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Abstract

Skin surfaces are used for the visualization of molecules. They form a class of tangent continuous surfaces defined in terms
of a set of balls (the atoms of the molecule) and a shrink factor. More recently, skin surfaces have been used for approximation
purposes.

We present an algorithm that approximates a skin surface with a topologically correct mesh. The complexity of the mesh is linear
in the size of the Delaunay triangulation of the balls, which is worst case optimal.

We also adapt two existing refinement algorithms to improve the quality of the mesh and show that the same algorithm can be
used for meshing a union of balls.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Skin surfaces, introduced by Edelsbrunner in [15], have a rich and simple combinatorial and geometric structure
that makes them suitable for modeling large molecules in biological computing. Meshing such surfaces is often re-
quired for further processing of their geometry, like in numerical simulation and visualization. We present an algorithm
for meshing skin surfaces with guaranteed topology.

Large molecules can be modeled using skin surfaces by representing each atom by a sphere. Atoms that lie close
to each other are connected by smooth patches. A skin surface is parameterized by a set of weighted points (input
balls) and a shrink factor. If the shrink factor is equal to one, the surface is just the boundary of the union of the input
balls. If the shrink factor decreases, the skin surface becomes tangent continuous, due to the appearance of patches of
spheres and hyperboloids connecting the balls.

We present an algorithm in [21] that approximates an arbitrary surface with a skin surface. The approximation is
homeomorphic to the skin surface and the Hausdorff distance between the two surfaces is arbitrarily small.
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Two surfaces embedded in three space are isotopic if there is a continuous deformation within the embedding
space that transforms one surface into the other one. In particular, isotopic surfaces are homeomorphic. The algorithm
presented in this paper constructs a mesh isotopic to the skin surface in two steps: it constructs a coarse, isotopic
mesh which is subsequently improved by slightly adapted refinement algorithms. The complexity of the coarse mesh
is quadratic in the number of input balls, and is independent of the shrink factor. This is worst case optimal. For
the second step a broad range of refinement algorithms can be used. Existing algorithms may have to be adapted
slightly to ensure the isotopy. We show how this is done for the refinement algorithms of Chew [10] and Kobbelt
[19]. The

√
3-subdivision algorithm by Kobbelt is very fast, and refines the size of the triangles. However, it does not

improve the quality of the mesh elements in terms of angle size. Chew’s algorithm improves the quality of the mesh
in terms of the angles and size of the triangles. The quality mesh is suitable for numerical computations. Our version
of these algorithms preserve the isotopy property. Methods like the one presented in [14] are also well suited for mesh
enhancements.

Related work. Most existing algorithms meshing implicit surfaces do not guarantee topological equivalence of the
surface and the mesh constructed. The marching cubes algorithm [22] subdivides a region into cubes and triangulates
the surface within these cubes based on whether the vertices of the cube lie inside or outside the cube. A variant of
this algorithm that follows the surface is [4].

The marching triangulation method [18] extends a small initial mesh by walking over the implicit surface, starting
from a seed point. Our paper [20] presents a marching triangulation method for meshing skin surfaces by carefully
choosing the step size during the walk over the mesh. However, as the shrink factor goes to one or to zero, the size of
the mesh goes to infinity.

The algorithms in [8,17] construct a topologically correct mesh approximating a skin surface in the special case
of a shrink factor 0.5. It is likely that this algorithm can be generalized to work for arbitrary shrink factors, but this
would probably result in a denser mesh in order to guarantee the topology. The algorithm is also rather slow. Another
approach is found in [9]. We could not verify the claim that the mesh produced by the algorithm in this paper is
homeomorphic to the skin surface. The idea is to approximate the Morse–Smale complex of the skin surface and use
a marching algorithm to approximate the skin surface using this Morse–Smale complex. There is no guarantee that
the approximating Morse–Smale complex is topologically correct since the computation of the separatrices requires
solving an ordinary differential equation using a Runge–Kutta method.

Another method for visualizing molecules uses Molecular Surfaces [13]. Visualization algorithms for this type of
surface are presented in [2,3]. The algorithms presented in [5,24] are the first general methods guaranteeing topological
equivalence of the implicit surface and the mesh.

Contribution. The approach to meshing skin surfaces described in this paper is new. The main contribution com-
pared to [8] is that our approach works for any shrink factor. We also establish isotopy, which is stronger than
topological equivalence. Our algorithm is more flexible in the sense that we generate a coarse mesh that is isotopic
to the skin surface and can be refined by different algorithms, as shown in Section 3.4, whereas the algorithm in [8]
immediately constructs a homeomorphic quality mesh. Further, our algorithm is much faster. It constructs a mesh in
minutes where the algorithm presented in [8] takes hours.

On the theoretical side, we analyze the structure of the mixed complex and decompose the mixed cells into tetra-
hedra. Within a tetrahedron the intersection with the skin surface is either empty or a topological disk. It is fairly easy
to extract the isotopic mesh from this tetrahedral complex by a marching tetrahedra algorithm.

Outline. In Section 2 we extend the theory of skin surfaces as presented in [15]. We start by introducing a hierarchi-
cal combinatorial structure on the mixed complex. With each face of this complex we associate an anchor point, which
plays a crucial role in the meshing algorithm. Section 3 describes the construction of the coarse mesh and establishes
the isotopy between this mesh and the skin surface. In Section 3.4, we describe two methods to improve the coarse
mesh (i) subdivision of the triangles and (ii) improvement of the quality of the triangles with regard to the size of the
minimal angle. Finally, we describe our implementation and give experimental results in Section 4 and 5.

2. Definitions

This section first briefly reviews skin surfaces and then introduces some new concepts specific to the meshing
algorithm. For a more thorough introduction to skin surfaces, we refer to [15] where they were originally introduced.
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Fig. 1. The skin curve of two weighted points (the two dashed circles). The smaller circles form a subset of the shrunken convex hull of the input
points. Its boundary forms the skin curve.

2.1. Skin surfaces

A skin surface is defined in terms of a finite set of weighted points P and a shrink factor s, with 0 � s � 1.
A weighted point p̂ = (p, P) ∈ Rd × R corresponds to a ball with center p and radius

√
P. If P < 0, then the weighted

point corresponds to an imaginary ball (a ball with imaginary radius). A pseudo-distance between two weighted points
is given by:

π(p̂, q̂) = ‖p − q‖2 − P − Q, (1)

where p̂ = (p, P), q̂ = (q, Q) and ‖ · ‖ denotes the Euclidean distance. The pseudo-distance π(p̂, x) of a weighted
point p̂ to an (unweighted) point x is the pseudo-distance of p̂ to the weighted point centered at x with zero weight.
Two weighted points with zero distance are called orthogonal. An orthosphere of a set of weighted points P is, by
definition, a sphere orthogonal to each of the weighted points in P .

The space of weighted points inherits a vector space structure from Rd+1 via the bijective map Π : Rd × R →
Rd+1, defined by Π(p̂) = (x1, . . . , xd,‖p‖2 − P), with p = (x1, . . . , xd). Addition of two weighted points and the
multiplication of a weighted point by a scalar are defined in the vector space structure inherited under Π . For further
reading on the space of circles and spheres we refer to [23].

Starting from a weighted point p̂ = (p, P), the shrunken weighted point p̂s is defined as p̂s = (p, s · P). The set Ps

is the set obtained by shrinking every weighted point of P by a factor s.
The skin surface sknsP and its body bdysP associated with a set of weighted points P , are defined by

bdysP =
⋃

(convP)s, (2)

sknsP = ∂ bdysP. (3)

Here conv(P) ⊂ Rd × R is the convex hull—with respect to the vector space structure inherited under Π—of a set
of weighted points P , whereas ∂ denotes the boundary—in Rd—of the union of the corresponding set of set of balls.
For a skin curve in 2D associated with two weighted points: see Fig. 1.

2.2. Delaunay triangulation

The Delaunay triangulation and Voronoi diagram are used to decompose the skin surface into patches of spheres
and hyperboloids. We briefly give the definition of these structures and mention some properties.

The (weighted) Voronoi diagram (or: the power diagram) Vor(P) of a set of weighted points P is the subdivision
of Rd into cells νX that have smaller power distance to the weighted points in X ⊆ P than to any other weighted point
in P :

νX =
⋂

p̂∈X ,p̂′∈P

{
x ∈ Rd | π(p̂, x) � π(p̂′, x)

}
.

Write 〈u,v〉 for the inner product of u and v.

Observation 1. Let yp̂,p̂′ be a point with the same power distance to p̂ and p̂′, then νX = ⋂
p̂∈X ,p̂′∈P {x ∈ Rd |

〈x − yp̂,p̂′ ,p′ − p〉 � 0}.
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The dual of the Voronoi diagram is the Delaunay triangulation (or: regular triangulation) Del(P). We denote a
Delaunay simplex of a set X ⊆ P , with νX �= ∅, by δX . Recall that δX = conv({p | p̂ ∈ X }). If X � X ′ and νX ′ �= ∅,
then νX ′ is a proper face of νX and δX is a proper face of δX ′ .

Observation 2. The affine hulls of a Delaunay simplex δX and its dual Voronoi cell νX are complementary and
orthogonal.

Hence, the affine hulls of δX and νX always intersect in a single point, the center c(X ) of X .
General position. In the remainder of this paper we assume general position, by which we mean that no d + 2

weighted points are equidistant to a point in Rd and no k + 2 centers of weighted points lie on a common k-flat for
k = 0, . . . , d − 1. Several methods like [16] exist to symbolically perturb a data set and ensure these conditions. Note
that, under this genericity condition, an orthosphere of a set X only exists if |X | � d + 1.

Consider a Delaunay cell δX ′ and one of its faces δX , with X � X ′. Their duals are respectively a face of a
Voronoi cell and the Voronoi cell itself. There is a half space through δX containing δX ′ and a half space through νX ′
containing νX such that their normals point in opposite directions.

Lemma 3. Let δX , δX ′ ∈ Del(P), such that δX is a proper face of δX ′ and let u = x′
δ −xδ with xδ ∈ δX , x′

δ ∈ int(δX ′).
Then

(1) 〈u,xν − x′
ν〉 = 0, for xν, x

′
ν ∈ νX ′ .

(2) 〈u,xν − x′
ν〉 < 0, for xν ∈ νX \ νX ′ , x′

ν ∈ νX ′ .

Proof. Claim (1) follows directly from Observation 2. Hence, claim (2) is independent of the choice of x′
ν .

For the proof of claim (2), let m = |X |, n = |X ′| and X ′ = {p̂1, . . . , p̂n}, such that p̂i ∈X , for i � m. Write xδ and
x′
δ in barycentric coordinates: xδ = ∑

γi ·pi , x′
δ = ∑

γ ′
i ·pi with

∑
γi = ∑

γ ′
i = 1, γi, γ

′
i � 0. Since xδ ∈ δX , γi = 0

for i � m + 1, and γ ′
i > 0 since x′

δ ∈ int(δX ′). Rewrite u as:

u = x′
δ − xδ

=
m∑

i=1

(γ ′
i − γi)pi +

n∑
i=m+1

γ ′
i pi

=
m∑

i=1

(γ ′
i − γi)(pi − p1) +

n∑
i=m+1

γ ′
i (pi − p1).

Expanding 〈u,xν − x′
ν〉 yields:

〈u,xν − x′
ν〉 =

m∑
i=1

(γ ′
i − γi)〈pi − p1, xν − x′

ν〉 +
n∑

i=m+1

γ ′
i 〈pi − p1, xν − x′

ν〉.

From Observation 1, with yp̂i ,p̂1 = x′
ν , it follows that 〈pi − p1, xν − x′

ν〉 is not positive. Moreover, by Observation 2,
the inner product is zero if and only if p̂i ∈ X . Hence, the elements of the first sum are zero and the elements of the
second sum are negative, so 〈u,xν − x′

ν〉 < 0. Note that for p̂1 we can substitute any weighted point in X . �
Although the meshing algorithm generalizes to any dimension, the main application is in R3. Therefore we present

the algorithm in three space.

2.3. The mixed complex

The mixed complex Mixs(P), associated with a scalar s ∈ [0,1], is an intermediate complex between the Delaunay
triangulation and the Voronoi diagram. Each mixed cell in the mixed complex is obtained by taking Minkowski sums
of shrunken Delaunay simplices and their dual Voronoi cells.

Definition 4. For δX ∈ Del(P) the mixed cell μs is defined by μs = (1 − s) · δX ⊕ s · νX .
X X
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(a) (b)

Fig. 2. The skin curve of four weighted points (the circles). Each mixed cell contains parts of an hyperbola or a circle. (a) The Delaunay tri-
angulation (dashed), the Voronoi diagram (dotted) and the Mixed complex (solid). (b) The mixed complex and some of the labels. Note that
v = μs

{p̂0,p̂2},{p̂1,p̂2} = μs
{p̂2},{p̂0,p̂1,p̂2} .

Here · denotes the multiplication of a set by a scalar and ⊕ denotes the Minkowski sum. For s = 0 the mixed cell
is the Delaunay cell. If s increases it deforms affinely into the Voronoi cell for s = 1.

Each mixed cell is a convex polyhedron since it is the Minkowski sum of two convex polyhedra. Based on the
dimension of the Delaunay simplex, there are four types of mixed cells. A mixed cell of type � corresponds to a
Delaunay �-cell and is of the form μs

X with |X | = � + 1. In 3D, mixed cells of type 3 are tetrahedra (shrunken
Delaunay 3-cells) and mixed cells of type 0 are shrunken Voronoi 3-cells. A mixed cell of type 1 or 2 is a prism with
respectively the shrunken Voronoi facet or the shrunken Delaunay facet as its base.

The intersection of the skin surface and a mixed cell is a piece of a sphere or a hyperboloid. In the plane, the
intersection of a skin curve with a mixed cell is either part of a circle or hyperbola. An example of the mixed complex
and a skin curve is given in Fig. 2. All rectangles are mixed cells of type 1 and contain hyperbolic patches. The other
cells contain circular arcs. Depending on whether the mixed cell is of type 0 or 2, the interior of the skin curve lies
inside or outside the circle.

Within a mixed �-cell μs
X , the skin surface is a quadratic surface of the form I−1

X (0), with:

IX (x) = − 1

1 − s

�∑
i=1

x2
i + 1

s

3∑
i=�+1

x2
i − R2, (4)

with x = (x1, x2, x3) and R2 the weight of the weighted point in aff(δX ) centered at c(X ). More precisely, sknsX ∩
μs
X = I−1

X (0) ∩ μs
X . The coordinate system is orthonormal with its origin at the center of X , and such that the first �

coordinates span the affine hull δX , see [15].
The following observation holds trivially for mixed cells of type 0 and 3. For mixed cells of type 1 and 2, the

symmetry sets of the hyperboloids are the affine hulls of the corresponding Delaunay simplex and Voronoi cell.
Hence, it follows from the construction of the mixed cells.

Observation 5. Each proper face of a mixed cell μs
X is perpendicular to a symmetry set of IX .

Since the symmetry axis and the symmetry plane of the hyperboloid are perpendicular, each face of a mixed cell
of type 1 or 2 is parallel to the other symmetry set.

Polyhedral complex. The mixed complex is a polyhedral complex. The 3-cells of this polyhedral complex are
formed by the mixed cells. We give a more detailed description of its structure.

Definition 6. For X ,X ′ ⊆ P , with νX , νX ′ �= ∅, a polyhedral cell μs ′ is defined as μs ′ = μs ∩ μs ′ .
X ,X X ,X X X
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Edelsbrunner gives an intuitive picture of the mixed complex in [15]. Take the interval of d-dimensional affine
subspaces of Rd+1 defined by xd+1 = s, for s ∈ [0,1]. Draw Del(P ) in xd+1 = 0 and Vor(P) in xd+1 = 1. For each
Delaunay simplex and corresponding Voronoi cell construct

μX = conv(δX ∪ νX ).

All μX are convex polyhedra of dimension d + 1, their interiors mutually disjoint, and they decompose the strip
between xd+1 = 0 and xd+1 = 1. The subspace xd+1 = s intersects μX in the mixed cell μs

X .
It is clear that a polyhedral cell μs

X ,X ′ is non-empty, for 0 < s < 1, if the Delaunay and Voronoi cells of X and
X ′ have a non-empty intersection. Or, equivalently, if νX∩X ′ , νX∪X ′ ∈ Vor(P). It is not enough for one of the two
simplices to exists. E.g., let p̂1, p̂2, p̂3 be weighted points, the centers of which are the vertices of a triangle in a two-
dimensional Delaunay triangulation and X = {p̂1, p̂2}, X ′ = {p̂3}. Then δX∪X ′ ∈ Del(P), but X ∩ X ′ = ∅, hence
δX∩X ′ /∈ Del(P). On the other hand, let δX , δX ′ be two Delaunay edges, that share a common vertex, but do not have
an incident triangle in common, then δX∩X ′ ∈ Del(P), but δX∪X ′ /∈ Del(P).

For nonempty polyhedral cells, the following lemma describes the structure of the mixed complex.

Lemma 7. A mixed cell μs
X ,X ′ is not empty iff νX∩X ′ and νX∪X ′ are nonempty In that case,

μs
X ,X ′ = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′ .

Before we prove this lemma we first make some general remarks. Note that the lemma also holds if νX∩X ′ = ∅ or
νX∪X ′ = ∅.

Corollary 8. If νX∩X ′ and νX∪X ′ are nonempty, then μs
X ,X ′ = μs

X∩X ′,X∪X ′ .

The corollary holds since, μs
X∩X ′,X∪X ′ = (1 − s) · δX∩X ′ ⊕ s · νX∪X ′ . Hence, each polyhedral cell μs

X ,X ′ has
a unique label, if X ⊂ X ′. To gain some intuition for the lemma, take s equal to zero. Then the mixed complex is
the Delaunay triangulation and indeed μ0

X ,X ′ = δX ∩ δX ′ = δX∩X ′ . Conversely, for s = 1, the mixed complex is the

Voronoi diagram and μ1
X ,X ′ = νX ∩ νX ′ = νX∪X ′ .

For the proof of Lemma 7, we use a relation between the Delaunay cells and Voronoi cells, which we prove first.
Consider a Delaunay cell δX ′ and one of its faces δX , with X � X ′. Their duals are respectively a face of a Voronoi
cell and the Voronoi cell itself. We show that there is a half space through δX containing δX ′ and a half space through
νX ′ containing νX such that their normals point in opposite directions.

Proof of Lemma 7. The proof is trivial if X = X ′, hence we assume that X �= X ′. For simplicity, let F = (1 − s) ·
δX∩X ′ ⊕ s · νX∪X ′ .

From Definition 4 it follows that F ⊆ μs
X and F ⊆ μs

X ′ , since δX∩X ′ ⊆ δX , δX ′ and νX∪X ′ ⊆ νX , νX ′ . Hence,
F ⊆ μs

X ,X ′ .
For the opposite inclusion, we show that the two mixed cells lie in opposite half spaces and intersect the bounding

plane in F .
We distinguish two cases. First, consider the case where X ⊆ X ′ or X ′ ⊆ X ; see Fig. 3(a). Without loss of gener-

ality we assume that X ⊆ X ′. Let u be a vector perpendicular to δX pointing from a point in δX towards a point in
the interior of δX ′ , such that 〈u,x′

δ − xδ〉 > 0, for xδ ∈ δX , x′
δ ∈ δX ′ \ δX . Such a vector u exists, since δX is a proper

face of the convex polyhedron δX ′ . Note that u is perpendicular to δX . Lemma 3(2) states that 〈u,x′
ν − xν〉 < 0, for

xν ∈ νX \ νX ′ , xν ∈ νX ′ .
For each point x in a mixed cell μs

X there exists a unique combination xδ ∈ δX , xν ∈ νX , such that x = (1 − s) ·
δX + s · νX , since δX and νX are affinely independent. Hence, since F ⊆ X , a point y0 ∈ F can be uniquely written
as y0 = (1 − s) · y0

δ + s · y0
ν with y0

δ ∈ δX , y0
ν ∈ νX .

We analyse the sign of the inner product 〈u,y − y0〉 for y subsequently in μs
X \ F , F and μs

X ′ \ F .
First, let y ∈ μs

X \ F . We write y = (1 − s) · yδ + s · yν , with yδ ∈ δX and yν ∈ νX \ νX ′ . The inner product
〈u,yδ − y0

δ 〉 is zero since yδ, y
0
δ ∈ δX and 〈u,yν − y0

ν 〉 < 0 by Lemma 3(2). Hence 〈u,y − y0〉 < 0 for y ∈ μs
X \ F .

Now assume that y ∈ F . Similar to y0, we write y = (1 − s) · yδ + s · yν , with yδ ∈ δX , yν ∈ νX ′ . The inner product
〈u,yδ − y0〉 is zero since yδ, y

0 ∈ δX and 〈u,yν − y0
ν 〉 = 0 by Lemma 3(1).
δ δ



172 N.G.H. Kruithof, G. Vegter / Computational Geometry 36 (2007) 166–182
(a) (b)

Fig. 3. Illustration of the proof of Lemma 7. (a) X = {p̂0},X ′ = {p̂0, p̂1, p̂2}, hence X ⊆ X ′. (b) X = {p̂0, p̂1},X ′ = {p̂0, p̂2}, hence X �⊂ X ′
and X ′ �⊂ X .

Finally, assume that y ∈ μs
X ′ \ F , then we write y as y = (1 − s) · yδ + s · yν , with yδ ∈ δX ′ \ δX and yν ∈ νX ′ .

The inner product 〈u,yδ − y0
δ 〉 is positive by construction of u, and 〈u,yν − y0

ν 〉 = 0, again by Lemma 3(1). Hence
〈u,y − y0〉 > 0 for y ∈ μs

X ′ \ F .
Summarizing, we have:

〈u,y − y0〉
⎧⎨
⎩

< 0, for y ∈ μs
X \ F,

= 0, for y ∈ F,

> 0, for y ∈ μs
X ′ \ F.

Hence, μs
X and μs

X ′ lie in opposite half spaces and meet only in F .
We continue with the proof of the second case. Assume that δX is not a face of δX ′ and vice versa. Then X ∩X ′ �

X ,X ′ � X ∪X ′, viz. Fig. 3(b). For this case the proof is similar, except for the construction of the vector u.
Let xI ∈ δX∩X ′ . The Delaunay simplex δX∩X ′ has at least co-dimension 2, since |X ∪X ′| − |X ∩X ′| � 2. Hence,

the set of points orthogonal to δX∩X ′ through xI is at least 2-dimensional. We intersect this orthogonal set with a small
sphere centered at xI . If the radius is small enough, the intersection contains a point x0 ∈ int(δX ) and x′

0 ∈ int(δX ′).
Let u = γ · (x′

0 − x0), for some 0 < γ < 1. By construction the triangle xI , x0, x
′
0 is perpendicular to δX∩X ′ . Since

‖xI − x0‖ = ‖xI − x′
0‖, the triangle xI , x0, x

′
0 is an isosceles triangle. Hence, the angles � xI , x0, x

′
0, � xI , x

′
0, x0 are

equal and acute. As a result, for y0 ∈ δX∩X ′ we have:

〈u,y − y0〉
{

< 0, for y ∈ δX \ δX∩X ′ ,
= 0, for y ∈ δX∩X ′,
> 0, for y ∈ δX ′ \ δX∩X ′ .

Note that u points from x0 towards the interior of δX∪X ′ . Hence, u satisfies Lemma 3 with respect to δX and δX∪X ′ .
Using a similar argument, −u satisfies Lemma 3 with respect to δX ′ and δX∪X ′ . So, for y0 ∈ νX∪X ′ we have:

〈u,y − y0〉
{

< 0, for y ∈ νX \ νX∪X ′ ,
= 0, for y ∈ νX∪X ′ ,
> 0, for y ∈ νX ′ \ νX∪X ′ .

Now we combine the results for the Delaunay simplices and the Voronoi cells to a statement for the mixed cell. Let
y0 ∈ F and write y0 as y0 = (1 − s) · y0

δ + s · y0
ν with y0

δ ∈ δX , y0
ν ∈ νX ′ .

Write y ∈ μs
X \ F uniquely as y = (1 − s) · yδ + s · yν , with yδ ∈ δX and yν ∈ νX . Since y /∈ F , either yδ /∈ δX∩X ′

or yν /∈ νX∪X ′ . Expand the inner product 〈u,y − y0〉 to (1 − s) · 〈u,yδ − y0
δ 〉 + s · 〈u,yν − y0

ν 〉. Using the estimates
above, we obtain 〈u,y − y0〉 < 0.

A similar reasoning yields 〈u,y − y0〉 = 0 for y ∈ F and 〈u,y − y0〉 > 0 for y ∈ μs
X \ F . �

Denote with aff(X) the affine hull of a set X.

Lemma 9. For X ⊂ X ′, aff(μs
X ,X ′) and aff(δX ′) ∩ aff(νX ) are complementary and orthogonal.

Proof. To shorten notation we write F = aff(μs
X ,X ′) and G = aff(δX ′) ∩ aff(νX ). Recall from Lemma 7 that

μs ′ = (1 − s) · δX ⊕ s · νX ′ .
X ,X
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(a) (b)

Fig. 4. The anchor points of two-dimensional polyhedral cells. Each anchor point is labeled by the type its cell (f for face, e for edge and v for
vertex). The triangulation constructed in Section 3.2 is also shown. (a) Circular facets. (b) Hyperbolic facets.

The cells δX and νX ′ are affinely independent, hence dimF = dim δX + dimνX ′ = d + |X | − |X ′|. Further, δX ′
and νX are orthogonal and dimG = dimaff(δX ′) − dimaff(δX ) = |X ′| − |X |. Hence, the dimensions of F and G

add up to d . Both δX and νX ′ are orthogonal to G, which shows the orthogonality of F and G. �
Corollary 10. The dimension of a non-empty mixed cell μs

X ,X ′ in Rd , is d − |X ∪X ′| + |X ∩X ′|.

2.4. The anchor point

For the construction of the mesh we use the anchor point of a polyhedron.

Definition 11. Let A be a convex set and p a point in R3. Then the anchor point ap(A) is the point in A closest to p.

We are interested in the case where A is a polyhedral cell μs
X ,X ′ , a Delaunay cell δX or a Voronoi cell νX and p

is the center c(X ). In fact, we use the anchor points of the polyhedral cells as vertices of a tetrahedral complex that
decomposes the skin surface into topological disks.

We distinguish two types of critical points on a mixed cell μs
X , interior critical points are critical points of IX

contained in the interior of μs
X and boundary critical points are critical points of IX restricted to the boundary of μs

X .
All critical points are anchor points of a face of the mixed cell, viz. Fig. 4. However, not all anchor points are critical
points, e.g. the point that is both the anchor point of a vertex and an edge in Fig. 4(a).

Lemma 12. A (boundary or regular) critical point of IX on a polyhedral cell μs
X ,X ′ is the anchor point of μs

X ,X ′ or
the anchor point of one of its faces with respect to c(X ).

Proof. The center c(X ) is the only critical point of the quadratic function IX . If c(X ) is contained in μs
X ,X ′ , then it

is the anchor point ac(X )(μ
s
X ,X ′).

It remains to show that all boundary critical points are also anchor points. By Observation 5, a face of μs
X ,X ′ is

either parallel or perpendicular to the symmetry sets of IX . Hence, if c(X ) projects onto the facet, then the facet has
a boundary critical point. By definition, this point is the anchor point of the facet with respect to c(X ). �
Lemma 13. ac(X )(μ

s
X ,X ′) = ac(X ′)(μ

s
X ,X ′).

Proof. Both c(X ) and c(X ′) lie on aff(δX∪X ′) and aff(νX∩X ′). Hence they lie on aff(δX∪X ′) ∩ aff(νX∩X ′),
which is orthogonal to μs

X ,X ′ by Lemma 9. �
Lemma 14. ac(X )(μ

s
X ,X ′) = (1 − s) · ac(X∩X ′)(δX∩X ′) + s · ac(X∪X ′)(νX∪X ′).

Proof. If A and B are orthogonal, then ac(X )(s A ⊕ (1 − s)B) = ac(X )(s A) + ac(X )((1 − s)B). Therefore, since
δX∩X ′ and νX∪X ′ are orthogonal, we have ac(X )(μ

s
X ,X ′) = (1 − s) · ac(X )(δX∩X ′) + s · ac(X )(νX∪X ′).

Since c(X ), c(X ∩X ′) ∈ aff(νX∩X ′) and δX∩X ′ is orthogonal to νX∩X ′ , we have

ac(X )(δX∩X ′) = ac(X∩X ′)(δX∩X ′).
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Similarly, c(X ), c(X ∪X ′) ∈ aff(δX∪X ′) and δX∪X ′ is orthogonal to νX∪X ′ , hence

ac(X )(νX∪X ′) = ac(X∪X ′)(νX∪X ′).

Concluding, ac(X )(μ
s
X ,X ′) = (1 − s) · ac(X∩X ′)(δX∩X ′) + s · ac(X∪X ′)(νX∪X ′). �

Now that we have the decomposition of the anchor point of a polyhedral cell into the anchor point of Delaunay and
Voronoi cells, we show that these anchor points are easily constructed.

Lemma 15. The anchor point ac(X )(δX ) lies in the interior of δX or ac(X )(δX ) = ac(X ′)(δX ′), where δX ′ is a face
of δX .

Proof. Assume that c(X ) is not contained in int(δX ), otherwise the proof is trivial. Since δX is a convex polyhedron,
the point closest to c(X ) lies on a proper face of δX , say δX ′ .

Since c(X ), c(X ′) ∈ aff(νX ′) and δX ′ is orthogonal to νX ′ , we have ac(X )(δX ′) = ac(X ′)(δX ′). �
A similar lemma holds for Voronoi cells, for which we omit the proof.

Lemma 16. The anchor point ac(X )(νX ) lies in the interior of νX or ac(X )(νX ) = ac(X ′)(νX ′), where νX ′ is a face
of νX .

Concluding, with the anchor points ac(X )(δX ) and ac(X )(νX ), with δX ∈ Del(P) we can construct the anchor point
of any polyhedral cell. Moreover, Lemma 15 and Lemma 16 give a recursive definition that makes it easy to compute
ac(X )(δX ) and ac(X )(νX ).

3. The meshing algorithm

This section describes the construction of a tetrahedral complex for which the intersection of a cell with the skin
surface is either empty or a topological disk. Moreover we show that the mesh extracted from this tetrahedral complex
by the marching tetrahedra algorithm [25] is isotopic to the skin surface.

3.1. Monotonicity condition

In Section 3.2 we give a detailed construction of the tetrahedral complex. For now, we only give the main condition
imposed on the tetrahedral complex. First, we require that each tetrahedron is contained in a single mixed cell. Recall
that the skin surface restricted to a mixed cell μs

X is a subset of the quadric I−1
X (0), cf. Eq. (4). Express a point

x = (x1, x2, x3) in the local coordinate system of IX .

Condition 17 (Monotonicity). Let ab be a line segment contained in a mixed cell μs
X of type �, with IX (a) � IX (b).

The segment ab satisfies the monotonicity condition if x2
1 + · · · + x2

� is non-increasing and x2
�+1 + · · · + x2

3 is non-
decreasing on the segment from a to b.

In words, a segment ab satisfies the monotonicity condition if the distance to both symmetry sets of IX is monotone
and the distance to one symmetry set of the quadric does not increase if the distance to the other symmetry set
increases. For spheres (� = 0,3) one symmetry set is empty and the monotonicity condition is satisfied if the distance
to the center of the sphere is monotone. For hyperboloids (� = 1,2) a segment satisfies the monotonicity condition if
the distances to the symmetry axis and the symmetry plane are monotone and the distance to one symmetry set does
not increase if the distance to the other symmetry set increases. From Eq. (4) we conclude:

Observation 18. If a line segment ab satisfies the monotonicity condition, then IX is monotonically increasing on ab.

We construct the tetrahedral complex in such a way that all edges satisfy the monotonicity condition. In fact, if all
edges satisfy the monotonicity condition, then a generalized monotonicity condition holds for all cells.
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Lemma 19. Let μs
X be a mixed cell of type � and let v1, . . . , vn be the vertices of a cell of the tetrahedral complex in

μs
X , with IX (vi) � IX (vj ) if i < j .

If the monotonicity condition holds for all edges then, each segment ab, with a ∈ conv(v1, . . . , vk) and b ∈
conv(vk+1, . . . , vn), for k ∈ {1, . . . , n}, satisfies the monotonicity condition.

In the proof we need a small lemma.

Lemma 20. Let v1v2v3 be a triangle in R2, such that the distance to the origin is monotonically increasing (de-
creasing) along both v1v3 and v2v3. Then the distance to the origin is monotonically increasing (decreasing) on the
segment xv3, with x ∈ v1v2.

Proof. Let x = (1 − t)v1 + tv2 and let d(γ ) = ‖(1 − γ )x + γ v3‖2 be the squared distance to the origin on the line
segment xv3. The distance d(γ ) is monotone if d ′(γ ) � 0 or d ′(γ ) � 0 for γ ∈ [0,1]. Since d ′(γ ) = 2〈x, v3 − x〉 +
2γ 〈v3 − x, v3 − x〉, d(γ ) is monotone if 〈x, v3 − x〉 � 0 or 〈v3, v3 − x〉 � 0.

Assume that the distance to the origin increases monotonically on both line segments v1v3 and v2v3, hence 〈v1, v3 −
v1〉 � 0 and 〈v2, v3 − v2〉 � 0. We have

〈x, v3 − x〉 = (1 − t)〈v1, v3 − v1〉 + t〈v2, v3 − v2〉 + t (1 − t)‖v2 − v1‖2 � 0.

Conversely assume that the distance to the origin decreases monotonically on both line segments v1v3 and v2v3, hence
〈v3, v3 − v1〉 � 0 and 〈v3, v3 − v2〉 � 0. Then we have 〈v3, v3 − x〉 = (1 − t)〈v3, v3 − v1〉 + t〈v3, v3 − v2〉 � 0. �
Proof of Lemma 19. We repeatedly move vertices along edges of the cell of the tetrahedral complex while main-
taining the monotonicity condition. After the displacement of the vertices, the line segment ab lies on one of the
edges.

Since IX (vi) � IX (vj ) for i < j and by Eq. (4), the distance to the symmetry set spanned by the first � coordinate
axis is decreasing and the distance to the other symmetry set is increasing. Assume for now that if we move the
vertices vi and vi+1 over the edge vivi+1, that all edges in the new cell satisfy the monotonicity condition.

We now move v1 to a and b to vn. If k = 1, then a lies on v1. Otherwise we move vk−1 to vk until a lies on
the face conv(v1, . . . , vk−1) and repeat this step for k − 1. Similarly we move vk+1 to vk+2 until b lies on the face
conv(vk+1, . . . , vn) and repeat the step for k + 1 until k = n − 1. Then ab is an edge of the new tetrahedron. Hence
ab satisfies the monotonicity condition.

It remains to show that the new edges also satisfy the monotonicity condition. Therefore consider three vertices vi ,
vi+1 and vj . If j < i (j > i + 1) then the distance to the first symmetry set along the line segment vjvi and vjvi+1
is decreasing (increasing) and to the second symmetry set it is increasing (decreasing). We show that the distances
remain monotonically increasing or decreasing along a line segment xvj for x ∈ vivi+1. We distinguish three cases.
First, assume that the symmetry set is a point. We project the symmetry point on the plane vjvivi+1. From the previous
lemma it follows that the distance on xvj to the projection of the symmetry point is monotone, and therefore also the
distance to the symmetry point. Next, assume that the symmetry set is a line, then we project the triangle vjvivi+1 on
a plane orthogonal to the symmetry line. By applying the previous lemma, it follows that the distance to the projection
of the line on the plane along the line segment xvj is monotone. Finally, if the symmetry set is a plane we do not need
the previous lemma. In this case the distance to the plane at x is smaller (greater) than the distance at vj . Hence the
distance to the symmetry plane on xvj is monotone.

To conclude, if the distance to a symmetry set is monotonically increasing (decreasing) along both vjvi and vjvi+1,
then this distance is also monotonically increasing (decreasing) along the line segment xvj , with x ∈ vivi+1. Hence
xvj satisfies the monotonicity condition. �

Mesh extraction. The coarse mesh is extracted from the tetrahedral complex by the marching tetrahedra algo-
rithm [25]. Each edge of the tetrahedral complex intersects the skin surface at most once by Observation 18. We place
vertices of the mesh on these intersection points. Then the mesh is constructed by considering the number of vertices
of the tetrahedron inside the skin surface as depicted in Fig. 5. The third configuration remains ambiguous, since the
common interior edge of the two triangles can be flipped.
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Fig. 5. The three different configurations of a tetrahedron. White and black vertices lie on different sides of the skin surface.

Theorem 21. A tetrahedral complex for which each edge satisfies the monotonicity condition has two properties:

(1) each cell intersects the skin surface in a topological disk, and
(2) the mesh extracted from the tetrahedral complex is isotopic to the skin surface.

Proof. Let V − and V + be the vertices of a k-cell of the tetrahedral complex inside and outside the skin surface,
respectively. Consider the set of line segments ab with a ∈ conv(V −), b ∈ conv(V +). The set of line segments is
empty if the cell does not intersect the skin surface, i.e. if V − = ∅ or V + = ∅. On the other hand, if the cell intersects
the skin surface, then the set of line segments spans the cell and the line segments may intersect but only at their
endpoints. On faces of the cell, the line segments are defined consistently because there the construction is based only
on the labels of vertices of the face.

By Lemma 19, each segment satisfies the monotonicity condition. Hence IX is monotone on ab. Moreover, a lies
inside and b outside the skin surface. Therefore ab intersects the skin surface in a single point. Since the segments
span the tetrahedron, the skin surface within the cell is a topological disk.

By construction, each segment also intersects the coarse mesh transversally in exactly one point. We construct the
isotopy by constructing an isotopy between the mesh and the skin surface within each tetrahedron and by showing
that the isotopies defined by two tetrahedra are identical on a common face.

Neither the skin surface nor the mesh intersects a tetrahedron with only inside (outside) vertices, and we define the
isotopy by the identity function. If the skin surface intersects a tetrahedron, then the segments span the tetrahedron
and each point in the tetrahedron and on the skin surface lies on a unique segment. The same holds for a point in the
tetrahedron and on the mesh. We construct the isotopy by linearly moving each point on the skin surface along the
segment to the mesh. By construction of the segments, this deformation is an isotopy.

To show that these local isotopies can be combined to form an isotopy between the skin surface and the coarse mesh
it remains to show that the transition between two local isotopies is continuous. This follows from the construction of
the segments on a common face, which depends only on the label of its vertices. �

We call the segments in the proof above transversal segments because each segment intersects both the skin surface
and the coarse mesh transversally in a single point.

3.2. The tetrahedral complex

Up to now we assumed that it is possible to construct a tetrahedral complex in such a way that all edges satisfy the
monotonicity condition. In this section we construct this tetrahedral complex. We triangulate polyhedral cells in order
of increasing dimension.

All vertices of the tetrahedral complex are anchor points of polyhedral cells. In case an anchor point lies on the
boundary of its polyhedral cell, it coincides with another anchor point and the simplicial complex is degenerate.
Therefore, during the construction of the tetrahedral complex we test whether the anchor point lies in the interior of
the polyhedral cell, and collapse the vertex otherwise. For simplicity, in the remainder of this section we assume that
the anchor point lies in the interior of the mixed cell.

Subdividing polyhedral cells of positive co-dimension. On each vertex of the polyhedral complex we place a vertex
of the tetrahedral complex. Note that these vertices are the anchor point of 0-cells of the polyhedral complex.

Next, consider an edge μs
X ,X ′ of the polyhedral complex. By Lemma 12, if IX has a critical point on the interior of

the edge, this critical point is the anchor point of the edge. Therefore we split the edge in the anchor point ac(X )(μ
s
X ,X ′)

and construct two edges from the anchor point to the vertices. By Observation 5 a polyhedral edge is parallel to one
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symmetry set and is split in the point closest to the projection of the other symmetry set, hence both edges satisfy the
monotonicity condition.

We distinguish two types of facets: circular facets are facets for which the contour lines of IX restricted to the
facet are circles. The other facets are called hyperbolic because the contour lines are hyperbolas on the facet. Since
the skin surface is tangent continuous, IX |μs

X ,X ′ = IX ′ |μs
X ,X ′ and the facet inherits the same type from both mixed

cells μs
X and μs

X . All facets of mixed cells of type 0 and 3 are spherical. The facets of a mixed cell of type 1 or 2 are
spherical if they touch a mixed cell of type 0 or 3, and hyperbolic if they touch a mixed cell of type 1 or 2.

We triangulate circular and hyperbolic facets differently. Circular facets are triangulated by adding an edge from
the anchor point of the facet to each anchor point on the boundary of the facet, i.e., either the anchor point of an edge
or a vertex. See Fig. 4(a). Since the anchor point of the facet is the point closest to the center of the sphere, the distance
to the center increases monotonically on each edge and each edge satisfies the monotonicity condition.

Hyperbolic facets are rectangles with edges parallel or perpendicular to the symmetry axis of the corresponding
hyperboloid. The anchor point of an edge is the point closest to the center, hence it is the point on the edge closest to
the symmetry axis the edge is orthogonal to. Similarly, the anchor point of the facet is the point on the facet closest to
the center. Thus the edges from the anchor point of the facet to the anchor point of an edge are parallel to one axis and
the distance to the other axis increases monotonically. Further, we add edges from the anchor point of an edge to the
anchor point of an orthogonal edge. On these edges the distance to one symmetry axis increases whereas the distance
to the other symmetry axis decreases. This triangulation is depicted in Fig. 4(b).

Subdividing polyhedral cells of type 0 and 3. The mixed cells of this type contain a spherical patch of the skin
surface. Similar to spherical facets, we have to triangulate polyhedral cells of type 0 and 3 in such a way that the
distance to the center is monotone on each edge. The anchor point of the mixed cell is the point in the mixed cell
closest to the center. Hence the distance to the center on each line segment from the anchor point of the mixed cell
to any other point in the mixed cell is monotone, and therefore satisfies the monotonicity condition. We have already
constructed the triangulation of the boundary of the mixed cell and triangulate the entire cell by adding edges from
the anchor point of the cell to each vertex on the boundary. The tetrahedra are formed by taking the join of a triangle
on the triangulated boundary of the mixed cell and the anchor point of the mixed cell.

Subdividing polyhedral cells of type 1 and 2. The triangulation of mixed cells of type 1 and 2 is slightly more
subtle. The mixed cell contains a hyperboloid patch of the skin surface and the mixed cell is a prism with its base
parallel to the symmetry plane of the hyperboloid. For an edge to satisfy the monotonicity condition, the distance to
both the symmetry plane and the symmetry axis has to be monotone and the distance to one symmetry set may not
increase, if the distance to the other symmetry set increases.

We already triangulated the facets of the mixed cell. The hyperbolic facets of the prism are the facets that are
parallel to the symmetry axis. We split the prism in the plane V through the anchor point of the mixed cell parallel
to the symmetry plane. This plane also contains the anchor points of the faces and edges of the mixed cells that are
parallel to the symmetry axis. Hence each facet parallel to the symmetry axis is already split in V . The new facet is
spherical and we triangulate it accordingly.

Consider one split mixed cell. The base of the prism furthest away from the symmetry plane contains the points
furthest away from the symmetry plane. Hence its anchor point is the point with maximal distance to the symmetry
plane and minimal distance to the symmetry axis. Therefore, all line segments in the split mixed cell with this an-
chor point as a vertex satisfy the monotonicity condition. The boundary of the prism is already triangulated and we
triangulate the split mixed cell by adding edges from the anchor point of the base to all vertices on the boundary. The
tetrahedra are the join of a triangle on the triangulated boundary and the anchor point of the base.

Union of balls. For a shrink factor one, the skin surface of a set of balls is the union of these balls. In this case, the
mixed complex is the Voronoi diagram. This means that only mixed cells of type 0 are three dimensional cells. This
greatly simplifies the set of tetrahedra.

It is also desirable to retain edges of the mesh on the intersection of two balls. The subdivision algorithm ensures
this by definition. Chew’s algorithm can also be extended to allow constrained edges, see [10].

3.3. Complexity analysis

In many real world applications the size of the Delaunay triangulation is linear in the number of input balls, see
[1,11]. However, the worst case complexity of the Delaunay triangulation is quadratic in the number of input balls,
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Fig. 6. The cross section in the xz-plane of the skin surface with a quadratic number of holes. The centers of the dashed circles lie on the unit circle
in the xy-plane and the centers of the solid circles on the z-axis.

see [6]. We show that the size of the coarse mesh is linear in the size of the Delaunay triangulation and that this is
worst case optimal.

Lemma 22. The size of the coarse mesh is linear in the size of the Delaunay triangulation.

Proof. Because of the duality relationship, the size of the Voronoi complex is equal to the size of the Delaunay
triangulation. Each mixed 0-cell (corresponding to a Delaunay vertex), is a shrunk Voronoi 3-cell, and its size is
therefore equal to the Voronoi cell. Similarly, the complexity of a mixed 1-cell, 2-cell and 3-cell are linear in the
complexity of the Voronoi facet, Delaunay facet and Delaunay tetrahedron.

We split each edge of the mixed complex at most in two parts. The triangulation of a mixed facet contains at most
one triangle per split edge. Finally, the triangulation of a mixed cell contains at most one tetrahedron per triangle on
the mixed facets. Hence, the size of the tetrahedral complex is linear in the mixed complex.

Within each tetrahedron we construct at most two triangles. Thus, the mesh is linear in the size of the Delaunay
triangulation. �

To show that this is worst case optimal, we construct a skin surface with 	(n2) holes from a set of n balls. Any
mesh with 	(n2) holes has complexity 	(n2), thus giving the lower bound. The construction, depicted in Fig. 6, is
as follows: the first n/2 balls are centered on the unit circle in the xy-plane and have radius 0.5. The other n/2 balls
are centered on the z-axis. Their radius is such that they touch the first n/2 balls.

Each two subsequent spheres on the z-axis form a tunnel with each sphere centered on the unit circle. There are
n/2 − 1 such pairs and n/2 spheres centered on the unit circle, hence there are 	(n2) tunnels. The skin surface also
has O(n2) holes because it is homeomorphic to the union of the balls.

3.4. Mesh enhancement

The topologically correct mesh obtained with the marching tetrahedra algorithm is rather coarse and may contain
long and skinny triangles. Therefore, we develop a method to enhance the mesh while maintaining the isotopy. The
changes to the mesh we allow are local and do not change the topology of the mesh.

Before we change the mesh, we first test whether the isotopy with the skin surface is maintained. Therefore we
use the transversal segments as described in the proof of Theorem 21. In fact, we first test whether each transversal
line segment intersects the new mesh exactly once. We conclude this section with two examples of mesh refinement
algorithms.

Changing the mesh. To test whether the isotopy is maintained under a change of the mesh we would have to test
whether each transversal line segment intersects the mesh once. We rephrase this in such a way that it is easier to
verify.
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Fig. 7. The Sqrt-3 subdivision method applied twice. Left: the original triangle, in the middle the subdivided triangle. On the right are the vertices
placed on the skin surface.

Let c be a 3-cell in the tetrahedral complex, t a triangle of the mesh intersecting c and V − and V + the vertices of
c inside and outside the skin surface, respectively.

Lemma 23. If for all t and c, V − and V + are separated by the plane through t and V − lies in the direction of the
inner part of the mesh, then each transversal line segment within c intersects the mesh once.

Proof. Consider a line segment p−p+, with p± ∈ conv(V ±). Since p− and p+ lie on opposite sides of the mesh,
p−p+ intersects the mesh at least once. Assume that it intersects p−p+ more than once, then on the second intersec-
tion point from p−, the segment moves from outside the mesh to the inside. Hence. the inner product with the normal
is negative. �

We now have an efficient way of testing whether the isotopy of the skin surface and the mesh is maintained. If the
test fails, then the mesh is too coarse and we refine the mesh. We show that the refinement succeeds for small triangles.

Lemma 24. A triangle t of the mesh contained in a single tetrahedron c can be subdivided in any point x ∈ t by
moving x along the transversal segments to the skin surface.

Proof. Since x moves along the line segments within c, the line segments through f and the subdivided faces are the
same. Thus the new mesh can be obtained from the old mesh by interpolation along the line segments. �

We can also flip an edge of the triangulation if the two adjacent triangles and the new triangles are intersected by
the same transversal segments. This condition is similar to the condition in a two-dimensional mesh that an edge can
be flipped if the union of the two triangles is convex.

To summarize, we have an efficient test to check whether the isotopy is maintained. If a change of the mesh would
result in a violation of the isotopy test, then we can always subdivide the face into faces that are contained within a
single tetrahedron. Each of these faces satisfy the isotopy test.

Sqrt-3 method. We implemented the sqrt-3 subdivision method [19] on the coarse mesh. The sqrt-3 subdivision
method splits each triangle into 9 sub-triangles and then moves the newly created vertices towards the skin surface
along the transversal segments.

By Lemma 24, the subdivision algorithm maintains the isotopy. Hence, it is not necessary to test isotopy, which
make the algorithm very fast. On the other hand, the subdivision algorithm does not improve the quality of the trian-
gles. Therefore this method is not suitable for constructing a mesh for numerical simulations.

Chew’s algorithm. We also implemented Chew’s algorithm [10] to improve the quality of the triangles of the coarse
mesh and obtain a mesh suitable for numerical simulations. After the algorithm terminates, each triangle has angles
between 30 and 120 degrees and has a user defined maximal size. The only constraint on the size-criterion is that there
exists a δ > 0 such that any well-shaped triangle that fits within a circle of radius δ is well-sized. We chose the size of
a triangles inversely proportional to the maximal curvature which is nonzero on skin surfaces.

During the refinement, we test the isotopy before inserting a new point and before flipping an edge.

4. Implementation

We implemented the algorithm described above in C++ using CGAL [12]. First we compute the Delaunay triangu-
lation of the weighted points. From this triangulation we extract the mixed complex and triangulate it, as described in
Section 3.
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We use filtering techniques [7] to increase the speed of the refinement algorithm. Therefore we compute the exact
location of anchor points (the vertices of the tetrahedral complex) and an interval containing the anchor point. We then
use interval arithmetic to test the isotopy and revert to exact computations if the interval arithmetic is not exact.

We also implemented both algorithms described in the previous section. The implementation of the
√

3-subdivision
method is straightforward. Before we apply Chew’s algorithm we perform a preprocessing step in which we remove
small edges. This reduces the size of the final mesh considerably.

5. Examples and experiments

We compare our algorithm to the algorithms described in [8] and [9]. There is a comparison of the two algorithms
in [9]. These tests are run on a Pentium 4 running at 2.54 GHZ. To test our algorithm we used an AMD Athlon 1800+
which is actually a little slower. We tested our algorithm on various molecules, computing only the coarse mesh,
computing the coarse mesh and one

√
3-subdivision step and the coarse mesh subsequently improved using Chew’s

algorithm. For timings see Table 1.
Note that both our algorithm and the marching algorithm [9] are significantly faster than the dynamic skin algo-

rithm [8]. However, [9] does not come with topological guarantees.
Fig. 9 shows the molecule pdb7tmn. In Fig. 9(d) we enlarged a part of the coarse mesh and applied the Sqrt-3

method in Fig. 9(e). Note that the triangles remain skinny. Fig. 9(f) shows the result of applying Chew’s algorithm
directly to the coarse mesh. Because of small edges in the coarse mesh, there are also small edges near parts with low
curvature. If we remove small edges, viz. Fig. 9(g), before we apply Chew’s algorithm, we obtain Fig. 9(h).

6. Conclusion and future work

We present an algorithm that constructs a mesh that is isotopic to the skin surface and discuss two methods to refine
this mesh.

The algorithm we present is static in the sense that it generates a mesh for a fixed set of input balls. Two deformation
schemes seem computationally interesting. From Lemma 14 we know that the anchor point of a mixed cell μs

X ,X ′ only
depends on the Delaunay cell δX∪X ′ , the Voronoi cell νX∩X ′ and the shrink factor. Adding a constant to all weights
does not change the Delaunay and Voronoi diagram and hence does not change the simplicial complex. Hence, the
coarse mesh of the skin surface obtained by adding a constant to each weight is another level-set of the tetrahedral
complex. Another deformation is obtained by varying the shrink factor. Again, the structure of the simplicial complex

Table 1
Performance comparison (h:m:s)

Molecule Our algorithm Dynamic Marching

Coarse Sqrt-3 Chew

pdb7tmn 0:00:01 0:00:02 0:00:05 0:10:00 0:00:05
DNA 0:00:14 0:00:29 0:00:55 0:35:12 0:00:51
Gramacidin A 0:00:08 0:00:31 0:01:13 1:35:23 0:03:22

(a) (b)

Fig. 8. Two larger molecules. (a) DNA. (b) Gramacidin A.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9. pdb7tmn. (a) Shrink factor: .85. (b) Shrink factor: .5. (c) Shrink factor: .15. (d) Coarse mesh. (e) Sqrt3-method. (f) Chew applied to the
coarse mesh. (g) Small edges removed. (h) Chew applied to the enhanced mesh.

remains unchanged, however the positions of the anchor points change. It is sufficient to reposition the anchor points
and then update or recompute the coarse mesh. In general, the solid foundation of the tetrahedral complex makes us
believe that it is possible to maintain the coarse mesh while deforming the input set if the Delaunay triangulation can
be maintained.

We also believe that a similar algorithm can compute Connolly surfaces. These surfaces are also used in molecular
biology and are formed by a small probe sphere that carves away the space outside a union of balls. The disadvantage
of this type of surfaces is that they may not be tangent continuous.
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