Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Cayley graphs of order 30p are Hamiltonian

Ebrahim Ghaderpour, Dave Witte Morris*

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

ARTICLE INFO

ABSTRACT

Article history: Received 19 May 2011 Received in revised form 26 July 2012 Accepted 22 August 2012 Available online 14 September 2012 Suppose *G* is a finite group, such that |G| = 30p, where *p* is prime. We show that if *S* is any generating set of *G*, then there is a Hamiltonian cycle in the corresponding Cayley graph Cay(*G*; *S*).

© 2012 Elsevier B.V. All rights reserved.

Keywords: 05C25 Cayley graph Hamiltonian cycle

1. Introduction

There is a folklore conjecture that every connected Cayley graph has a Hamiltonian cycle. (See the surveys [3,13,15] for some background on this question.) The papers [9,11] began a systematic study of this conjecture in the case of Cayley graphs for which the number of vertices has a prime factorization that is small and easy. In particular, combining several of the results in [11] with [4,5] and this paper shows:

If |G| = kp, where p is prime, with $1 \le k < 32$ and $k \ne 24$, then every connected Cayley graph on G has a Hamiltonian cycle.

This paper's contribution to the project is the case k = 30:

Theorem 1.1. If |G| = 30p, where p is prime, then every connected Cayley graph on G has a Hamiltonian cycle.

2. Preliminaries

Additional details of some of the proofs in this paper can be found in an expanded version that has been posted on the arxiv [6].

Before proving Theorem 1.1, we present some useful facts about Hamiltonian cycles in Cayley graphs.

Notation. Throughout this paper, *G* is a finite group.

- For any subset *S* of *G*, Cay(G; S) denotes the *Cayley graph* of *G* with respect to *S*. Its vertices are the elements of *G*, and there is an edge joining *g* to *gs* for every $g \in G$ and $s \in S$.
- For $x, y \in G$:
 - [x, y] denotes the *commutator* $x^{-1}y^{-1}xy$, and • y^x denotes the *conjugate* $x^{-1}yx$.

^{*} Corresponding author. *E-mail addresses*: Ebrahim.Ghaderpour@uleth.ca (E. Ghaderpour), Dave.Morris@uleth.ca (D.W. Morris). *URL*: http://people.uleth.ca/~dave.morris/ (D.W. Morris).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2012.08.017

- $\langle A \rangle$ denotes the subgroup generated by a subset *A* of *G*.
- G' denotes the commutator subgroup [G, G] of G.
- Z(G) denotes the *center* of G.
- $G \ltimes H$ denotes a *semidirect product* of the groups G and H.
- D_{2n} denotes the *dihedral group* of order 2n.
- For $S \subset G$, a sequence $(s_1, s_2, ..., s_n)$ of elements of $S \cup S^{-1}$ specifies the walk in the Cayley graph Cay(G; S) that visits (in order) the vertices

 $e, s_1, s_1s_2, s_1s_2s_3, \ldots, s_1s_2 \ldots s_n.$

If *N* is a normal subgroup of *G*, we use $(\overline{s_1}, \overline{s_2}, \ldots, \overline{s_n})$ to denote the image of this walk in the quotient Cay(*G*/*N*; *S*).

- If the walk $(\overline{s_1}, \overline{s_2}, \dots, \overline{s_n})$ in Cay(G/N; S) is closed, then its *voltage* is the product $s_1s_2 \dots s_n$. This is an element of N.
- For $k \in \mathbb{Z}^+$, we use $(s_1, \ldots, s_m)^k$ to denote the concatenation of k copies of the sequence (s_1, \ldots, s_m) . Abusing notation, we often write s^k and s^{-k} for

$$(s)^{k} = (s, s, \dots, s)$$
 and $(s^{-1})^{k} = (s^{-1}, s^{-1}, \dots, s^{-1}),$

respectively. Furthermore, we often write $((s_1, \ldots, s_m), (t_1, \ldots, t_n))$ to denote the concatenation $(s_1, \ldots, s_m, t_1, \ldots, t_n)$. For example, we have

$$((a^2, b)^2, c^{-2})^2 = (a, a, b, a, a, b, c^{-1}, c^{-1}, a, a, b, a, a, b, c^{-1}, c^{-1}).$$

Theorem 2.1 (Marušič, Durnberger, Keating–Witte [10]). If G' is a cyclic group of prime-power order, then every connected Cayley graph on G has a Hamiltonian cycle.

Lemma 2.2 ("Factor Group Lemma" [15, Section 2.2]). Suppose

- *S* is a generating set of *G*,
- <u>N</u> is a cyclic, normal subgroup of G,
- $\overline{C} = (\overline{s_1}, \overline{s_2}, \dots, \overline{s_n})$ is a Hamiltonian cycle in Cay(G/N; S), and
- the voltage of \overline{C} generates N.

Then $(s_1, \ldots, s_n)^{|N|}$ is a Hamiltonian cycle in Cay(G; S).

The following easy consequence of the Factor Group Lemma 2.2 is well known (and is implicit in [12]).

Corollary 2.3. Suppose

- S is a generating set of G,
- N is a normal subgroup of G, such that |N| is prime,
- $s \equiv t \pmod{N}$ for some $s, t \in S \cup S^{-1}$ with $s \neq t$, and
- there is a Hamiltonian cycle in Cay(G/N; S) that uses at least one edge labeled s.

Then there is a Hamiltonian cycle in Cay(G; S).

Theorem 2.4 (Alspach [1, Corollary 5.2]). If $G = \langle s \rangle \ltimes \langle t \rangle$, for some elements s and t of G, then Cay(G; {s, t}) has a Hamiltonian cycle.

Lemma 2.5 ([11, Lemma 2.27]). Let *S* generate the finite group *G*, and let $s \in S$, such that $\langle s \rangle \triangleleft G$. If $Cay(G/\langle s \rangle; S)$ has a Hamiltonian cycle, and either

1. $s \in Z(G)$, or 2. $Z(G) \cap \langle s \rangle = \{e\}$,

then Cay(G; S) has a Hamiltonian cycle.

Lemma 2.6. Suppose

- $G = \langle a \rangle \ltimes \langle S_0 \rangle$, where $\langle S_0 \rangle$ is an abelian subgroup of odd order,
- $\#(S_0 \cup S_0^{-1}) \ge 3$, and
- $\langle S_0 \rangle$ has a nontrivial subgroup H, such that $H \triangleleft G$ and $H \cap Z(G) = \{e\}$.

Then $Cay(G; S_0 \cup \{a\})$ has a Hamiltonian cycle.

Proof. Since (S_0) is abelian of odd order, and $\#(S_0 \cup S_0^{-1}) \ge 3$, we know that $Cay((S_0); S_0)$ is Hamiltonian connected [2]. Therefore, it has a Hamiltonian path (s_1, s_2, \ldots, s_m) , such that $s_1s_2 \ldots s_m \in H$. Then

 $(s_1, s_2, \ldots, s_m, a)^{|a|}$

is a Hamiltonian cycle in Cay(G; $S_0 \cup \{a\}$). \Box

Lemma 2.7 ([4, Corollary 4.4]). If $a, b \in G$, such that $G = \langle a, b \rangle$, then $G' = \langle [a, b] \rangle$.

Lemma 2.8 ([14, Proposition 5.5]). If p, q, and r are prime, then every connected Cayley graph on the dihedral group D_{2nar} has a Hamiltonian cycle.

Lemma 2.9. If $G = D_{2pq} \times \mathbb{Z}_r$, where p, q, and r are distinct odd primes, then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Let *S* be a minimal generating set of *G*, let φ : $G \to D_{2pq}$ be the natural projection, and let *T* be the group of rotations in D_{2pq} , so $T = \mathbb{Z}_p \times \mathbb{Z}_q$. For $s \in S$, we may assume:

- If $\varphi(s)$ has order 2, then $s = \varphi(s)$ has order 2. (Otherwise, Corollary 2.3 applies with $t = s^{-1}$.)
- $\varphi(s)$ is nontrivial. (Otherwise, $s \in \mathbb{Z}_r \subset Z(G)$, so Lemma 2.5(1) applies.)

Since $\varphi(S)$ generates D_{2pq} , it must contain at least one reflection (which is an element of order 2). So $S \cap D_{2pq}$ contains a reflection.

Case 1. Assume $S \cap D_{2pq}$ *contains only one reflection.* Let $a \in S \cap D_{2pq}$, such that *a* is a reflection.

Let $S_0 = S \setminus \{a\}$. Since $\langle S_0 \rangle$ is a subgroup of the cyclic, normal subgroup $T \times \mathbb{Z}_r$, we know $\langle S_0 \rangle$ is normal. Therefore $G = \langle a \rangle \ltimes \langle S_0 \rangle$, so:

• If $\#S_0 = 1$, then Theorem 2.4 applies.

• If $\#S_0 \ge 2$, then Lemma 2.6 applies with H = T, because $T \times \mathbb{Z}_r$ is abelian of odd order.

Case 2. Assume S \cap *D*_{2*pq} <i>contains at least two reflections.* Since no minimal generating set of *D*_{2*pq*} contains three reflections,</sub> the minimality of S implies that $S \cap D_{2pq}$ contains exactly two reflections; say a and b are reflections.

Let $c \in S \setminus D_{2pq}$, so $\mathbb{Z}_r \subset \langle c \rangle$. Since |c| > 2, we know $\varphi(c)$ is not a reflection, so $\varphi(c) \in T$. The minimality of S (combined with the fact that #S > 2) implies $\langle \varphi(c) \rangle \neq T$. Since $\varphi(c)$ is nontrivial, this implies we may assume $\langle \varphi(c) \rangle = \mathbb{Z}_p$ (by interchanging p and q if necessary). Hence, we may write

c = wz with $\langle w \rangle = \mathbb{Z}_p$ and $\langle z \rangle = \mathbb{Z}_r$.

We now use the argument of [10, Case 5.3, p. 96], which is based on ideas of Marušič [12]. Let

 $\overline{G} = G/\mathbb{Z}_p = \overline{D_{2pq}} \times \mathbb{Z}_r = \overline{D_{2pq}} \times \langle \overline{c} \rangle.$

Then $\overline{D_{2pq}} \cong D_{2q}$, so $(a, b)^q$ is a Hamiltonian cycle in Cay $(\overline{D_{2pq}}; a, b)$. With this in mind, it is easy to see that

$$\left(c^{r-1}, a, \left((b, a)^{q-1}, c^{-1}, (a, b)^{q-1}, c^{-1}\right)^{(r-1)/2}, (b, a)^{q-1}, b\right)$$

is a Hamiltonian cycle in $Cay(\overline{G}; S)$. This contains the string

$$(c, a, (b, a)^{q-1}, c^{-1}, a),$$

which can be replaced with the string

$$(b, c, (b, a)^{q-1}, b, c^{-1})$$

to obtain another Hamiltonian cycle. Since

$$ca(ba)^{q-1}c^{-1}a = (cac^{-1}a)(ba)^{-(q-1)} \quad (ba \in T \text{ is inverted by } a)$$

$$= ((wz)a(wz)^{-1}a)(ba)^{-(q-1)}$$

$$= (w^2)(ba)^{-(q-1)} \quad (a \text{ inverts } w \text{ and centralizes } z)$$

$$\neq (w^{-2})(ba)^{-(q-1)}$$

$$= (b(wz)b(wz)^{-1})(ba)^{-(q-1)} \quad (b \text{ inverts } w \text{ and centralizes } z)$$

$$= (bcbc^{-1})(ba)^{-(q-1)}$$

$$= bc(ba)^{q-1}bc^{-1}, \quad (ba \in T \text{ is inverted by } b)$$

these two Hamiltonian cycles have different voltages. Therefore at least one of them must have a nontrivial voltage. This nontrivial voltage must generate \mathbb{Z}_p , so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).

Proposition 2.10. Suppose

- |G| = 30p, where p is prime, and
- |G| is not square-free (i.e., $p \in \{2, 3, 5\}$).

Then every Cayley graph on G has a Hamiltonian cycle.

Proof. We know |G| is either 60, 90, or 150, and it is known that every connected Cayley graph of any of these three orders has a Hamiltonian cycle. This can be verified by exhaustive computer search, or see [11, Propositions 7.2 and 9.1] and [7].

Lemma 2.11. Suppose

- |G| = 30p, where p is prime, and
- *p* ≥ 7.

Then

1. G' is cyclic,

- 2. $G' \cap Z(G) = \{e\},$
- 3. $G \cong \mathbb{Z}_n \ltimes G'$, for some $n \in \mathbb{Z}^+$, and

4. *if b* is a generator of \mathbb{Z}_n , and we choose $\tau \in \mathbb{Z}$, such that $x^b = x^{\tau}$ for all $x \in G'$, then $gcd(\tau - 1, |a|) = 1$.

Proof. Since |G| is square-free (because $p \ge 7$), we know that every Sylow subgroup of *G* is cyclic. Therefore the conclusions follow from [8, Theorem 9.4.3, p. 146].¹

3. Proof of the main theorem

Proof of Theorem 1.1. Because of Proposition 2.10, we may assume

 $p \ge 7$,

so the conclusions of Lemma 2.11 hold.

We may also assume |G'| is not prime (otherwise Theorem 2.1 applies). Furthermore, if |G'| = 15p, then *G* is a dihedral group, so Lemma 2.8 applies. In addition, if |G'| = 15, then $G \cong D_{30} \times \mathbb{Z}_p$, so Lemma 2.9 applies. Thus, we may assume |G'| = pq, where $q \in \{3, 5\}$. So

 $G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}$, with $\{q, r\} = \{3, 5\}$ (and $G' = \mathbb{Z}_{pq}$).

Note that \mathbb{Z}_r centralizes \mathbb{Z}_q , because there is no nonabelian group of order 15, so \mathbb{Z}_2 must act nontrivially on \mathbb{Z}_q . Therefore

 $y^x = y^{-1}$ whenever $y \in \mathbb{Z}_q$ and $\langle x \rangle = \mathbb{Z}_{2r}$.

We also assume

 \mathbb{Z}_r does not centralize \mathbb{Z}_p ,

because otherwise $G \cong D_{2pq} \times \mathbb{Z}_r$, so Lemma 2.9 applies. Given a minimal generating set *S* of *G*, we may assume

Siven a minima generating set 5 of 6, we

 $S \cap G' = \emptyset$,

for otherwise Lemma 2.5(2) applies.

Case 1. Assume #S = 2. Write $S = \{a, b\}$.

Subcase 1.1. Assume |a| is odd. This implies a has order r in G/G', so $(a^{-(r-1)}, b^{-1}, a^{r-1}, b)$ is a Hamiltonian cycle in Cay(G/G'; S). Its voltage is

$$a^{-(r-1)}b^{-1}a^{r-1}b = [a^{r-1}, b]$$

Since gcd(r-1, |a|) | gcd(r-1, 15p) = 1, we know $\langle a^{r-1}, b \rangle = \langle a, b \rangle = G$. So $\langle [a^{r-1}, b] \rangle = G'$ (see Lemma 2.7). Therefore the Factor Group Lemma 2.2 applies.

Subcase 1.2. Assume a and b both have even order.

Subsubcase 1.2.1. Assume a has order 2 in G/G'. Note that $q \nmid |a|$, since \mathbb{Z}_2 does not centralize \mathbb{Z}_q . Also, if |a| = 2p, then Corollary 2.3 applies. Therefore, we may assume |a| = 2.

Now *b* must generate G/G' (since $\langle a, b \rangle = G$, and *b* has even order), so *b* has trivial centralizer in \mathbb{Z}_{pq} . Then, since |a| = 2 and $\langle a, b \rangle = G$, it follows that *a* must also have trivial centralizer in \mathbb{Z}_{pq} . Therefore (up to isomorphism), we must have either:

- 1. $a = x^3$ and b = xyw, in $G = \mathbb{Z}_6 \ltimes (\mathbb{Z}_5 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$, with $y^x = y^{-1}$ and $w^x = w^d$, where *d* is a primitive 6th root of 1 in \mathbb{Z}_p (so $d^2 d + 1 \equiv 0 \pmod{p}$), or
- 2. $a = x^5$ and b = xyw, in $G = \mathbb{Z}_{10} \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_p) = \langle x \rangle \ltimes (\langle y \rangle \times \langle w \rangle)$ with $y^x = y^{-1}$ and $w^x = w^d$, where *d* is a primitive 10th root of 1 in \mathbb{Z}_p (so $d^4 d^3 + d^2 d + 1 \equiv 0 \pmod{p}$).

¹ The condition [(r-1), nm] = 1 in the statement of [8, Corollary 9.4.3, p. 146] suffers from a typographical error-it should say gcd((r-1)n, m) = 1.

For (1), we note that the sequence $((a, b^{-5})^4, a, b^5)$ is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

Calculating modulo the normal subgroup $\langle y \rangle$, its voltage is

$$(ab^{-5})^{4}(ab^{5}) = (ab)^{4}(ab^{-1}) \quad (b^{6} = e)$$

$$\equiv (x^{3} (xw))^{4} (x^{3} (xw)^{-1})$$

$$= (x^{4}w)^{4} ((xw^{-1})^{-1}x^{3}) \quad (x^{3} \text{ inverts } w)$$

$$= (x^{16}w^{d^{12}+d^{8}+d^{4}+1}) ((wx^{-1})x^{3})$$

$$= x^{-2}w^{1+d^{2}-d+2}x^{2} \qquad \begin{pmatrix} x^{6} = e \text{ and} \\ d^{3} \equiv -1 \pmod{p} \end{pmatrix}$$

$$= x^{-2}w^{d^{2}+2}x^{2}$$

$$= x^{-2}w^{d+1}x^{2} \quad (d^{2}-d+1 \equiv 0 \pmod{p}),$$

which is nontrivial. Therefore, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

For (2), here is a Hamiltonian cycle in $Cay(G/\mathbb{Z}_p; S)$:

Calculating modulo $\langle y \rangle$, its voltage is

$$\begin{aligned} ab^{4}(aba)b^{4}(ab^{-3}a)b^{-1}(ab^{2})^{2}(ab^{-1}a)b^{-3} \\ &\equiv x^{5}(xw)^{4} \left(x^{5}(xw)x^{5} \right) (xw)^{4} \left(x^{5}(xw)^{-3}x^{5} \right) \cdot (xw)^{-1} \left(x^{5}(xw)^{2} \right)^{2} \left(x^{5}(xw)^{-1}x^{5} \right) (xw)^{-3} \\ &= x^{5}(xw)^{4} \left(xw^{-1} \right) (xw)^{4} \left(xw^{-1} \right)^{-3} \cdot (xw)^{-1} \left((xw^{-1})^{2}(xw)^{2} \right) \left(xw^{-1} \right)^{-1} (xw)^{-3} \\ &= x^{5} \left(x^{4}w^{d^{3}+d^{2}+d+1} \right) \left(xw^{-1} \right) \left(x^{4}w^{d^{3}+d^{2}+d+1} \right) \left(w^{d^{2}+d+1}x^{-3} \right) \cdot (w^{-1}x^{-1}) \left(x^{4}w^{-d^{3}-d^{2}+d+1} \right) \left(wx^{-1} \right) \left(w^{-(d^{2}+d+1)}x^{-3} \right) \\ &= w^{d(d^{3}+d^{2}+d+1)} w^{-1} w^{d^{6}(d^{3}+d^{2}+d+1)} w^{d^{6}(d^{2}+d+1)} \cdot w^{-d^{9}} w^{d^{6}(-d^{3}-d^{2}+d+1)} w^{d^{6}} w^{-d^{7}(d^{2}+d+1)} \\ &= w^{-2d^{9}+2d^{7}+4d^{6}+d^{4}+d^{3}+d^{2}+d-1}. \end{aligned}$$

Modulo *p*, the exponent of *w* is:

$$\begin{aligned} -2d^9 + 2d^7 + 4d^6 + d^4 + d^3 + d^2 + d - 1 &\equiv 2d^4 - 2d^2 - 4d + d^4 + d^3 + d^2 + d - 1 \quad (\text{because } d^5 \equiv -1) \\ &= 3d^4 + d^3 - d^2 - 3d - 1 \\ &= 3(d^4 - d^3 + d^2 - d + 1) + 4(d^3 - d^2 - 1) \\ &\equiv 3(0) + 4(d^3 - d^2 - 1) \\ &= 4(d^3 - d^2 - 1). \end{aligned}$$

This is nonzero (mod *p*), because $d^4 - d^3 + d^2 - d + 1 \equiv 0 \pmod{p}$ and

$$(d^3 - d^2)(d^3 - d^2 - 1) - (d^2 - d - 1)(d^4 - d^3 + d^2 - d + 1) = 1.$$

Therefore the voltage generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma 2.2 applies.

Subsubcase 1.2.2. Assume a and b both have order 2r in G/G'. Then |a| = |b| = 2r (because \mathbb{Z}_{2r} has trivial centralizer in \mathbb{Z}_{pq}).

We have $a \in b^i G'$ for some *i* with gcd(i, 2r) = 1. We may assume $1 \le i < r$ by replacing *a* with its inverse if necessary. Here is a Hamiltonian cycle in Cay(G/G'; S):

$$((a, b, a^{-1}, b)^{(i-1)/2}, a, b^{2r+1-2i}).$$

To calculate its voltage, write $a = b^i yw$, where $\langle y \rangle = \mathbb{Z}_q$ and $\langle w \rangle = \mathbb{Z}_p$. We have $y^b = y^{-1}$ and $w^b = w^d$, where *d* is a primitive *r*th or (2*r*)th root of unity in \mathbb{Z}_p . Then the voltage of the walk is:

$$(aba^{-1}b)^{(i-1)/2}ab^{2r+1-2i} = ((b^{i}yw)b(b^{i}yw)^{-1}b)^{(i-1)/2}(b^{i}yw)b^{1-2i}$$

= $((b^{i}yw)b(w^{-1}y^{-1}b^{-i})b)^{(i-1)/2}(b^{i}yw)b^{1-2i}$
= $(b^{2}y^{-2}w^{(d-1)d^{1-i}})^{(i-1)/2}(b^{i}yw)b^{1-2i}$
= $(b^{i-1}y^{-(i-1)}w^{(d-1)d^{1-i}(d^{i-3}+d^{i-5}+\dots+d^{2}+1)})(b^{i}yw)b^{1-2i}$
= $b^{2i-1}y^{(i-1)+1}w^{(d-1)d(d^{i-3}+d^{i-5}+\dots+d^{2}+1)+1}b^{1-2i}.$

Now:

• The exponent of y is (i - 1) + 1 = i. If $q \mid i$, then, since i < r, we must have q = 3, r = 5, and i = 3.

• The exponent of w is

$$(d-1)d(d^{i-3}+d^{i-5}+\dots+d^2+1)+1=d(d-1)\frac{d^{i-1}-1}{d^2-1}+1$$
$$=d\frac{d^{i-1}-1}{d+1}+1=\frac{d^i-d}{d+1}+\frac{d+1}{d+1}=\frac{d^i+1}{d+1}.$$

This is not divisible by *p*, because *d* is a primitive *r*th or (2r)th root of 1 in \mathbb{Z}_p , and gcd(i, 2r) = 1.

Thus, the voltage generates G' (so the Factor Group Lemma 2.2 applies) unless q = 3, r = 5, and i = 3. In this case, since i = 3, we have $a = b^3 yw$. Also, we may assume b = x. Then a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$ is:

Calculating modulo $\langle y \rangle$, and noting that |a| = 2r = 10, its voltage is

$$a^{-9}b(a^9b)^2 = ab(a^{-1}b)^2 \equiv ((x^3w)x)(w^{-1}x^{-2})^2$$

= $(x^4w^d)(w^{-1-d^2}x^{-4}) = x^4w^{-(d^2-d+1)}x^{-4}.$

Since *d* is a primitive 5th or 10th root of 1 in \mathbb{Z}_p , we know that it is not a primitive 6th root of 1, so $d^2 - d + 1 \neq 0 \pmod{p}$. Therefore the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 applies.

Case 2. *Assume* #S = 3, *and S remains minimal in* $G/\mathbb{Z}_p = \overline{G}$. Since $G = \mathbb{Z}_{2r} \ltimes \mathbb{Z}_{pq}$ and \mathbb{Z}_r centralizes \mathbb{Z}_q , we know $\overline{G} \cong (\mathbb{Z}_2 \ltimes \mathbb{Z}_q) \times \mathbb{Z}_r$. Also, since \mathbb{Z}_2 inverts \mathbb{Z}_q , we have $\mathbb{Z}_2 \ltimes \mathbb{Z}_q \cong D_{2q}$. Therefore, $\overline{G} \cong D_{2q} \times \mathbb{Z}_r$, so we may write $S = \{a, b, c\}$ with $\langle \overline{a}, \overline{b} \rangle = D_{2q}$ and $\langle \overline{c} \rangle = \mathbb{Z}_r$. Since $S \cap G' = \emptyset$, we know that \overline{a} and \overline{b} are reflections, so they have order 2 in G/\mathbb{Z}_p . Therefore, we may assume |a| = |b| = 2, for otherwise Corollary 2.3 applies. Also, since \mathbb{Z}_r does not centralize \mathbb{Z}_p , we know that |c| = r. Replacing *c* by a conjugate, we may assume $\langle c \rangle = \mathbb{Z}_r$.

We may assume $\mathbb{Z}_r \not\subset Z(G)$ (otherwise Lemma 2.9 applies), so we may assume $[a, c] \neq e$ (by interchanging *a* and *b* if necessary). Let

$$W = ((b, a)^{q-1}, c, (c^{r-2}, a, c^{-(r-2)}, b)^{q-1}).$$

Then

$$(W, c^{r-2}, a, c^{-(r-1)}, a)$$
 and $(W, c^{r-3}, a, c^{-(r-1)}, a, c)$

are Hamiltonian cycles in Cay(G/G'; S). Let v be the voltage of the first of these, and let $\gamma = [a, c] [a, c]^{ac}$. Then the voltage of the second is

$$v \cdot (c^{r-2}ac^{-(r-1)}a)^{-1}(c^{r-3}ac^{-(r-1)}ac) = v \cdot (ac^{r-1}ac^{-(r-2)})(c^{r-3}ac^{-(r-1)}ac)$$

= $v \cdot (ac^{-1}ac^{-1}acac)$
= $v \cdot (ac^{-1}[a, c]ac)$
= $v \cdot (ac^{-1}ac[a, c]^{ac})$
= $v \cdot ([a, c][a, c]^{ac})$
= $v \vee$.

Since [a, c] generates \mathbb{Z}_p , and *ac* does not invert \mathbb{Z}_p (this is because *a* inverts \mathbb{Z}_p , and *c* does not centralize \mathbb{Z}_p), we know $\gamma \neq e$. Therefore *v* and $v\gamma$ cannot both be trivial, so at least one of them generates \mathbb{Z}_p . Then the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

Case 3. Assume #S = 3, and *S* does not remain minimal in G/\mathbb{Z}_p . Choose a 2-element subset $\{a, b\}$ of *S* that generates G/\mathbb{Z}_p . As in Case 2, we have $G/\mathbb{Z}_p \cong D_{2q} \times \mathbb{Z}_r$. From the minimality of *S*, we see that $\langle a, b \rangle = D_{2q} \times \mathbb{Z}_r$ (up to a conjugate). The projection of $\{a, b\}$ to D_{2q} must be of the form $\{f, y\}$ or $\{f, fy\}$, where *f* is a reflection and *y* is a rotation. Thus, using *z* to denote a generator of \mathbb{Z}_r (and noting that $y \notin S$, because $S \cap G' = \emptyset$), we see that $\{a, b\}$ must be of the form

1. {*f*, *yz*}, or

2. $\{f, fyz\}$, or

3. { fz, yz^{ℓ} }, with $\ell \neq 0 \pmod{r}$, or

4. { fz, fyz^{ℓ} }, with $\ell \neq 0 \pmod{r}$.

Let *c* be the final element of *S*. We may write

$$c = f^{i}y^{j}z^{k}w$$
 with $0 \le i < 2, \ 0 \le j < q$, and $0 \le k < r$.

Note that, since $S \cap G' = \emptyset$, we know that *i* and *k* cannot both be 0. Let *d* be a primitive *r*th root of unity in \mathbb{Z}_p , such that

$$w^z = w^d$$
 for $w \in \mathbb{Z}_p$.

Subcase 3.1. Assume a = f and b = yz. From the minimality of *S*, we know $\langle b, c \rangle \neq G$, so i = 0, so we must have $k \neq 0$. Subsubcase 3.1.1. Assume k = 1. Then $b \equiv c \pmod{G'}$, so we have the Hamiltonian cycles $(a, b^{-(r-1)}, a, b^{r-2}, c)$ and $(a, b^{-(r-1)}, a, b^{r-3}, c^2)$ in Cay(G/G'; S). The voltage of the first is

$$ab^{-(r-1)}ab^{r-2}c = (ab^{-(r-1)}ab^{r-1})(b^{-1}c)$$

= $((f)(yz)^{-(r-1)}(f)(yz)^{r-1})((yz)^{-1}(y^{j}zw))$
= $(y^{2(r-1)})(y^{j-1}w)$
= $\begin{cases} y^{j+3}w & \text{if } r = 3 \text{ and } q = 5, \\ y^{j+7}w & \text{if } r = 5 \text{ and } q = 3 \end{cases}$
= $y^{j-2}w$,

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$ if $j \neq 2$.

So we may assume j = 2 (for otherwise the Factor Group Lemma 2.2 applies). In this case, the voltage of the second Hamiltonian cycle is

$$\begin{aligned} ab^{-(r-1)}ab^{r-3}c^2 &= \left(ab^{-(r-1)}ab^{r-1}\right)\left(b^{-2}c^2\right) \\ &= \left((f)(yz)^{-(r-1)}(f)(yz)^{r-1}\right)\left((yz)^{-2}(y^2zw)^2\right) \\ &= \left(y^{2(r-1)}\right)\left(y^2w^{d+1}\right) \\ &= \begin{cases} y^6w^{d+1} & \text{if } r = 3 \text{ and } q = 5, \\ y^{10}w^{d+1} & \text{if } r = 5 \text{ and } q = 3 \end{cases} \\ &= yw^{d+1}, \end{aligned}$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).

Subsubcase 3.1.2. Assume k > 1. We may replace c with its inverse, so we may assume $k \le (r - 1)/2$. Therefore $r \ne 3$, so we must have r = 5 and k = 2. So a = f, b = yz, and $c = y^j z^2 w$.

Subsubsubcase 3.1.2.1. Assume j = 0. Here is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

Letting $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, and calculating modulo $\langle y \rangle$, its voltage is

$$\begin{aligned} (ab)^4 (ab^{-1}ab) (c^{-1}ac) (b^{-1}ab) (ac^{-1})^2 (abab^{-1})^2 \\ &\equiv (fz)^4 (fz^{-1}fz) (w^{-1}z^{-2}fz^2w) (z^{-1}fz) (fw^{-1}z^{-2})^2 (fzfz^{-1})^2 \\ &= (z^4) (e) (w^{\epsilon-1}f) (f) (w^{-(\epsilon+d^2)}z^{-4}) (e) \\ &= z^4 w^{-(d^2+1)} z^{-4}. \end{aligned}$$

Since *d* is a primitive 5th root of unity in \mathbb{Z}_p , we know that $d^2 + 1 \neq 0 \pmod{p}$, so the voltage is nontrivial, and hence generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 applies.

Subsubsubsubsase 3.1.2.2. Assume $j \neq 0$. Since $\langle a, c \rangle \neq G$, this implies f centralizes \mathbb{Z}_p , so $G = D_6 \times (\mathbb{Z}_5 \ltimes \mathbb{Z}_p)$. If j = 1 (so $c = yz^2w$), here is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$\begin{aligned} (ab)^4(ba)^2(b^{-1}a)(ba)^2(c)(ab^{-1}ab)^2(c^{-1}ac^{-1}) &\equiv (ez)^4(ze)^2(z^{-1}e)(ze)^2(z^2w)(ez^{-1}ez)^2(w^{-1}z^{-2}ew^{-1}z^{-2}) \\ &= z^7w^{-1}z^{-2} \\ &= z^2w^{-1}z^{-2}, \end{aligned}$$

because |z| = r = 5. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S). If j = 2 (so $c = y^2 z^2 w$), here is a Hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

Calculating modulo the normal subgroup $D_6 = \langle f, y \rangle$, its voltage is

$$(b^{-1}ab^2(ab)^2(ac))^3 \equiv (z^{-1}ez^2(ez)^2(ez^2w))^3 = (z^5w)^3 = w^3$$

because |z| = r = 5. Since this voltage generates \mathbb{Z}_p , the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S). Subcase 3.2. Assume a = f and b = fyz. Since $\langle b, c \rangle \neq G$, we must have $c \in \langle fy, z \rangle w$, so

$$c = (fy)^i z^k w$$
 with $0 \le i < 2$ and $0 \le k < r$.

Subsubcase 3.2.1. Assume k = 0. Then c = fyw, so we have $c \equiv a \pmod{G'}$. Therefore $(b^{-(r-1)}, a, b^{r-1}, c)$ is a Hamiltonian cycle in Cay(G/G'; S). Since

$$b^{r-1} = (fyz)^{r-1} = (fy)^{r-1}(z^{r-1}) = (e)(z^{-1}) = z^{-1},$$

its voltage is

$$b^{-(r-1)}ab^{r-1}c = (b^{-(r-1)}ab^{r-1}a)(ac) = [b^{r-1}, a](ac) = [z^{-1}, f](yw) = yw,$$

which generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

Subsubcase 3.2.2. Assume i = 0. Then $c = z^k w$, and we know $k \neq 0$, because $S \cap G' = \emptyset$.

If k = 1, then $((a, c)^{r-1}, a, b)$ is a Hamiltonian cycle in Cay(G/G'; S). Letting $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, its voltage is

$$(ac)^{r-1} a b = (ac)^{r} (c^{-1} b)$$

= $(fzw)^{r} ((zw)^{-1} (fyz))$
= $(f^{r}z^{r}w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + 1}) (w^{-1}z^{-1}fyz)$
= $f w^{(\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d} fy$
= $w^{\epsilon ((\epsilon d)^{r-1} + (\epsilon d)^{r-2} + \dots + \epsilon d)} y$
= $w^{d((\epsilon d)^{r-2} + (\epsilon d)^{r-3} + \dots + 1)} y.$

Since ϵd is a primitive *r*th or (2r)th root of unity in \mathbb{Z}_p , it is clear that the exponent of *w* is nonzero (mod *p*). Therefore the voltage generates $\mathbb{Z}_p \times \mathbb{Z}_q = G'$, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

We may now assume $k \ge 2$. However, we may also assume $k \le (r - 1)/2$ (by replacing *c* with its inverse if necessary). So r = 5 and k = 2. In this case, here is a Hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

ē	\xrightarrow{a}	\overline{f}	\xrightarrow{b}	fyz	\xrightarrow{a}	$\overline{y^2z}$	$\xrightarrow{b^{-1}}$	\overline{y}	\xrightarrow{a}	$\overline{fy^2}$
	\xrightarrow{b}	\overline{fz}	\xrightarrow{a}	\overline{z}	$\xrightarrow{b^{-1}}$	$\overline{y^2}$	\xrightarrow{a}	\overline{fy}	\xrightarrow{b}	$\overline{fy^2z}$
	\xrightarrow{a}	\overline{yz}	\xrightarrow{b}	$\overline{y^2 z^2}$	\xrightarrow{a}	$\overline{fyz^2}$	\xrightarrow{b}	$\overline{fy^2z^3}$	\xrightarrow{a}	$\overline{yz^3}$
	\xrightarrow{b}	$\overline{y^2 z^4}$	\xrightarrow{a}	$\overline{fyz^4}$	$\xrightarrow{b^{-1}}$	$\overline{fz^3}$	\xrightarrow{a}	$\overline{z^3}$	\xrightarrow{b}	$\overline{yz^4}$
	$\xrightarrow{c^{-1}}$	$\overline{yz^2}$	\xrightarrow{a}	$\overline{fy^2z^2}$	\xrightarrow{c}	$\overline{fy^2z^4}$	$\xrightarrow{b^{-1}}$	$\overline{fyz^3}$	\xrightarrow{a}	$\overline{y^2 z^3}$
	\xrightarrow{b}	$\overline{z^4}$	\xrightarrow{a}	$\overline{fz^4}$	$\xrightarrow{c^{-1}}$	$\overline{fz^2}$	\xrightarrow{a}	$\overline{z^2}$	$\xrightarrow{c^{-1}}$	ē.

Its voltage is

$$(abab^{-1})^{2}(ab)^{4}(ab^{-1}ab)(c^{-1}ac)(b^{-1}ab)(ac^{-1})^{2}$$

Since the voltage is in \mathbb{Z}_p , it is a power of w, and it is clear that the only terms that contribute a power of w to the product are contained in the last three parenthesized expressions (because c does not appear anywhere else). Choosing $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, we calculate the product of these three expressions modulo $\langle y \rangle$:

$$(c^{-1}ac)(b^{-1}ab)(ac^{-1})^{2} \equiv ((z^{2}w)^{-1}f(z^{2}w))((fz)^{-1}f(fz))(f(z^{2}w)^{-1})^{2}$$
$$= (w^{\epsilon-1}f)(f)(w^{-(\epsilon+d^{2})}z^{-4})$$
$$= w^{-(d^{2}+1)}z^{-4}.$$

Since the power of w is nonzero, the voltage generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).

Subsubcase 3.2.3. Assume *i* and *k* are both nonzero. Since $\langle a, c \rangle \neq G$, this implies that *f* centralizes *w*. Therefore $G = D_{2q} \times (\mathbb{Z}_r \ltimes \mathbb{Z}_p)$. Also, since $0 \le i < 2$, we know i = 1, so $c = fyz^k w$. We may assume $k \ne 1$ (for otherwise $b \equiv c \pmod{\mathbb{Z}_p}$), so Corollary 2.3 applies). Since we may also assume that $k \le (r - 1)/2$ (by replacing *c* with its inverse if necessary), then we have r = 5 and k = 2.

Here is a Hamiltonian cycle in $Cay(G/\mathbb{Z}_p; S)$:

$$((ab)^2 a c a b^{-1} a c)^3 \equiv ((ez)^2 e(z^2 w) e z^{-1} e(z^2 w))^3$$
$$= (z^4 w z w)^3$$
$$= w^{3(d+1)},$$

which generates $\langle w \rangle = \mathbb{Z}_p$, so the Factor Group Lemma 2.2 applies.

Subcase 3.3. Assume a = fz and $b = yz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle y, z \rangle w$. So $c \in \langle z \rangle w$; write $c = z^k w$ (with $k \neq 0$, because $S \cap G' = \emptyset$).

Subsubcase 3.3.1. Assume $\ell = k$. Then $b \equiv c \equiv z^{\ell} \pmod{G'}$, so

$$(a^{-1}, b^{-(r-1)}, a, b^{r-2}, c)$$

is a Hamiltonian cycle in Cay(G/G'; S). Its voltage is

$$a^{-1}b^{-(r-1)}ab^{r-2}c = (fz)^{-1}(yz^{\ell})^{-(r-1)}(fz)(yz^{\ell})^{r-2}(z^{\ell}w)$$

= $(f^{-1}y^{-(r-1)}f)y^{r-2}w$ (*z* commutes
with *f* and *y*)
= $(y^{r-1})y^{r-2}w$ (*f* inverts *y*)
= $y^{2r-3}w$.

Since $2(3) - 3 \neq 0 \pmod{5}$ and $2(5) - 3 \neq 0 \pmod{3}$, we have $2r - 3 \neq 0 \pmod{q}$, so y^{2r-3} is nontrivial, and hence generates \mathbb{Z}_q . Therefore, this voltage generates $\mathbb{Z}_q \times \mathbb{Z}_p = G'$. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

Subsubcase 3.3.2. Assume $\ell \neq k$. We may assume $\ell, k \leq (r-1)/2$ (perhaps after replacing *b* and/or *c* by their inverses). Then we must have r = 5 and $\{\ell, k\} = \{1, 2\}$.

For $(\ell, k) = (1, 2)$, here is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

$$\overline{e} \xrightarrow{a} \overline{fz} \xrightarrow{b} \overline{fyz^2} \xrightarrow{a^{-1}} \overline{y^2z} \xrightarrow{a^{-1}} \overline{fy} \xrightarrow{b^{-1}} \overline{fz^4}$$

$$\xrightarrow{a^{-1}} \overline{z^3} \xrightarrow{a^{-1}} \overline{fz^2} \xrightarrow{a^{-1}} \overline{z} \xrightarrow{a^{-1}} \overline{f} \xrightarrow{f} \xrightarrow{b^{-1}} \overline{fy^2z^4}$$

$$\xrightarrow{a} \overline{y} \xrightarrow{a} \overline{fy^2z} \xrightarrow{a} \overline{yz^2} \xrightarrow{a} \overline{fy^2z^3} \xrightarrow{a} \overline{fy^2z^4}$$

$$\xrightarrow{a} \overline{fyz^3} \xrightarrow{a^{-1}} \overline{y^2z^4} \xrightarrow{a^{-1}} \overline{fyz^2} \xrightarrow{a^{-1}} \overline{fyz^3} \xrightarrow{b} \overline{yz^4}$$

$$\xrightarrow{a^{-1}} \overline{fyz^3} \xrightarrow{a^{-1}} \overline{y^2z^2} \xrightarrow{a^{-1}} \overline{fyz} \xrightarrow{a^{-1}} \overline{fyz} \xrightarrow{a^{-1}} \overline{fyz^4}$$

$$\xrightarrow{a^{-1}} \overline{y^2z^3} \xrightarrow{b} \overline{z^4} \xrightarrow{z^{-1}} \overline{fz^3} \xrightarrow{a^{-1}} \overline{z^2} \xrightarrow{c^{-1}} \overline{e}.$$

Its voltage is

Since there is precisely one occurrence of *c* in this product, and therefore only one occurrence of *w*, it is impossible for this appearance of *w* to cancel. So the voltage is nontrivial, and therefore generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

For $(\ell, k) = (2, 1)$, here is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

Choosing $\epsilon \in \{\pm 1\}$, such that $w^f = w^{\epsilon}$, we calculate the voltage, modulo $\langle y \rangle$:

$$a^{-4} \Big(\Big(a^{-2} b a^{-2} \Big) c a^{-3} c \Big(a^{-2} b \Big) \Big)^2 \equiv (fz)^{-4} \Big(\Big((fz)^{-2} z^2 (fz)^{-2} \Big) (zw) (fz)^{-3} (zw) \Big((fz)^{-2} z^2 \Big) \Big)^2$$
$$= z^{-4} \Big((z^{-2}) (zw) (fz^{-3}) (zw) (e) \Big)^2$$

E. Ghaderpour, D.W. Morris / Discrete Mathematics 312 (2012) 3614-3625

$$= z^{-4} (z^{-1} w f z^{-2} w)^2$$

= $z^{-4} (w^{d^6 + \epsilon d^4 + \epsilon d^3 + d} z^{-6})$
= $z^{-4} (w^{d(\epsilon d^3 + \epsilon d^2 + 2)} z^4).$

Since *d* is a primitive *r*th root of unity in \mathbb{Z}_p , and r = 5, we know $d^4 + d^3 + d^2 + d + 1 \equiv 0 \pmod{5}$. Combining this with the fact that

$$-(d^{3} + d^{2} - 1)(d^{3} + d^{2} + 2) + (d^{2} + d - 1)(d^{4} + d^{3} + d^{2} + d + 1) = 1,$$

and

$$(d^{3} + d^{2} + 3)(-d^{3} + -d^{2} + 2) + (d^{2} + d - 1)(d^{4} + d^{3} + d^{2} + d + 1) = 5 \neq 0 \pmod{p},$$

we see that $\epsilon d^3 + \epsilon d^2 + 2$ is nonzero in \mathbb{Z}_p . Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p . Hence, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(*G*; *S*).

Subcase 3.4. Assume a = fz and $b = fyz^{\ell}$, with $\ell \neq 0$. Since $\langle a, c \rangle \neq G$ and $\langle b, c \rangle \neq G$, we must have $c \in \langle f, z \rangle w$ and $c \in \langle fy, z \rangle w$. So $c \in \langle z \rangle w$; write $c = z^k w$ (with $k \neq 0$ because $S \cap G' = \emptyset$).

We may assume $k, \ell \le (r-1)/2$, by replacing either or both of b and c with their inverses if necessary. We may also assume $\ell \ne 1$, for otherwise $a \equiv b \pmod{\langle y \rangle}$, so Corollary 2.3 applies. Therefore, we must have r = 5 and $\ell = 2$. We also have $k \in \{1, 2\}$.

For k = 1, here is a Hamiltonian cycle in Cay(G/\mathbb{Z}_p ; S):

Its voltage is

$$ab^{-1}a^{-2}ba^{-4}b^{-1}a^{3}c^{-1}a^{2}ba^{-9}ba^{2}c$$

Calculating modulo *y*, the product between the occurrence of c^{-1} and the occurrence of *c* is

$$a^{2}ba^{-9}ba^{2} \equiv (fz)^{2}(fz^{2})(fz)^{-9}(fz^{2})(fz)^{2} = z^{-1},$$

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 applies.

For k = 2, here is a Hamiltonian cycle in Cay $(G/\mathbb{Z}_p; S)$:

ē	\xrightarrow{a}	\overline{fz}	\xrightarrow{b}	$\overline{yz^3}$	\xrightarrow{b}	\overline{f}	\xrightarrow{a}	\overline{z}	\xrightarrow{a}	$\overline{fz^2}$
								$\overline{fy^2z^3}$		
	\xrightarrow{a}	$\overline{fy^2}$	\xrightarrow{a}	\overline{yz}	\xrightarrow{a}	$\overline{fy^2z^2}$	\xrightarrow{c}	$\overline{fy^2z^4}$	\xrightarrow{a}	\overline{y}
	\xrightarrow{a}	$\overline{fy^2z}$	\xrightarrow{b}	$\overline{y^2 z^3}$	\xrightarrow{a}	$\overline{fyz^4}$	\xrightarrow{a}	$\overline{y^2}$	\xrightarrow{a}	\overline{fyz}
	\xrightarrow{a}	$\overline{y^2 z^2}$	\xrightarrow{a}	$\overline{fyz^3}$	\xrightarrow{a}	$\overline{y^2 z^4}$	\xrightarrow{a}	\overline{fy}	\xrightarrow{a}	$\overline{y^2 z}$
	\xrightarrow{a}	$\overline{fyz^2}$	\xrightarrow{b}	$\overline{z^4}$	$\xrightarrow{a^{-1}}$	$\overline{fz^3}$	$\xrightarrow{a^{-1}}$	$\overline{z^2}$	$\xrightarrow{c^{-1}}$	ē.

Its voltage is

 $ab^2a^4b^{-1}a^5ca^2ba^9ba^{-2}c^{-1}.$

Calculating modulo *y*, the product between the occurrence of *c* and the occurrence of c^{-1} is

$$a^{2}ba^{9}ba^{-2} \equiv (fz)^{2}(fz^{2})(fz)^{9}(fz^{2})(fz)^{-2} = fz^{13} = fz^{3}$$

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_p , so the Factor Group Lemma 2.2 applies.

Case 4 Assume $\#S \ge 4$. Write $S = \{s_1, s_2, \ldots, s_\ell\}$, and let $G_i = \langle s_1, \ldots, s_i \rangle$ for $i = 1, 2, \ldots, \ell$. Since S is minimal, we know

$$\{e\} \subsetneq G_1 \subsetneq G_2 \subsetneq \cdots \subsetneq G_\ell \subseteq G.$$

3624

Therefore, the number of prime factors of $|G_i|$ is at least *i*. Since |G| = 30p is the product of only 4 primes, and $\ell = \#S \ge 4$, we conclude that $|G_i|$ has exactly *i* prime factors, for all *i*. (In particular, we must have #S = 4.) By permuting the elements of $\{s_1, s_2, \ldots, s_\ell\}$, this implies that if S_0 is any subset of *S*, then $|\langle S_0 \rangle|$ is the product of exactly $\#S_0$ primes. In particular, by letting $\#S_0 = 1$, we see that every element of *S* must have prime order.

Now, choose $\{a, b\} \subset S$ to be a 2-element generating set of $G/G' \cong \mathbb{Z}_2 \times \mathbb{Z}_r$. From the preceding paragraph, we see that we may assume |a| = 2 and |b| = r (by interchanging *a* and *b* if necessary). Since $|\langle a, b \rangle|$ is the product of only two primes, we must have $|\langle a, b \rangle| = 2r$, so $\langle a, b \rangle \cong G/G'$. Therefore

$$G = (\langle a \rangle \times \langle b \rangle) \ltimes G'.$$

Since $\langle S \rangle = G$, we may choose $s_1 \in S$, such that $s_1 \notin \langle a, b \rangle \mathbb{Z}_p$. Then $\langle a, b, s_1 \rangle = \langle a, b \rangle \mathbb{Z}_q$. Since *a* centralizes both *a* and *b*, but does not centralize \mathbb{Z}_q , which is contained in $\langle a, b, s_1 \rangle$, we know that $[a, s_1]$ is nontrivial. Therefore $\langle a, s_1 \rangle$ contains $\langle a, b, s_1 \rangle' = \mathbb{Z}_q$. Then, since $|\langle a, s_1 \rangle|$ is only divisible by two primes, we must have $|\langle a, s_1 \rangle| = 2q$. Also, since $S \cap G' = \emptyset$, we must have $|s_1| \neq q$; therefore $|s_1| = 2$. Hence $2r \mid |\langle b, s_1 \rangle|$, so we must have $|\langle b, s_1 \rangle| = 2r$. Therefore

$$[b, s_1] \in \langle b, s_1 \rangle \cap \langle a, b, s_1 \rangle' = \langle b, s_1 \rangle \cap \mathbb{Z}_q = \{e\},$$

so *b* centralizes s_1 . It also centralizes *a*, so *b* centralizes $\langle a, s_1 \rangle = \mathbb{Z}_2 \ltimes \mathbb{Z}_q$. Similarly, if we choose $s_2 \in S$ with $s_2 \notin \langle a, b \rangle \mathbb{Z}_q$, then *a* centralizes $\langle b, s_2 \rangle = \mathbb{Z}_r \ltimes \mathbb{Z}_p$. Therefore $G = \langle a, s_1 \rangle \times \langle b, s_2 \rangle$, so

 $Cay(G; S) \cong Cay(\langle a, s_1 \rangle; \{a, s_1\}) \times Cay(\langle b, s_2 \rangle; \{b, s_2\}).$

This is a Cartesian product of Hamiltonian graphs and therefore is Hamiltonian.

Acknowledgment

This work was partially supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

References

- [1] B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989) 25-36.
- [2] C.C. Chen, N. Quimpo, On strongly Hamiltonian abelian group graphs, in: K.L. McAvaney (Ed.), Combinatorial Mathematics VIII (Proceedings, Geelong, Australia 1980), Springer-Verlag, Berlin, 1981, pp. 23–24.
- [3] S.J. Curran, J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs—a survey, Discrete Math. 156 (1996) 1–18.
- [4] S.J. Curran, D.W. Morris, J. Morris, Cayley graphs of order 16p are Hamiltonian, Ars Math. Contemp. 5 (2) (2012) 185-211. http://amc.imfm.si/index. php/amc/article/view/207.
- [5] E. Ghaderpour, D.W. Morris, Cayley graphs of order 27p are Hamiltonian, Internat. J. Combin. 2011 (2011) 16. Article ID 206930. http://www.hindawi. com/journals/ijct/2011/206930/.
- [6] E. Ghaderpour, D.W. Morris, Cayley graphs of order 30p are Hamiltonian (Preprint with appendix to aid the referee). http://arxiv.org/abs/1102.5156.
- [7] E. Ghaderpour, D.W. Morris, Cayley graphs of order 150 are Hamiltonian (unpublished). http://arxiv.org/src/1102.5156/anc/150.pdf.
- [8] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
- [9] D. Jungreis, E. Friedman, Cayley graphs on groups of low order are Hamiltonian (unpublished).
- [10] K. Keating, D. Witte, On Hamilton cycles in Cayley graphs with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985) 89–102.
 [11] K. Kutnar, D. Marušič, J. Morris, D.W. Morris, P. Šparl, Hamiltonian cycles in Cayley graphs whose order has few prime factors, Ars Math. Contemp. 5
- (1) (2012) 27–71. http://amc.imfm.si/index.php/amc/article/view/177.
- [12] D. Marušič, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1) (1983) 49–54.
- [13] I. Pak, R. Radoičić, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501–5508.
- [14] D. Witte, On Hamiltonian circuits in Cayley diagrams, Discrete Math. 38 (1982) 99–108.
- [15] D. Witte, J.A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984) 293-304.