (2.15d) 
based on Gauss-Legendre collocation vector has p* = 4, q* = 3. 

We now apply these specified EPTRKN methods (2.15) to the linear nonautonomous problem 
(el., e.g., [7-9]) 

d2y(t) ( - 2 a ( t )  + 1 - a ( t )  + 1 
dt 2 = k,2(a(t) - 1) c~(t) - 2 / y(t) ,  

a(t)  = max {2cos2(t),sin2(t)}, 0 < t < 20, (2.16) 

y(0) = (0, 0) T, y'(0) = ( -1 ,  2) T, 

with exact  solution y(t)  = ( -  sin(t), 2 sin(t)) T. The values of the Number of Correct Decimal 
digits NCD obtained at the end point of the integration interval for a given total number of 
integration steps Nstp (cf., e.g., [7-9]) listed in Table 1 nicely show the theoretical order behaviour 
of the EPTRKN methods as was stated in Section 2.1 (cf. Theorem 2.2). 

Table 1. NCD-values at  t = 10 for problem (3.1) obta ined by pth-order  E P T R K N  
methods .  

Methods  p NBtp = 1600 NBtp = 3200 Nstp = 6400 Nstp = 12800 Nstp = 25600 

EPTRKN(2.15a ) 2 3.7 4.3 4.9 5.5 6.1 

EPTRKN(2.15b ) 3 5.6 6.5 7.4 8.3 9.2 

EPTRKN(2A5c) 3 5.6 6.5 7.4 8.3 9.2 

EPTI:tKN(2.15d ) 4 6.9 8.1 9.3 10.5 11.7 
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2.2. Stab i l i ty  

Since EPTRKN method (2.2) is of two-step nature, we first check its property of zero-stability 
and next define its stability region. For that purpose we apply (2.2) to the model test equation 
y"(t) = Ay(t), where A runs through the eigenvalues of the Jacobian matrix ~ which are assumed 
to be negative real. For this model test equation, the EPTRKN method (2.2) assumes the form 

Yn = yne + hy~nc + xAYn- i ,  (2.17a) 

Yn+i = Yn + hy~ + x b T y n  

= Yn + hY'n + xb T (yne + hy~c + xAYn- i )  (2.17b) 

=(1 + xbSe) y. +( i  + xbSc) hy" +   bsay._l, 
! hyn+ i = hy~ + x d T y n  

= hy~ + zdT(yne + hy~c + xAYn- i )  (2.17c) 

= xdTeyn + (1 + xdSc) hy~ + x2dTAyn_i ,  

where x = Ah 2. Relations (2.17) lead us to the recursion 

( Yn ) {Yn-i ~ 
Y n + i  -~ M(x) Yn , (2.18a) 

h '  ~ hy tn )  \ Yn+l 

where M(x) is the (s + 2) × (s + 2) matrix defined by 

( xA e c I 
M(z) = x~bTA 1 + x b T e  1 + x b T c  . (2.18b) 

\ x2dTA xdTe 1 + x d T c ]  

The matrix M(x) will be called the amplification matrix, and its spectral radius p(M(x)) the 
stability function. For zero-stability, we have to demand that no eigenvalue of the matrix M(0) 
has modulus greater than one, and that every eigenvalue of modulus one has multiplicity not 
greater than two. Thus the following theorem holds. 

THEOREM 2.3. EPTRKN methods based on any collocation vector c with distinct abscissas, are 
Mways zero-stable. 

The stability regions of EPTRKN methods are given by 

(--f~stab, 0) := {X: p(M(x)) < 1}. 

We shall call ~stab the stability boundary of EPTRKN methods (cf., e.g., [17]). The construction of 
EPTRKN methods possessing large stability regions will be considered in a forthcoming paper. 
The stability boundaries of a number of specified EPTRKN methods used in the numerical 
experiments are reported in Section 3. 

2.3. On  t h e  Choice  of  M e t h o d  Parameters  

In the application of EPTRKN methods, for any chosen collocation vector c with distinct 
abscissas, the method parameter matrix A can be easily determined using the explicit expres- 
sions (2.11), the parameter vectors b and d are taken from the generating collocation IRKN 
methods. Since the class of collocation IRKN methods contains methods of arbitrarily high order 
(cf. [17,20]), we can obtain stable EPTRKN methods of arbitrarily high order. The freedom 
in the choice of the collocation points ci of the collocation vector e can be used for obtaining 
some useful method properties. It seems natural to choose the abscissas of the vector c such 



24 N . H .  CONG et al. 

that  the resulting EPTRKN method has the highest possible order s + 2 like method (2.15d) 
(cf. Theorem 2.2) or good stability behaviour, etc. An other option minimizes the magnitudes of 
some components of the principal error vector in (2.5) defined by (2.6a) for the stage vector y n .  
In this paper, we confine our considerations to the latter option. Although we may use (2.6a) for 
minimizing these magnitudes, it is more convenient to use the usual expression for the remainder 
term in Lagrange interpolation formulas. Using the r-point Lagrange interpolation formula for 
sufficiently differentiable functions y(t) (see, e.g., [21, formulas 25.2.1-25.2.3]) 

- I I / t  I I  y L n + T h ) = E l i ( T ) y  (tn+a~h)+C(r)(T) h-~ y(t*), 

r r (2.19) 
(T-aj__!) C(r)(T) = 1 H ( T _ a j ) ,  l-I  j:l 

j----1,j~i 

where, t* is a suitably chosen point in the interval [tn, tn + Th], we have the following alternative 
form of (2.5) (with q = s + 1): 

8 

I e h 2 C ~ II~t  y( t ,~+ckh)=y( tn)+hYn k+ E l i ( l +  k)Y t n + ( c i - 1 ) h )  

(2.20) 
+ C(8+2)(1 + ck) -~ y(t*k), k = 1 , . . . ,  s, 

where, t~ is also a suitably chosen point in the interval [tn-l,tn+l]. The principal error vector 
in (2.5) is given by C (8+2) = C (8+2) (e + c), so that  we are led to minimize the magnitude of the 

values 
8 

1 
C(S+2)(l+ck)= (s+l)--------~.H(l+ck-ci), k = l , 2 , . . . .  

i = l  

From (2.21) we see that  C (s+2) (1 + ck) vanishes if the set of components of the vector c contains 
the component Ck + 1 (cf., e.g., [8,9]). Thus, we have the following theorem. 

THEOREM 2.4. Let cv be an v-dimensional (v < s) subyector of the vector c, and e~ be the 
v-dimensional vector with unit entries. I[ the set of components o[ the vector c contains the set 
of components of the vector cv + ev, then the stage subvector Y~ .~ y(tnev + cvh) has vanishing 
principal error subvector C (8+2) (ev + cv). 

In the numerical experiments presented in this paper, we confine our consideration to the 
EPTRKN methods based on the collocation vector c which satisfy the conditions of Theorem 2.4. 
We do not claim that  this choice of method parameters is the best possible. A further s tudy of 
this topic will be the subject of future research. 

3.  N U M E R I C A L  E X P E R I M E N T S  

In this section, we shall report the numerical results obtained by a number of new EPTRKN 
methods investigated in this paper and by a number of parallel and sequential methods from 
the literature. For the numerical experiments, we consider the following specified EPTRKN 
methods: 

• EPTRKN3: 
• EPTRKN4: 
• EPTRKN5: 
• EPTRKN6: 
• EPTRKN7: 
• EPTRKN8: 

T/41T , 

third-order EPTRKN method based on c = (0, 1/2, 3/2) T, 
fourth-order EPTRKN method based on c = ( 0, 1/2, 1, 3/2) T, 
fifth-order EPTRKN method based on c = (0, 1/3, 2/3, 4/3, 5/3) T, 
sixth-order EPTRKN method based on c = (0, 1/3, 2/3,1,4/3,  5/3) T, 
seventh-order EPTRKN method based on c = (0, 1/4, 1/2, 1, 3/4, 5/4, 7/4) T, 
eighth-order EPTRKN method based on c = (0,1/4, 1/2, 3/4, 1,5/4, 3/2, 
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• EPTRKNg:  ninth-order E P T R K N  method based on e = ( - 2 / 3 , - 1 / 3 ,  0, 1/3, 2/3, 1, 4/3, 

5/3,2)L 
• EPTRKN10:  tenth-order E P T R K N  method based on c = ( - 2 / 3 , - 1 / 2 , - 1 / 3 ,  1/3, 1/2, 

2 / 3 , 4 / 3 , 3 / 2 , 5 / 3 )  -[- . 

Table 2. Stability boundaries ~stab for various p-order EPTRKN methods. 

p-OrderEPTRKNMethod p---3 p - -4  p- -5  p = 6  p = 7  p----8 p----9 p--10 

f~stab 0.765 0 .707  0 .656  0 .628  0 .607  0 .595  0 .5 8 8  0.591 

We numerically computed the stability boundaries ~stab as  defined in Section 2.2 of these 
E P T R K N  methods and reported them in Table 2. In terms of comparing stability of methods, it 
is the scaled stability region and not the stability region that  is significant (cf., e.g., [22, p. 198]). 
The  stability region of an E P T R K N  method is at the same time the scaled stability region. Since 
the solution of problems of form (1.1) usually requires a stringent accuracy, we see from Table 2 
tha t  the stability regions of the above specified E P T R K N  methods are good enough for nonstiff 
problems of this form. 

We once again recall that  the above-selected E P T R K N  methods are not optimal. They  are 
chosen by verifying only the conditions of Theorem 2.4. Moreover, in the numerical experiments, 

at first step, the starting values of Y0 and Yl of an E P T R K N  method will be generated by 
the associated PIRKN method using the direct collocation RKN corrector based on the same 
collocation vector c as the underlying E P T R K N  method. All the computations were carried out 
on a 14-digit precision computer. In the tables of numerical results, negative NCDs are denoted 
by (,) .  Furthermore, because of round-off errors, we cannot expect 14 digits accuracy. As a 
consequence, the tables of numerical results do contain empty spots whenever the corresponding 
result was in the neighbourhood of the accuracy-limits of the machine, and therefore, considered 

as unreliable. 
For an easy comparison of the various methods, the (fixed) stepsize is chosen such that  the 

total  number of sequential f-evaluations of each method (approximately) equals a prescribed 
number Nseq. To be more precise, let s* denote the number of sequential f-evaluations per 
step, Nstp denote the total  number of integration steps for the integration interval [to, T], then 

Nseq ~-- l~/-stp • 8* which leads us to define 

h _ _ _  
T - to 

Ystp 

where [.] denotes the integer part function (the effect of the integer part operation causes that  the 
actual number of sequential f-evaluations may be slightly different from the prescribed number 

Nseq). 
Ignoring load balancing factors and communication times between processors in parallel meth- 

ods, the comparison of various methods in this section is based on the numbers of sequential 
f-evaluations and on the obtained NCDs. The numerical experiments with small widely-used 
test problems taken from the literature below give a potential superiority of the new investigated 
methods over other extant methods. This superiority will be significant in a parallel environ- 
ment if the test problems are large enough and/or  the f-evaluations are computationally intensive 
enough. In this case, the communication overhead would not dominate the total computing t ime 
(cf., e.g., [22, p. 218]). An actual implementation with a stepsize strategy for large-expensive 
problems on a parallel machine is a subject of further studies. 

3 . 1 .  C o m p a r i s o n  w i t h  P a r a l l e l  M e t h o d s  

In this section, we report numerical results obtained by the best parallel explicit RKN methods 
available in the literature, tha t  is the direct and indirect PIRKN methods proposed in [7,11] and 
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the  E P T R K N  methods  specified above. Numerical  experiments  have shown t h a t  for the  fixed 

number  of  i terations strategy, the  efficiency of direct and indirect P I R K N  methods  are identical. 

The  test  set of  three problems used in the  numerical  experiments  are taken from the  literature. 

3 .1 .1 .  N o n l i n e a r  F e h l b e r g  p r o b l e m  

For the  first numerical  test,  we apply the various pth-order P I R K N  and E P T R K N  methods  to 

the  well-known nonlinear Fehlberg problem (cf., e.g., [1,2,23,24]) 

_4t2 2 ) 
d2y(t )  X/y~(t) + y~(t) 

= 2 y ( t ) ,  
~/y~(t) + y](t) -4t2 

T 
y ( 0 ) = ( 0 , 1 )  T, y ' ( 0 ) =  - 2  ,0 , < t < 1 0 ,  

( 3 i )  

with highly oscillating exact  solution given by y( t )  = (cos(t2), sin(t2)) T. The  results are repor ted  

in Table 3. These numerical  results show tha t  the  E P T R K N  methods  are superior to the  P I R K N  

methods  of  the  same order  by a speed-up factor about  4. 

Table 3. NCD-values for several values of Nseq for problem (3.1) obtained by various 
pth-order parallel methods. 

Methods p g s e q  = 200 Nseq = 400 Nseq = 800 Nseq ---- 1600 Nseq = 3200 

PIRKN 3 0.1 0.6 1.4 2.4 3.3 

EPTRKN3 3 1.3 2.1 3.0 3.9 4.8 

PIRKN 4 0.1 1.1 2.4 3.5 4.7 

EPTRKN4 4 2.3 3.6 4.9 6.1 7.4 

PIRKN 5 0.1 1.7 3.3 4.9 6.5 

EPTRKN5 5 3.1 4.7 6.3 7.8 9.3 

PIRKN 6 0.2 1.9 3.8 5.7 7.4 

EPTRKN6 6 4.6 6.3 8.2 10.0 11.8 

PIRKN 7 0.2 2.6 4.9 7.2 9.4 

EPTRKN7 7 5.6 8.3 10.4 12.4 

PIRKN 8 0.3 2.7 5.1 7.6 9.9 

EPTRKN8 8 6.3 9.5 11.8 

PIRKN 9 0.4 3.4 6.4 9.4 11.7 

EPTRKN9 9 7.0 10.4 

PII:tKN 10 0.4 3.5 6.3 9.4 12.2 

EPTRKN10 10 6.7 10.3 

3 .1 .2 .  N e w t o n ' s  e q u a t i o n  o f  m o t i o n  p r o b l e m  

The  second numerical  example is t h e t w o - b o d y  gravi tat ional  problem for Newton ' s  equat ion 

of  mot ion  (see [25, p. 245]): 

d2yl ( t) Yl (t) d2y2(t) y2(t) 
- -  = 3 '  dt----Y- - 3 '  0 < t < 20, 

yl(0)  = 1 - e, y2(0) = 0, yi(0) = 0, y~(0) = f ~ _ +  e e (3.2) 
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Methods p NB~q = 1600 Naeq = 3200 N~q -- 6400 N~q  = 12800 N~q = 25600 

PIRKN 3 0.1 0.1 0.6 1.4 2.3 

EPTRKN3 3 0.8 1.2 2.0 2.9 3.8 

PIRKN 4 (*) 0.9 2.3 3.7 5.0 

EPTRKN4 4 1.1 2.3 3.5 4.7 6.0 

PIRKN 5 0.5 1.0 2.3 3.8 5.3 

EPTRKN5 5 1.8 4.1 5.6 6.8 8.2 

PIRKN 6 0.9 3.3 4.3 6.5 9.5 

EPTRKN6 6 2.3 4.2 6.0 7.8 9.6 

PIRKN 7 0.6 1.6 3.8 5.9 8.0 

EPTRKN7 7 3.5 6.6 9.2 11.2 

PIRKN 8 2.0 3.1 5.5 8.1 10.7 

EPTRKN8 8 3.7 6.2 8.6 10.9 

PIRKN 9 1.1 2.8 5.3 7.7 10.4 

EPTRKN9 9 3.7 7.0 9.8 12.0 

PIRKN 10 1.0 3.5 6.1 9.6 12.5 

EPTRKN10 10 3.5 9.0 11.7 

Table 5. NCD-values for several values of Nseq for problem (3.2) obtained by various 
pth-order parallel PC methods. 

Methods p Nseq = 100 N, eq = 200 Nseq = 400 Nseq = 800 N~q = 1600 

PIRKN 3 (*) (*) 0.7 1.6 2.5 

EPTRKN3 3 0.2 1.2 2.1 3.0 3.9 

PIRKN 4 (*) 0.2 1.4 2.6 3.8 

EPTRKN4 4 1.5 2.7 4.0 5.2 6.4 

PIRKN 5 (*) 1.0 2.7 4.3 5.9 

EPTRKN5 5 2.7 4.2 5.7 7.2 8.8 

PIRKN 6 0.4 1.6 3.2 5.0 6.8 

EPTRKN6 6 3.9 5.7 7.6 9.4 11.2 

PIRKN 7 0.2 3.7 6.0 7.9 9.7 

EPTRKN7 7 7.4 9.3 11.3 

PIRKN 8 0.5 2.8 5.0 7.3 9.7 

EPTRKN8 8 6.9 9.1 11.5 

PIRKN 9 0.8 4.0 6.6 9.5 11.6 

EPTRKN9 9 8.9 11.5 

PIRKN 10 0.7 4.2 6.7 9.6 12.4 

EPTRKN10 10 8.5 11.4 

T h i s  p r o b l e m  c a n  a l so  b e  f o u n d  in  [24] o r  f r o m  t h e  t e s t  s e t  o f  p r o b l e m s  in  [26]. T h e  s o l u t i o n  

c o m p o n e n t s  a r e  y l ( t )  = c o s ( u ( t ) ) - e ,  y2 ( t )  = ~ / ( 1  + e ) (1  - e)  s i n ( u ( t ) ) ,  w h e r e  u( t )  is t h e  s o l u t i o n  

o f  K e p p l e r ' s  e q u a t i o n  t = u ( t )  - e s i n ( u ( t ) )  a n d  ~ d e n o t e s  t h e  e c c e n t r i c i t y  o f  t h e  o r b i t .  I n  t h i s  

e x a m p l e ,  w e  s e t  c --  0.9.  T h e  r e s u l t s  for  t h i s  p r o b l e m  a r e  g i v e n  in  T a b l e  4 a n d  s h o w  n e a r l y  t h e  

s a m e  s u p e r i o r i t y  o f  t h e  E P T R K N  m e t h o d s  ove r  t h e  P I R K N  m e t h o d s  a s  in  t h e  f i r s t  e x a m p l e  for  

the Fehlberg problem. 

3.1.3.  Scalar  p r o b l e m  

The third example is the scalar problem taken from [23] 

d2y(t)  = -25y( t )  + 100cos(ht), y(0) = 1, y'(0) -- 5, 0 < t < 10. (3.3) 
dt 2 



28 N. H. CONG et al. 

Table 6. NCD-values for several values of Nseq for problem (3.1) obtained by various 
pth-order methods. 

Methods p gse  q = 400 Nseq = 800 Nseq = 1600 gBeq = 3200 Nseq = 6400 

N4 4 0.6 1.8 3.0 4.2 5.4 

EPTRKN4 4 3.6 4.9 6.1 7.4 8.6 

H8 8 0.3 2.6 5.2 7.6 10.0 

BG8 8 0.9 3.1 5.6 8.0 10.4 

EPTRKN8 8 9.5 11.8 

H10 10 (*) 2.2 5.4 8.5 11.5 

EPTRKN10 10 10.3 

Table 7. NCD-values for several values of Nseq for problem (3.1) obtained by various 
pth-order methods. 

Methods p Nseq = 3200 Naeq = 6400 Nseq'= 12800 Naeq = 25600 Naeq = 51200 

N4 4 0.1 1.1 2.4 3.8 5.1 

EPTRKN4 4 2.3 3.5 4.7 6.0 7.2 

H8 8 0.1 2.0 4.6 7.4 10.6 

BG8 8 0.6 3.1 6.5 8.2 10.5 

EPTRKN8 8 6.2 8.6 10.9 

H10 10 0.3 1.8 4.9 8.4 11.7 

EPTRKN10 10 9.0 11.7 

Table 8. NCD-values for several values of Nseq for problem (3.2) obtained by various 
pth-order methods. 

Methods p Nseq --- 200 Nseq = 400 Nseq = 800 Nseq = 1600 Nseq = 3200 

N4 4 (*) 0.9 2.1 3.3 4.5 

EPTRKN4 4 2.7 4.0 5.2 6.4 7.6 

H8 8 0.5 2.6 5.0 7.4 9.8 

BG8 8 2.6 3.2 5.5 7.8 10.2 

EPTRKN8 8 9.1 11.5 

H10 10 0.6 2.7 5.7 8.7 11.7 

EPTRKN10 10 11.4 

The  exact  solut ion y ( t )  = cos(5t) + sin(5t) + 10t sin(5t) possesses rapidly oscil lat ing componen ts  

which are appear ing  with small  and  large variable ampli tudes .  The  results  for this  p roblem are 

given in Table  5 and  give rise to roughly the  same conclusions as formulated in the  two previous 

examples.  

3.2. Comparison with Sequential M e t h o d s  

In  Section 3.1, a n u m b e r  of E P T R K N  methods  was compared with P I R K N  methods  (the most  

efficient parallel  explicit  RKN methods) .  In  this section, some E P T R K N  methods  from them 

will be compared with some sequential  explicit  RKN methods  cur ren t ly  available, t ha t  is 

• N4: fourth-order  first explicit  RKN method  const ructed  by Nyst rSm in [27], 

• H8: eighth-order  explicit  RKN method  of Hairer from [4], 

• BG8: eighth-order explicit  RKN method  of Beentjes  and  Gerr i t sen  from [28], 

• H10: ten th-order  explicit  RKN method  const ructed  by Hairer in [5]. 

We shall report  numerica l  results obta ined  by apply ing  these four explicit  R K N  methods  and  

the  E P T R K N  methods  used in Section 3.1 of the same order to the  three  problems used also in 

Sect ion 3.1. The  numerica l  results of sequential  explicit  RK N  methods  listed in Tables 6-8  are 
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reproduced from the results given in [11]. The numerical results in these tables, show that the 
EPTRKN methods are by far superior to the sequential explicit RKN methods of the same order. 

4 .  C O N C L U D I N G  R E M A R K S  

This paper proposed a new general class of explicit pseudo two-step RKN methods requiring 
only o n e  sequential f-evaluations per step for any order of accuracy. Implemented with fixed step- 
size strategy, the specified explicit pseudo two-step RKN methods of order from 3 to 10 derived 
from this general class of methods are shown to be by far superior to the most efficient sequential 
and parallel methods currently available in the literature. These conclusions encourage us to 
pursue the study of EPTRKN methods. In particular, we will concentrate on the optimal choice 
of the method parameters and variable stepsize strategy implementations on parallel computers. 
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