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INTRODUCTION

In this paper G is a nondiscrete compact Abelian group with character
group I and M(G) is the usual convolution algebra of finite Borel measures
on G. The Fourier-Stieltjes transform of 4 € M(G) is the function 4 defined
on I’ by

A() = | ¥(x) dux).

We say I' is g-ordered if there exists a nontrival group homomorphism
¢: I'-> R, where R is the additive group of real numbers. If I' is g-ordered, we
put . = ¢~ '(|0, 00)). The discrete group I is said to be fully ordered if there
exists a semi-group .#°, such that .U —2 =TI and .M —% = {0}. We
define I' to be ordered if either I is ¢-ordered or if I is fully ordered. For I’
fully ordered, the semi-group .#** ={y€& I'y>0}=.7\{0} is called the
positive cone in I. For I ¢-ordered .»°* = {y € I': ¢(y) > 0}.

In Section 1 we prove a generalized version of a theorem of Cohen and
Davenport |1]. We give applications of the result in Sections 2, 3 and 4.

Let I” be ordered. A measure x4 € M(G) is said to be semi-idempotent if
A(y)=/A*(@y) for all y€.22*. Kessler announced in [6] that if I is fully
ordered and u is semi-idempotent, then there exists an idempotent measure
v € M(G) such that ¥(y) = /j(y) for all y € .#**. A more detailed discussion of
the literature concerning the semi-idempotent problem will be given at the
end of this section.

In Section 2 we prove the following result: Let I” be ¢-ordered and let S be
a Sidon subset of I'. If u(y) = #*(y) for all y € .#*\S, then there exists an
idempotent measure v € M(G) such that #(y)=/(y) for all y€ #*\S.
Futhermore, an upper bound for the norm of v depending only on the norm
of 4 is obtained if S is empty.
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Let # be the family of all closed subgroups of G with infinite index in G.
Put {H,} equal to the set of all cosets of H and define for any Borel set
EcG, u(E)Y=Y  ,u(ENH,). A measure 4 € M(G) is said to be strongly
continuous if y,, =0 for all H € #. Ramsey proved in [12] that if I" has a
finite torsion subgroup and if u is strongly continuous and satisfies the con-
dition

YEEM 2 Uy el AG) <&l =T,

then provided ¢ is small enough (as a function of the norm of u), card{y € I':
l#(y) > 1} is finite. Ramsey also proved that an upper bound for the
cardinality of {y&I':|d(y)|> 1} depends only on the norm of x4 and the
cardinality of the torsion subgroup of I. Subsequently, Ramsey and Wells
[13] obtained the above result for all compact Abelian groups G except that
in the general case no such upper bound on the cardinality of
{y€r:|d(y) > 1} is possible.

Let I" be g-ordered and let z € M(G). We define %" to be the family of all
subgroups K € # such that K does not contain the annihilator in G of the
kernel of ¢. Then u is said to be ¢-continuous if u, =0 for all K € 7",

In Section 3 we prove that if u is ¢-continuous and satisfies the condition

WWEZH i) > 1} U lye Z*:|a(p)| e} =27,

then provided ¢ is small enough (as a function of the norm of u),
ly € .2*:]id(y) > 1} is contained in a finite number of cosets of the kernel of
¢. Futhermore, an upper bound for the number of cosets depending only on
the norm of y is obtained.

Let I" be ordered. A measure u € M(G) is semi-strongly continuous if for
all He#, d,(y)=0 for all y€ .#*. As a consequence of the result cited
above we prove that if 4 is semi-strongly continuous and satisfies the con-
dition

PEZH W) > NV yEZT A <e} =57,

then provided ¢ is small enough (as a function of the norm of u),
card{y € .2*:|u(y)| > 1} is finite. Moreover, if I is fully ordered, an upper
bound for the cardinality of {y € .7*:|d(y)|> 1} depending only on the
norm of y is obtained.

In Section 4 we establish a connection between ¢-continuous measures and
semi-idempotents. In particular, we prove the semi-idempotent theorem for
ordered groups and obtain as a special case the result announced by Kessler
in [6].

The semi-idempotent theorem for empty Sidon set and G =T was first
proved by Helson in |5]. Kessler announced the semi-idempotent theorem
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for fully ordered groups and empty Sidon set in [6] but as far as we know
never published a proof. Meyer in [9] gave a proof of the semi-idempotent
theorem with empty Sidon set and I a subgroup of the reals. The
Archimedean case with Sidon pertubation was proved by Pigno in [10]. The
methods of [6] do not apply when I' is ¢-ordered even if the Sidon set is
empty, and for infinite Sidon sets and I fully ordered the methods of |6] are
in general inapplicable.

1. A GENERALIZED COHEN-DAVENPORT THEOREM

Theorems A and B stated below are essentially from [1]. Our formulation
of these theorems closely follows that of [4]. The reader should compare
Theorem B with the technical lemma of [13].

THEOREM A. Suppose I is fully ordered and r, N € 7 * with r < (log N/
(4 log log N))¥% Let % I such that N card.# < co. Then there is a
subset of B, {y,} U {1t 1 <k <P 1 <s<r) satisfying: Let Py= {y,}. For
1 <k < r? put

Pi=P VP + sV PEP_, 1 <5<t}
Uiyt 1 <s<rh.

Then

(1) 7> if s <,
2) Pty — V€& PifpeEP, [ and I Ls <t

THEOREM B. Let rez*, r>31. Let € M(@G). Let
BW)={y € I:|i(y) > 1}. Suppose we can find a set {7,} U {y,: 1 <k r?,
1<s<rh e @) satisfying (2). Suppose |A(y)| e for y€ P \F(u)
Then ull> r"?/4.

THEOREM 1. Let I'* denote a translate of a subgroup of I' and let
¢: ' - R be a nontrivial group homomorphism of I into the additive group of
real numbers. Let u € M(G), ||u| < r¥*/4. Let #={yET:|d(y)>1} and
S ={yET: i) e ). Suppose there exists an interval I =[—o0,b] or
I=|a,b] < R such that

¢~ ((b, @))NT* =¥
and

)N I*c 2U.7.
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Then
card{¢(I* N 2)YNI} <N,  where r< (log N/(4loglogN))"".

Proof. We prove the present theorem by modifying the counting
argument of the proof of Theorem A.

For simplicity we suppose I = [0, 5].

Let B = ¢(I™ M.#) M I. Suppose B is infinite. Let M € 7 * be large and to
be chosen later.

For LeZ" let p,=b/L. Let @, = (i — 1) p, for i=1,..,L. We choose L
sufficiently large so that

card{i: BN (0,,0,+p)# ¢} > M

is satisfied. Let p, = b/L - I, where [=2r* + 2.
Put

Bi=0+Kk—1p, (k=120

We distinguish certain ,8;s as follows: If [,8,—p,/2, 0, +p,/2) "B #4,
then we write .8, = ,x;. For each fixed value of k, we define B, to be the set
of all ,x,’s and we write M, = card By.

Notice that for k such that (k — 1)/l <3, we have (if i # L)

166+ p) < (48 — £1/2: 8 +2/2) O [141 — P12 i8i1 +£1/2):
Also, for (k— 1)/l > 1 we have (if i# 1)

165 8: + ) < [8i-1 — P/ 2, Bt + 2/ 2DV 18— £/ 2, 18 + 21/ 2).

Thus, we see that, for all k=1,2,....[, 2M, > M — 2.

For any real number a and any k=1, 2,...,/ we define N (a) to be the
number of elements in B, which are greater than or equal to a. We call ,x;
good if [,x;—py/2, xi+py/2) N B+ ¢. We call (x; useful and i a place if
[6; —p,/2, 6;+p,—py/2)NB #¢. Also, if i is a place, we say that the
interval [, — p,/2, 6, + p, —p,/2) is useful.

For ,x; useful we define M(,x;) to be the number of places j > i. It follows,
as before, that if j# 1, L, then [,x; —p,/2, ,x; +p,/2) is a subset of either

[ej—l —pi/2, 6]—] +p,—py/2)Y [Gj—pz//Z, gj +p,—py/2)

or
10;—p2/2, 6, +py —P2/2) U (0,41 — P/ 2,01 + Py — P2 /2).

Thus, N(ex;) < 2M(x) + 2.
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Notice that for all i,

!
[0, —p2/2,0; +py —po/2) = (U [0 —Pof2, 8 + P2/2).
k=1

We gather from this that if / is a place then ,x; is good for at least one k.
Indeed, it follows that since there are at least M — 1 places, there are at least
M — 1 x/s which are good.

For at least one value of &, we will construct a system

S =P J=—1,0,1,2,..., 1},
such that

Pk,—1:¢

and such that the system .7, is generated from good ,x; in the manner of
Theorem A and such that (1) and (2) are satisfied with respect to B,.

We first let P, _, = ¢ for all k and, as in the definition of the function M,
we order the useful intervals from right to left. We look at the first useful
interval and choose any good .x; in it, 1 <s </ We let

P o= {x}

and observe that (1) and (2) are vacuously satisfied since P, _, =¢.

Although we may begin our induction here, it may be helpful to do
another step in our construction. We have already selected from the first
useful interval and obtained x;. We now select the largest good x; from the
next useful interval. If ¢ #s, we set P, ,= {x;} and we have adjoined one
more set P, , to the system .7°,. If t =5 (so (x; = x;), we hold x; in abeyance
and we search through at most the next N (xx;) + | useful intervals to find
the largest good ,x, < x; such that

&Ki+ X — X, € B, *)

Continue in this way looking at all statements of the form (*) (where
X < X; represents the variable and _x; represents any one of the good
elements held in abeyance) and after at most r steps we have either adjoined
some set P, , to .7, where y+# s or we have found r good elements of B
which by construction generate P, ,. Notice that in either case we have
accomplished this after searching through at most (r — 1) N,(,x;) + 1 useful
intervals.

Now, in general suppose that for each k& we have partially constructed the
system .7, with the sets P, ;, j=—1, 0, 1, 2,...,j, < r, where j, >0 for at
least one k. Indeed, we do know j, > 0. We look at the next useful interval
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and choose any good ,x, in it. Vacuously, ,x, satisfies (1) and (2) for the set
P, ;.- We have a simultaneous system of statements of the form

p+wxz_cxd€Bw’ (#)

where p runs through P, ; and .x, < x, represents a good element. After
inspection of at most 3" N(p)+ 1(p€EP,, ;) useful intervals, we have found
X4- We continue in this way each time choosing a new good element which
satisfies all simultaneous systems (%) for previously chosen good elements at
this stage. After at most (r —1)/+ 1 choices of good elements requiring
inspection of at most (r—1) Y1 _, Zl,e,,“k N(p) + 1 more useful intervals
we can adjoin one more set P, ;  to some system .%;.

If M is chosen large enough, we will be able to complete construction of at
least one system .7, which is generated by good elements. We list these
elements as

{kxh} o {kxi,j: i= 1’ 2""’ r2,j= la 29---; r},

where {,x,} =P, ,.
To each of these good elements, g, we associate an element y € .2 N I™*
such that

() E [8—py/2, +p)/2).

Notice that for any element, J, generated from any of the y’s, ¢(6) is within
p,/2 of the number dj generated by the corresponding g’s. (This follows
from the inequality p, < p,/(2r* + 1).)

Consider any such number ds. Then by the definitions of ,6; and 8,

ds=({—-Dp+k—1p,+((G—Dp,+ k=1 p,~(I=1)p,— (k—1)p,)
fort(m—Dp+k=1p,—(n—1) p,—(k—1)py)

So,
ds=((—-D+G-D=(-D+-+m—-1)—(n—1)p,+(k=1)p,
=(p-Dp,+k—1p,.

If (p—1)p, <b, then dy=,0,. Since, by construction d; & B,, we see
that [dy —p,/2, ds+p,/2)NB=¢. If (p—1)p, > b, then we also have
lds —p,/2, ds+p,/2] "B = ¢ because B c |0, b]. Finally, if (p — 1)p, =b,
then for certain values of k, we may have the unpleasant situation that
ds —p,/2, ds+p,/2)NB+¢. However, if we reperform the entire
construction on the interval [0,2b] instead of [0,b], we also obtain
|ds —pi/2,ds +p,/2) VB =9¢.
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Thus for all &s, ¢(0)E |dy—p,/2, ds+p,/2) and |ds—p,/2,
ds +p,/2)VB = ¢. Thus, ¢(3) € B and (2) is satisfied with respect to B. By
Theorem B, |lu|| > r'/?/4 and this is a contradiction. We conclude that B is
finite.

We now apply Theorems A and B to see that card B < N.

COROLLARY. Suppose I' is ¢-ordered. Let uy € M(G). Let r and N be
related to ||u|| as in Theorem 1. Suppose . 7N\ (F\V.7)=.9". If (%) is
bounded above, then card {¢(F N .7°)} < N. If ¢ is an isomorphism (so that I
is Archimedean) and if ¢( %) is bounded above, then card{# M .7’} < N.

2. SEMI-IDEMPOTENT MEASURES

Given any finite set of integers {N,,..., N,} put d,= N,d,, where J, is the
identity measure in M(G). We say that j vanishes at infinity in the direction
of ¢: I'> R if whenever ¢(y;) - + oo then £(y;) » 0. The set of all x € M(G)
which vanish at infinity in the direction of ¢ will be designated by M ,(G).
Let M,(G)= {p € M(G):p L t for each 7€ M (G)}. We begin by proving
the following theorem:

THEOREM C. Let I be ¢-ordered and u € M(G). Suppose the convolution
product satisfies

[16-5)€M,G),

where N ,,..., N, are given integers and é,= N,J,.
Then

(@) 4,Hci, where u, € My(G), and

(b) the support of T1'_,(u, —3;)" is contained in a finite number
(depending only on ||u1||) of cosets of ker ¢.

Proof. The first part of Theorem C was proved in [10]. To prove part
(b) we observe that if [ [{_, (u — ;) € M (G), then

[T (.~ ) € M(G). (c.1)
Let ¢*(x) = ¢(—x) = — (x). It follows from [2, p. 220] that (c.1) implies

[T (.—3)€M,.(G) (c2)
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Inasmuch as ker ¢* =ker ¢, (c.1), (c.2) and Theorem 1 of Section 1 in
combination with part (a) of the present theorem yield the desired result.

A subset S of I' is called a Sidon set if whenever f € L®(G) and [ is
spectral in § we have Y |f(y)< . For Acl' and u€ M(G) put
uEFWN,,..N;;A)if i, c {N,,..,N;} and N, € Z.

THEOREM 2a. Let I' be ¢-ordered and suppose u € F(N,,..,N;; 7*\S
with S a Sidon set in I. Then there exists v& M(G) such that
vE F(N,,.... N;; I) satisfying

(@) P=gdon.727\S;
(b) |[v|l is bounded by a constant depending only on |u|| if S is empty;

(c) if ¢ is an isomorphism, or I is torsion free, then ||v|| is bounded by
a constant depending only on ||u| and the Sidon constant of S.

Proof. Let u€ F(N,,..,N;;.7*\S). We claim

ﬁ (u—06,) € M,(G). (2a.1)

By Drury’s result (8, p. 42] there is a measure w € M(G) such that
@(S*)=0, where St =.2tNS, (2a.2)
and
AI\S*)> 1. (2a.3)
Observe that by (2a.2)

w * ﬁ (u— 98, E M (G), (2a.4)

since 4 € F(Ny,..., N;3 IN— 9 U S). Put ¢*(x) = ¢(—x). As a consequence of
(2a.4), and [2] we gather that

J
wx [| @—3;) €M,.(G). (2a.5)
i=1
As a consequence of (2a.3) we may infer from (2a.5) that
J
[]w—26)€ M, (G). (2a.6)
i=1

It follows now from (2a.6) and [2] that []i_, (u —&;) € M,(G) and this
establishes (2a.1).
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Next, we see that [ [{_, (u — J;) € M,(G) gives, via part (a) of Theorem
C, the result

g Ncd. (2a.7)

Notice that (2a.7) implies that (u —u )" is integer-valued off — U §. Put
U4 — 4, =p,. Since y, vanishes at infinity in the direction of ¢, the set
{y€&—7US:|dyy) #0}=F

must satisfy ¢(F) < [0, M| for some M € R*.
By (2a.2) and (2a.3) we may conclude that the set

L={ye 7":|0@)byy) + 0}
satisfies ¢(L) < [0, M]. Applying Theorem | of Section 1 to the measure
w * u, permits the conclusion
k
U (; +kerg)oL (y; > 0), for some {yi < T. (2a.8)
i=1
Inasmuch as &(I\S*) > 1 it follows from (2a.8) that

k
U (i +kerg)oF. (22.9)

Put §; = dol,. s ker o (i=1,2,.,k),5,=0o0nI'\S, where
S;=SN(y, + ker ¢).

Notice that j; is integer-valued off S; and that S, is a Sidon set. Since S, is a
weak Rajchman set in I" (see [10]) it follows that §; can be interpolated by
an integer-valued transform &, off S;.

Put

§:ﬂ1+zéi-

Then & is integer-valued on I" and interpolates £ off —.#* U S. Let g(z) be
any polynomial in the complex-variable z which fixes the set {N,,..., N;} and
maps every integer in the interval [—|&]|, ||£]|] into {N,,.., N;}. Then for the
v of our theorem take v =g o £ This proves part (a).

It follows from our proof that if S = ¢, then since ||u,l| < [lull

C=

(yitkerg)oF  (y,>0),

i=1
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where N is as in Theorem 1 of Section 1. Thus when S =¢ we obtain a
bound on ||v|| which depends only on ||u||. If ¢ is an isomorphism then the
estimate on the norm of w(|8, p.42|) establishes (c¢). This completes the
proof.

By the positive octant in 7" we mean the set Q = {(y;,..., ¥,); ¥: 2 0, ¥V i}
We shall conclude this section with a result concerning idempotents on the
positive octant of Z”". Let @ be a family of nontrivial homomorphisms of I
into . We say 4 vanishes at oo in the direction of @ if whenever
#(y,)— +oo for all ¢ € @ then £(y,) - 0. As usual

" M4(G)={p € M(G): p L t for each 1 € M,(G)},

where M4(G) is the space of all transforms vanishing at infinity in the
direction of @. The next theorem can be found in [10].

THEOREM D. Suppose 1 € M(G) satisfies

[T 8) € Mo(G),

where N,,..., N, are given integers. Then
4,(Nc?, where u€MyG).

THEOREM 2b. Let u € F(N,,..., N;; Q\S), where S is Sidon in 7". Then
there is a vE F(N,,..., N;; Z") such that

Ayy=90), vEQ\S
Proof. Since py € F(N,,.,N;; Q\S) the same technique as that in
Theorem 2a shows that

f[ (U —8,) € My(T"), (2b.1)

where @ is the family of coordinate projections ¢; (i =1, 2,...,n). Thus
Theorem D and (2b.1) imply that 4 ,(I') = Z. We leave the rest of the proof
to the reader.

3. MEASURES WITH CERTAIN CONTINUITY PROPERTIES

Recall that -# denotes the family of closed subgroups of G with infinite
index in G. Put {H_} equal to the set of all cosets of H € #. For any Borel
set E < G we have defined
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uu(E)=Y w(ENH,).

[e3

The measure u,, is called the part of u carried by the cosets of H. The
following result relating £ and /4, is due to Glicksberg and Wik [3]:

THEOREM E. Let I be ordered and suppose HeE.#. Then
G (7Y g( 7). If T is ¢-ordered we also have {,(7,)<i(7,)", where
#,=¢7 [In 0], nEZ".

A measure u € M(G) is said to be semi-strongly continuous if for every
HEZ, i,(y)=0 for all y€ 7" .If I is ¢-ordered we put ¥ equal to the set
of K € # such that K 3 (ker ¢)*. Then u is continuous in the direction of ¢
(or simply ¢-continuous) if u, =0 for all K€ .7 .

THEOREM 3a. Let I be ¢-ordered and suppose 1 € M(G). Then

(i) ifue€ M G) then u, € M (G) for all HE 7,
(ii)) Ifuy,€ M (G)for KE ¥ then u, =0.

Proof. By Theorem E we have [,(.%,) < 4(.%,)” for all natural numbers
n. Since y € M,(G) we gather that u, € M ,(G) and this confirms (i). We
must now establish (ii).

Let ¥: M(G)— M(G|K) where ¥ is the usual mapping induced by the
natural homomorphism of G- G|K. Fix f&€I. We must show that
{W(Bu)},=0. Here {¥(Bu)}, denotes the discrete part of ¥(Bu).

Let {y;} be a sequence in K" such that ¢(y;)>j, JEZ*. Since
{W(Bu)), (v)=i(y—pB) is almost periodic on K*, the sequence
Ax(y — B+ v,) has a uniformly convergent subsequence. Denote this subse-
quence by A (y — B+ 7,). Since dx(y — B + y,)— O pointwise for y € K* we
have that g,(y —f +,)— 0 uniformly in y. Put y=y—y,. Given £¢>0
choose k such that |dg(y —v.—F8+ 7 <& Thus fdg(y—B)=0 for all
y € K*. This concludes the proof.

We shall now state some corollaries of Theorem 3a. Corollary 2 will be
important in the next section.

COROLLARY 1. If u is semi-strongly continuous then u is continuous.

COROLLARY 2. Suppose []i_,u—96)EM,G) where N, €7 and
0;=N;d,. Then for all K € .% we have

AN S Ny s N1

COROLLARY 3. [If I is ¢-ordered, then u is semi-strongly continuous = u
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is ¢-continuous. If I' is Archimedean ordered then u is strongly continuous if
and only if u is semi-strongly continuous.

The following result characterizes semi-strongly continuous measures in
terms of strongly continuous measures.

THEOREM 3b. Let I' be ordered and u € M(G). The following statements
are equivalent:

(1) u is semi-strongly continuous;

(ii) there is a strongly continuous v € M(G) such that i(y) = 9(y) for
all ye .#*.

Proof. Suppose f(y)=¥(y) for all y€ .2 and v is strongly continuous.
By Theorem E we may conclude that g,(y) = ¥,(y) for all y € .#* and all
H € #. Thus (ii) = (i).

Next, let 4 be semi-strongly continuous. Suppose 3 H, € # such that
gl > 1. Let p—p, =4 Suppose there is an H,E.# satisfying
| 1ttg, || > 1. Let = 4 — uy . After at most ||u| steps, we have measures
guand p=u, + o4 Hag o where ||, u,|l < 1 for all H € #.

Suppose we can find H € such that | Hy, || >3. Let
a1l = gl =gy - Suppose EIHq HE(/?’ such that “q1+l:u1~1 | >3 Put

q+1
q‘+2:u q,+l:u ql+l:uH
In at most 2|, ul steps we have measures N M S A

and , u, where || ,h,u,,ll <jforall HE#.

Suppose there exists H, €% such that |, uy || > 4. Repeating the
process we eventually arrive at measures Vs 2V Vs Let u, be the norm
limit of } 7., v in M(G).

Observe that g (y)=0VYy € .9°*. Put v=u —u,. Then by construction
vy =0 for all H€.#. Furthermore, the interpolating measure v satisfies
[Ivll < |le|l- This concludes the proof.

Given u € M(G) choose rE€ Z*(r>31) such that |[u| <r'?/4. Then
choose N to satisfy r < {log N/(4 log log N)}'/%. For u € M(G) put

B)={yer:d@)>1}=2

and

Fw={yeri@y)<e =5

We next state and prove our main result. The proof uses Theorem 1 of
Section 1 and a variant on the argument of Ramsey and Wells [13].

THEOREM 3c. Let I’ be ¢-ordered and let u € M(G) be ¢-continuous.
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Suppose .7 <. 4. 7. Then there exists y, ..., yy Such that

.
#N7r ) (y+kerg) (3> 0)
i=1

Proof. By Theorems A and B of Section 1 it suffices to confirm that
¢(# M .7") is finite. We shall suppose ¢(.# M.2°") is infinite and force a
contradiction.

It follows from Theorem 1 of Section 1 that if ¢(# M.2°") is infinite then
the set ¢(#M.7°*) is not bounded above. We shall see that this last
assumption leads to the contradiction [z{| > r¥?/4. We adapt the method of
Ramsey and Wells to estblish this contradiction. The next lemma may be
found in [4].

LEMMA. Let y be a continuous measure on G. Let y, be a net in I such
that y,u converges weak-* to v € M(G). Then
inf{|¥(y)l:yer}=0.
For each natural number n let

B, ={ye.#:0(y) > n}

and put C, = (B, u)~* (weak—* closure in M(G)). Inasmuch as ¢(# N.7"")
is unbounded above it follows that C,+¢ for all nE€N (the natural
numbers). Since the C, are weak—* compact it follows by the finite inter-
section property that

oC
Co= ﬂ Cn
n=1
is not empty.
Choose any element v € C_, of minimal norm. Notice v 5 0 since ||v| > 1.
Suppose y &€ . #(v)={y € I':|#(y) > 1}; then it is easy to check that
Pl <e . (3c.1)
Thus v satisfies
I'=#2Wv)U.7 (v).
Choose a net {y,:a € A} <. #(u) and a subset {a,:n € N} of 4 satisfying

Tall =V weak—*,
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with ¢>a,=>y,EB,. For all 1€T,7 lu—Av weak—* and so

A +7a) = PA).
So if A € #(v), then  + 4, € %, eventually, and so
L) -veC,,.

Hence || =|/v|| for every measure ¢ of the weak—* closure Y of
#@)v=7Y,. It follows as in [13] that the weak—* topology and the norm
topology coincide on Y.

Thus Y is compact in M(G) and Y, is norm dense in M(G). In particular,
Y is covered by a finite number of sets

U,={wEMG|w—av|<l—e},

with a € #(v). We gather that
ye U U, {a}<c20) (3c.2)
k=1

We shall use (3c.2) to show that .#(v) is a finite union of cosets of some
subgroup A4 of I We repeat some details from [13] for the reader’s con-
venience.

We define an equivalence relation on I’ as follows: Define
a~b<w #v)—a=F(v)—b So #(v) is a union of equivalence classes. If
|@v—bv]| < 1 —e~", then, in view of (3c.1), y +a € #(v) if and only if
y+ b€ .#(v). By (3c.2), #(v) is a finite union of equivalence classes. Let F
be an equivalence class contained in #(v) and let a € F. It is clear that
0€F—a. To see that F—a is a group it suffices to show that if b,
cEF—a,thenb—cEF—a. Thatis,if b+a~c+a,thenb—c+a~a.
Note that

Ly)—b—c+a)=F@F)—(b+a)+(c+a)—a
=Z()—(c+ta)+(c+a)—a
=2()—a.

If a € F, then

bEF—asbta~a<=b~0.
The latter condition is independent of F. It follows that every equivalence

class F is a coset of the same subgroup A of I
Let @ € I'. We claim y, is eventually out of A + a. Suppose not. Let 4, be

580/44/2-3
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a cofinal subnet of {y,} contained in A + a such that A u — v. In this case
A & ker ¢ by the definition of y,. Hence

¥, (au) € M (G[A47), (3¢.3)

where M (G|A4*) < M(G|A™") is the space of all continuous measures and ¥
is the canonical map. Notice that

y=lim(, - g)=lim@i, —a +a)u.

Observe that (4, —a) ¥, (au) - Y,(v) weak—* in M(G|A”) since
(. —a) € A. 1t follows via (3¢.3) that (1, —a) ¥,(au) € M(G|A4") and so

inf{|#(4)]:4 € 4} = 0.

This contradicts 4 < . Z(v).
Thus we have confirmed that {y,} eventually leaves A + a for every a € I,
We show that this implies the existence of a set

(Mg} U {m}, 1<kl 1<s<r,

satisfying condition (2) of Theorem A with respect to .7°* M.#(u) and such
that

) <e™”
for y € P\ 2 ().

Choose any my, € #(u)N.#*. Put Py= {m,}. Let 1 <k < r® and suppose
P, _, has been chosen. We inductively choose {m,,} in a way such that

#(my) > ¢(m ) >0,  1<s<t<n (3c.4)

My € Ya \Pr_ 1 — 2(),  1<s<r (3¢.5)

P +mg—m)c @), 1<s<igr (3c.6)

We gather that the set (P,_, — .#(v)) is a finite union of cosets of A, so

that {y,} eventually leaves it. Thus we may choose m,, consistent with
(3c.5). Suppose for 1 <j <r we have selected m,; consistent with (3c.4),
(3c.5) and (3c.6) where j <i<r. Choose my; satisfying (3c.4) and (3c.5)
such that

()" —v|<1—e" on U Pror — my)- (3¢.7)
i>j

Let y=p+ m,;—m,;, and p € P,_,. Then, for j <igr,

&) = ()" (p — mi)ls
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so by (3¢.7)
[N <1 —e "+ [0(p—my). (3c.8)
Inasmuch as p —m,; € .% (v) we gather from (3c.8) that

la@) < 1. (3c.9)

Thus y=p+m;—m,; €. N7 (u) and so Theorem B of Section 1
implies that ||u|| > r"?/4. This contradiction shows that ¢(#MN.#*) is
bounded above. The proof is complete.

Let S be a Sidon set in I. Then by Drury’s result [8] there is a measure
o € M(G) satisfying

(i) 6(S)=0;
(i) 1<|6\S) < 2;
(iii) the norm of o depends only on the Sidon constant of S.

For u € M(G) put .7 '(u) = {y ET: |A(y)| < je"}.

COROLLARY 3c.l. Let p & M(G) with i ¢-continuous and S a Sidon set.
Suppose 7*\S <. B U.¥", Then (F\S)NP7* is contained in a finite
number (depending only on the Sidon constant of S and ||u|) of cosets of
ker 4.

Proof. Consider the measure o defined by (i), (ii) and (iii). Since
(0 % u)x =0y *x u, we see that o % pu is ¢-continuous since u is. We apply
Theorem 3¢ to the measure ¢ * 4 to conclude the proof.

COROLLARY 3c.2. LetI'=I,®.-- @ TI,, where the I'; are subgroups of
IR. Suppose I is lexicographically ordered from the left. Let u € M(G) with
PrcBUY. Put G={0}@® - @0} ®--®I,(1<i<n) and
suppose H* & G, = i,(.7") = 0. Then there exists y, ..., yy such that

‘ N
Z g y+6 ;20
=1

j=

Proof. Repeated application of Theorem 3c shows that #N.7" is
contained in a finite number of cosets of G;. Theorems A and B of Section 1
now give the full result.

Corollary 3c.2 will be of use to us in the next section when we prove the
semi-idempotent theorem for Z*.

THEOREM 3d. Suppose I' is ¢-ordered and p € M(G) is semi-strongly
continuous. If 7+ < # V. then card(# N .7%) is finite.
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Proof. Let ¢ be semi-strongly continuous. Then Corollary 3 shows that 4
is g-continuous. Thus Theorem 3c gives

N
Nty +kerg  (3,>0), (3d.1)
i=1

for some y,,..., yy € I.
Put H = (ker ¢)* and consider p,= ¥ (7:u), i=1,2,.,N. For every
closed subgroup G, of G|H of infinite index we have

P)e,(y)=0  forall y€Ekerg. (3d.2)

In light of (3d.1) and (3d.2) the Ramsey—Wells Theorem applies to give that
the cardinality of @ M.2°" is finite. A routine appeal to Theorems A and B
of Section 1 establishes that

card{# NPT} <N
if I' is torsion free. This concludes the proof.

CoROLLARY 3d. Suppose I is ¢-ordered and u € M(G) is semi-strongly
continuous. Let S be a Sidon subset of T such that .7 *\S ¢ .#J .%". Then
card{(Z\S)N.2*} is finite.

THEOREM 3e. Suppose I' is fully ordered and u € M(G) is semi-strongly
continuous. If 7" < U . then card{# N 7"} < N.

Progf. Suppose I"= Z* for some k € N. Then by [7, p. 104]
*=7h@ ... ® 7%,

where each 7% is Archimedean ordered and the ordering on Z* is
lexicographic from left to right. The proof of the present theorem is by
induction on the number of summands, m.

If m =1 then the order on Z* is Archimedean. By Theorem 3¢

card{# N .27} < N.

So, suppose m # 1. Assume the result is true whenever the number of
summands is less than m. Let ¢ be the natural projection such that

g: 2% 7%,
Put #} = {y€ Z*: 4(y) > 0}. Since F; < #U.¥, Theorem 3d gives

card{# M.7°]} is finite. (3e.1)
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Restrict 4 to the group {0} ® 7X@ --. @ Z*" =7,

(W) =l (3e.2)

Since ¥;1(u) is a semi-strongly continuous measure belonging to M(Z*/Z j )
we may apply the inductive assumption to conclude via (3e.1) and (3e.2)
that

card{.# N.9 "} is finite.

Appeal to Theorems A and B of Section 1 yields card{# MN.#*} < N and
this concludes the proof for Z*,

Now suppose I is fully ordered. Suppose u satisfies .#* .9 U.¥ and
card{# M.»*} > N. Pick N distinct elements in % M .7* and consider the
subgroup 7* generated by these characters. Put (Z*)* = G,. Clearly,

¥, < lluf

and ¥ () is semi-strongly continuous with respect to the induced ordering
on Z* Put #'=#(¥; (). Then by our result for Z* we have
card(#* M.#') < N. This contradicts card(#* MN.#')> N. Our proof is
complete.

CoROLLARY 3e. Suppose I' is fully ordered and u€ M(G) is semi-
strongly continuous. Let S be a Sidon subset of I such that
S N\S <. #U.¥". Then card{.#\S)N .7} is finite and depends only on the
Sidon constant of S and |[u||.

4. SEMI-IDEMPOTENTS AND ¢-CONTINUOUS MEASURES

In this section we exhibit a connection between semi-idempotents on ¢-
ordered groups and ¢-continuous measures. We first re-prove the semi-
idempotent theorem of Section 2 for ¢-ordered groups since the technique
involved may be of some interest. The section concludes with a proof of the
semi-idempotent theorem for fully ordered groups. As a special case of our
semi-idempotent theorem we obtain the result announced by Kessler in [6].

THEOREM 4a. Let I be ¢-ordered and suppose u € F(N,,..., N;; 7 *\S)
with S a Sidon set in I. Then there exists vE M(G) such that
vEF(N,,.., N;; I') satisfying

(a) V=4 on 2%\S;
(b) vl is bounded by a constant depending only on ||u| if S is empty;
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(¢} If ¢ is an isomorphism, or I is torsion free, then || v| is bounded by
a constant depending only on ||ull and the Sidon constant of S.

Proof.  Let u satisfy the hypothesis of the present theorem. For simplicity
assume S = ¢. Then

J

[Tw-6)em, @), (4a.1)

f=1

where ;= N;J,. Thus, we gather from (4a.1) and Corollary 2 of Section 3
that

H(ﬂx‘ai)zo

forall Ke. 7,
Suppose 3 K, € 7 such that 4, = u, # 0. Inasmuch as

e — < el — 1, (4a.2)

and

m

[Tw—n—~p)eM,G),
i=1t
where p,=M,0,,M;€Z, we can repeat the argument for
i W—uy—py).
As a consequence of (4a.2) this finite descent argument ends in a number
of steps <Jlul| with

H=fy+ - +p, +, (4a.3)
where v is ¢-continuous and each g, is integer-valued. Applying the main

result of the previous section to v we gather that for some y,, i = 1, 2,..., N,

U itkerg)o{ye s :[fml#0} (> 0). (4a.4)

i

L=

Here N has the same relation to ||z|| as in the main result of the preceding
section.

It now follows from (4a.4) that we may interpolate # on .#°* by the sum of
the restrictions of ¥ to the cosets y; + ker ¢ in (4a.4). Composing the integer-
valued transform which interpolates # on .#* with the appropriate
polynomial now proves the theorem if S = 4. If § + ¢, we use Corollary 3c.!
to obtain the full theorem.

In order to prove the semi-idempotent theorem for fully ordered groups we
shall need the following two propositions.
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PROPOSITION 4b. Let I be  fully ordered and  suppose
UEFIN,,..N;; P*\S) with S a Sidon set in I. Then for every
He #,u, € FN,,..,N;;.7%).

Proof. Suppose u € F(N,,..,N;;.2*\S) and H € #. By Drury’s result
there exists and & € M(G) such that

&)(S)=0 (0<e<) (4b.1)
and
EN\S)c (1 —¢, 1 +e). (4b.2)

Recall that for any y €T, p& restricted to H* is an almost periodic
function. As a consequence of |8, p. 48] and (4b.2),

&N c(l—¢1+e). (4b.3)
By Theorem E we also know that
@y ENT )@ ENT) .
Thus, if ¥, € .#** and 4,(y,) # 0 we gather that

Aur)) - (1 —e, 1+e)cUN(1—e,1+8)  (N;#0).  (4b4)

Let ¢—0. We gather from (4b.4) that [,(y,) € {Ny...., N;}\{0}. This
concludes the proof.

PROPOSITION 4¢c. Let I'=I' ® .- @®T,, where I'; (i=1,2,.,n) is any
subgroup of R. Suppose I is lexicographically ordered from the left. If
HEF(N, o N;3 #H\S) and H' € {0}® - @ {0} DT, ® - DT,
Sfor some 1 <j< n, then

[y is integer-valued on {0} ®---@ {0} @ T;_ @ I; ®---DT,.

Proof. From Proposition 4b we know that i, restricted to 2" is integer-
valued. Fix y € I' and consider yu,. Our result now follows from the almost
periodicity of the function £,(8 — y), 8 € H-.

We now prove the semi-idempotent theorem for fully ordered groups. The
proof uses the result of the previous section on semi-strongly continuous
measures.

THEOREM 4d. Let r be  fully ordered and suppose
uEF(N, .., N;: 2*\S) with S a Sidon set in I'. Then there exists v € M(G)
such that v € F(N,,..., N;; I') satisfying



158 PIGNO AND SMITH

(a) v=4 ZN\S,
(b)
depending only on ||u|| and the Sidon constant of S.

[v]| is bounded by a constant

Proof. We first prove our theorem for Z*. The general case is obtained
by a transfinite induction argument which was suggested to the authors by a
reading of [6].

Assume

*=r@---or,,

where the I'; are finitely generated subgroups of R and the order is
lexicographic (from left to right). We know all full orders on Z* are obtained
this way; see [7, p. 104].

Let 4 € M(T*) such that 4 € F(N,,..., N;; .7 *\S). We suppose that n > 1
or else we are back in the Archimedean ordered case. Put

£,={0}®--B0IOI, O, ® - BT,
where 1 < ¢ < n. Denote by .#,_, the family of subgroups K of T* satisfying
K*¢7, (4d.1)
It follows from Proposition 4c that

tix € F(N, s N;, T)

if K€ .%,. Suppose there exists a K; € %, such that ug, # 0. Put u, =p,
and notice that

= pill < llull = 1. (4d.2)
Since (u—p,)" is integer-valued off —°\U S we again apply argument to

4 —p, being careful to pick only subgroups which belonging to .#;. This
argument ends in a finite number of steps with the result that

H=p,+P+ - +p,+1, (4d.3)
where each g, is integer-valued and 7 is ¢,-continuous. Here
¢ 2> T,

is the natural projection of Z¥ into the “ordering coordinate.” Put
U, =p,+ -+ +p,. Notice in (4d.3) that 7j is integer valued off —7° U S. By
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Proposition 4c, 7, is integer-valued on Z, for all K€.%#,. Suppose
fix,(¥o) # O for some y, € .#°* and K, € #,. Put 5, =7,. Then

ln—nll<linl— 1. (4d.4)

Since (3 —#n,)" is integer-valued off —9°U S we again apply argument to
n —n, being careful to pick only subgroups in #;. This argument ends in a
finite number of steps with the result that

n=m+n+ - +0,+4¢ (4d.5)

each 7, integer-valued on Z,. Put ) | n;=g,. Then by the main result of
the previous section we know there are §;, i = 1, 2,..., N, such that

Fu,)N7Sc O Bi+1Z,, (4d.6)

I

since (u,), =0 all K € %,. Moreover, 4, is integer-valued on Z,. We gather
that there exists a v, € M(T*) such that ¥, =4, on .#** satisfying

(i) ¥, is integer-valued on Z%;
(i) [voll < Nllgsll-

In (4d.5) recall that (2 )=0 for all K €.%, and that ¢ is integer-
valued off — % U S. Suppose there exists a K, € % such that §K3(y0) # 0 for
some y, € .7°". Put & =¢, and notice that

1€ =&l < lIEl -1 (4d.7)

Since (¢ —¢&,)" is integer-valued off —%°U S we apply argument to & —¢,;
being careful to pick only subgroups in .%#;. The argument ends in a finite
number of steps with the result that

é=é|+éz+'“+él+p’ (4d-8)

where each & is integer-valued on Z,. Put Y\ & =pu,. Corollary 3c.2 of the
previous section now shows that for some y;, i= 1, 2,.., N,

N
Bu)N72c Uy +1,, (4d.9)
i=1

because (u;)x(#°*)=0 VK€ .%,. Thus we interpolate 4, on .2°* by an
integer-valued transform ¥, such that

o3Il < Nllas | < Nl
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This finite descent argument ends by showing that
U=l iyt U+ T,

with %, =4; on .#* (i=2,3,..,5),s<|jg|. It is also clear that t is semi-
strongly continuous. By the corollary to Theorem 3e, we see that f coincides
with the transform of a trigonometric polynomial f on .#*\S. The norm of
this trigonometric polynomial depends only on the Sidon constant of .S and
llull. Put g, =v,. Then for the v of our theorem take ) , v, + ¢t composed
with an appropriate polynomial. Since |v,|< Nl (=1,2,..,s),

3 Ivill < N|ju|* This proves the theorem for I'= Z*.

Next, let I" be countable with

r=yr,
i=1

where I';,,>TI, and each I is finitely generated. Let # € M(G) with
#EF(N,,.,N;;.7* N S). Then if we restrict 4 to I'; by defining

&) =G,  vETl,
there is a 0, € M(G/I'}) such that

G,(y) = D,y), YETN=7US),

and
0,€ F(N, s N;; T,
Put
L) =6, v€T,
and
Ln=0 if yerr,
We need to show ||{;]| =||o;]|. Consider the continuous linear functional

on C(G) defined by

T(f) =J J S(xy) dmg(x) do(y),

tle

G/T;
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where m,; is the Haar measure on G. | T| =|o,||. For y€ I,
TO)=| | 7v)dmg(x)do(y)
Gry/e

=[] A dme(x) deoi(y)

GIT;

= J () dof(y)=6,0).

G/T;

Now, for y€ I'\l";,

J‘G/F+ jG 7xy) dmg(x) do(y) = 0.

Thus ¢; is the measure corresponding to T by the Riesz Representation
Theorem.

Inasmuch as | o,|| depends only on ||u|| and the Sidon constant of S, if
follows that any weak—* cluster point v of (0, interpolates £ off —%° U S
with the required bound on | v||.

The proof for the general case is obtained by a transfinite induction
argument on the cardinality of I'. Let y, be the smallest ordinal number such
that the set Y of predecessor’s of y, has the cardinality of I'. Let y, denote
the 1-1 correspondence between Y and I'\{0}.

For each y € Y put I'; equal to the group generated by {y,:x <y}. Then
I'=U,ey Iy and if p, < y, then I', < T,,. Note also that card I', < card I'
for all y € Y and card I, is infinite.

Suppose ¢ € M(G) and 4 € F(N,,..., N;; #*\S). Then if we restrict 4 to
I, we can find a net A, € M(G) with £, = for all y € [ \\(#*\S) satisfying

(@ 1,=00ff I';
{b) A,€F(N, pons N3 r);
() A<M
Thus any weak—* cluster point of the net 4, is the required v which inter-

polates g off—9°\U S. This concludes our proof.
For some related work the reader is referred to [11].
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