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a b s t r a c t

Suppose G is a finite group, such that |G| = 30p, where p is prime. We show that if S is any
generating set of G, then there is a Hamiltonian cycle in the corresponding Cayley graph
Cay(G; S).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is a folklore conjecture that every connected Cayley graph has a Hamiltonian cycle. (See the surveys [3,13,15] for
some background on this question.) The papers [9,11] began a systematic study of this conjecture in the case of Cayley
graphs for which the number of vertices has a prime factorization that is small and easy. In particular, combining several of
the results in [11] with [4,5] and this paper shows:

If |G| = kp, where p is prime, with 1 ≤ k < 32 and k ≠ 24, then every connected Cayley graph on G has a Hamiltonian
cycle.

This paper’s contribution to the project is the case k = 30:

Theorem 1.1. If |G| = 30p, where p is prime, then every connected Cayley graph on G has a Hamiltonian cycle.

2. Preliminaries

Additional details of some of the proofs in this paper can be found in an expanded version that has been posted on the
arxiv [6].

Before proving Theorem 1.1, we present some useful facts about Hamiltonian cycles in Cayley graphs.

Notation. Throughout this paper, G is a finite group.

• For any subset S of G, Cay(G; S) denotes the Cayley graph of G with respect to S. Its vertices are the elements of G, and
there is an edge joining g to gs for every g ∈ G and s ∈ S.

• For x, y ∈ G:
◦ [x, y] denotes the commutator x−1y−1xy, and
◦ yx denotes the conjugate x−1yx.
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• ⟨A⟩ denotes the subgroup generated by a subset A of G.
• G′ denotes the commutator subgroup [G,G] of G.
• Z(G) denotes the center of G.
• G n H denotes a semidirect product of the groups G and H .
• D2n denotes the dihedral group of order 2n.
• For S ⊂ G, a sequence (s1, s2, . . . , sn) of elements of S ∪ S−1 specifies the walk in the Cayley graph Cay(G; S) that visits

(in order) the vertices

e, s1, s1s2, s1s2s3, . . . , s1s2 . . . sn.

If N is a normal subgroup of G, we use (s1, s2, . . . , sn) to denote the image of this walk in the quotient Cay(G/N; S).
• If the walk (s1, s2, . . . , sn) in Cay(G/N; S) is closed, then its voltage is the product s1s2 . . . sn. This is an element of N .
• For k ∈ Z+, we use (s1, . . . , sm)k to denote the concatenation of k copies of the sequence (s1, . . . , sm). Abusing notation,

we often write sk and s−k for

(s)k = (s, s, . . . , s) and (s−1)k = (s−1, s−1, . . . , s−1),

respectively. Furthermore,we oftenwrite

(s1, . . . , sm), (t1, . . . , tn)


to denote the concatenation (s1, . . . , sm, t1, . . . , tn).

For example, we have
(a2, b)2, c−22

= (a, a, b, a, a, b, c−1, c−1, a, a, b, a, a, b, c−1, c−1).

Theorem 2.1 (Marušič, Durnberger, Keating–Witte [10]). If G′ is a cyclic group of prime-power order, then every connected
Cayley graph on G has a Hamiltonian cycle.

Lemma 2.2 (‘‘Factor Group Lemma’’ [15, Section 2.2]). Suppose
• S is a generating set of G,
• N is a cyclic, normal subgroup of G,
• C = (s1, s2, . . . , sn) is a Hamiltonian cycle in Cay(G/N; S), and
• the voltage of C generates N.

Then (s1, . . . , sn)|N| is a Hamiltonian cycle in Cay(G; S).

The following easy consequence of the Factor Group Lemma 2.2 is well known (and is implicit in [12]).

Corollary 2.3. Suppose
• S is a generating set of G,
• N is a normal subgroup of G, such that |N| is prime,
• s ≡ t (mod N) for some s, t ∈ S ∪ S−1 with s ≠ t, and
• there is a Hamiltonian cycle in Cay(G/N; S) that uses at least one edge labeled s.

Then there is a Hamiltonian cycle in Cay(G; S).

Theorem 2.4 (Alspach [1, Corollary 5.2]). If G = ⟨s⟩ n ⟨t⟩, for some elements s and t of G, then Cay

G; {s, t}


has a Hamiltonian

cycle.

Lemma 2.5 ([11, Lemma 2.27]). Let S generate the finite group G, and let s ∈ S, such that ⟨s⟩ ▹ G. If Cay

G/⟨s⟩; S


has a

Hamiltonian cycle, and either
1. s ∈ Z(G), or
2. Z(G) ∩ ⟨s⟩ = {e},

then Cay(G; S) has a Hamiltonian cycle.

Lemma 2.6. Suppose
• G = ⟨a⟩ n ⟨S0⟩, where ⟨S0⟩ is an abelian subgroup of odd order,
• #(S0 ∪ S−1

0 ) ≥ 3, and
• ⟨S0⟩ has a nontrivial subgroup H, such that H ▹ G and H ∩ Z(G) = {e}.

Then Cay

G; S0 ∪ {a}


has a Hamiltonian cycle.

Proof. Since ⟨S0⟩ is abelian of odd order, and #(S0 ∪ S−1
0 ) ≥ 3, we know that Cay


⟨S0⟩; S0


is Hamiltonian connected [2].

Therefore, it has a Hamiltonian path (s1, s2, . . . , sm), such that s1s2 . . . sm ∈ H . Then
s1, s2, . . . , sm, a

|a|

is a Hamiltonian cycle in Cay

G; S0 ∪ {a}


. �
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Lemma 2.7 ([4, Corollary 4.4]). If a, b ∈ G, such that G = ⟨a, b⟩, then G′
= ⟨[a, b]⟩.

Lemma 2.8 ([14, Proposition 5.5]). If p, q, and r are prime, then every connected Cayley graph on the dihedral group D2pqr has a
Hamiltonian cycle.

Lemma 2.9. If G = D2pq × Zr , where p, q, and r are distinct odd primes, then every connected Cayley graph on G has a
Hamiltonian cycle.

Proof. Let S be a minimal generating set of G, let ϕ:G → D2pq be the natural projection, and let T be the group of rotations
in D2pq, so T = Zp × Zq.

For s ∈ S, we may assume:
• If ϕ(s) has order 2, then s = ϕ(s) has order 2. (Otherwise, Corollary 2.3 applies with t = s−1.)
• ϕ(s) is nontrivial. (Otherwise, s ∈ Zr ⊂ Z(G), so Lemma 2.5(1) applies.)

Since ϕ(S) generates D2pq, it must contain at least one reflection (which is an element of order 2). So S ∩ D2pq contains a
reflection.
Case 1. Assume S ∩ D2pq contains only one reflection. Let a ∈ S ∩ D2pq, such that a is a reflection.

Let S0 = S r {a}. Since ⟨S0⟩ is a subgroup of the cyclic, normal subgroup T × Zr , we know ⟨S0⟩ is normal. Therefore
G = ⟨a⟩ n ⟨S0⟩, so:
• If #S0 = 1, then Theorem 2.4 applies.
• If #S0 ≥ 2, then Lemma 2.6 applies with H = T , because T × Zr is abelian of odd order.

Case 2. Assume S ∩ D2pq contains at least two reflections. Since no minimal generating set of D2pq contains three reflections,
the minimality of S implies that S ∩ D2pq contains exactly two reflections; say a and b are reflections.

Let c ∈ S r D2pq, so Zr ⊂ ⟨c⟩. Since |c| > 2, we know ϕ(c) is not a reflection, so ϕ(c) ∈ T . The minimality of S
(combined with the fact that #S > 2) implies ⟨ϕ(c)⟩ ≠ T . Since ϕ(c) is nontrivial, this implies we may assume ⟨ϕ(c)⟩ = Zp
(by interchanging p and q if necessary). Hence, we may write

c = wz with ⟨w⟩ = Zp and ⟨z⟩ = Zr .

We now use the argument of [10, Case 5.3, p. 96], which is based on ideas of Marušič [12]. Let

G = G/Zp = D2pq × Zr = D2pq × ⟨c⟩.

Then D2pq ∼= D2q, so (a, b)q is a Hamiltonian cycle in Cay

D2pq; a, b


. With this in mind, it is easy to see that

cr−1, a,

(b, a)q−1, c−1, (a, b)q−1, c−1(r−1)/2

, (b, a)q−1, b


is a Hamiltonian cycle in Cay(G; S). This contains the string
c, a, (b, a)q−1, c−1, a


,

which can be replaced with the string
b, c, (b, a)q−1, b, c−1

to obtain another Hamiltonian cycle. Since

ca(ba)q−1c−1a =

cac−1a


(ba)−(q−1) (ba ∈ T is inverted by a)

=

(wz)a(wz)−1a


(ba)−(q−1)

=

w2(ba)−(q−1) (a inverts w and centralizes z)

≠

w−2(ba)−(q−1)

=

b(wz)b(wz)−1(ba)−(q−1) (b inverts w and centralizes z)

=

bcbc−1(ba)−(q−1)

= bc(ba)q−1bc−1, (ba ∈ T is inverted by b)

these two Hamiltonian cycles have different voltages. Therefore at least one of them must have a nontrivial voltage. This
nontrivial voltage must generate Zp, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S). �

Proposition 2.10. Suppose
• |G| = 30p, where p is prime, and
• |G| is not square-free (i.e., p ∈ {2, 3, 5}).
Then every Cayley graph on G has a Hamiltonian cycle.
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Proof. We know |G| is either 60, 90, or 150, and it is known that every connected Cayley graph of any of these three orders
has a Hamiltonian cycle. This can be verified by exhaustive computer search, or see [11, Propositions 7.2 and 9.1] and [7]. �

Lemma 2.11. Suppose

• |G| = 30p, where p is prime, and
• p ≥ 7.

Then

1. G′ is cyclic,
2. G′

∩ Z(G) = {e},
3. G ∼= Zn n G′, for some n ∈ Z+, and
4. if b is a generator of Zn, and we choose τ ∈ Z, such that xb = xτ for all x ∈ G′, then gcd


τ − 1, |a|


= 1.

Proof. Since |G| is square-free (because p ≥ 7), we know that every Sylow subgroup of G is cyclic. Therefore the conclusions
follow from [8, Theorem 9.4.3, p. 146].1 �

3. Proof of the main theorem

Proof of Theorem 1.1. Because of Proposition 2.10, we may assume

p ≥ 7,

so the conclusions of Lemma 2.11 hold.
We may also assume |G′

| is not prime (otherwise Theorem 2.1 applies). Furthermore, if |G′
| = 15p, then G is a dihedral

group, so Lemma 2.8 applies. In addition, if |G′
| = 15, then G ∼= D30 × Zp, so Lemma 2.9 applies. Thus, we may assume

|G′
| = pq, where q ∈ {3, 5}. So

G = Z2r n Zpq, with {q, r} = {3, 5}(and G′
= Zpq).

Note that Zr centralizes Zq, because there is no nonabelian group of order 15, so Z2 must act nontrivially on Zq. Therefore

yx = y−1 whenever y ∈ Zq and ⟨x⟩ = Z2r .

We also assume

Zr does not centralize Zp,

because otherwise G ∼= D2pq × Zr , so Lemma 2.9 applies.
Given a minimal generating set S of G, we may assume

S ∩ G′
= ∅,

for otherwise Lemma 2.5(2) applies.
Case 1. Assume #S = 2. Write S = {a, b}.

Subcase 1.1. Assume |a| is odd. This implies a has order r in G/G′, so (a−(r−1), b−1, ar−1, b) is a Hamiltonian cycle in
Cay(G/G′

; S). Its voltage is

a−(r−1)b−1ar−1b = [ar−1, b].

Since gcd(r − 1, |a|) | gcd(r − 1, 15p) = 1, we know ⟨ar−1, b⟩ = ⟨a, b⟩ = G. So ⟨[ar−1, b]⟩ = G′ (see Lemma 2.7). Therefore
the Factor Group Lemma 2.2 applies.

Subcase 1.2. Assume a and b both have even order.
Subsubcase 1.2.1. Assume a has order 2 in G/G′. Note that q - |a|, since Z2 does not centralize Zq. Also, if |a| = 2p, then

Corollary 2.3 applies. Therefore, we may assume |a| = 2.
Now bmust generate G/G′ (since ⟨a, b⟩ = G, and b has even order), so b has trivial centralizer in Zpq. Then, since |a| = 2

and ⟨a, b⟩ = G, it follows that a must also have trivial centralizer in Zpq. Therefore (up to isomorphism), we must have
either:

1. a = x3 and b = xyw, in G = Z6 n (Z5 × Zp) = ⟨x⟩ n

⟨y⟩ × ⟨w⟩


, with yx = y−1 and wx

= wd, where d is a primitive 6th
root of 1 in Zp (so d2 − d + 1 ≡ 0 (mod p)), or

2. a = x5 and b = xyw, in G = Z10 n (Z3 × Zp) = ⟨x⟩ n

⟨y⟩ × ⟨w⟩


with yx = y−1 and wx

= wd, where d is a primitive
10th root of 1 in Zp (so d4 − d3 + d2 − d + 1 ≡ 0 (mod p)).

1 The condition [(r − 1), nm] = 1 in the statement of [8, Corollary 9.4.3, p. 146] suffers from a typographical error—it should say gcd

(r − 1)n,m


= 1.
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For (1), we note that the sequence

(a, b−5)4, a, b5


is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ x3
b−1
−→ x2y

b−1
−→ x

b−1
−→ y

b−1
−→ x5

b−1
−→ x4y

a
−→ xy4

b−1
−→ y2

b−1
−→ x5y4

b−1
−→ x4y2

b−1
−→ x3y4

b−1
−→ x2y2

a
−→ x5y3

b−1
−→ x4y3

b−1
−→ x3y3

b−1
−→ x2y3

b−1
−→ xy3

b−1
−→ y3

a
−→ x3y2

b−1
−→ x2y4

b−1
−→ xy2

b−1
−→ y4

b−1
−→ x5y2

b−1
−→ x4y4

a
−→ xy

b
−→ x2

b
−→ x3y

b
−→ x4

b
−→ x5y

b
−→ e.

Calculating modulo the normal subgroup ⟨y⟩, its voltage is

(ab−5)4(ab5) = (ab)4(ab−1) (b6 = e)

≡

x3 (xw)

4 
x3 (xw)−1

=

x4w

4 
(xw−1)−1 x3


(x3 inverts w)

=

x16wd12+d8+d4+1 

(wx−1) x3


= x−2w1+d2−d+2x2


x6 = e and
d3 ≡ −1 (mod p)


= x−2wd2+2x2

= x−2wd+1x2

d2 − d + 1 ≡ 0 (mod p)


,

which is nontrivial. Therefore, the voltage generates Zp, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in
Cay(G; S).

For (2), here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ x5
b

−→ x6y
b

−→ x7
b

−→ x8y
b

−→ x9
a

−→ x4
b

−→ x5y
a

−→ y2
b

−→ xy2
b

−→ x2y2
b

−→ x3y2
b

−→ x4y2
a

−→ x9y
b−1
−→ x8

b−1
−→ x7y

b−1
−→ x6

a
−→ x

b−1
−→ y

a
−→ x5y2

b
−→ x6y2

b
−→ x7y2

a
−→ x2y

b
−→ x3

b
−→ x4y

a
−→ x9y2

b−1
−→ x8y2

a
−→ x3y

b−1
−→ x2

b−1
−→ xy

b−1
−→ e.

Calculating modulo ⟨y⟩, its voltage is

ab4(aba)b4(ab−3a)b−1(ab2)2(ab−1a)b−3

≡ x5(xw)4

x5(xw)x5


(xw)4


x5(xw)−3x5


· (xw)−1x5(xw)2

2
x5(xw)−1x5


(xw)−3

= x5(xw)4

xw−1(xw)4


xw−1−3

· (xw)−1(xw−1)2(xw)2

xw−1−1

(xw)−3

= x5(x4wd3+d2+d+1)

xw−1(x4wd3+d2+d+1)


wd2+d+1x−3

· (w−1x−1)

x4w−d3−d2+d+1wx−1(w−(d2+d+1)x−3)

= wd(d3+d2+d+1)w−1wd6(d3+d2+d+1)wd6(d2+d+1)
· w−d9wd6(−d3−d2+d+1)wd6w−d7(d2+d+1)

= w−2d9+2d7+4d6+d4+d3+d2+d−1.

Modulo p, the exponent of w is:

−2d9 + 2d7 + 4d6 + d4 + d3 + d2 + d − 1 ≡ 2d4 − 2d2 − 4d + d4 + d3 + d2 + d − 1 (because d5 ≡ −1)
= 3d4 + d3 − d2 − 3d − 1
= 3(d4 − d3 + d2 − d + 1) + 4(d3 − d2 − 1)
≡ 3(0) + 4(d3 − d2 − 1)
= 4(d3 − d2 − 1).

This is nonzero (mod p), because d4 − d3 + d2 − d + 1 ≡ 0 (mod p) and

(d3 − d2)(d3 − d2 − 1) − (d2 − d − 1)(d4 − d3 + d2 − d + 1) = 1.

Therefore the voltage generates ⟨w⟩ = Zp, so the Factor Group Lemma 2.2 applies.
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Subsubcase 1.2.2. Assume a and b both have order 2r in G/G′. Then |a| = |b| = 2r (because Z2r has trivial centralizer
in Zpq).

We have a ∈ biG′ for some i with gcd(i, 2r) = 1. We may assume 1 ≤ i < r by replacing a with its inverse if necessary.
Here is a Hamiltonian cycle in Cay(G/G′

; S):
(a, b, a−1, b)(i−1)/2, a, b2r+1−2i.

To calculate its voltage, write a = biyw, where ⟨y⟩ = Zq and ⟨w⟩ = Zp. We have yb = y−1 and wb
= wd, where d is a

primitive rth or (2r)th root of unity in Zp. Then the voltage of the walk is:

(aba−1b)(i−1)/2ab2r+1−2i
=


(biyw)b(biyw)−1b

(i−1)/2
(biyw)b1−2i

=

(biyw)b(w−1y−1b−i)b

(i−1)/2
(biyw)b1−2i

=

b2y−2w(d−1)d1−i(i−1)/2

(biyw)b1−2i

=

bi−1y−(i−1)w(d−1)d1−i(di−3

+di−5
+···+d2+1)(biyw)b1−2i

= b2i−1y(i−1)+1w(d−1)d(di−3
+di−5

+···+d2+1)+1b1−2i.

Now:

• The exponent of y is (i − 1) + 1 = i. If q | i, then, since i < r , we must have q = 3, r = 5, and i = 3.
• The exponent of w is

(d − 1)d(di−3
+ di−5

+ · · · + d2 + 1) + 1 = d(d − 1)
di−1

− 1
d2 − 1

+ 1

= d
di−1

− 1
d + 1

+ 1 =
di − d
d + 1

+
d + 1
d + 1

=
di + 1
d + 1

.

This is not divisible by p, because d is a primitive rth or (2r)th root of 1 in Zp, and gcd(i, 2r) = 1.

Thus, the voltage generates G′ (so the Factor Group Lemma 2.2 applies) unless q = 3, r = 5, and i = 3.
In this case, since i = 3, we have a = b3yw. Also, we may assume b = x. Then a Hamiltonian cycle in Cay(G/Zp; S) is:

e
a−1
−→ x7y

a−1
−→ x4

a−1
−→ xy

a−1
−→ x8

a−1
−→ x5y

a−1
−→ x2

a−1
−→ x9y

a−1
−→ x6

a−1
−→ x3y

b
−→ x4y2

a
−→ x7y2

a
−→ y2

a
−→ x3y2

a
−→ x6y2

a
−→ x9y2

a
−→ x2y2

a
−→ x5y2

a
−→ x8y2

a
−→ xy2

b
−→ x2y

a
−→ x5

a
−→ x8y

a
−→ x

a
−→ x4y

a
−→ x7

a
−→ y

a
−→ x3

a
−→ x6y

a
−→ x9

b
−→ e.

Calculating modulo ⟨y⟩, and noting that |a| = 2r = 10, its voltage is

a−9b(a9b)2 = ab(a−1b)2 ≡

(x3w)x


w−1x−22

=

x4wdw−1−d2x−4

= x4w−(d2−d+1)x−4.

Since d is a primitive 5th or 10th root of 1 in Zp, we know that it is not a primitive 6th root of 1, so d2 − d + 1 ≢ 0 (mod p).
Therefore the voltage is nontrivial, and hence generates Zp, so the Factor Group Lemma 2.2 applies.

Case 2. Assume #S = 3, and S remains minimal in G/Zp = G. Since G = Z2r n Zpq and Zr centralizes Zq, we know G ∼=

(Z2 nZq)×Zr . Also, since Z2 inverts Zq, we have Z2 nZq ∼= D2q. Therefore, G ∼= D2q ×Zr , so wemaywrite S = {a, b, c}with
⟨a, b⟩ = D2q and ⟨c⟩ = Zr . Since S∩G′

= ∅, we know that a and b are reflections, so they have order 2 in G/Zp. Therefore, we
may assume |a| = |b| = 2, for otherwise Corollary 2.3 applies. Also, since Zr does not centralize Zp, we know that |c| = r .
Replacing c by a conjugate, we may assume ⟨c⟩ = Zr .

We may assume Zr ⊄ Z(G) (otherwise Lemma 2.9 applies), so we may assume [a, c] ≠ e (by interchanging a and b if
necessary). Let

W =

(b, a)q−1, c, (cr−2, a, c−(r−2), b)q−1.

Then 
W , cr−2, a, c−(r−1), a


and


W , cr−3, a, c−(r−1), a, c
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are Hamiltonian cycles in Cay(G/G′
; S). Let v be the voltage of the first of these, and let γ = [a, c] [a, c]ac . Then the voltage

of the second is

v · (cr−2ac−(r−1)a)−1(cr−3ac−(r−1)ac) = v ·

acr−1ac−(r−2))(cr−3ac−(r−1)ac


= v ·


ac−1ac−1acac


= v ·


ac−1

[a, c]ac


= v ·

ac−1ac[a, c]ac


= v ·


[a, c] [a, c]ac


= vγ .

Since [a, c] generates Zp, and ac does not invert Zp (this is because a inverts Zp, and c does not centralize Zp), we know
γ ≠ e. Therefore v and vγ cannot both be trivial, so at least one of them generates Zp. Then the Factor Group Lemma 2.2
provides a Hamiltonian cycle in Cay(G; S).

Case 3. Assume #S = 3, and S does not remain minimal in G/Zp. Choose a 2-element subset {a, b} of S that generates G/Zp.
As in Case 2, we have G/Zp ∼= D2q × Zr . From the minimality of S, we see that ⟨a, b⟩ = D2q × Zr (up to a conjugate). The
projection of {a, b} to D2q must be of the form {f , y} or {f , fy}, where f is a reflection and y is a rotation. Thus, using z to
denote a generator of Zr (and noting that y ∉ S, because S ∩ G′

= ∅), we see that {a, b} must be of the form

1. {f , yz}, or
2. {f , fyz}, or
3. {fz, yzℓ

}, with ℓ ≢ 0 (mod r), or
4. {fz, fyzℓ

}, with ℓ ≢ 0 (mod r).

Let c be the final element of S. We may write

c = f iyjzkw with 0 ≤ i < 2, 0 ≤ j < q, and 0 ≤ k < r.

Note that, since S ∩ G′
= ∅, we know that i and k cannot both be 0. Let d be a primitive rth root of unity in Zp, such that

wz
= wd for w ∈ Zp.

Subcase 3.1. Assume a = f and b = yz. From the minimality of S, we know ⟨b, c⟩ ≠ G, so i = 0, so we must have k ≠ 0.
Subsubcase 3.1.1. Assume k = 1. Then b ≡ c (mod G′), so we have the Hamiltonian cycles (a, b−(r−1), a, br−2, c) and

(a, b−(r−1), a, br−3, c2) in Cay(G/G′
; S). The voltage of the first is

ab−(r−1)abr−2c =

ab−(r−1)abr−1b−1c


=


(f )(yz)−(r−1)(f )(yz)r−1(yz)−1(yjzw)


=


y2(r−1)yj−1w


=


yj+3w if r = 3 and q = 5,
yj+7w if r = 5 and q = 3

= yj−2w,

which generates Zq × Zp = G′ if j ≠ 2.
So we may assume j = 2 (for otherwise the Factor Group Lemma 2.2 applies). In this case, the voltage of the second

Hamiltonian cycle is

ab−(r−1)abr−3c2 =

ab−(r−1)abr−1b−2c2


=


(f )(yz)−(r−1)(f )(yz)r−1(yz)−2(y2zw)2


=


y2(r−1)y2wd+1

=


y6wd+1 if r = 3 and q = 5,
y10wd+1 if r = 5 and q = 3

= ywd+1,

which generates Zq × Zp = G′. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).
Subsubcase 3.1.2. Assume k > 1. We may replace c with its inverse, so we may assume k ≤ (r − 1)/2. Therefore r ≠ 3,

so we must have r = 5 and k = 2. So a = f , b = yz, and c = yjz2w.
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Subsubsubcase 3.1.2.1. Assume j = 0. Here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ f
b

−→ fyz
a

−→ y2z
b

−→ z2
a

−→ fz2
b

−→ fyz3
a

−→ y2z3
b

−→ z4
a

−→ fz4
b−1
−→ fy2z3

a
−→ yz3

b
−→ y2z4

c−1
−→ y2z2

a
−→ fyz2

c
−→ fyz4

b−1
−→ fz3

a
−→ z3

b
−→ yz4

a
−→ fy2z4

c−1
−→ fy2z2

a
−→ yz2

c−1
−→ y

a
−→ fy2

b
−→ fz

a
−→ z

b−1
−→ y2

a
−→ fy

b
−→ fy2z

a
−→ yz

b−1
−→ e.

Letting ϵ ∈ {±1}, such that wf
= wϵ , and calculating modulo ⟨y⟩, its voltage is

(ab)4(ab−1ab)(c−1ac)(b−1ab)(ac−1)2(abab−1)2

≡ (fz)4(fz−1fz)(w−1z−2fz2w)(z−1fz)(fw−1z−2)2(fzfz−1)2

= (z4)(e)(wϵ−1f )(f )(w−(ϵ+d2)z−4)(e)

= z4w−(d2+1)z−4.

Since d is a primitive 5th root of unity in Zp, we know that d2 + 1 ≢ 0 (mod p), so the voltage is nontrivial, and hence
generates Zp, so the Factor Group Lemma 2.2 applies.

Subsubsubcase 3.1.2.2. Assume j ≠ 0. Since ⟨a, c⟩ ≠ G, this implies f centralizes Zp, so G = D6 × (Z5 n Zp).
If j = 1 (so c = yz2w), here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ f
b

−→ fyz
a

−→ y2z
b

−→ z2
a

−→ fz2
b

−→ fyz3
a

−→ y2z3
b

−→ z4
b

−→ y
a

−→ fy2
b

−→ fz
a

−→ z
b−1
−→ y2

a
−→ fy

b
−→ fy2z

a
−→ yz

b
−→ y2z2

a
−→ fyz2

c
−→ fy2z4

a
−→ yz4

b−1
−→ z3

a
−→ fz3

b
−→ fyz4

a
−→ y2z4

b−1
−→ yz3

a
−→ fy2z3

b
−→ fz4

c−1
−→ fy2z2

a
−→ yz2

c−1
−→ e.

Calculating modulo the normal subgroup D6 = ⟨f , y⟩, its voltage is

(ab)4(ba)2(b−1a)(ba)2(c)(ab−1ab)2(c−1ac−1) ≡ (ez)4(ze)2(z−1e)(ze)2(z2w)(ez−1ez)2(w−1z−2ew−1z−2)

= z7w−1z−2

= z2w−1z−2,

because |z| = r = 5. Since this voltage generates Zp, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).
If j = 2 (so c = y2z2w), here is a Hamiltonian cycle in Cay(G/Zp; S):

e
b−1
−→ y2z4

a
−→ fyz4

b
−→ fy2

b
−→ fz

a
−→ z

b
−→ yz2

a
−→ fy2z2

b
−→ fz3

a
−→ z3

c
−→ y2

b−1
−→ yz4

a
−→ fy2z4

b
−→ f

b
−→ fyz

a
−→ y2z

b
−→ z2

a
−→ fz2

b
−→ fyz3

a
−→ y2z3

c
−→ y

b−1
−→ z4

a
−→ fz4

b
−→ fy

b
−→ fy2z

a
−→ yz

b
−→ y2z2

a
−→ fyz2

b
−→ fy2z3

a
−→ yz3

c
−→ e.

Calculating modulo the normal subgroup D6 = ⟨f , y⟩, its voltage is
b−1ab2(ab)2(ac)

3
≡


z−1ez2(ez)2(ez2w)

3
=


z5w

3
= w3,

because |z| = r = 5. Since this voltage generates Zp, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).
Subcase 3.2. Assume a = f and b = fyz. Since ⟨b, c⟩ ≠ G, we must have c ∈ ⟨fy, z⟩w, so

c = (fy)izkw with 0 ≤ i < 2 and 0 ≤ k < r.

Subsubcase 3.2.1. Assume k = 0. Then c = fyw, sowe have c ≡ a (mod G′). Therefore (b−(r−1), a, br−1, c) is a Hamiltonian
cycle in Cay(G/G′

; S). Since

br−1
= (fyz)r−1

= (fy)r−1(zr−1) = (e)(z−1) = z−1,



3622 E. Ghaderpour, D.W. Morris / Discrete Mathematics 312 (2012) 3614–3625

its voltage is

b−(r−1)abr−1c = (b−(r−1)abr−1a)(ac) = [br−1, a](ac) = [z−1, f ](yw) = yw,

which generates Zq × Zp = G′, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).
Subsubcase 3.2.2. Assume i = 0. Then c = zkw, and we know k ≠ 0, because S ∩ G′

= ∅.
If k = 1, then


(a, c)r−1, a, b


is a Hamiltonian cycle in Cay(G/G′

; S). Letting ϵ ∈ {±1}, such that wf
= wϵ , its voltage is

(ac)r−1 a b = (ac)r (c−1 b)
= (fzw)r


(zw)−1(fyz)


= (f rzrw(ϵd)r−1

+(ϵd)r−2
+···+1)


w−1z−1fyz


= f w(ϵd)r−1

+(ϵd)r−2
+···+ϵd fy

= wϵ((ϵd)r−1
+(ϵd)r−2

+···+ϵd)y

= wd((ϵd)r−2
+(ϵd)r−3

+···+1)y.

Since ϵd is a primitive rth or (2r)th root of unity in Zp, it is clear that the exponent of w is nonzero (mod p). Therefore the
voltage generates Zp × Zq = G′, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).

We may now assume k ≥ 2. However, we may also assume k ≤ (r − 1)/2 (by replacing c with its inverse if necessary).
So r = 5 and k = 2. In this case, here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ f
b

−→ fyz
a

−→ y2z
b−1
−→ y

a
−→ fy2

b
−→ fz

a
−→ z

b−1
−→ y2

a
−→ fy

b
−→ fy2z

a
−→ yz

b
−→ y2z2

a
−→ fyz2

b
−→ fy2z3

a
−→ yz3

b
−→ y2z4

a
−→ fyz4

b−1
−→ fz3

a
−→ z3

b
−→ yz4

c−1
−→ yz2

a
−→ fy2z2

c
−→ fy2z4

b−1
−→ fyz3

a
−→ y2z3

b
−→ z4

a
−→ fz4

c−1
−→ fz2

a
−→ z2

c−1
−→ e.

Its voltage is

(abab−1)2(ab)4(ab−1ab)(c−1ac)(b−1ab)(ac−1)2.

Since the voltage is in Zp, it is a power of w, and it is clear that the only terms that contribute a power of w to the product
are contained in the last three parenthesized expressions (because c does not appear anywhere else). Choosing ϵ ∈ {±1},
such that wf

= wϵ , we calculate the product of these three expressions modulo ⟨y⟩:

(c−1ac)(b−1ab)(ac−1)2 ≡

(z2w)−1f (z2w)


(fz)−1f (fz)


f (z2w)−12

=

wϵ−1f


f


w−(ϵ+d2)z−4
= w−(d2+1)z−4.

Since the power of w is nonzero, the voltage generates Zp, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in
Cay(G; S).

Subsubcase 3.2.3. Assume i and k are both nonzero. Since ⟨a, c⟩ ≠ G, this implies that f centralizes w. Therefore G =

D2q × (Zr n Zp). Also, since 0 ≤ i < 2, we know i = 1, so c = fyzkw. We may assume k ≠ 1 (for otherwise b ≡ c (mod Zp),
so Corollary 2.3 applies). Since we may also assume that k ≤ (r − 1)/2 (by replacing c with its inverse if necessary), then
we have r = 5 and k = 2.

Here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ f
b

−→ yz
a

−→ fy2z
b

−→ y2z2
a

−→ fyz2
c

−→ z4
a

−→ fz4
b−1
−→ yz3

a
−→ fy2z3

c
−→ y2

a
−→ fy

b
−→ z

a
−→ fz

b
−→ yz2

a
−→ fy2z2

c
−→ y2z4

a
−→ fyz4

b−1
−→ z3

a
−→ fz3

c
−→ y

a
−→ fy2

b
−→ y2z

a
−→ fyz

b
−→ z2

a
−→ fz2

c
−→ yz4

a
−→ fy2z4

b−1
−→ y2z3

a
−→ fyz3

c
−→ e.
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Calculating modulo the normal subgroup D6 = ⟨f , y⟩, its voltage is
(ab)2acab−1ac

3
≡


(ez)2e(z2w)ez−1e(z2w)

3
=


z4wzw

3
= w3(d+1),

which generates ⟨w⟩ = Zp, so the Factor Group Lemma 2.2 applies.
Subcase 3.3. Assume a = fz and b = yzℓ, with ℓ ≠ 0. Since ⟨a, c⟩ ≠ G and ⟨b, c⟩ ≠ G, we must have c ∈ ⟨f , z⟩w and

c ∈ ⟨y, z⟩w. So c ∈ ⟨z⟩w; write c = zkw (with k ≠ 0, because S ∩ G′
= ∅).

Subsubcase 3.3.1. Assume ℓ = k. Then b ≡ c ≡ zℓ (mod G′), so
a−1, b−(r−1), a, br−2, c


is a Hamiltonian cycle in Cay(G/G′

; S). Its voltage is

a−1b−(r−1)abr−2c = (fz)−1(yzℓ)−(r−1)(fz)(yzℓ)r−2(zℓw)

= (f −1y−(r−1)f )yr−2w


z commutes
with f and y


= (yr−1)yr−2w (f inverts y)
= y2r−3w.

Since 2(3) − 3 ≢ 0 (mod 5) and 2(5) − 3 ≢ 0 (mod 3), we have 2r − 3 ≢ 0 (mod q), so y2r−3 is nontrivial, and hence
generates Zq. Therefore, this voltage generates Zq × Zp = G′. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle
in Cay(G; S).

Subsubcase 3.3.2. Assume ℓ ≠ k. We may assume ℓ, k ≤ (r − 1)/2 (perhaps after replacing b and/or c by their inverses).
Then we must have r = 5 and {ℓ, k} = {1, 2}.

For (ℓ, k) = (1, 2), here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ fz
b

−→ fyz2
a−1
−→ y2z

a−1
−→ fy

b−1
−→ fz4

a−1
−→ z3

a−1
−→ fz2

a−1
−→ z

a−1
−→ f

b−1
−→ fy2z4

a
−→ y

a
−→ fy2z

a
−→ yz2

a
−→ fy2z3

a
−→ yz4

a
−→ fy2

a
−→ yz

a
−→ fy2z2

a
−→ yz3

b
−→ y2z4

a−1
−→ fyz3

a−1
−→ y2z2

a−1
−→ fyz

a−1
−→ y2

a−1
−→ fyz4

a−1
−→ y2z3

b
−→ z4

a−1
−→ fz3

a−1
−→ z2

c−1
−→ e.

Its voltage is

aba−2b−1a−4b−1a9ba−6ba−2c−1.

Since there is precisely one occurrence of c in this product, and therefore only one occurrence of w, it is impossible for this
appearance of w to cancel. So the voltage is nontrivial, and therefore generates Zp, so the Factor Group Lemma 2.2 provides
a Hamiltonian cycle in Cay(G; S).

For (ℓ, k) = (2, 1), here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a−1
−→ fz4

a−1
−→ z3

a−1
−→ fz2

a−1
−→ z

a−1
−→ f

a−1
−→ z4

b
−→ yz

a−1
−→ fy2

a−1
−→ yz4

c
−→ y

a−1
−→ fy2z4

a−1
−→ yz3

a−1
−→ fy2z2

c
−→ fy2z3

a−1
−→ yz2

a−1
−→ fy2z

b
−→ fz3

a−1
−→ z2

a−1
−→ fz

b
−→ fyz3

a−1
−→ y2z2

a−1
−→ fyz

c
−→ fyz2

a−1
−→ y2z

a−1
−→ fy

a−1
−→ y2z4

c
−→ y2

a−1
−→ fyz4

a−1
−→ y2z3

b
−→ e.

Choosing ϵ ∈ {±1}, such that wf
= wϵ , we calculate the voltage, modulo ⟨y⟩:

a−4


a−2ba−2ca−3c

a−2b

2
≡ (fz)−4


(fz)−2z2(fz)−2(zw)(fz)−3(zw)


(fz)−2z2

2

= z−4(z−2)(zw)(fz−3)(zw)(e)
2
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= z−4z−1wfz−2w
2

= z−4(wd6+ϵd4+ϵd3+dz−6)

= z−4(wd(ϵd3+ϵd2+2)z4).

Since d is a primitive rth root of unity in Zp, and r = 5, we know d4 + d3 + d2 + d + 1 ≡ 0 (mod 5). Combining this with
the fact that

−(d3 + d2 − 1)(d3 + d2 + 2) + (d2 + d − 1)(d4 + d3 + d2 + d + 1) = 1,

and

(d3 + d2 + 3)(−d3 + −d2 + 2) + (d2 + d − 1)(d4 + d3 + d2 + d + 1) = 5 ≢ 0 (mod p),

we see that ϵd3 + ϵd2 + 2 is nonzero in Zp. Therefore the voltage is nontrivial, so it generates Zp. Hence, the Factor Group
Lemma 2.2 provides a Hamiltonian cycle in Cay(G; S).

Subcase 3.4. Assume a = fz and b = fyzℓ, with ℓ ≠ 0. Since ⟨a, c⟩ ≠ G and ⟨b, c⟩ ≠ G, we must have c ∈ ⟨f , z⟩w and
c ∈ ⟨fy, z⟩w. So c ∈ ⟨z⟩w; write c = zkw (with k ≠ 0 because S ∩ G′

= ∅).
We may assume k, ℓ ≤ (r − 1)/2, by replacing either or both of b and c with their inverses if necessary. We may also

assume ℓ ≠ 1, for otherwise a ≡ b (mod ⟨y⟩), so Corollary 2.3 applies. Therefore, we must have r = 5 and ℓ = 2. We also
have k ∈ {1, 2}.

For k = 1, here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ fz
b−1
−→ yz4

a−1
−→ fy2z3

a−1
−→ yz2

b
−→ fz4

a−1
−→ z3

a−1
−→ fz2

a−1
−→ z

a−1
−→ f

b−1
−→ yz3

a
−→ fy2z4

a
−→ y

a
−→ fy2z

c−1
−→ fy2

a
−→ yz

a
−→ fy2z2

b
−→ y2z4

a−1
−→ fyz3

a−1
−→ y2z2

a−1
−→ fyz

a−1
−→ y2

a−1
−→ fyz4

a−1
−→ y2z3

a−1
−→ fyz2

a−1
−→ y2z

a−1
−→ fy

b
−→ z2

a
−→ fz3

a
−→ z4

c
−→ e.

Its voltage is

ab−1a−2ba−4b−1a3c−1a2ba−9ba2c.

Calculating modulo y, the product between the occurrence of c−1 and the occurrence of c is

a2ba−9ba2 ≡ (fz)2(fz2)(fz)−9(fz2)(fz)2 = z−1,

which does not centralizew. So the occurrence ofw−1 in c−1 does not cancel the occurrence ofw in c . Therefore the voltage
is nontrivial, so it generates Zp, so the Factor Group Lemma 2.2 applies.

For k = 2, here is a Hamiltonian cycle in Cay(G/Zp; S):

e
a

−→ fz
b

−→ yz3
b

−→ f
a

−→ z
a

−→ fz2
a

−→ z3
a

−→ fz4
b−1
−→ yz2

a
−→ fy2z3

a
−→ yz4

a
−→ fy2

a
−→ yz

a
−→ fy2z2

c
−→ fy2z4

a
−→ y

a
−→ fy2z

b
−→ y2z3

a
−→ fyz4

a
−→ y2

a
−→ fyz

a
−→ y2z2

a
−→ fyz3

a
−→ y2z4

a
−→ fy

a
−→ y2z

a
−→ fyz2

b
−→ z4

a−1
−→ fz3

a−1
−→ z2

c−1
−→ e.

Its voltage is

ab2a4b−1a5ca2ba9ba−2c−1.

Calculating modulo y, the product between the occurrence of c and the occurrence of c−1 is

a2ba9ba−2
≡ (fz)2(fz2)(fz)9(fz2)(fz)−2

= fz13 = fz3,

which does not centralizew. So the occurrence ofw−1 in c−1 does not cancel the occurrence ofw in c. Therefore the voltage
is nontrivial, so it generates Zp, so the Factor Group Lemma 2.2 applies.
Case 4 Assume #S ≥ 4. Write S = {s1, s2, . . . , sℓ}, and let Gi = ⟨s1, . . . , si⟩ for i = 1, 2, . . . , ℓ. Since S is minimal, we know

{e} ( G1 ( G2 ( · · · ( Gℓ ⊆ G.
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Therefore, the number of prime factors of |Gi| is at least i. Since |G| = 30p is the product of only 4 primes, and ℓ = #S ≥ 4,
we conclude that |Gi| has exactly i prime factors, for all i. (In particular, we must have #S = 4.) By permuting the elements
of {s1, s2, . . . , sℓ}, this implies that if S0 is any subset of S, then |⟨S0⟩| is the product of exactly #S0 primes. In particular, by
letting #S0 = 1, we see that every element of S must have prime order.

Now, choose {a, b} ⊂ S to be a 2-element generating set of G/G′ ∼= Z2 × Zr . From the preceding paragraph, we see that
we may assume |a| = 2 and |b| = r (by interchanging a and b if necessary). Since |⟨a, b⟩| is the product of only two primes,
we must have |⟨a, b⟩| = 2r , so ⟨a, b⟩ ∼= G/G′. Therefore

G =

⟨a⟩ × ⟨b⟩


n G′.

Since ⟨S⟩ = G, we may choose s1 ∈ S, such that s1 ∉ ⟨a, b⟩ Zp. Then ⟨a, b, s1⟩ = ⟨a, b⟩ Zq. Since a centralizes both a
and b, but does not centralize Zq, which is contained in ⟨a, b, s1⟩, we know that [a, s1] is nontrivial. Therefore ⟨a, s1⟩ con-
tains ⟨a, b, s1⟩′ = Zq. Then, since |⟨a, s1⟩| is only divisible by two primes, wemust have |⟨a, s1⟩| = 2q. Also, since S∩G′

= ∅,
we must have |s1| ≠ q; therefore |s1| = 2. Hence 2r | |⟨b, s1⟩|, so we must have |⟨b, s1⟩| = 2r . Therefore

[b, s1] ∈ ⟨b, s1⟩ ∩ ⟨a, b, s1⟩′ = ⟨b, s1⟩ ∩ Zq = {e},

so b centralizes s1. It also centralizes a, so b centralizes ⟨a, s1⟩ = Z2 n Zq.
Similarly, if we choose s2 ∈ S with s2 ∉ ⟨a, b⟩ Zq, then a centralizes ⟨b, s2⟩ = Zr n Zp.
Therefore G = ⟨a, s1⟩ × ⟨b, s2⟩, so

Cay(G; S) ∼= Cay

⟨a, s1⟩; {a, s1}


× Cay


⟨b, s2⟩; {b, s2}


.

This is a Cartesian product of Hamiltonian graphs and therefore is Hamiltonian. �
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