Cayley graphs of order $30 p$ are Hamiltonian

Ebrahim Ghaderpour, Dave Witte Morris*
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

ARTICLE INFO

Article history:

Received 19 May 2011
Received in revised form 26 July 2012
Accepted 22 August 2012
Available online 14 September 2012

Keywords:

05C25
Cayley graph
Hamiltonian cycle

Abstract

Suppose G is a finite group, such that $|G|=30 p$, where p is prime. We show that if S is any generating set of G, then there is a Hamiltonian cycle in the corresponding Cayley graph $\operatorname{Cay}(G ; S)$.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is a folklore conjecture that every connected Cayley graph has a Hamiltonian cycle. (See the surveys $[3,13,15]$ for some background on this question.) The papers [9,11] began a systematic study of this conjecture in the case of Cayley graphs for which the number of vertices has a prime factorization that is small and easy. In particular, combining several of the results in [11] with [4,5] and this paper shows:

If $|G|=k p$, where p is prime, with $1 \leq k<32$ and $k \neq 24$, then every connected Cayley graph on G has a Hamiltonian cycle.
This paper's contribution to the project is the case $k=30$:
Theorem 1.1. If $|G|=30 p$, where p is prime, then every connected Cayley graph on G has a Hamiltonian cycle.

2. Preliminaries

Additional details of some of the proofs in this paper can be found in an expanded version that has been posted on the arxiv [6].

Before proving Theorem 1.1, we present some useful facts about Hamiltonian cycles in Cayley graphs.
Notation. Throughout this paper, G is a finite group.

- For any subset S of G, Cay $(G ; S)$ denotes the Cayley graph of G with respect to S. Its vertices are the elements of G, and there is an edge joining g to $g s$ for every $g \in G$ and $s \in S$.
- For $x, y \in G$:
- $[x, y]$ denotes the commutator $x^{-1} y^{-1} x y$, and
- y^{x} denotes the conjugate $x^{-1} y x$.

[^0]- $\langle A\rangle$ denotes the subgroup generated by a subset A of G.
- G^{\prime} denotes the commutator subgroup $[G, G]$ of G.
- $Z(G)$ denotes the center of G.
- $G \ltimes H$ denotes a semidirect product of the groups G and H.
- $D_{2 n}$ denotes the dihedral group of order $2 n$.
- For $S \subset G$, a sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ of elements of $S \cup S^{-1}$ specifies the walk in the Cayley graph Cay $(G ; S)$ that visits (in order) the vertices

$$
e, s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{3}, \ldots, s_{1} s_{2} \ldots s_{n}
$$

If N is a normal subgroup of G, we use $\left(\overline{s_{1}}, \overline{2_{2}}, \ldots, \overline{s_{n}}\right)$ to denote the image of this walk in the quotient Cay $(G / N ; S)$.

- If the walk $\left(\overline{s_{1}}, \overline{s_{2}}, \ldots, \overline{s_{n}}\right)$ in $\operatorname{Cay}(G / N ; S)$ is closed, then its voltage is the product $s_{1} s_{2} \ldots s_{n}$. This is an element of N.
- For $k \in \mathbb{Z}^{+}$, we use $\left(s_{1}, \ldots, s_{m}\right)^{k}$ to denote the concatenation of k copies of the sequence $\left(s_{1}, \ldots, s_{m}\right)$. Abusing notation, we often write s^{k} and s^{-k} for

$$
(s)^{k}=(s, s, \ldots, s) \quad \text { and } \quad\left(s^{-1}\right)^{k}=\left(s^{-1}, s^{-1}, \ldots, s^{-1}\right),
$$

respectively. Furthermore, we often write $\left(\left(s_{1}, \ldots, s_{m}\right),\left(t_{1}, \ldots, t_{n}\right)\right)$ to denote the concatenation $\left(s_{1}, \ldots, s_{m}, t_{1}, \ldots, t_{n}\right)$. For example, we have

$$
\left(\left(a^{2}, b\right)^{2}, c^{-2}\right)^{2}=\left(a, a, b, a, a, b, c^{-1}, c^{-1}, a, a, b, a, a, b, c^{-1}, c^{-1}\right)
$$

Theorem 2.1 (Marušič, Durnberger, Keating-Witte [10]). If G^{\prime} is a cyclic group of prime-power order, then every connected Cayley graph on G has a Hamiltonian cycle.

Lemma 2.2 ("Factor Group Lemma"[15, Section 2.2]). Suppose

- S is a generating set of G,
- N is a cyclic, normal subgroup of G,
- $\bar{C}=\left(\overline{s_{1}}, \overline{s_{2}}, \ldots, \overline{s_{n}}\right)$ is a Hamiltonian cycle in $\operatorname{Cay}(G / N ; S)$, and
- the voltage of \bar{C} generates N.

Then $\left(s_{1}, \ldots, s_{n}\right)^{|N|}$ is a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.
The following easy consequence of the Factor Group Lemma 2.2 is well known (and is implicit in [12]).

Corollary 2.3. Suppose

- S is a generating set of G,
- N is a normal subgroup of G, such that $|N|$ is prime,
- $s \equiv t(\bmod N)$ for some $s, t \in S \cup S^{-1}$ with $s \neq t$, and
- there is a Hamiltonian cycle in $\operatorname{Cay}(G / N ; S)$ that uses at least one edge labeled s.

Then there is a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.
Theorem 2.4 (Alspach [1, Corollary 5.2]). If $G=\langle s\rangle \ltimes\langle t\rangle$, for some elements s and t of G, then Cay $(G ;\{s, t\})$ has a Hamiltonian cycle.

Lemma 2.5 ([11, Lemma 2.27]). Let S generate the finite group G, and let $s \in S$, such that $\langle s\rangle \triangleleft G$. If Cay $(G /\langle s\rangle ; S)$ has a Hamiltonian cycle, and either

1. $s \in Z(G)$, or
2. $Z(G) \cap\langle s\rangle=\{e\}$,
then $\operatorname{Cay}(G ; S)$ has a Hamiltonian cycle.

Lemma 2.6. Suppose

- $G=\langle a\rangle \ltimes\left\langle S_{0}\right\rangle$, where $\left\langle S_{0}\right\rangle$ is an abelian subgroup of odd order,
- \#($\left.S_{0} \cup S_{0}^{-1}\right) \geq 3$, and
- $\left\langle S_{0}\right\rangle$ has a nontrivial subgroup H, such that $H \triangleleft G$ and $H \cap Z(G)=\{e\}$.

Then Cay $\left(G ; S_{0} \cup\{a\}\right)$ has a Hamiltonian cycle.
Proof. Since $\left\langle S_{0}\right\rangle$ is abelian of odd order, and \# $\left(S_{0} \cup S_{0}^{-1}\right) \geq 3$, we know that Cay $\left(\left\langle S_{0}\right\rangle ; S_{0}\right)$ is Hamiltonian connected [2]. Therefore, it has a Hamiltonian path $\left(s_{1}, s_{2}, \ldots, s_{m}\right)$, such that $s_{1} s_{2} \ldots s_{m} \in H$. Then

$$
\left(s_{1}, s_{2}, \ldots, s_{m}, a\right)^{|a|}
$$

is a Hamiltonian cycle in $\operatorname{Cay}\left(G ; S_{0} \cup\{a\}\right)$.

Lemma 2.7 ([4, Corollary 4.4]). If $a, b \in G$, such that $G=\langle a, b\rangle$, then $G^{\prime}=\langle[a, b]\rangle$.
Lemma 2.8 ([14, Proposition 5.5]). If p, q, and r are prime, then every connected Cayley graph on the dihedral group $D_{2 p q r}$ has a Hamiltonian cycle.

Lemma 2.9. If $G=D_{2 p q} \times \mathbb{Z}_{r}$, where p, q, and r are distinct odd primes, then every connected Cayley graph on G has a Hamiltonian cycle.

Proof. Let S be a minimal generating set of G, let $\varphi: G \rightarrow D_{2 p q}$ be the natural projection, and let T be the group of rotations in $D_{2 p q}$, so $T=\mathbb{Z}_{p} \times \mathbb{Z}_{q}$.

For $s \in S$, we may assume:

- If $\varphi(s)$ has order 2 , then $s=\varphi(s)$ has order 2. (Otherwise, Corollary 2.3 applies with $t=s^{-1}$.)
- $\varphi(s)$ is nontrivial. (Otherwise, $s \in \mathbb{Z}_{r} \subset Z(G)$, so Lemma 2.5(1) applies.)

Since $\varphi(S)$ generates $D_{2 p q}$, it must contain at least one reflection (which is an element of order 2). So $S \cap D_{2 p q}$ contains a reflection.
Case 1. Assume $S \cap D_{2 p q}$ contains only one reflection. Let $a \in S \cap D_{2 p q}$, such that a is a reflection.
Let $S_{0}=S \backslash\{a\}$. Since $\left\langle S_{0}\right\rangle$ is a subgroup of the cyclic, normal subgroup $T \times \mathbb{Z}_{r}$, we know $\left\langle S_{0}\right\rangle$ is normal. Therefore $G=\langle a\rangle \ltimes\left\langle S_{0}\right\rangle$, so:

- If $\# S_{0}=1$, then Theorem 2.4 applies.
- If $\# S_{0} \geq 2$, then Lemma 2.6 applies with $H=T$, because $T \times \mathbb{Z}_{r}$ is abelian of odd order.

Case 2. Assume $S \cap D_{2 p q}$ contains at least two reflections. Since no minimal generating set of $D_{2 p q}$ contains three reflections, the minimality of S implies that $S \cap D_{2 p q}$ contains exactly two reflections; say a and b are reflections.

Let $c \in S \backslash D_{2 p q}$, so $\mathbb{Z}_{r} \subset\langle c\rangle$. Since $|c|>2$, we know $\varphi(c)$ is not a reflection, so $\varphi(c) \in T$. The minimality of S (combined with the fact that $\# S>2$) implies $\langle\varphi(c)\rangle \neq T$. Since $\varphi(c)$ is nontrivial, this implies we may assume $\langle\varphi(c)\rangle=\mathbb{Z}_{p}$ (by interchanging p and q if necessary). Hence, we may write

$$
c=w z \quad \text { with }\langle w\rangle=\mathbb{Z}_{p} \text { and }\langle z\rangle=\mathbb{Z}_{r}
$$

We now use the argument of [10, Case 5.3, p. 96], which is based on ideas of Marušič [12]. Let

$$
\bar{G}=G / \mathbb{Z}_{p}=\overline{D_{2 p q}} \times \mathbb{Z}_{r}=\overline{D_{2 p q}} \times\langle\bar{c}\rangle
$$

Then $\overline{D_{2 p q}} \cong D_{2 q}$, so $(a, b)^{q}$ is a Hamiltonian cycle in Cay $\left(\overline{D_{2 p q}} ; a, b\right)$. With this in mind, it is easy to see that

$$
\left(c^{r-1}, a,\left((b, a)^{q-1}, c^{-1},(a, b)^{q-1}, c^{-1}\right)^{(r-1) / 2},(b, a)^{q-1}, b\right)
$$

is a Hamiltonian cycle in $\operatorname{Cay}(\bar{G} ; S)$. This contains the string

$$
\left(c, a,(b, a)^{q-1}, c^{-1}, a\right)
$$

which can be replaced with the string

$$
\left(b, c,(b, a)^{q-1}, b, c^{-1}\right)
$$

to obtain another Hamiltonian cycle. Since

$$
\begin{aligned}
c a(b a)^{q-1} c^{-1} a & =\left(c a c^{-1} a\right)(b a)^{-(q-1)} \quad(b a \in T \text { is inverted by } a) \\
& =\left((w z) a(w z)^{-1} a\right)(b a)^{-(q-1)} \\
& =\left(w^{2}\right)(b a)^{-(q-1)} \quad(a \text { inverts } w \text { and centralizes } z) \\
& \neq\left(w^{-2}\right)(b a)^{-(q-1)} \\
& =\left(b(w z) b(w z)^{-1}\right)(b a)^{-(q-1)} \quad(b \text { inverts } w \text { and centralizes } z) \\
& =\left(b c b c^{-1}\right)(b a)^{-(q-1)} \\
& =b c(b a)^{q-1} b c^{-1}, \quad(b a \in T \text { is inverted by } b)
\end{aligned}
$$

these two Hamiltonian cycles have different voltages. Therefore at least one of them must have a nontrivial voltage. This nontrivial voltage must generate \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.

Proposition 2.10. Suppose

- $|G|=30 p$, where p is prime, and
- $|G|$ is not square-free (i.e., $p \in\{2,3,5\}$).

Then every Cayley graph on G has a Hamiltonian cycle.

Proof. We know $|G|$ is either 60,90 , or 150 , and it is known that every connected Cayley graph of any of these three orders has a Hamiltonian cycle. This can be verified by exhaustive computer search, or see [11, Propositions 7.2 and 9.1] and [7].

Lemma 2.11. Suppose

- $|G|=30 p$, where p is prime, and
- $p \geq 7$.

Then

1. G^{\prime} is cyclic,
2. $G^{\prime} \cap Z(G)=\{e\}$,
3. $G \cong \mathbb{Z}_{n} \ltimes G^{\prime}$, for some $n \in \mathbb{Z}^{+}$, and
4. if b is a generator of \mathbb{Z}_{n}, and we choose $\tau \in \mathbb{Z}$, such that $x^{b}=x^{\tau}$ for all $x \in G^{\prime}$, then $\operatorname{gcd}(\tau-1,|a|)=1$.

Proof. Since $|G|$ is square-free (because $p \geq 7$), we know that every Sylow subgroup of G is cyclic. Therefore the conclusions follow from [8, Theorem 9.4.3, p. 146]. ${ }^{1}$

3. Proof of the main theorem

Proof of Theorem 1.1. Because of Proposition 2.10, we may assume

$$
p \geq 7
$$

so the conclusions of Lemma 2.11 hold.
We may also assume $\left|G^{\prime}\right|$ is not prime (otherwise Theorem 2.1 applies). Furthermore, if $\left|G^{\prime}\right|=15 p$, then G is a dihedral group, so Lemma 2.8 applies. In addition, if $\left|G^{\prime}\right|=15$, then $G \cong D_{30} \times \mathbb{Z}_{p}$, so Lemma 2.9 applies. Thus, we may assume $\left|G^{\prime}\right|=p q$, where $q \in\{3,5\}$. So

$$
G=\mathbb{Z}_{2 r} \ltimes \mathbb{Z}_{p q}, \quad \text { with }\{q, r\}=\{3,5\}\left(\text { and } G^{\prime}=\mathbb{Z}_{p q}\right) \text {. }
$$

Note that \mathbb{Z}_{r} centralizes \mathbb{Z}_{q}, because there is no nonabelian group of order 15 , so \mathbb{Z}_{2} must act nontrivially on \mathbb{Z}_{q}. Therefore

$$
y^{x}=y^{-1} \quad \text { whenever } y \in \mathbb{Z}_{q} \text { and }\langle x\rangle=\mathbb{Z}_{2 r}
$$

We also assume
\mathbb{Z}_{r} does not centralize \mathbb{Z}_{p},
because otherwise $G \cong D_{2 p q} \times \mathbb{Z}_{r}$, so Lemma 2.9 applies.
Given a minimal generating set S of G, we may assume

$$
S \cap G^{\prime}=\emptyset
$$

for otherwise Lemma 2.5(2) applies.
Case 1. Assume \#S $=2$. Write $S=\{a, b\}$.
Subcase 1.1. Assume $|a|$ is odd. This implies a has order r in G / G^{\prime}, so $\left(a^{-(r-1)}, b^{-1}, a^{r-1}, b\right)$ is a Hamiltonian cycle in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. Its voltage is

$$
a^{-(r-1)} b^{-1} a^{r-1} b=\left[a^{r-1}, b\right]
$$

Since $\operatorname{gcd}(r-1,|a|) \mid \operatorname{gcd}(r-1,15 p)=1$, we know $\left\langle a^{r-1}, b\right\rangle=\langle a, b\rangle=G$. So $\left\langle\left[a^{r-1}, b\right]\right\rangle=G^{\prime}$ (see Lemma 2.7). Therefore the Factor Group Lemma 2.2 applies.

Subcase 1.2. Assume a and b both have even order.
Subsubcase 1.2.1. Assume a has order 2 in G / G^{\prime}. Note that $q \nmid|a|$, since \mathbb{Z}_{2} does not centralize \mathbb{Z}_{q}. Also, if $|a|=2 p$, then Corollary 2.3 applies. Therefore, we may assume $|a|=2$.

Now b must generate G / G^{\prime} (since $\langle a, b\rangle=G$, and b has even order), so b has trivial centralizer in $\mathbb{Z}_{p q}$. Then, since $|a|=2$ and $\langle a, b\rangle=G$, it follows that a must also have trivial centralizer in $\mathbb{Z}_{p q}$. Therefore (up to isomorphism), we must have either:

1. $a=x^{3}$ and $b=x y w$, in $G=\mathbb{Z}_{6} \ltimes\left(\mathbb{Z}_{5} \times \mathbb{Z}_{p}\right)=\langle x\rangle \ltimes(\langle y\rangle \times\langle w\rangle)$, with $y^{x}=y^{-1}$ and $w^{x}=w^{d}$, where d is a primitive 6th root of 1 in $\mathbb{Z}_{p}\left(\operatorname{so} d^{2}-d+1 \equiv 0(\bmod p)\right)$, or
2. $a=x^{5}$ and $b=x y w$, in $G=\mathbb{Z}_{10} \ltimes\left(\mathbb{Z}_{3} \times \mathbb{Z}_{p}\right)=\langle x\rangle \ltimes(\langle y\rangle \times\langle w\rangle)$ with $y^{x}=y^{-1}$ and $w^{x}=w^{d}$, where d is a primitive 10 th root of 1 in $\mathbb{Z}_{p}\left(\right.$ so $\left.d^{4}-d^{3}+d^{2}-d+1 \equiv 0(\bmod p)\right)$.
[^1]For (1), we note that the sequence $\left(\left(a, b^{-5}\right)^{4}, a, b^{5}\right)$ is a Hamiltonian cycle in Cay $\left(G / \mathbb{Z}_{p} ; S\right)$:

Calculating modulo the normal subgroup $\langle y\rangle$, its voltage is

$$
\begin{aligned}
\left(a b^{-5}\right)^{4}\left(a b^{5}\right) & =(a b)^{4}\left(a b^{-1}\right) \quad\left(b^{6}=e\right) \\
& \equiv\left(x^{3}(x w)\right)^{4}\left(x^{3}(x w)^{-1}\right) \\
& =\left(x^{4} w\right)^{4}\left(\left(x w^{-1}\right)^{-1} x^{3}\right) \quad\left(x^{3} \text { inverts } w\right) \\
& =\left(x^{16} w^{d^{12}+d^{8}+d^{4}+1}\right)\left(\left(w x^{-1}\right) x^{3}\right) \\
& =x^{-2} w^{1+d^{2}-d+2} x^{2} \quad\binom{x^{6}=e \text { and }}{d^{3} \equiv-1(\bmod p)} \\
& =x^{-2} w^{d^{2}+2} x^{2} \\
& =x^{-2} w^{d+1} x^{2} \quad\left(d^{2}-d+1 \equiv 0(\bmod p)\right)
\end{aligned}
$$

which is nontrivial. Therefore, the voltage generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.

For (2), here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

$$
\begin{aligned}
& \xrightarrow{b^{-1}} \overline{x^{6}} \overline{x^{7} y^{2}} \xrightarrow{a} \bar{\longrightarrow} \overline{x^{2} y} \quad \underset{b}{b} \frac{x^{3}}{x^{-1}} \xrightarrow{b} \overline{x^{3}} \overline{x^{4} y} \xrightarrow{a} \overline{x^{5} y^{2}} \quad \overline{x^{9} y^{2}} \\
& \xrightarrow{b^{-1}} \overline{x^{8} y^{2}} \quad \xrightarrow{a} \overline{x^{3} y} \quad \xrightarrow{b^{-1}} \overline{x^{2}} \quad \xrightarrow{b^{-1}} \overline{x y} \quad \xrightarrow{b^{-1}} \bar{e} .
\end{aligned}
$$

Calculating modulo $\langle y\rangle$, its voltage is

$$
\begin{aligned}
& a b^{4}(a b a) b^{4}\left(a b^{-3} a\right) b^{-1}\left(a b^{2}\right)^{2}\left(a b^{-1} a\right) b^{-3} \\
& \quad \equiv x^{5}(x w)^{4}\left(x^{5}(x w) x^{5}\right)(x w)^{4}\left(x^{5}(x w)^{-3} x^{5}\right) \cdot(x w)^{-1}\left(x^{5}(x w)^{2}\right)^{2}\left(x^{5}(x w)^{-1} x^{5}\right)(x w)^{-3} \\
& =x^{5}(x w)^{4}\left(x w^{-1}\right)(x w)^{4}\left(x w^{-1}\right)^{-3} \cdot(x w)^{-1}\left(\left(x w^{-1}\right)^{2}(x w)^{2}\right)\left(x w^{-1}\right)^{-1}(x w)^{-3} \\
& =x^{5}\left(x^{4} w^{d^{3}+d^{2}+d+1}\right)\left(x w^{-1}\right)\left(x^{4} w^{d^{3}+d^{2}+d+1}\right)\left(w^{d^{2}+d+1} x^{-3}\right) \cdot\left(w^{-1} x^{-1}\right)\left(x^{4} w^{-d^{3}-d^{2}+d+1}\right)\left(w x^{-1}\right)\left(w^{-\left(d^{2}+d+1\right)} x^{-3}\right) \\
& =w^{d\left(d^{3}+d^{2}+d+1\right)} w^{-1} w^{d^{6}\left(d^{3}+d^{2}+d+1\right)} w^{d^{6}\left(d^{2}+d+1\right)} \cdot w^{-d^{9}} w^{d^{6}\left(\left(-d^{3}-d^{2}+d+1\right)\right.} w^{d^{6}} w^{-d^{7}\left(d^{2}+d+1\right)} \\
& =w^{-2 d^{9}+2 d^{7}+4 d^{6}+d^{4}+d^{3}+d^{2}+d-1} .
\end{aligned}
$$

Modulo p, the exponent of w is:

$$
\begin{aligned}
-2 d^{9}+2 d^{7}+4 d^{6}+d^{4}+d^{3}+d^{2}+d-1 & \equiv 2 d^{4}-2 d^{2}-4 d+d^{4}+d^{3}+d^{2}+d-1 \quad\left(\text { because } d^{5} \equiv-1\right) \\
& =3 d^{4}+d^{3}-d^{2}-3 d-1 \\
& =3\left(d^{4}-d^{3}+d^{2}-d+1\right)+4\left(d^{3}-d^{2}-1\right) \\
& \equiv 3(0)+4\left(d^{3}-d^{2}-1\right) \\
& =4\left(d^{3}-d^{2}-1\right) .
\end{aligned}
$$

This is nonzero $(\bmod p)$, because $d^{4}-d^{3}+d^{2}-d+1 \equiv 0(\bmod p)$ and

$$
\left(d^{3}-d^{2}\right)\left(d^{3}-d^{2}-1\right)-\left(d^{2}-d-1\right)\left(d^{4}-d^{3}+d^{2}-d+1\right)=1 .
$$

Therefore the voltage generates $\langle w\rangle=\mathbb{Z}_{p}$, so the Factor Group Lemma 2.2 applies.

Subsubcase 1.2.2. Assume a and b both have order $2 r$ in G / G^{\prime}. Then $|a|=|b|=2 r$ (because $\mathbb{Z}_{2 r}$ has trivial centralizer in $\mathbb{Z}_{p q}$).

We have $a \in b^{i} G^{\prime}$ for some i with $\operatorname{gcd}(i, 2 r)=1$. We may assume $1 \leq i<r$ by replacing a with its inverse if necessary. Here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$:

$$
\left(\left(a, b, a^{-1}, b\right)^{(i-1) / 2}, a, b^{2 r+1-2 i}\right)
$$

To calculate its voltage, write $a=b^{i} y w$, where $\langle y\rangle=\mathbb{Z}_{q}$ and $\langle w\rangle=\mathbb{Z}_{p}$. We have $y^{b}=y^{-1}$ and $w^{b}=w^{d}$, where d is a primitive r th or $(2 r)$ th root of unity in \mathbb{Z}_{p}. Then the voltage of the walk is:

$$
\begin{aligned}
\left(a b a^{-1} b\right)^{(i-1) / 2} a b^{2 r+1-2 i} & =\left(\left(b^{i} y w\right) b\left(b^{i} y w\right)^{-1} b\right)^{(i-1) / 2}\left(b^{i} y w\right) b^{1-2 i} \\
& =\left(\left(b^{i} y w\right) b\left(w^{-1} y^{-1} b^{-i}\right) b\right)^{(i-1) / 2}\left(b^{i} y w\right) b^{1-2 i} \\
& =\left(b^{2} y^{-2} w^{(d-1) d^{1-i}}\right)^{(i-1) / 2}\left(b^{i} y w\right) b^{1-2 i} \\
& =\left(b^{i-1} y^{-(i-1)} w^{(d-1) d^{1-i}\left(d^{i-3}+d^{i-5}+\cdots+d^{2}+1\right)}\right)\left(b^{i} y w\right) b^{1-2 i} \\
& =b^{2 i-1} y^{(i-1)+1} w^{(d-1) d\left(d^{i-3}+d^{i-5}+\cdots+d^{2}+1\right)+1} b^{1-2 i} .
\end{aligned}
$$

Now:

- The exponent of y is $(i-1)+1=i$. If $q \mid i$, then, since $i<r$, we must have $q=3, r=5$, and $i=3$.
- The exponent of w is

$$
\begin{aligned}
& (d-1) d\left(d^{i-3}+d^{i-5}+\cdots+d^{2}+1\right)+1=d(d-1) \frac{d^{i-1}-1}{d^{2}-1}+1 \\
& \quad=d \frac{d^{i-1}-1}{d+1}+1=\frac{d^{i}-d}{d+1}+\frac{d+1}{d+1}=\frac{d^{i}+1}{d+1}
\end{aligned}
$$

This is not divisible by p, because d is a primitive r th or $(2 r)$ th root of 1 in \mathbb{Z}_{p}, and $\operatorname{gcd}(i, 2 r)=1$.
Thus, the voltage generates G^{\prime} (so the Factor Group Lemma 2.2 applies) unless $q=3, r=5$, and $i=3$.
In this case, since $i=3$, we have $a=b^{3} y w$. Also, we may assume $b=x$. Then a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$ is:

$$
\begin{array}{rllllllll}
\bar{e} & \stackrel{a^{-1}}{\longrightarrow} & \overline{x^{7} y} & \stackrel{a^{-1}}{\longrightarrow} & \overline{x^{4}} & \stackrel{a^{-1}}{\longrightarrow} & \overline{x y} & \stackrel{a^{-1}}{\longrightarrow} & \overline{x^{8}}
\end{array} \begin{aligned}
& \xrightarrow{a^{-1}} \\
& \xrightarrow{a^{-1}} \overline{x^{2}}
\end{aligned} \overline{x^{5} y}
$$

Calculating modulo $\langle y\rangle$, and noting that $|a|=2 r=10$, its voltage is

$$
\begin{aligned}
a^{-9} b\left(a^{9} b\right)^{2} & =a b\left(a^{-1} b\right)^{2} \equiv\left(\left(x^{3} w\right) x\right)\left(w^{-1} x^{-2}\right)^{2} \\
& =\left(x^{4} w^{d}\right)\left(w^{-1-d^{2}} x^{-4}\right)=x^{4} w^{-\left(d^{2}-d+1\right)} x^{-4}
\end{aligned}
$$

Since d is a primitive 5 th or 10 th root of 1 in \mathbb{Z}_{p}, we know that it is not a primitive 6 th root of 1 , so $d^{2}-d+1 \not \equiv 0(\bmod p)$. Therefore the voltage is nontrivial, and hence generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 applies.

Case 2. Assume $\# S=3$, and S remains minimal in $G / \mathbb{Z}_{p}=\bar{G}$. Since $G=\mathbb{Z}_{2 r} \ltimes \mathbb{Z}_{p q}$ and \mathbb{Z}_{r} centralizes \mathbb{Z}_{q}, we know $\bar{G} \cong$ $\left(\mathbb{Z}_{2} \ltimes \mathbb{Z}_{q}\right) \times \mathbb{Z}_{r}$. Also, since \mathbb{Z}_{2} inverts \mathbb{Z}_{q}, we have $\mathbb{Z}_{2} \ltimes \mathbb{Z}_{q} \cong D_{2 q}$. Therefore, $\bar{G} \cong D_{2 q} \times \mathbb{Z}_{r}$, so we may write $S=\{a, b$, $c\}$ with $\langle\bar{a}, \bar{b}\rangle=D_{2 q}$ and $\langle\bar{c}\rangle=\mathbb{Z}_{r}$. Since $S \cap G^{\prime}=\emptyset$, we know that \bar{a} and \bar{b} are reflections, so they have order 2 in G / \mathbb{Z}_{p}. Therefore, we may assume $|a|=|b|=2$, for otherwise Corollary 2.3 applies. Also, since \mathbb{Z}_{r} does not centralize \mathbb{Z}_{p}, we know that $|c|=r$. Replacing c by a conjugate, we may assume $\langle c\rangle=\mathbb{Z}_{r}$.

We may assume $\mathbb{Z}_{r} \not \subset Z(G)$ (otherwise Lemma 2.9 applies), so we may assume [$\left.a, c\right] \neq e$ (by interchanging a and b if necessary). Let

$$
W=\left((b, a)^{q-1}, c,\left(c^{r-2}, a, c^{-(r-2)}, b\right)^{q-1}\right)
$$

Then

$$
\left(W, c^{r-2}, a, c^{-(r-1)}, a\right) \quad \text { and } \quad\left(W, c^{r-3}, a, c^{-(r-1)}, a, c\right)
$$

are Hamiltonian cycles in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. Let v be the voltage of the first of these, and let $\gamma=[a, c][a, c]^{a c}$. Then the voltage of the second is

$$
\begin{aligned}
v \cdot\left(c^{r-2} a c^{-(r-1)} a\right)^{-1}\left(c^{r-3} a c^{-(r-1)} a c\right) & =v \cdot\left(a c^{r-1} a c^{-(r-2)}\right)\left(c^{r-3} a c^{-(r-1)} a c\right) \\
& =v \cdot\left(a c^{-1} a c^{-1} a c a c\right) \\
& =v \cdot\left(a c^{-1}[a, c] a c\right) \\
& =v \cdot\left(a c^{-1} a c[a, c]^{a c}\right) \\
& =v \cdot\left([a, c][a, c]^{a c}\right) \\
& =v \gamma .
\end{aligned}
$$

Since $[a, c]$ generates \mathbb{Z}_{p}, and ac does not invert \mathbb{Z}_{p} (this is because a inverts \mathbb{Z}_{p}, and c does not centralize \mathbb{Z}_{p}), we know $\gamma \neq e$. Therefore v and $v \gamma$ cannot both be trivial, so at least one of them generates \mathbb{Z}_{p}. Then the Factor Group Lemma 2.2 provides a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.

Case 3. Assume $\# S=3$, and S does not remain minimal in G / \mathbb{Z}_{p}. Choose a 2-element subset $\{a, b\}$ of S that generates G / \mathbb{Z}_{p}. As in Case 2, we have $G / \mathbb{Z}_{p} \cong D_{2 q} \times \mathbb{Z}_{r}$. From the minimality of S, we see that $\langle a, b\rangle=D_{2 q} \times \mathbb{Z}_{r}$ (up to a conjugate). The projection of $\{a, b\}$ to $D_{2 q}$ must be of the form $\{f, y\}$ or $\{f, f y\}$, where f is a reflection and y is a rotation. Thus, using z to denote a generator of \mathbb{Z}_{r} (and noting that $y \notin S$, because $S \cap G^{\prime}=\emptyset$), we see that $\{a, b\}$ must be of the form

1. $\{f, y z\}$, or
2. $\{f, f y z\}$, or
3. $\left\{f z, y z^{\ell}\right\}$, with $\ell \not \equiv 0(\bmod r)$, or
4. $\left\{f z, f y z^{\ell}\right\}$, with $\ell \not \equiv 0(\bmod r)$.

Let c be the final element of S. We may write

$$
c=f^{i} y^{j} z^{k} w \quad \text { with } 0 \leq i<2,0 \leq j<q, \text { and } 0 \leq k<r
$$

Note that, since $S \cap G^{\prime}=\emptyset$, we know that i and k cannot both be 0 . Let d be a primitive r th root of unity in \mathbb{Z}_{p}, such that

$$
w^{z}=w^{d} \quad \text { for } w \in \mathbb{Z}_{p}
$$

Subcase 3.1. Assume $a=f$ and $b=y z$. From the minimality of S, we know $\langle b, c\rangle \neq G$, so $i=0$, so we must have $k \neq 0$.
Subsubcase 3.1.1. Assume $k=1$. Then $b \equiv c\left(\bmod G^{\prime}\right)$, so we have the Hamiltonian cycles $\left(a, b^{-(r-1)}, a, b^{r-2}, c\right)$ and $\left(a, b^{-(r-1)}, a, b^{r-3}, c^{2}\right)$ in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. The voltage of the first is

$$
\begin{aligned}
a b^{-(r-1)} a b^{r-2} c & =\left(a b^{-(r-1)} a b^{r-1}\right)\left(b^{-1} c\right) \\
& =\left((f)(y z)^{-(r-1)}(f)(y z)^{r-1}\right)\left((y z)^{-1}\left(y^{j} z w\right)\right) \\
& =\left(y^{2(r-1)}\right)\left(y^{j-1} w\right) \\
& = \begin{cases}y^{j+3} w & \text { if } r=3 \text { and } q=5, \\
y^{j+7} w & \text { if } r=5 \text { and } q=3 \\
& =y^{j-2} w,\end{cases}
\end{aligned}
$$

which generates $\mathbb{Z}_{q} \times \mathbb{Z}_{p}=G^{\prime}$ if $j \neq 2$.
So we may assume $j=2$ (for otherwise the Factor Group Lemma 2.2 applies). In this case, the voltage of the second Hamiltonian cycle is

$$
\begin{aligned}
a b^{-(r-1)} a b^{r-3} c^{2} & =\left(a b^{-(r-1)} a b^{r-1}\right)\left(b^{-2} c^{2}\right) \\
& =\left((f)(y z)^{-(r-1)}(f)(y z)^{r-1}\right)\left((y z)^{-2}\left(y^{2} z w\right)^{2}\right) \\
& =\left(y^{2(r-1)}\right)\left(y^{2} w^{d+1}\right) \\
& = \begin{cases}y^{6} w^{d+1} & \text { if } r=3 \text { and } q=5, \\
y^{10} w^{d+1} & \text { if } r=5 \text { and } q=3\end{cases} \\
& =y w^{d+1},
\end{aligned}
$$

which generates $\mathbb{Z}_{q} \times \mathbb{Z}_{p}=G^{\prime}$. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.
Subsubcase 3.1.2. Assume $k>1$. We may replace c with its inverse, so we may assume $k \leq(r-1) / 2$. Therefore $r \neq 3$, so we must have $r=5$ and $k=2$. So $a=f, b=y z$, and $c=y^{j} z^{2} w$.

Subsubsubcase 3.1.2.1. Assume $j=0$. Here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Letting $\epsilon \in\{ \pm 1\}$, such that $w^{f}=w^{\epsilon}$, and calculating modulo $\langle y\rangle$, its voltage is

$$
\begin{aligned}
& (a b)^{4}\left(a b^{-1} a b\right)\left(c^{-1} a c\right)\left(b^{-1} a b\right)\left(a c^{-1}\right)^{2}\left(a b a b^{-1}\right)^{2} \\
& \quad \equiv(f z)^{4}\left(f z^{-1} f z\right)\left(w^{-1} z^{-2} f z^{2} w\right)\left(z^{-1} f z\right)\left(f w^{-1} z^{-2}\right)^{2}\left(f z f z^{-1}\right)^{2} \\
& =\left(z^{4}\right)(e)\left(w^{\epsilon-1} f\right)(f)\left(w^{-\left(\epsilon+d^{2}\right)} z^{-4}\right)(e) \\
& =z^{4} w^{-\left(d^{2}+1\right)} z^{-4}
\end{aligned}
$$

Since d is a primitive 5 th root of unity in \mathbb{Z}_{p}, we know that $d^{2}+1 \not \equiv 0(\bmod p)$, so the voltage is nontrivial, and hence generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 applies.

Subsubsubcase 3.1.2.2. Assume $j \neq 0$. Since $\langle a, c\rangle \neq G$, this implies f centralizes \mathbb{Z}_{p}, so $G=D_{6} \times\left(\mathbb{Z}_{5} \ltimes \mathbb{Z}_{p}\right)$.
If $j=1$ (so $\left.c=y z^{2} w\right)$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

$$
\begin{aligned}
& \xrightarrow[a]{b} \overline{f z} \xrightarrow[b]{a} \quad \bar{z} \quad \xrightarrow[a]{b^{-1}} \quad \overline{y^{2}} \underset{c}{\vec{a}} \underset{\overline{f y} z^{2}}{\overline{f y} z^{2}} \xrightarrow[a]{b} \overline{f y^{2} z}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{a} \overline{f y^{2} z^{3}} \xrightarrow{b} \overline{f z^{4}} \quad \xrightarrow{c^{-1}} \overline{f y^{2} z^{2}} \xrightarrow{a} \overline{y z^{2}} \xrightarrow{c^{-1}} \bar{e} .
\end{aligned}
$$

Calculating modulo the normal subgroup $D_{6}=\langle f, y\rangle$, its voltage is

$$
\begin{aligned}
(a b)^{4}(b a)^{2}\left(b^{-1} a\right)(b a)^{2}(c)\left(a b^{-1} a b\right)^{2}\left(c^{-1} a c^{-1}\right) & \equiv(e z)^{4}(z e)^{2}\left(z^{-1} e\right)(z e)^{2}\left(z^{2} w\right)\left(e z^{-1} e z\right)^{2}\left(w^{-1} z^{-2} e w^{-1} z^{-2}\right) \\
& =z^{7} w^{-1} z^{-2} \\
& =z^{2} w^{-1} z^{-2}
\end{aligned}
$$

because $|z|=r=5$. Since this voltage generates \mathbb{Z}_{p}, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.
If $j=2$ (so $\left.c=y^{2} z^{2} w\right)$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Calculating modulo the normal subgroup $D_{6}=\langle f, y\rangle$, its voltage is

$$
\left(b^{-1} a b^{2}(a b)^{2}(a c)\right)^{3} \equiv\left(z^{-1} e z^{2}(e z)^{2}\left(e z^{2} w\right)\right)^{3}=\left(z^{5} w\right)^{3}=w^{3}
$$

because $|z|=r=5$. Since this voltage generates \mathbb{Z}_{p}, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.
Subcase 3.2. Assume $a=f$ and $b=f y z$. Since $\langle b, c\rangle \neq G$, we must have $c \in\langle f y, z\rangle w$, so

$$
c=(f y)^{i} z^{k} w \quad \text { with } 0 \leq i<2 \text { and } 0 \leq k<r
$$

Subsubcase 3.2.1. Assume $k=0$. Then $c=f y w$, so we have $c \equiv a\left(\bmod G^{\prime}\right)$. Therefore $\left(b^{-(r-1)}, a, b^{r-1}, c\right)$ is a Hamiltonian cycle in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. Since

$$
b^{r-1}=(f y z)^{r-1}=(f y)^{r-1}\left(z^{r-1}\right)=(e)\left(z^{-1}\right)=z^{-1},
$$

its voltage is

$$
b^{-(r-1)} a b^{r-1} c=\left(b^{-(r-1)} a b^{r-1} a\right)(a c)=\left[b^{r-1}, a\right](a c)=\left[z^{-1}, f\right](y w)=y w,
$$

which generates $\mathbb{Z}_{q} \times \mathbb{Z}_{p}=G^{\prime}$, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.
Subsubcase 3.2.2. Assume $i=0$. Then $c=z^{k} w$, and we know $k \neq 0$, because $S \cap G^{\prime}=\emptyset$.
If $k=1$, then $\left((a, c)^{r-1}, a, b\right)$ is a Hamiltonian cycle in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. Letting $\epsilon \in\{ \pm 1\}$, such that $w^{f}=w^{\epsilon}$, its voltage is

$$
\begin{aligned}
(a c)^{r-1} a b & =(a c)^{r}\left(c^{-1} b\right) \\
& =(f z w)^{r}\left((z w)^{-1}(f y z)\right) \\
& =\left(f^{r} z^{r} w^{(\epsilon d)^{r-1}+(\epsilon d)^{r-2}+\cdots+1}\right)\left(w^{-1} z^{-1} f y z\right) \\
& =f w^{(\epsilon d)^{r-1}+(\epsilon d)^{r-2}+\cdots+\epsilon d} f y \\
& =w^{\epsilon\left((\epsilon d)^{r-1}+(\epsilon d)^{r-2}+\cdots+\epsilon d\right)} y \\
& =w^{d\left((\epsilon d)^{r-2}+(\epsilon d)^{r-3}+\cdots+1\right)} y .
\end{aligned}
$$

Since ϵd is a primitive r th or $(2 r)$ th root of unity in \mathbb{Z}_{p}, it is clear that the exponent of w is nonzero ($\bmod p$). Therefore the voltage generates $\mathbb{Z}_{p} \times \mathbb{Z}_{q}=G^{\prime}$, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay $(G ; S)$.

We may now assume $k \geq 2$. However, we may also assume $k \leq(r-1) / 2$ (by replacing c with its inverse if necessary). So $r=5$ and $k=2$. In this case, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Its voltage is

$$
\left(a b a b^{-1}\right)^{2}(a b)^{4}\left(a b^{-1} a b\right)\left(c^{-1} a c\right)\left(b^{-1} a b\right)\left(a c^{-1}\right)^{2}
$$

Since the voltage is in \mathbb{Z}_{p}, it is a power of w, and it is clear that the only terms that contribute a power of w to the product are contained in the last three parenthesized expressions (because c does not appear anywhere else). Choosing $\epsilon \in\{ \pm 1\}$, such that $w^{f}=w^{\epsilon}$, we calculate the product of these three expressions modulo $\langle y\rangle$:

$$
\begin{aligned}
\left(c^{-1} a c\right)\left(b^{-1} a b\right)\left(a c^{-1}\right)^{2} & \equiv\left(\left(z^{2} w\right)^{-1} f\left(z^{2} w\right)\right)\left((f z)^{-1} f(f z)\right)\left(f\left(z^{2} w\right)^{-1}\right)^{2} \\
& =\left(w^{\epsilon-1} f\right)(f)\left(w^{-\left(\epsilon+d^{2}\right)} z^{-4}\right) \\
& =w^{-\left(d^{2}+1\right)} z^{-4}
\end{aligned}
$$

Since the power of w is nonzero, the voltage generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.

Subsubcase 3.2.3. Assume i and k are both nonzero. Since $\langle a, c\rangle \neq G$, this implies that f centralizes w. Therefore $G=$ $D_{2 q} \times\left(\mathbb{Z}_{r} \ltimes \mathbb{Z}_{p}\right)$. Also, since $0 \leq i<2$, we know $i=1$, so $c=f y z^{k} w$. We may assume $k \neq 1$ (for otherwise $b \equiv c\left(\bmod \mathbb{Z}_{p}\right)$, so Corollary 2.3 applies). Since we may also assume that $k \leq(r-1) / 2$ (by replacing c with its inverse if necessary), then we have $r=5$ and $k=2$.

Here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Calculating modulo the normal subgroup $D_{6}=\langle f, y\rangle$, its voltage is

$$
\begin{aligned}
\left((a b)^{2} a c a b^{-1} a c\right)^{3} & \equiv\left((e z)^{2} e\left(z^{2} w\right) e z^{-1} e\left(z^{2} w\right)\right)^{3} \\
& =\left(z^{4} w z w\right)^{3} \\
& =w^{3(d+1)}
\end{aligned}
$$

which generates $\langle w\rangle=\mathbb{Z}_{p}$, so the Factor Group Lemma 2.2 applies.
Subcase 3.3. Assume $a=f z$ and $b=y z^{\ell}$, with $\ell \neq 0$. Since $\langle a, c\rangle \neq G$ and $\langle b, c\rangle \neq G$, we must have $c \in\langle f, z\rangle w$ and $c \in\langle y, z\rangle w$. So $c \in\langle z\rangle w$; write $c=z^{k} w$ (with $k \neq 0$, because $S \cap G^{\prime}=\emptyset$).

Subsubcase 3.3.1. Assume $\ell=k$. Then $b \equiv c \equiv z^{\ell}\left(\bmod G^{\prime}\right)$, so

$$
\left(a^{-1}, b^{-(r-1)}, a, b^{r-2}, c\right)
$$

is a Hamiltonian cycle in $\operatorname{Cay}\left(G / G^{\prime} ; S\right)$. Its voltage is

$$
\begin{aligned}
a^{-1} b^{-(r-1)} a b^{r-2} c & =(f z)^{-1}\left(y z^{\ell}\right)^{-(r-1)}(f z)\left(y z^{\ell}\right)^{r-2}\left(z^{\ell} w\right) \\
& =\left(f^{-1} y^{-(r-1)} f\right) y^{r-2} w \quad\binom{z \text { commutes }}{\text { with } f \text { and } y} \\
& =\left(y^{r-1}\right) y^{r-2} w \quad(f \text { inverts } y) \\
& =y^{2 r-3} w .
\end{aligned}
$$

Since $2(3)-3 \not \equiv 0(\bmod 5)$ and $2(5)-3 \not \equiv 0(\bmod 3)$, we have $2 r-3 \not \equiv 0(\bmod q)$, so $y^{2 r-3}$ is nontrivial, and hence generates \mathbb{Z}_{q}. Therefore, this voltage generates $\mathbb{Z}_{q} \times \mathbb{Z}_{p}=G^{\prime}$. So the Factor Group Lemma 2.2 provides a Hamiltonian cycle in Cay ($G ; S$).

Subsubcase 3.3.2. Assume $\ell \neq k$. We may assume $\ell, k \leq(r-1) / 2$ (perhaps after replacing b and/or c by their inverses). Then we must have $r=5$ and $\{\ell, k\}=\{1,2\}$.

For $(\ell, k)=(1,2)$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Its voltage is

$$
a b a^{-2} b^{-1} a^{-4} b^{-1} a^{9} b a^{-6} b a^{-2} c^{-1}
$$

Since there is precisely one occurrence of c in this product, and therefore only one occurrence of w, it is impossible for this appearance of w to cancel. So the voltage is nontrivial, and therefore generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 provides a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.

For $(\ell, k)=(2,1)$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Choosing $\epsilon \in\{ \pm 1\}$, such that $w^{f}=w^{\epsilon}$, we calculate the voltage, modulo $\langle y\rangle$:

$$
\begin{aligned}
a^{-4}\left(\left(a^{-2} b a^{-2}\right) c a^{-3} c\left(a^{-2} b\right)\right)^{2} & \equiv(f z)^{-4}\left(\left((f z)^{-2} z^{2}(f z)^{-2}\right)(z w)(f z)^{-3}(z w)\left((f z)^{-2} z^{2}\right)\right)^{2} \\
& =z^{-4}\left(\left(z^{-2}\right)(z w)\left(f z^{-3}\right)(z w)(e)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =z^{-4}\left(z^{-1} w f z^{-2} w\right)^{2} \\
& =z^{-4}\left(w^{d^{6}+\epsilon d^{4}+\epsilon d^{3}+d} z^{-6}\right) \\
& =z^{-4}\left(w^{d\left(\epsilon d^{3}+\epsilon d^{2}+2\right)} z^{4}\right) .
\end{aligned}
$$

Since d is a primitive r th root of unity in \mathbb{Z}_{p}, and $r=5$, we know $d^{4}+d^{3}+d^{2}+d+1 \equiv 0(\bmod 5)$. Combining this with the fact that

$$
-\left(d^{3}+d^{2}-1\right)\left(d^{3}+d^{2}+2\right)+\left(d^{2}+d-1\right)\left(d^{4}+d^{3}+d^{2}+d+1\right)=1
$$

and

$$
\left(d^{3}+d^{2}+3\right)\left(-d^{3}+-d^{2}+2\right)+\left(d^{2}+d-1\right)\left(d^{4}+d^{3}+d^{2}+d+1\right)=5 \not \equiv 0(\bmod p)
$$

we see that $\epsilon d^{3}+\epsilon d^{2}+2$ is nonzero in \mathbb{Z}_{p}. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_{p}. Hence, the Factor Group Lemma 2.2 provides a Hamiltonian cycle in $\operatorname{Cay}(G ; S)$.

Subcase 3.4. Assume $a=f z$ and $b=f y z^{\ell}$, with $\ell \neq 0$. Since $\langle a, c\rangle \neq G$ and $\langle b, c\rangle \neq G$, we must have $c \in\langle f, z\rangle w$ and $c \in\langle f y, z\rangle w$. So $c \in\langle z\rangle w$; write $c=z^{k} w$ (with $k \neq 0$ because $S \cap G^{\prime}=\emptyset$).

We may assume k, $\ell \leq(r-1) / 2$, by replacing either or both of b and c with their inverses if necessary. We may also assume $\ell \neq 1$, for otherwise $a \equiv b(\bmod \langle y\rangle)$, so Corollary 2.3 applies. Therefore, we must have $r=5$ and $\ell=2$. We also have $k \in\{1,2\}$.

For $k=1$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Its voltage is

$$
a b^{-1} a^{-2} b a^{-4} b^{-1} a^{3} c^{-1} a^{2} b a^{-9} b a^{2} c
$$

Calculating modulo y, the product between the occurrence of c^{-1} and the occurrence of c is

$$
a^{2} b a^{-9} b a^{2} \equiv(f z)^{2}\left(f z^{2}\right)(f z)^{-9}\left(f z^{2}\right)(f z)^{2}=z^{-1}
$$

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 applies.

For $k=2$, here is a Hamiltonian cycle in $\operatorname{Cay}\left(G / \mathbb{Z}_{p} ; S\right)$:

Its voltage is

$$
a b^{2} a^{4} b^{-1} a^{5} c a^{2} b a^{9} b a^{-2} c^{-1}
$$

Calculating modulo y, the product between the occurrence of c and the occurrence of c^{-1} is

$$
a^{2} b a^{9} b a^{-2} \equiv(f z)^{2}\left(f z^{2}\right)(f z)^{9}\left(f z^{2}\right)(f z)^{-2}=f z^{13}=f z^{3}
$$

which does not centralize w. So the occurrence of w^{-1} in c^{-1} does not cancel the occurrence of w in c. Therefore the voltage is nontrivial, so it generates \mathbb{Z}_{p}, so the Factor Group Lemma 2.2 applies.
Case 4 Assume \#S ≥ 4. Write $S=\left\{s_{1}, s_{2}, \ldots, s_{\ell}\right\}$, and let $G_{i}=\left\langle s_{1}, \ldots, s_{i}\right\rangle$ for $i=1,2, \ldots, \ell$. Since S is minimal, we know $\{e\} \subsetneq G_{1} \subsetneq G_{2} \subsetneq \cdots \subsetneq G_{\ell} \subseteq G$.

Therefore, the number of prime factors of $\left|G_{i}\right|$ is at least i. Since $|G|=30 p$ is the product of only 4 primes, and $\ell=\# S \geq 4$, we conclude that $\left|G_{i}\right|$ has exactly i prime factors, for all i. (In particular, we must have $\# S=4$.) By permuting the elements of $\left\{s_{1}, s_{2}, \ldots, s_{\ell}\right\}$, this implies that if S_{0} is any subset of S, then $\left|\left\langle S_{0}\right\rangle\right|$ is the product of exactly $\# S_{0}$ primes. In particular, by letting $\# S_{0}=1$, we see that every element of S must have prime order.

Now, choose $\{a, b\} \subset S$ to be a 2-element generating set of $G / G^{\prime} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{r}$. From the preceding paragraph, we see that we may assume $|a|=2$ and $|b|=r$ (by interchanging a and b if necessary). Since $|\langle a, b\rangle|$ is the product of only two primes, we must have $|\langle a, b\rangle|=2 r$, so $\langle a, b\rangle \cong G / G^{\prime}$. Therefore

$$
G=(\langle a\rangle \times\langle b\rangle) \ltimes G^{\prime} .
$$

Since $\langle S\rangle=G$, we may choose $s_{1} \in S$, such that $s_{1} \notin\langle a, b\rangle \mathbb{Z}_{p}$. Then $\left\langle a, b, s_{1}\right\rangle=\langle a, b\rangle \mathbb{Z}_{q}$. Since a centralizes both a and b, but does not centralize \mathbb{Z}_{q}, which is contained in $\left\langle a, b, s_{1}\right\rangle$, we know that [a, s_{1}] is nontrivial. Therefore $\left\langle a, s_{1}\right\rangle$ contains $\left\langle a, b, s_{1}\right\rangle^{\prime}=\mathbb{Z}_{q}$. Then, since $\left|\left\langle a, s_{1}\right\rangle\right|$ is only divisible by two primes, we must have $\left|\left\langle a, s_{1}\right\rangle\right|=2 q$. Also, since $S \cap G^{\prime}=\emptyset$, we must have $\left|s_{1}\right| \neq q$; therefore $\left|s_{1}\right|=2$. Hence $2 r\left|\left|\left\langle b, s_{1}\right\rangle\right|\right.$, so we must have $|\left\langle b, s_{1}\right\rangle \mid=2 r$. Therefore

$$
\left[b, s_{1}\right] \in\left\langle b, s_{1}\right\rangle \cap\left\langle a, b, s_{1}\right\rangle^{\prime}=\left\langle b, s_{1}\right\rangle \cap \mathbb{Z}_{q}=\{e\}
$$

so b centralizes s_{1}. It also centralizes a, so b centralizes $\left\langle a, s_{1}\right\rangle=\mathbb{Z}_{2} \ltimes \mathbb{Z}_{q}$.
Similarly, if we choose $s_{2} \in S$ with $s_{2} \notin\langle a, b\rangle \mathbb{Z}_{q}$, then a centralizes $\left\langle b, s_{2}\right\rangle=\mathbb{Z}_{r} \ltimes \mathbb{Z}_{p}$.
Therefore $G=\left\langle a, s_{1}\right\rangle \times\left\langle b, s_{2}\right\rangle$, so

$$
\operatorname{Cay}(G ; S) \cong \operatorname{Cay}\left(\left\langle a, s_{1}\right\rangle ;\left\{a, s_{1}\right\}\right) \times \operatorname{Cay}\left(\left\langle b, s_{2}\right\rangle ;\left\{b, s_{2}\right\}\right)
$$

This is a Cartesian product of Hamiltonian graphs and therefore is Hamiltonian.

Acknowledgment

This work was partially supported by research grants from the Natural Sciences and Engineering Research Council of Canada.

References

[1] B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989) 25-36.
[2] C.C. Chen, N. Quimpo, On strongly Hamiltonian abelian group graphs, in: K.L. McAvaney (Ed.), Combinatorial Mathematics VIII (Proceedings, Geelong, Australia 1980), Springer-Verlag, Berlin, 1981, pp. 23-24.
[3] S.J. Curran, J.A. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs-a survey, Discrete Math. 156 (1996) 1-18.
[4] S.J. Curran, D.W. Morris, J. Morris, Cayley graphs of order 16p are Hamiltonian, Ars Math. Contemp. 5 (2) (2012) 185-211. http://amc.imfm.si/index. php/amc/article/view/207.
[5] E. Ghaderpour, D.W. Morris, Cayley graphs of order 27p are Hamiltonian, Internat. J. Combin. 2011 (2011) 16. Article ID 206930. http://www.hindawi. com/journals/ijct/2011/206930/.
[6] E. Ghaderpour, D.W. Morris, Cayley graphs of order 30p are Hamiltonian (Preprint with appendix to aid the referee). http://arxiv.org/abs/1102.5156.
[7] E. Ghaderpour, D.W. Morris, Cayley graphs of order 150 are Hamiltonian (unpublished). http://arxiv.org/src/1102.5156/anc/150.pdf.
[8] M. Hall, The Theory of Groups, Macmillan, New York, 1959.
[9] D. Jungreis, E. Friedman, Cayley graphs on groups of low order are Hamiltonian (unpublished).
[10] K. Keating, D. Witte, On Hamilton cycles in Cayley graphs with cyclic commutator subgroup, Ann. Discrete Math. 27 (1985) 89-102.
[11] K. Kutnar, D. Marušič, J. Morris, D.W. Morris, P. Šparl, Hamiltonian cycles in Cayley graphs whose order has few prime factors, Ars Math. Contemp. 5 (1) (2012) 27-71. http://amc.imfm.si/index.php/amc/article/view/177.
[12] D. Marušič, Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1) (1983) 49-54.
[13] I. Pak, R. Radoičić, Hamiltonian paths in Cayley graphs, Discrete Math. 309 (2009) 5501-5508.
[14] D. Witte, On Hamiltonian circuits in Cayley diagrams, Discrete Math. 38 (1982) 99-108.
[15] D. Witte, J.A. Gallian, A survey: Hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984) 293-304.

[^0]: * Corresponding author.

 E-mail addresses: Ebrahim.Ghaderpour@uleth.ca (E. Ghaderpour), Dave.Morris@uleth.ca (D.W. Morris). URL: http://people.uleth.ca/~ dave.morris/ (D.W. Morris).

[^1]: ${ }^{1}$ The condition $[(r-1), n m]=1$ in the statement of [8, Corollary 9.4.3, p. 146] suffers from a typographical error-it should say $\operatorname{gcd}((r-1) n, m)=1$.

