Semi-idempotent and Semi-strongly Continuous Measures

Louis Pigno and Brent Smith

Department of Mathematics, Kansas State University, Manhattan, Kansas 66506

Communicated by the Editors
Received May 1980

Introduction

In this paper G is a nondiscrete compact Abelian group with character group Γ and $M(G)$ is the usual convolution algebra of finite Borel measures on G. The Fourier-Stieltjes transform of $\mu \in M(G)$ is the function $\hat{\mu}$ defined on Γ by

$$
\hat{\mu}(\gamma)=\int_{G} \gamma(-x) d \mu(x)
$$

We say Γ is ϕ-ordered if there exists a nontrival group homomorphism $\phi: \Gamma \rightarrow \mathbb{R}$, where \mathbb{R} is the additive group of real numbers. If Γ is ϕ-ordered, we put $\left.\mathscr{P}=\phi^{-1}(\mid 0, \infty)\right)$. The discrete group Γ is said to be fully ordered if there exists a semi-group \mathscr{P}, such that $\mathscr{P} \cup-\mathscr{P}=\Gamma$ and $\mathscr{P} \cap-\mathscr{P}=\{0\}$. We define Γ to be ordered if either Γ is ϕ-ordered or if Γ is fully ordered. For Γ fully ordered, the semi-group $\mathscr{H}^{+}=\{\gamma \in \Gamma: \gamma>0\}=\mathscr{P} \backslash\{0\}$ is called the positive cone in Γ. For $\Gamma \phi$-ordered $. \mathscr{y}^{+}=\{\gamma \in \Gamma: \phi(\gamma)>0\}$.

In Section 1 we prove a generalized version of a theorem of Cohen and Davenport |1]. We give applications of the result in Sections 2, 3 and 4.

Let Γ be ordered. A measure $\mu \in M(G)$ is said to be semi-idempotent if $\hat{\mu}(\gamma)=\hat{\mu}^{2}(\gamma)$ for all $\gamma \in \mathscr{P}^{+}$. Kessler announced in [6] that if Γ is fully ordered and μ is semi-idempotent, then there exists an idempotent measure $\nu \in M(G)$ such that $\hat{v}(\gamma)=\hat{\mu}(\gamma)$ for all $\gamma \in \mathscr{H}^{+}$. A more detailed discussion of the literature concerning the semi-idempotent problem will be given at the end of this section.

In Section 2 we prove the following result: Let Γ be ϕ-ordered and let S be a Sidon subset of Γ. If $\hat{\mu}(\gamma)-\hat{\mu}^{2}(\gamma)$ for all $\gamma \in{ }^{+} \backslash S$, then there exists an idempotent measure $v \in M(G)$ such that $\hat{v}(\gamma)=\hat{\mu}(\gamma)$ for all $\gamma \in \mathscr{P}^{+} \backslash S$. Futhermore, an upper bound for the norm of v depending only on the norm of μ is obtained if S is empty.

Let \mathscr{H} be the family of all closed subgroups of G with infinite index in G. Put $\left\{H_{\alpha}\right\}$ equal to the set of all cosets of H and define for any Borel set $E \subset G, \mu_{H}(E)=\sum_{\alpha} \mu\left(E \cap H_{\alpha}\right)$. A measure $\mu \in M(G)$ is said to be strongly continuous if $\mu_{H}=0$ for all $H \in \mathscr{H}$. Ramsey proved in [12] that if Γ has a finite torsion subgroup and if μ is strongly continuous and satisfies the condition

$$
\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\} \cup\{\gamma \in \Gamma:|\hat{\mu}(\gamma)|<\varepsilon\}=\Gamma
$$

then provided ε is small enough (as a function of the norm of μ), $\operatorname{card}\{\gamma \in \Gamma$: $|\hat{\mu}(\gamma)| \geqslant 1\}$ is finite. Ramsey also proved that an upper bound for the cardinality of $\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\}$ depends only on the norm of μ and the cardinality of the torsion subgroup of Γ. Subsequently, Ramsey and Wells [13] obtained the above result for all compact Abelian groups G except that in the general case no such upper bound on the cardinality of $\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\}$ is possible.

Let Γ be ϕ-ordered and let $\mu \in M(G)$. We define \mathscr{K} to be the family of all subgroups $K \in \mathscr{H}$ such that K does not contain the annihilator in G of the kernel of ϕ. Then μ is said to be ϕ-continuous if $\mu_{K}=0$ for all $K \in \mathscr{H}$.

In Section 3 we prove that if μ is ϕ-continuous and satisfies the condition

$$
\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \geqslant 1\right\} \cup\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \leqslant \varepsilon\right\}=\mathscr{P}^{+},
$$

then provided ε is small enough (as a function of the norm of μ), $\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \geqslant 1\right\}$ is contained in a finite number of cosets of the kernel of ϕ. Futhermore, an upper bound for the number of cosets depending only on the norm of μ is obtained.

Let Γ be ordered. A measure $\mu \in M(G)$ is semi-strongly continuous if for all $H \in \mathscr{H}, \hat{\mu}_{H}(\gamma)-0$ for all $\gamma \in \mathscr{P}^{+}$. As a consequence of the result cited above we prove that if μ is semi-strongly continuous and satisfies the condition

$$
\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \geqslant 1\right\} \cup\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \leqslant \varepsilon\right\}=\mathscr{P}^{+},
$$

then provided ε is small enough (as a function of the norm of μ), card $\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \geqslant 1\right\}$ is finite. Moreover, if Γ is fully ordered, an upper bound for the cardinality of $\left\{\gamma \in \mathscr{P}^{+}:|\hat{\mu}(\gamma)| \geqslant 1\right\}$ depending only on the norm of μ is obtained.

In Section 4 we establish a connection between ϕ-continuous measures and semi-idempotents. In particular, we prove the semi-idempotent theorem for ordered groups and obtain as a special case the result announced by Kessler in [6].

The semi-idempotent theorem for empty Sidon set and $G=\pi$ was first proved by Helson in [5]. Kessler announced the semi-idempotent theorem
for fully ordered groups and empty Sidon set in [6] but as far as we know never published a proof. Meyer in [9] gave a proof of the semi-idempotent theorem with empty Sidon set and Γ a subgroup of the reals. The Archimedean case with Sidon pertubation was proved by Pigno in [10]. The methods of [6] do not apply when Γ is ϕ-ordered even if the Sidon set is empty, and for infinite Sidon sets and Γ fully ordered the methods of $|6|$ are in general inapplicable.

1. A Generalized Cohen-Davenport Theorem

Theorems A and B stated below are essentially from [1]. Our formulation of these theorems closely follows that of [4]. The reader should compare Theorem B with the technical lemma of [13].

Theorem A. Suppose Γ is fully ordered and $r, N \in \mathbb{Z}^{+}$with $r \leqslant(\log N /$ $(4 \log \log N))^{1 / 2}$. Let $\mathscr{B} \subset \Gamma$ such that $N \leqslant \operatorname{card} \mathscr{B}<\infty$. Then there is a subset of $\mathscr{B},\left\{\gamma_{0}\right\} \cup\left\{\gamma_{k s}: 1 \leqslant k \leqslant r^{2}, 1 \leqslant s \leqslant r\right\}$ satisfying: Let $P_{0}=\left\{\gamma_{0}\right\}$. For $1 \leqslant k \leqslant r^{2} p u t$

$$
\begin{aligned}
P_{k}= & P_{k-1} \cup\left\{p+\gamma_{k s}-\gamma_{k t}: p \in P_{k-1}, 1 \leqslant s<t \leqslant r\right\} \\
& \cup\left\{\gamma_{k s}: 1 \leqslant s \leqslant r\right\} .
\end{aligned}
$$

Then
(1) $\gamma_{k s}>\gamma_{k t}$ if $s<t$,

$$
\begin{equation*}
p+\gamma_{k s}-\gamma_{k t} \notin \mathscr{B} \text { if } p \in P_{k-1} \text { and } 1 \leqslant s<t \leqslant r \tag{2}
\end{equation*}
$$

Theorem B. Let $r \in \mathbb{Z}^{+}, \quad r \geqslant 31$. Let $\mu \in M(G)$ Let $\mathscr{B}(\mu)=\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\}$. Suppose we can find a set $\left\{\gamma_{0}\right\} \cup\left\{\gamma_{k s}: 1 \leqslant k \leqslant r^{2}\right.$, $1 \leqslant s \leqslant r\} \subset \mathscr{D}(\mu)$ satisfying (2). Suppose $|\hat{\mu}(\gamma)| \leqslant e^{-r}$ for $\gamma \in P_{r^{2}} \backslash \mathscr{B}(\mu)$. Then $\|\mu\| \geqslant r^{1 / 2} / 4$.

Theorem 1. Let Γ^{*} denote a translate of a subgroup of Γ and let $\phi: \Gamma \rightarrow \mathbb{R}$ be a nontrivial group homomorphism of Γ into the additive group of real numbers. Let $\mu \in M(G),\|\mu\|<r^{1 / 2} / 4$. Let $\mathscr{B}=\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\}$ and $\mathscr{F}=\left\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \leqslant e^{-r}\right\}$. Suppose there exists an interval $I=[-\infty, b]$ or $I=[a, b] \subset \mathbb{R}$ such that

$$
\phi^{-1}((b, \infty)) \cap \Gamma^{*} \subset \mathscr{S}
$$

and

$$
\phi^{-1}(I) \cap \Gamma^{*} \subset \mathscr{B} \cup \mathscr{F}
$$

Then

$$
\operatorname{card}\left\{\phi\left(\Gamma^{*} \cap \mathscr{B}\right) \cap I\right\}<N, \quad \text { where } \quad r \leqslant(\log N /(4 \log \log N))^{1 / 2}
$$

Proof. We prove the present theorem by modifying the counting argument of the proof of Theorem A.

For simplicity we suppose $I=[0, b]$.
Let $B=\phi\left(\Gamma^{*} \cap . \mathscr{B}\right) \cap I$. Suppose B is infinite. Let $M \in \mathbb{Z}^{+}$be large and to be chosen later.

For $L \in \mathbb{Z}^{+}$let $\rho_{1}=b / L$. Let $\Theta_{i}=(i-1) \rho_{1}$ for $i=1, \ldots, L$. We choose L sufficiently large so that

$$
\operatorname{card}\left\{i: B \cap\left\{\theta_{i}, \theta_{i}+\rho_{1}\right) \neq \phi\right\} \geqslant M
$$

is satisfied. Let $\rho_{2}=b / L \cdot l$, where $l=2 r^{2}+2$.
Put

$$
{ }_{k} \theta_{i}=\theta_{i}+(k-1) \rho_{2} \quad(k=1,2, \ldots, l) .
$$

We distinguish certain ${ }_{k} \theta_{i}^{\prime}$'s as follows: If $\left.{ }_{k} \theta_{i}-\rho_{1} / 2,{ }_{k} \theta_{i}+\rho_{1} / 2\right) \cap B \neq \phi$, then we write ${ }_{k} \theta_{i}={ }_{k} x_{i}$. For each fixed value of k, we define B_{k} to be the set of all $k_{i} x_{i}$ s and we write $M_{k}=\operatorname{card} B_{K}$.

Notice that for k such that $(k-1) / l \leqslant \frac{1}{2}$, we have (if $i \neq L$)

$$
\left(\theta_{i}, \theta_{i}+\rho_{1}\right) \subset\left[{ }_{k} \theta_{i}-\rho_{1} / 2,{ }_{k} \theta_{i}+\rho_{1} / 2\right) \cup\left[{ }_{k} \theta_{i+1}-\rho_{1} / 2,{ }_{k} \theta_{i+1}+\rho_{1} / 2\right)
$$

Also, for $(k-1) / l>\frac{1}{2}$ we have (if $i \neq 1$)

$$
\left.\mid \theta_{i}, \theta_{i}+\rho_{1}\right) \subset\left[{ }_{k} \theta_{i-1}-\rho_{1} / 2,{ }_{k} \theta_{i-1}+\rho_{1} / 2\right) \cup\left[{ }_{k} \theta_{i}-\rho_{1} / 2,{ }_{k} \theta_{i}+\rho_{1} / 2\right)
$$

Thus, we see that, for all $k=1,2, \ldots, l, 2 M_{k} \geqslant M-2$.
For any real number α and any $k=1,2, \ldots, l$ we define $N_{k}(\alpha)$ to be the number of elements in B_{k} which are greater than or equal to α. We call ${ }_{k} x_{i}$ good if $\left.{ }_{k} x_{i}-\rho_{2} / 2,{ }_{k} x_{i}+\rho_{2} / 2\right) \cap B \neq \phi$. We call ${ }_{k} x_{i}$ useful and i a place if $\left.\mid \theta_{i}-\rho_{2} / 2, \theta_{i}+\rho_{1}-\rho_{2} / 2\right) \cap B \neq \phi$. Also, if i is a place, we say that the interval $\left[\theta_{i}-\rho_{2} / 2, \theta_{i}+\rho_{1}-\rho_{2} / 2\right)$ is useful.

For ${ }_{k} x_{i}$ useful we define $M\left({ }_{k} x_{i}\right)$ to be the number of places $j \geqslant i$. It follows, as before, that if $j \neq 1, L$, then $\left[{ }_{k} x_{j}-\rho_{1} / 2,{ }_{k} x_{j}+\rho_{1} / 2\right)$ is a subset of either

$$
\left[\theta_{j-1}-\rho_{2} / 2, \theta_{j-1}+\rho_{1}-\rho_{2} / 2\right) \cup\left[\theta_{j}-\rho_{2 /} / 2, \theta_{j}+\rho_{1}-\rho_{2} / 2\right)
$$

or

$$
\left(\theta_{j}-\rho_{2} / 2, \theta_{j}+\rho_{1}-\rho_{2} / 2\right) \cup\left[\theta_{j+1}-\rho_{2} / 2, \theta_{j+1}+\rho_{1}-\rho_{2} / 2\right)
$$

Thus, $N_{k}\left({ }_{k} x_{i}\right) \leqslant 2 M\left({ }_{k} x_{i}\right)+2$.

Notice that for all i,

$$
\left.\left.\mid \theta_{i}-\rho_{2} / 2, \theta_{i}+\rho_{1}-\rho_{2} / 2\right)=\left.\bigcup_{k=1}^{l}\right|_{k} \theta_{i}-\rho_{2} / 2,{ }_{k} \theta_{i}+\rho_{2} / 2\right) .
$$

We gather from this that if i is a place then ${ }_{k} x_{i}$ is good for at least one k. Indeed, it follows that since there are at least $M-1$ places, there are at least $M-1{ }_{k} x_{i}^{\prime}$ s which are good.

For at least one value of k, we will construct a system

$$
\mathscr{P}_{k}=\left\{P_{k, j}: j=-1,0,1,2, \ldots, r^{2}\right\},
$$

such that

$$
P_{k,-1}-\phi
$$

and such that the system \mathscr{F}_{k} is generated from good ${ }_{k} x_{i}$ in the manner of Theorem A and such that (1) and (2) are satisfied with respect to B_{k}.

We first let $P_{k,-1}=\phi$ for all k and, as in the definition of the function M, we order the useful intervals from right to left. We look at the first useful interval and choose any good ${ }_{s} x_{i}$ in it, $1 \leqslant s \leqslant l$. We let

$$
P_{s, 0}=\left\{_{s} x_{i}\right\}
$$

and observe that (1) and (2) are vacuously satisfied since $P_{s,-1}=\phi$.
Although we may begin our induction here, it may be helpful to do another step in our construction. We have already selected from the first useful interval and obtained ${ }_{s} x_{i}$. We now select the largest good ${ }_{i} x_{j}$ from the next useful interval. If $t \neq s$, we set $P_{t, 0}=\left\{x_{j}\right\}$ and we have adjoined one more set $P_{t, 0}$ to the system \mathscr{P}_{t}. If $t=s$ (so $x_{j}={ }_{s} x_{j}$), we hold x_{j} in abeyance and we search through at most the next $N_{s}\left(x_{s} x_{i}\right)+1$ useful intervals to find the largest good ${ }_{u} x_{v}<{ }_{5} x_{j}$ such that

$$
\begin{equation*}
{ }_{s} x_{i}+{ }_{s} x_{j}-{ }_{u} x_{v} \notin B_{s} . \tag{*}
\end{equation*}
$$

Continuc in this way looking at all statements of the form (*) (where ${ }_{u} x_{v}<{ }_{s} x_{j}$ represents the variable and ${ }_{s} x_{j}$ represents any one of the good elements held in abeyance) and after at most r steps we have either adjoined some set $P_{y, 0}$ to \mathscr{F}_{y}, where $y \neq s$ or we have found r good elements of B_{s} which by construction generate $P_{s, 1}$. Notice that in either case we have accomplished this after searching through at most $(r-1) N_{s}\left({ }_{s} x_{i}\right)+1$ useful intervals.

Now, in general suppose that for each k we have partially constructed the system \mathscr{H}_{k}^{\prime} with the sets $P_{k, j}, j=-1,0,1,2, \ldots, j_{k}<r^{2}$, where $j_{k} \geqslant 0$ for at least one k. Indeed, we do know $j_{s} \geqslant 0$. We look at the next useful interval
and choose any good ${ }_{n} x_{z}$ in it. Vacuously, ${ }_{n} x_{z}$ satisfies (1) and (2) for the set $P_{u^{\prime}, j_{1}}$. We have a simultaneous system of statements of the form

$$
p+{ }_{n} x_{z}-{ }_{c} x_{d} \notin B_{n},
$$

where p runs through $P_{w, j_{w}}$ and ${ }_{c} x_{d}<{ }_{w} x_{z}$ represents a good element. After inspection of at most $\sum N(p)+1\left(p \in P_{w, j_{w}}\right)$ useful intervals, we have found ${ }_{c} x_{d}$. We continue in this way each time choosing a new good element which satisfies all simultaneous systems (\#) for previously chosen good elements at this stage. After at most $(r-1) l+1$ choices of good elements requiring inspection of at most $(r-1) \sum_{k=1}^{l} \sum_{p \in P_{k, j_{k}}} N(p)+1$ more useful intervals we can adjoin one more set $P_{k, j_{k+1}}$ to some system \mathscr{G}_{k}.

If M is chosen large enough, we will be able to complete construction of at least one system \mathscr{P}_{k} which is generated by good elements. We list these elements as

$$
\left\{_{k} x_{h}\right\} \cup\left\{_{k} x_{i, j}: i=1,2, \ldots, r^{2}, j=1,2, \ldots, r\right\}
$$

where $\left\{{ }_{k} x_{h}\right\}=P_{k, 0}$.
To each of these good elements, g, we associate an element $\gamma \in \mathscr{B} \cap \Gamma^{*}$ such that

$$
\phi(\gamma) \in\left[g-\rho_{2} / 2,+\rho_{2} / 2\right)
$$

Notice that for any element, δ, generated from any of the γ 's, $\phi(\delta)$ is within $\rho_{1} / 2$ of the number d_{δ} generated by the corresponding g 's. (This follows from the inequality $\rho_{2}<\rho_{1} /\left(2 r^{2}+1\right)$.)

Consider any such number d_{δ}. Then by the definitions of ${ }_{k} \theta_{i}$ and θ_{i}

$$
\begin{aligned}
d_{\delta}= & (i-1) \rho_{1}+(k-1) \rho_{2}+\left((j-1) \rho_{1}+(k-1) \rho_{2}-(l-1) \rho_{1}-(k-1) \rho_{2}\right) \\
& +\cdots+\left((m-1) \rho_{1}+(k-1) \rho_{2}-(n-1) \rho_{1}-(k-1) \rho_{2}\right) .
\end{aligned}
$$

So,

$$
\begin{aligned}
d_{\delta} & =((i-1)+(j-1)-(l-1)+\cdots+(m-1)-(n-1)) \rho_{1}+(k-1) \rho_{2} \\
& =(p-1) \rho_{1}+(k-1) \rho_{2}
\end{aligned}
$$

If $(p-1) \rho_{1}<b$, then $d_{\delta}={ }_{k} \theta_{p}$. Since, by construction $d_{\delta} \notin B_{k}$, we see that $\left[d_{\delta}-\rho_{1} / 2, d_{\delta}+\rho_{1} / 2\right) \cap B=\phi$. If $(p-1) \rho_{1}>b$, then we also have $\left[d_{\delta}-\rho_{1} / 2, d_{\delta}+\rho_{1} / 2\right] \cap B=\phi$ because $B \subset[0, b]$. Finally, if $(p-1) \rho_{1}=b$, then for certain values of k, we may have the unpleasant situation that $\left.\mid d_{\delta}-\rho_{1} / 2, \quad d_{\delta}+\rho_{1} / 2\right) \cap B \neq \phi$. However, if we reperform the entire construction on the interval $[0,2 b]$ instead of $[0, b]$, we also obtain $\left.\mid d_{\delta}-\rho_{1} / 2, d_{\delta}+\rho_{1} / 2\right) \cap B=\phi$.

Thus for all δ 's, $\quad \phi(\delta) \in\left[d_{\delta}-\rho_{1} / 2, \quad d_{\delta}+\rho_{1} / 2\right)$ and $\mid d_{\delta}-\rho_{1} / 2$, $\left.d_{\delta}+\rho_{1} / 2\right) \cap B=\phi$. Thus, $\phi(\delta) \notin B$ and (2) is satisfied with respect to B. By Theorem $B,\|\mu\| \geqslant r^{1 / 2} / 4$ and this is a contradiction. We conclude that B is finite.

We now apply Theorems A and B to see that card $B<N$.
Corollary. Suppose Γ is ϕ-ordered. Let $\mu \in M(G)$. Let r and N be related to $\|\mu\|$ as in Theorem 1. Suppose $\mathscr{F} \cap(\mathscr{B} \cup \mathscr{F})=\mathscr{P}$. If $\phi(\mathscr{B})$ is bounded above, then $\operatorname{card}\{\phi(\mathscr{B} \cap \mathscr{P})\}<N$. If ϕ is an isomorphism (so that Γ is Archimedean) and if $\phi(\mathscr{D})$ is bounded above, then card $\{\mathscr{B} \cap, \mathscr{P}\}<N$.

2. Semi-idempotent Measures

Given any finite set of integers $\left\{N_{1}, \ldots, N_{n}\right\}$ put $\delta_{i}=N_{i} \delta_{0}$, where δ_{0} is the identity measure in $M(G)$. We say that $\hat{\mu}$ vanishes at infinity in the direction of $\phi: \Gamma \rightarrow \mathbb{R}$ if whenever $\phi\left(\gamma_{j}\right) \rightarrow+\infty$ then $\hat{\mu}\left(\gamma_{j}\right) \rightarrow 0$. The set of all $\mu \in M(G)$ which vanish at infinity in the direction of ϕ will be designated by $M_{\phi}(G)$. Let $M_{\phi}^{\perp}(G)=\left\{\rho \in M(G): \rho \perp \tau\right.$ for each $\left.\tau \in M_{\phi}(G)\right\}$. We begin by proving the following theorem:

Theorem C. Let Γ be ϕ-ordered and $\mu \in M(G)$. Suppose the convolution product satisfies

$$
\prod_{i=1}^{n}\left(\mu-\delta_{i}\right) \in M_{\phi}(G)
$$

where N_{1}, \ldots, N_{n} are given integers and $\delta_{i}=N_{i} \delta_{0}$.
Then
(a) $\hat{\mu}_{\llcorner }(\Gamma) \subset \mathbb{Z}$, where $\mu_{\perp} \in M_{\Phi}^{\perp}(G)$, and
(b) the support of $\prod_{i=1}^{n}\left(\mu_{\perp}-\delta_{i}\right)$ is contained in a finite number (depending only on $\|\mu\|$) of cosets of ker ϕ.

Proof. The first part of Theorem C was proved in [10]. To prove part (b) we observe that if $\prod_{i=1}^{n}\left(\mu-\delta_{i}\right) \in M_{\phi}(G)$, then

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\mu_{\perp}-\delta_{i}\right) \in M_{\phi}(G) \tag{c.1}
\end{equation*}
$$

Let $\phi^{*}(x)=\phi(-x)=-\phi(x)$. It follows from $[2$, p. 220] that (c.1) implies

$$
\begin{equation*}
\prod_{i=1}^{n}\left(\mu_{\perp}-\delta_{i}\right) \in M_{\phi^{*}}(G) \tag{c.2}
\end{equation*}
$$

Inasmuch as $\operatorname{ker} \phi^{*}=\operatorname{ker} \phi$, (c.1), (c.2) and Theorem 1 of Section 1 in combination with part (a) of the present theorem yield the desired result.

A subset S of Γ is called a Sidon set if whenever $f \in L^{\infty}(G)$ and \hat{f} is spectral in S we have $\sum|\hat{f}(\gamma)|<\infty$. For $A \subset \Gamma$ and $\mu \in M(G)$ put $\mu \in F\left(N_{1}, \ldots, N_{j} ; A\right)$ if $\left.\hat{\mu}\right|_{A} \subset\left\{N_{1}, \ldots, N_{j}\right\}$ and $N_{i} \in \mathbb{Z}$.

Theorem 2a. Let Γ be ϕ-ordered and suppose $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash \mathbf{S}\right.$ with S a Sidon set in Γ. Then there exists $v \in M(G)$ such that $v \in F\left(N_{1}, \ldots, N_{j} ; \Gamma\right)$ satisfying
(a) $\hat{v}=\hat{\mu}$ on $\cdot p^{+} \backslash S$;
(b) $\|\boldsymbol{v}\|$ is bounded by a constant depending only on $\|\mu\|$ if S is empty;
(c) if ϕ is an isomorphism, or Γ is torsion free, then $\|v\|$ is bounded by a constant depending only on $\|\mu\|$ and the Sidon constant of S.

Proof. Let $\mu \in F\left(N_{1}, \ldots, N_{j} ;,^{+} \backslash S\right)$. We claim

$$
\begin{equation*}
\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\bullet}(G) . \tag{2a.1}
\end{equation*}
$$

By Drury's result [8, p. 42] there is a measure $\omega \in M(G)$ such that

$$
\begin{equation*}
\hat{\omega}\left(S^{+}\right)=0, \quad \text { where } \quad S^{+}=\mathscr{P}^{+} \cap S \tag{2a.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\omega}\left(\Gamma \backslash S^{+}\right)>1 \tag{2a.3}
\end{equation*}
$$

Observe that by (2a.2)

$$
\begin{equation*}
\omega * \prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\phi}(G) \tag{2a.4}
\end{equation*}
$$

since $\mu \in F\left(N_{1}, \ldots, N_{j} ; \Gamma \backslash-\mathscr{P} \cup S\right)$. Put $\phi^{*}(x)=\phi(-x)$. As a consequence of (2a.4), and [2] we gather that

$$
\begin{equation*}
\omega * \prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\phi^{*}}(G) \tag{2a.5}
\end{equation*}
$$

As a consequence of (2a.3) we may infer from (2a.5) that

$$
\begin{equation*}
\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\varphi}(G) \tag{2a.6}
\end{equation*}
$$

It follows now from (2a.6) and [2] that $\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\phi}(G)$ and this establishes (2a.1).

Next, we see that $\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\phi}(G)$ gives, via part (a) of Theorem C , the result

$$
\begin{equation*}
\hat{\mu}_{-}(\Gamma) \subset \mathbb{Z} . \tag{2a.7}
\end{equation*}
$$

Notice that (2a.7) implies that $\left(\mu-\mu_{\perp}\right)^{\wedge}$ is integer-valued off $-\mathscr{Y} \cup S$. Put $\mu-\mu_{\perp}=\mu_{0}$. Since μ_{0} vanishes at infinity in the direction of ϕ, the set

$$
\left\{\gamma \notin-g \cup S:\left|\hat{\mu}_{0}(\gamma)\right| \neq 0\right\}=F
$$

must satisfy $\phi(F) \subset[0, M]$ for some $M \in \mathbb{R}^{+}$.
By (2a.2) and (2a.3) we may conclude that the set

$$
L=\left\{\gamma \in \mathscr{Y}^{+}:\left|\hat{\omega}(\gamma) \hat{\mu}_{0}(\gamma)\right| \neq 0\right\}
$$

satisfies $\phi(L) \subset[0, M]$. Applying Theorem 1 of Section 1 to the measure $\omega * \mu_{0}$ permits the conclusion

$$
\begin{equation*}
\bigcup_{i=1}^{k}\left(\gamma_{i}+\operatorname{ker} \phi\right) \supset L \quad\left(\gamma_{i}>0\right), \text { for some }\left\langle\gamma_{i}\right\rangle_{1}^{k} \subset \Gamma . \tag{2a.8}
\end{equation*}
$$

Inasmuch as $\hat{\omega}\left(\Gamma \backslash S^{+}\right)>1$ it follows from (2a.8) that

$$
\begin{equation*}
\bigcup_{i=1}^{k}\left(\gamma_{i}+\operatorname{ker} \phi\right) \supset F . \tag{2a.9}
\end{equation*}
$$

Put $\hat{\rho}_{i}=\left.\hat{\mu}_{0}\right|_{v_{i}+\text { ker } \phi} \quad(i=1,2, \ldots, k), \hat{\rho}_{i}=0$ on $\Gamma \backslash S_{i}$ where

$$
S_{i}=S \cap\left(\gamma_{i}+\operatorname{ker} \phi\right) .
$$

Notice that $\hat{\rho}_{i}$ is integer-valued off S_{i} and that S_{i} is a Sidon set. Since S_{i} is a weak Rajchman set in Γ (see [10]) it follows that $\hat{\rho}_{i}$ can be interpolated by an integer-valued transform ξ_{i} off S_{i}.

Put

$$
\xi=\mu_{\perp}+\sum \xi_{i}
$$

Then ξ is integer-valued on Γ and interpolates $\hat{\mu}$ off $-\mathscr{y} \cup S$. Let $g(z)$ be any polynomial in the complex-variable z which fixes the set $\left\{N_{1}, \ldots, N_{j}\right\}$ and maps every integer in the interval $[-\|\xi\|,\|\xi\|]$ into $\left\{N_{1}, \ldots, N_{j}\right\}$. Then for the v of our theorem take $v=g \circ \xi$. This proves part (a).

It follows from our proof that if $S=\phi$, then since $\left\|\mu_{0}\right\| \leqslant\|\mu\|$,

$$
\bigcup_{i=1}^{N}\left(\gamma_{i}+\operatorname{ker} \phi\right) \supset F \quad\left(\gamma_{i}>0\right)
$$

where N is as in Theorem 1 of Section 1. Thus when $S=\phi$ we obtain a bound on $\|v\|$ which depends only on $\|\mu\|$. If ϕ is an isomorphism then the estimate on the norm of $\omega([8, p .42])$ establishes (c). This completes the proof.

By the positive octant in \mathbb{Z}^{n} we mean the set $Q=\left\{\left(\gamma_{1}, \ldots, \gamma_{n}\right) ; \gamma_{i} \geqslant 0, \forall i\right\}$. We shall conclude this section with a result concerning idempotents on the positive octant of \mathbb{Z}^{n}. Let Φ be a family of nontrivial homomorphisms of Γ into \mathbb{R}. We say $\hat{\mu}$ vanishes at ∞ in the direction of Φ if whenever $\phi\left(\gamma_{n}\right) \rightarrow+\infty$ for all $\phi \in \Phi$ then $\hat{\mu}\left(\gamma_{n}\right) \rightarrow 0$. As usual

$$
M_{\Phi}^{\perp}(G)=\left\{\rho \in M(G): \rho \perp \tau \text { for each } \tau \in M_{\Phi}(G)\right\}
$$

where $M_{\Phi}(G)$ is the space of all transforms vanishing at infinity in the direction of Φ. The next theorem can be found in [10].

Theorem D. Suppose $\mu \in M(G)$ satisfies

$$
\prod_{i=1}^{n}\left(\mu-\delta_{i}\right) \in M_{\Phi}(G)
$$

where N_{1}, \ldots, N_{n} are given integers. Then

$$
\hat{\mu}_{\perp}(\Gamma) \subset \mathbb{Z}, \quad \text { where } \quad \mu \in M_{\Phi}^{\perp}(G)
$$

Theorem 2b. Let $\mu \in F\left(N_{1}, \ldots, N_{j} ; Q \backslash S\right)$, where S is Sidon in \mathbb{Z}^{n}. Then there is $a v \in F\left(N_{1}, \ldots, N_{j} ; \mathbb{Z}^{n}\right)$ such that

$$
\hat{\mu}(\gamma)=\hat{v}(\gamma), \quad \gamma \in Q \backslash S
$$

Proof. Since $\mu \in F\left(N_{1}, \ldots, N_{j} ; Q \backslash S\right)$ the same technique as that in Theorem 2a shows that

$$
\begin{equation*}
\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\Phi}\left(\mathbb{T}^{n}\right) \tag{2b.1}
\end{equation*}
$$

where Φ is the family of coordinate projections $\phi_{i}(i=1,2, \ldots, n)$. Thus Theorem D and (2 b .1) imply that $\hat{\mu}_{\perp}(\Gamma) \subset \mathbb{Z}$. We leave the rest of the proof to the reader.

3. Measures with Certain Continuity Properties

Recall that \mathscr{H} denotes the family of closed subgroups of G with infinite index in G. Put $\left\{H_{a}\right\}$ equal to the set of all cosets of $H \in \mathscr{H}$. For any Borel set $E \subset G$ we have defined

$$
\mu_{H}(E)=\sum_{a} \mu\left(E \cap H_{a}\right) .
$$

The measure μ_{H} is called the part of μ carried by the cosets of H. The following result relating $\hat{\mu}$ and $\hat{\mu}_{H}$ is due to Glicksberg and Wik [3|:

Theorem E. Let Γ be ordered and suppose $H \in \mathscr{\not}$. Then $\hat{\mu}_{H}(\mathscr{P}) \subset \hat{\mu}(\mathscr{P})^{-}$. If Γ is ϕ-ordered we also have $\hat{\mu}_{H}\left(\mathscr{P}_{n}\right) \subset \hat{\mu}\left(\mathscr{P}_{n}\right)^{-}$, where $\left.\mathscr{P}_{n}=\phi^{-1}[\mid n, \infty)\right], n \in \mathbb{Z}^{+}$.

A measure $\mu \in M(G)$ is said to be semi-strongly continuous if for every $H \in \mathscr{K}, \hat{\mu}_{I I}(\gamma)=0$ for all $\gamma \in \mathscr{P}^{+}$. If Γ is ϕ-ordered we put. \mathscr{H}^{\prime} equal to the set of $K \in \mathscr{K}$ such that $K \not \supset(\operatorname{ker} \phi)^{\perp}$. Then μ is continuous in the direction of ϕ (or simply ϕ-continuous) if $\mu_{K}=0$ for all $K \in \mathscr{H}$.

Theorem 3a. Let Γ be ϕ-ordered and suppose $\mu \in M(G)$. Then
(i) if $\mu \in M_{\phi}(G)$ then $\mu_{H} \in M_{\phi}(G)$ for all $H \in \notin$;
(ii) If $\mu_{K} \in M_{\phi}(G)$ for $K \in \mathscr{K}$ then $\mu_{K}=0$.

Proof. By Theorem E we have $\hat{\mu}_{H}\left(\mathscr{P}_{n}\right) \subset \hat{\mu}\left(\mathscr{P}_{n}\right)^{-}$for all natural numbers n. Since $\mu \in M_{\phi}(G)$ we gather that $\mu_{H} \in M_{\phi}(G)$ and this confirms (i). We must now establish (ii).

Let $\Psi: M(G) \rightarrow M(G \mid K)$ where Ψ is the usual mapping induced by the natural homomorphism of $G \rightarrow G \mid K$. Fix $\beta \in \Gamma$. We must show that $\{\Psi(\beta \mu)\}_{d}=0$. Here $\{\Psi(\beta \mu)\}_{d}$ denotes the discrete part of $\Psi(\beta \mu)$.

Let $\left\{\gamma_{j}\right\}$ be a sequence in K^{L} such that $\phi\left(\gamma_{j}\right) \geqslant j, j \in \mathbb{Z}^{+}$. Since $\{\Psi(\beta \mu)\}_{d}(\gamma)=\hat{\mu}_{K}(\gamma-\beta)$ is almost periodic on K^{\perp}, the sequence $\hat{\mu}_{K}\left(\gamma-\beta+\gamma_{j}\right)$ has a uniformly convergent subsequence. Denote this subsequence by $\hat{\mu}_{K}\left(\gamma-\beta+\gamma_{k}\right)$. Since $\hat{\mu}_{K}\left(\gamma-\beta+\gamma_{k}\right) \rightarrow 0$ pointwise for $\gamma \in K^{\perp}$ we have that $\hat{\mu}_{k}\left(\gamma-\beta+\gamma_{k}\right) \rightarrow 0$ uniformly in γ. Put $\gamma=\gamma-\gamma_{k}$. Given $\varepsilon>0$ choose k such that $\left|\hat{\mu}_{K}\left(\gamma-\gamma_{k}-\beta+\gamma_{k}\right)\right|<\varepsilon$. Thus $\hat{\mu}_{K}(\gamma-\beta)=0$ for all $\gamma \in K^{\perp}$. This concludes the proof.

We shall now state some corollaries of Theorem 3a. Corollary 2 will be important in the next section.

Corollary 1. If μ is semi-strongly continuous then μ is continuous.
Corollary 2. Suppose $\prod_{i=1}^{n}\left(\mu-\delta_{i}\right) \in M_{\phi}(G)$ where $N_{i} \in \mathbb{Z}$ and $\delta_{i}=N_{i} \delta_{0}$. Then for all $K \in \mathscr{H}$ we have

$$
\hat{\mu}_{K}(\Gamma) \subset\left\{N_{1}, \ldots, N_{n}\right\}
$$

Corollary 3. If Γ is ϕ-ordered, then μ is semi-strongly continuous $\Rightarrow \mu$
is ϕ-continuous. If Γ is Archimedean ordered then μ is strongly continuous if and only if μ is semi-strongly continuous.

The following result characterizes semi-strongly continuous measures in terms of strongly continuous measures.

Theorem 3b. Let Γ be ordered and $\mu \in M(G)$. The following statements are equivalent:
(i) μ is semi-strongly continuous;
(ii) there is a strongly continuous $v \in M(G)$ such that $\hat{\mu}(\gamma)=\hat{v}(\gamma)$ for all $\gamma \in \mathcal{P}^{+}$.

Proof. Suppose $\hat{\mu}(\gamma)=\hat{v}(\gamma)$ for all $\gamma \in \mathscr{P}^{+}$and v is strongly continuous. By Theorem E we may conclude that $\hat{\mu}_{H}(\gamma)=\hat{v}_{H}(\gamma)$ for all $\gamma \in \mathscr{P}^{+}$and all $H \in \mathscr{H}$. Thus (ii) \Rightarrow (i).

Next, let μ be semi-strongly continuous. Suppose $\exists H_{0} \in \mathscr{H}$ such that $\left\|\mu_{H_{0}}\right\| \geqslant 1$. Let $\mu-\mu_{H_{0}}={ }_{1} \mu$. Suppose there is an $H_{1} \in \mathscr{H}$ satisfying $\left\|_{1} \mu_{H_{1}}\right\| \geqslant 1$. Let ${ }_{2} \mu={ }_{1} \mu-{ }_{1} \mu_{H_{1}}$. After at most $\|\mu\|$ steps, we have measures ${ }_{q_{1}} \mu$ and $v=\mu_{H_{0}}+\cdots+{ }_{q_{1}}{ }_{1} \mu_{H_{q_{1}-1}}$, where $\left\|_{q_{1}} \mu_{H}\right\|<1$ for all $H \in \mathscr{A}$.

Suppose we can find $H_{q_{1}} \in \mathscr{H}$ such that $\left\|_{q_{1}} \mu_{H_{q_{1}}}\right\| \geqslant \frac{1}{2}$. Let ${ }_{q_{1}+1} \mu={ }_{q_{1}} \mu-{ }_{q_{1}} \mu_{H_{q_{1}}}$. Suppose $\exists H_{q_{1}+1} \in \mathscr{O}$ such that $\left\|_{q_{1}+1} \mu_{H_{q_{1}+1}}\right\| \geqslant \frac{1}{2}$. Put ${ }_{q_{1}+2} \mu={ }_{q_{1}+1} \mu-q_{q_{1}+1} \mu_{H_{q_{1}+1}}$.

In at most $2\left\|_{q_{1}} \mu\right\|$ steps we have measures ${ }_{2} \nu={ }_{q_{1}} \mu_{\boldsymbol{H}_{q_{1}}}+\cdots+q_{q_{2}-1} \mu_{H_{q_{2}-1}}$ and ${ }_{q_{2}} \mu$, where $\left\|_{q_{z}} \mu_{H}\right\|<\frac{1}{2}$ for all $H \in \mathscr{H}$.

Suppose there exists $H_{q_{2}} \in \mathscr{O}$ such that $\left\|_{q_{2}} \mu_{H_{q_{2}}}\right\| \geqslant \frac{1}{3}$. Repeating the process we eventually arrive at measures ${ }_{1} v,{ }_{2} v,{ }_{3} v, \ldots$. Let $\mu_{\mathscr{F}}$ be the norm limit of $\sum_{i=1}^{n} i$ in $M(G)$.

Observe that $\hat{\mu}_{\mathscr{F}}(\gamma)=0 \forall \gamma \in \mathscr{P}^{+}$. Put $v=\mu-\mu_{\mathscr{F}}$. Then by construction $v_{H}=0$ for all $H \in \mathscr{H}$. Furthermore, the interpolating measure v satisfies $\|\nu\| \leqslant\|\mu\|$. This concludes the proof.

Given $\mu \in M(G)$ choose $r \in \mathbb{Z}^{+}(r \geqslant 31)$ such that $\|\mu\|<r^{1 / 2} / 4$. Then choose N to satisfy $r \leqslant\{\log N /(4 \log \log N)\}^{1 / 2}$. For $\mu \in M(G)$ put

$$
\mathscr{B}(\mu)=\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \geqslant 1\}=\mathscr{B}
$$

and

$$
\mathscr{S}(\mu)=\left\{\gamma \in \Gamma:|\hat{\mu}(\gamma)| \leqslant e^{-r}\right\}=\mathscr{S} .
$$

We next state and prove our main result. The proof uses Theorem 1 of Section 1 and a variant on the argument of Ramsey and Wells [13].

Theorem 3c. Let Γ be ϕ-ordered and let $\mu \in M(G)$ be ϕ-continuous.

$$
\mathscr{O} \cap \mathscr{刃}^{+} \subset \bigcup_{i=1}^{N}\left(\gamma_{i}+\operatorname{ker} \phi\right) \quad\left(\gamma_{i}>0\right)
$$

Proof. By Theorems A and B of Section 1 it suffices to confirm that $\phi\left(\mathscr{B} \cap \mathscr{P}^{+}\right)$is finite. We shall suppose $\phi\left(\mathscr{B} \cap \mathscr{P}^{+}\right)$is infinite and force a contradiction.

It follows from Theorem 1 of Section 1 that if $\phi\left(\mathscr{B}_{\mathcal{B}}^{\left.\mathscr{P}^{+}\right) \text {is infinite then }}\right.$ the set $\phi\left(\mathscr{P} \cap \mathscr{P}^{+}\right)$is not bounded above. We shall see that this last assumption leads to the contradiction $\|\mu\| \geqslant r^{1 / 2} / 4$. We adapt the method of Ramsey and Wells to estblish this contradiction. The next lemma may be found in [4].

Lemma. Let μ be a continuous measure on G. Let γ_{α} be a net in Γ such that $\gamma_{\alpha} \mu$ converges weak-* to $v \in M(G)$. Then

$$
\inf \{|\hat{v}(\gamma)|: \gamma \in \Gamma\}=0 .
$$

For each natural number n let

$$
B_{n}=\{\gamma \in \mathscr{D}: \phi(\gamma) \geqslant n\}
$$

and put $C_{n}=\left(\bar{B}_{n} \mu\right)^{-*}$ (weak-* closure in $\left.M(G)\right)$. Inasmuch as $\phi\left(\mathscr{B} \cap \mathscr{P}^{+}\right)$ is unbounded above it follows that $C_{n} \neq \phi$ for all $n \in \mathbb{N}$ (the natural numbers). Since the C_{n} are weak-* compact it follows by the finite intersection property that

$$
C_{\infty}=\bigcap_{n=1}^{\infty} C_{n}
$$

is not empty.
Choose any element $v \in C_{\infty}$ of minimal norm. Notice $v \neq 0$ since $\|v\| \geqslant 1$. Suppose $\gamma \nLeftarrow, \mathscr{B}(v)=\{\gamma \in \Gamma:|\hat{v}(\gamma)| \geqslant 1\}$; then it is easy to check that

$$
\begin{equation*}
|\hat{\nu}(\gamma)| \leqslant e^{-r} . \tag{3c.1}
\end{equation*}
$$

Thus v satisfies

$$
\Gamma=\mathscr{P}(v) \cup \mathscr{F}(v) .
$$

Choose a net $\left\{\gamma_{\alpha}: \alpha \in A\right\} \subset \mathscr{B}(\mu)$ and a subset $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$ of A satisfying

$$
\bar{\gamma}_{a} \mu \rightarrow v \quad \text { weak-*, }
$$

with $\alpha>\alpha_{n} \Rightarrow \gamma_{\alpha} \in B_{n}$. For all $\lambda \in \Gamma, \bar{\gamma}_{\alpha} \bar{\lambda} \mu \rightarrow \bar{\lambda} v$ weak-* and so

$$
\hat{\mu}\left(\lambda+\gamma_{\alpha}\right) \rightarrow \hat{v}(\lambda) .
$$

So if $\lambda \in \mathscr{B}(v)$, then $\lambda+\lambda_{a} \in \mathscr{B}_{n}$ eventually, and so

$$
\overline{\mathscr{B}(v)} \cdot v \subseteq C_{\infty} .
$$

Hence $\|\sigma\|=\|v\|$ for every measurc σ of the weak-* closure Y of $\bar{B}(v) v=Y_{0}$. It follows as in [13] that the weak -* topology and the norm topology coincide on Y.
Thus Y is compact in $M(G)$ and Y_{0} is norm dense in $M(G)$. In particular, Y is covered by a finite number of sets

$$
U_{a}=\left\{\omega \in M(G):\|\omega-\bar{a} v\|<1-e^{-r}\right\},
$$

with $a \in \mathscr{D}(v)$. We gather that

$$
\begin{equation*}
Y \subseteq \bigcup_{k=1}^{m} U_{a_{k}}, \quad\left\{a_{k}\right\} \subset \mathscr{B}(v) . \tag{3c.2}
\end{equation*}
$$

We shall use (3c.2) to show that $\mathscr{B}(v)$ is a finite union of cosets of some subgroup Λ of Γ. We repeat some details from [13] for the reader's convenience.

We define an equivalence relation on Γ as follows: Define $a \sim b \Leftrightarrow \mathscr{B}(v)-a=\mathscr{B}(v)-b$. So $\mathscr{B}(v)$ is a union of equivalence classes. If $\|\bar{a} v-\bar{b} v\|<1-e^{-r}$, then, in view of (3c.1), $\gamma+a \in \mathscr{B}(v)$ if and only if $\gamma+b \in, B(v)$. By (3c.2), $\mathscr{B}(v)$ is a finite union of equivalence classes. Let F be an equivalence class contained in $\mathscr{B}(v)$ and let $a \in F$. It is clear that $0 \in F-a$. To see that $F-a$ is a group it suffices to show that if b, $c \in F-a$, then $b-c \in F-a$. That is, if $b+a \sim c+a$, then $b-c+a \sim a$. Note that

$$
\begin{aligned}
\mathscr{B}(v)-(b-c+a) & =\mathscr{B}(v)-(b+a)+(c+a)-a \\
& =\mathscr{B}(v)-(c+a)+(c+a)-a \\
& =\mathscr{B}(v)-a .
\end{aligned}
$$

If $a \in F$, then

$$
b \in F-a \Leftrightarrow b+a \sim a \Leftrightarrow b \sim 0 .
$$

The latter condition is independent of F. It follows that every equivalence class F is a coset of the same subgroup A of Γ.

Let $a \in \Gamma$. We claim γ_{α} is eventually out of $\Lambda+a$. Suppose not. Let λ_{a} be
a cofinal subnet of $\left\{\gamma_{\alpha}\right\}$ contained in $\Lambda+a$ such that $\bar{\lambda}_{\alpha} \mu \rightarrow v$. In this case $A \not \subset \operatorname{ker} \phi$ by the definition of γ_{α}. Hence

$$
\begin{equation*}
\Psi_{A}(\bar{a} \mu) \in M_{c}\left(G \mid \Lambda^{+}\right) \tag{3c.3}
\end{equation*}
$$

where $M_{c}\left(G \mid \Lambda^{\perp}\right) \subset M\left(G \mid \Lambda^{\perp}\right)$ is the space of all continuous measures and Ψ_{A} is the canonical map. Notice that

$$
v=\lim \left(\overline{\lambda_{a}} \cdot \mu\right)=\lim \left(\overline{\lambda_{a}-a+a}\right) \mu
$$

Observe that $\left(\overline{\lambda_{\alpha}-a}\right) \Psi_{\Lambda}(\bar{a} \mu) \rightarrow \Psi_{\Lambda}(v)$ weak-* in $M\left(G \mid \Lambda^{\perp}\right)$ since $\left(\overline{\lambda_{a}-a}\right) \in \Lambda$. It follows via $(3 \mathrm{c} .3)$ that $\left(\overline{\lambda_{a}-a}\right) \Psi_{\Lambda}(\bar{a} \mu) \in M_{c}\left(G \mid \Lambda^{\perp}\right)$ and so

$$
\inf \{|\hat{v}(\lambda)|: \lambda \in \Lambda\}=0
$$

This contradicts $\Lambda \subset \mathscr{P}(v)$.
Thus we have confirmed that $\left\{\gamma_{\alpha}\right\}$ eventually leaves $\Lambda+a$ for every $a \in \Gamma$. We show that this implies the existence of a set

$$
\left\{m_{0}\right\} \cup\left\{m_{k s}\right\}, \quad 1 \leqslant k \leqslant r^{2}, 1 \leqslant s \leqslant r
$$

satisfying condition (2) of Theorem A with respect to $\mathscr{F}^{+} \cap \mathscr{P}(\mu)$ and such that

$$
|\hat{\mu}(\gamma)| \leqslant e^{-r}
$$

for $\gamma \in P_{r^{2}} \backslash \mathscr{P}(\mu)$.
Choose any $m_{0} \in \mathscr{B}(\mu) \cap . \mathscr{P}^{+}$. Put $P_{0}=\left\{m_{0}\right\}$. Let $1 \leqslant k \leqslant r^{2}$ and suppose P_{k-1} has been chosen. We inductively choose $\left\{m_{k s}\right\}$ in a way such that

$$
\begin{gather*}
\phi\left(m_{k s}\right)>\phi\left(m_{k t}\right)>0, \quad 1 \leqslant s<t<r ; \tag{3c.4}\\
m_{k s} \in\left\{\gamma_{\alpha}\right\} \backslash\left(P_{k-1}-\mathscr{X}(v)\right), \quad 1 \leqslant s \leqslant r ; \tag{3c.5}\\
\left(P_{k-1}+m_{k s}-m_{k t}\right) \subset \mathscr{F}(\mu), \quad 1 \leqslant s<t \leqslant r . \tag{3c.6}
\end{gather*}
$$

We gather that the set $\left(P_{k-1}-\mathscr{D}(v)\right)$ is a finite union of cosets of Λ, so that $\left\{\gamma_{\alpha}\right\}$ eventually leaves it. Thus we may choose $m_{k r}$ consistent with (3c.5). Suppose for $1 \leqslant j<r$ we have selected $m_{k i}$ consistent with (3c.4), (3c.5) and (3c.6) where $j<i \leqslant r$. Choose $m_{k j}$ satisfying (3c.4) and (3c.5) such that

$$
\begin{equation*}
\left|\left(\bar{m}_{k j} \mu\right)^{\hat{n}}-\hat{v}\right|<1-e^{-r} \quad \text { on } \quad \bigcup_{i>j}\left(P_{k-1}-m_{k i}\right) \tag{3c.7}
\end{equation*}
$$

Let $\gamma=p+m_{k j}-m_{k i}$, and $p \in P_{k-1}$. Then, for $j<i \leqslant r$,

$$
|\hat{\mu}(\gamma)|=\left|\left(\bar{m}_{k j} \mu\right)^{\wedge}\left(p-m_{k i}\right)\right|
$$

so by (3c.7)

$$
\begin{equation*}
|\hat{\mu}(\gamma)|<1-e^{-r}+\left|\hat{v}\left(p \quad m_{k i}\right)\right| . \tag{3c.8}
\end{equation*}
$$

Inasmuch as $p-m_{k i} \in \mathscr{F}(v)$ we gather from (3c.8) that

$$
\begin{equation*}
|\hat{\mu}(\gamma)|<1 \tag{3c.9}
\end{equation*}
$$

Thus $\gamma=p+m_{k j}-m_{k i} \in \mathscr{y}^{+} \cap . \mathscr{F}^{(}(\mu)$ and so Theorem B of Section 1 implies that $\|\mu\| \geqslant r^{1 / 2} / 4$. This contradiction shows that $\phi\left(\mathscr{B}_{8} \cap \mathscr{Y}^{+}\right)$is bounded above. The proof is complete.

Let S be a Sidon set in Γ. Then by Drury's result [8] there is a measure $\sigma \in M(G)$ satisfying
(i) $\hat{\sigma}(S)=0$;
(ii) $1 \leqslant|\hat{\sigma}(\Gamma \backslash S)|<2$;
(iii) the norm of σ depends only on the Sidon constant of S.

For $\mu \in M(G)$ put $\mathcal{f}^{\prime}(\mu)=\left\{\gamma \in \Gamma:|\hat{\mu}(\gamma)|<\frac{1}{2} e^{-r}\right\}$.
Corollary 3c.1. Let $\mu \in M(G)$ with $\mu \phi$-continuous and S a Sidon set. Suppose $\mathscr{P}^{+} \backslash S \subset \mathscr{B} \cup \mathscr{P}^{\prime}$, Then $(\mathscr{P} \backslash S) \cap \mathscr{P}^{+}$is contained in a finite number (depending only on the Sidon constant of S and $\|\mu\|$) of cosets of ker ϕ.

Proof. Consider the measure σ defined by (i), (ii) and (iii). Since $(\sigma * \mu)_{K}=\sigma_{K} * \mu_{K}$ we see that $\sigma * \mu$ is ϕ-continuous since μ is. We apply Theorem 3c to the measure $\sigma * \mu$ to conclude the proof.

Corollary 3c.2. Let $\Gamma=\Gamma_{1} \oplus \cdots \oplus \Gamma_{n}$, where the Γ_{i} are subgroups of \mathbb{R}. Suppose Γ is lexicographically ordered from the left. Let $\mu \in M(G)$ with $\mathscr{P}^{+} \subset \mathscr{D} \cup \mathscr{S}$. Put $\hat{G}_{i}=\{0\} \oplus \cdots \oplus\{0\} \oplus \Gamma_{i} \oplus \cdots \oplus \Gamma_{n}(1<i \leqslant n)$ and suppose $H^{\perp} \not \subset \hat{G}_{I} \Rightarrow \hat{\mu}_{H}\left(\mathscr{P}^{+}\right)=0$. Then there exists $\gamma_{1}, \ldots, \gamma_{N}$ such that

$$
\mathscr{P}^{+} \cap \mathscr{B} \subset \bigcup_{j=1}^{N} \gamma_{j}+\hat{G}_{i} \quad\left(\gamma_{j} \geqslant 0\right)
$$

Proof. Repeated application of Theorem 3c shows that $\mathscr{B} \cap \mathscr{P}^{+}$is contained in a finite number of cosets of \hat{G}_{i}. Theorems A and B of Section 1 now give the full result.

Corollary 3 c .2 will be of use to us in the next section when we prove the semi-idempotent theorem for \mathbb{Z}^{k}.

Theorem 3d. Suppose Γ is ϕ-ordered and $\mu \in M(G)$ is semi-strongly continuous. If. $\mathscr{P}^{+} \subset \mathscr{P} \cup \mathscr{F}$ then $\operatorname{card}\left(\mathscr{B} \cap \mathscr{S}^{+}\right)$is finite.

Proof. Let μ be semi-strongly continuous. Then Corollary 3 shows that μ is ϕ-continuous. Thus Theorem 3c gives

$$
\begin{equation*}
B \cap \bigcup^{+} \subset \bigcup_{i=1}^{N} \gamma_{i}+\operatorname{ker} \phi \quad\left(\gamma_{i}>0\right) \tag{3d.1}
\end{equation*}
$$

for some $\gamma_{1}, \ldots, \gamma_{N} \in \Gamma$.
Put $H=(\operatorname{ker} \phi)^{\perp}$ and consider $\rho_{i}=\Psi_{H}\left(\bar{\gamma}_{i} \mu\right), \quad i=1,2, \ldots, N$. For every closed subgroup G_{0} of $G \mid H$ of infinite index we have

$$
\begin{equation*}
\left(\rho_{i}\right)_{G_{0}}(\gamma)=0 \quad \text { for all } \quad \gamma \in \operatorname{ker} \phi \tag{3d.2}
\end{equation*}
$$

In light of (3d.1) and (3d.2) the Ramsey-Wells Theorem applies to give that the cardinality of $\mathscr{B} \cap \mathscr{P}^{+}$is finite. A routine appeal to Theorems A and B of Section 1 establishes that

$$
\operatorname{card}\left\{\mathscr{B}^{\circ} \cap \mathscr{P}^{+}\right\}<N
$$

if Γ is torsion free. This concludes the proof.
Corollary 3d. Suppose Γ is ϕ-ordered and $\mu \in M(G)$ is semi-strongly continuous. Let S be a Sidon subset of Γ such that $\mathscr{P}^{+} \backslash S \subset \mathscr{B} \cup \mathscr{F}^{\prime}$. Then $\operatorname{card}\left\{(\mathscr{B} \backslash S) \cap \mathscr{P}^{+}\right\}$is finite.

Theorem 3e. Suppose Γ is fully ordered and $\mu \in M(G)$ is semi-strongly continuous. If $\mathscr{P}^{+} \subset \mathscr{B} \cup \mathscr{F}$ then card $\left\{\mathscr{P} \cap \mathscr{P}^{+}\right\}<N$.

Proof. Suppose $\Gamma=\mathbb{Z}^{k}$ for some $k \in \mathbb{N}$. Then by [7, p. 104]

$$
\mathbb{Z}^{k} \cong \mathbb{Z}^{k_{1}} \oplus \cdots \oplus \mathbb{Z}^{k_{m}},
$$

where each $\mathbb{Z}^{k_{i}}$ is Archimedean ordered and the ordering on \mathbb{Z}^{k} is lexicographic from left to right. The proof of the present theorem is by induction on the number of summands, m.

If $m=1$ then the order on \mathbb{Z}^{k} is Archimedean. By Theorem 3c

$$
\operatorname{card}\left\{\mathscr{B} \cap . \mathscr{P}^{+}\right\}<N .
$$

So, suppose $m \neq 1$. Assume the result is true whenever the number of summands is less than m. Let ϕ be the natural projection such that

$$
\phi: \mathbb{Z}^{k} \rightarrow \mathbb{Z}^{k_{1}}
$$

Put $\mathscr{P}_{\phi}^{+}=\left\{\gamma \in \mathbb{Z}^{k}: \phi(\gamma)>0\right\}$. Since $\mathscr{F}_{\phi}^{+} \subset \mathscr{B} \cup \mathscr{S}$, Theorem 3d gives

$$
\begin{equation*}
\operatorname{card}\left\{\mathscr{B} \cap \mathscr{P}_{\phi}^{+}\right\} \text {is finite. } \tag{3e.1}
\end{equation*}
$$

Restrict $\hat{\mu}$ to the group $\{0\} \oplus \mathbb{Z}^{k_{2}} \oplus \cdots \oplus \mathbb{Z}^{k_{m}}=\mathbb{Z}_{2}$.

$$
\begin{equation*}
\left\{\Psi_{\mathbb{Z}_{2}^{\prime}}(\mu)\right\}^{\wedge}=\left.\hat{\mu}\right|_{\mathbb{Z}_{2}} . \tag{3e.2}
\end{equation*}
$$

Since $\Psi_{\mathbb{Z}_{2}^{\perp}}(\mu)$ is a semi-strongly continuous measure belonging to $M\left(\mathbb{Z}^{k} / \mathbb{Z}_{2}^{\perp}\right)$ we may apply the inductive assumption to conclude via (3e.1) and (3e.2) that

$$
\operatorname{card}\{\mathscr{B} \cap . \mathscr{P}+\} \text { is finite. }
$$

Appeal to Theorems A and B of Section 1 yields card $\left\{\mathscr{B} \cap \mathscr{P}^{+}\right\}<N$ and this concludes the proof for \mathbb{Z}^{k}.

Now suppose Γ is fully ordered. Suppose μ satisfies $\mathscr{P}^{+} \subset \mathscr{B} \cup \mathscr{S}$ and card $\left\{\mathscr{B}^{\circ} \cap . \mathscr{P}^{+}\right\} \geqslant N$. Pick N distinct elements in $\mathscr{B} \cap \mathscr{P}^{+}$and consider the subgroup \mathbb{Z}^{k} generated by these characters. Put $\left(\mathbb{Z}^{k}\right)^{\perp}=G_{0}$. Clearly,

$$
\left\|\Psi_{G_{0}}(\mu)\right\| \leqslant\|\mu\|
$$

and $\Psi_{G_{0}}(\mu)$ is semi-strongly continuous with respect to the induced ordering on \mathbb{Z}^{k}. Put $\mathscr{D}^{1}=\mathscr{B}\left(\Psi_{G_{0}}(\mu)\right)$. Then by our result for \mathbb{Z}^{k} we have $\operatorname{card}\left(\mathscr{y}^{+} \cap, \mathscr{D}^{1}\right)<N$. This contradicts card $\left(\mathscr{P}^{+} \cap \cdot \mathscr{B}^{1}\right) \geqslant N$. Our proof is complete.

Corollary 3e. Suppose Γ is fully ordered and $\mu \in M(G)$ is semistrongly continuous. Let S be a Sidon subset of Γ such that $. \mathscr{P}^{+} \backslash S \subset \mathscr{B} \cup . \mathscr{F}^{\prime}$. Then card $\left.\{\mathscr{B} \backslash S) \cap \mathscr{P}^{+}\right\}$is finite and depends only on the Sidon constant of S and $\|\mu\|$.

4. Semi-idempotents and ϕ-Continuous Measures

In this section we exhibit a connection between semi-idempotents on ϕ ordered groups and ϕ-continuous measures. We first re-prove the semiidempotent theorem of Section 2 for ϕ-ordered groups since the technique involved may be of some interest. The section concludes with a proof of the semi-idempotent theorem for fully ordered groups. As a special case of our semi-idempotent theorem we obtain the result announced by Kessler in [6].

Theorem 4a. Let Γ be ϕ-ordered and suppose $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash S\right)$ with S a Sidon set in Γ. Then there exists $v \in M(G)$ such that $v \in F\left(N_{1}, \ldots, N_{j} ; \Gamma\right)$ satisfying
(a) $\hat{v}=\hat{\mu}$ on $\mathscr{P}^{+} \backslash S$;
(b) $\|\nu\|$ is bounded by a constant depending only on $\|\mu\|$ if S is empty;
(c) If ϕ is an isomorphism, or Γ is torsion free, then $\|v\|$ is bounded by, a constant depending only on $\|\mu\|$ and the Sidon constant of S.

Proof. Let μ satisfy the hypothesis of the present theorem. For simplicity assume $S=\phi$. Then

$$
\begin{equation*}
\prod_{i=1}^{j}\left(\mu-\delta_{i}\right) \in M_{\varphi}(G) \tag{4a.1}
\end{equation*}
$$

where $\delta_{i}=N_{i} \delta_{0}$. Thus, we gather from (4a.1) and Corollary 2 of Section 3 that

$$
\prod_{i=1}^{j}\left(\mu_{K}-\delta_{i}\right)=0
$$

for all $K \in \mathscr{M}$.
Suppose $\exists K_{1} \in \mathscr{K}$ such that $\mu_{1}=\mu_{K_{1}} \neq 0$. Inasmuch as

$$
\begin{equation*}
\left\|\mu-\mu_{1}\right\| \leqslant\|\mu\|-1 \tag{4a.2}
\end{equation*}
$$

and

$$
\prod_{i=1}^{m}\left(\mu-\mu_{1}-\rho_{i}\right) \in M_{\phi}(G)
$$

where $\rho_{i}=M_{i} \delta_{0}, M_{i} \in \mathbb{Z}$, we can repeat the argument for $\prod_{i=1}^{m}\left(\mu-\mu_{1}-\rho_{i}\right)$.

As a consequence of (4a.2) this finite descent argument ends in a number of steps $\leqslant\|\mu\|$ with

$$
\begin{equation*}
\mu=\mu_{1}+\cdots+\mu_{n}+v \tag{4a.3}
\end{equation*}
$$

where v is ϕ-continuous and each $\hat{\mu}_{i}$ is integer-valued. Applying the main result of the previous section to v we gather that for some $\gamma_{i}, i=1,2, \ldots, N$,

$$
\begin{equation*}
\bigcup_{i=1}^{N}\left(\gamma_{i}+\operatorname{ker} \phi\right) \supset\left\{\gamma \in \mathscr{P}^{+}:|\hat{v}(\gamma)| \neq 0\right\} \quad\left(\gamma_{i}>0\right) \tag{4a.4}
\end{equation*}
$$

Here N has the same relation to $\|\mu\|$ as in the main result of the preceding section.

It now follows from (4a.4) that we may interpolate \hat{v} on \mathscr{P}^{+}by the sum of the restrictions of \hat{v} to the cosets $\gamma_{i}+\operatorname{ker} \phi$ in (4a.4). Composing the integervalued transform which interpolates $\hat{\mu}$ on \mathscr{P}^{+}with the appropriate polynomial now proves the theorem if $S=\phi$. If $S \neq \phi$, we use Corollary 3c.I to obtain the full theorem.

In order to prove the semi-idempotent theorem for fully ordered groups we shall need the following two propositions.

Proposition 4b. Let Γ be fully ordered and suppose $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash S\right)$ with S a Sidon set in Γ. Then for every $H \in \notin, \mu_{H} \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{H}^{+}\right)$.

Proof. Suppose $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{O}^{+} \backslash S\right)$ and $H \in \mathscr{K}$. By Drury's result there exists and $\xi^{\epsilon} \in M(G)$ such that

$$
\begin{equation*}
\left(\xi^{\xi}\right)(S)=0 \quad(0<\varepsilon<1) \tag{4b.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi^{\epsilon \epsilon}(\Gamma \backslash S) \subset(1-\varepsilon, 1+\varepsilon) . \tag{4b.2}
\end{equation*}
$$

Recall that for any $\gamma \in \Gamma, \gamma \xi_{H}^{\epsilon}$ restricted to H^{\perp} is an almost periodic function. As a consequence of $[8, \mathrm{p} .48]$ and (4b.2),

$$
\begin{equation*}
\xi_{H}^{\epsilon}(\Gamma) \subset(1-\varepsilon, 1+\varepsilon) . \tag{4b.3}
\end{equation*}
$$

By Theorem E we also know that

$$
\left(\hat{\mu}_{H} \cdot \xi_{H}^{\epsilon}\right)\left(\mathscr{P}^{+}\right) \subset\left(\hat{\mu} \cdot \xi^{\epsilon}\right)\left(\mathscr{P}^{+}\right)^{-} .
$$

Thus, if $\gamma_{0} \in \mathscr{P}^{+}$and $\hat{\mu}_{H}\left(\gamma_{0}\right) \neq 0$ we gather that

$$
\begin{equation*}
\hat{\mu}_{H}\left(\gamma_{0}\right) \cdot(1-\varepsilon, 1+\varepsilon) \subset \bigcup_{i} N_{i}(1-\varepsilon, 1+\varepsilon) \quad\left(N_{i} \neq 0\right) \tag{4b.4}
\end{equation*}
$$

Let $\varepsilon \rightarrow 0$. We gather from (4b.4) that $\hat{\mu}_{H}\left(\gamma_{0}\right) \in\left\{N_{1}, \ldots, N_{j}\right\} \backslash\{0\}$. This concludes the proof.

Proposition 4c. Let $\Gamma=\Gamma_{1} \oplus \cdots \oplus \Gamma_{n}$, where $\Gamma_{i}(i=1,2, \ldots, n)$ is any subgroup of \mathbb{R}. Suppose Γ is lexicographically ordered from the left. If $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash S\right)$ and $H^{\perp} \nsubseteq\{0\} \oplus \cdots \oplus\{0\} \oplus \Gamma_{j} \oplus \Gamma_{j+1} \oplus \cdots \oplus \Gamma_{n}$ for some $1<j \leqslant n$, then

$$
\hat{\mu}_{H} \text { is integer-valued on }\{0\} \oplus \cdots \oplus\{0\} \oplus \Gamma_{j-1} \oplus \Gamma_{j} \oplus \cdots \oplus \Gamma_{n} .
$$

Proof. From Proposition 4b we know that $\hat{\mu}_{H}$ restricted to \mathscr{P}^{+}is integervalued. Fix $\gamma \in \Gamma$ and consider $\gamma \mu_{H}$. Our result now follows from the almost periodicity of the function $\hat{\mu}_{H}(\beta-\gamma), \beta \in H^{\perp}$.

We now prove the semi-idempotent theorem for fully ordered groups. The proof uses the result of the previous section on semi-strongly continuous measures.

Theorem 4d. Let Γ be fully ordered and suppose $\mu \in F\left(N_{1}, \ldots, N_{j}: \mathscr{P}^{+} \backslash S\right)$ with S a Sidon set in Γ. Then there exists $v \in M(G)$ such that $v \in F\left(N_{1}, \ldots, N_{j} ; \Gamma\right)$ satisfying
(a) $\hat{v}=\hat{\mu} \quad \operatorname{Po}^{+} \backslash S$,
(b) $\|v\| \quad$ is bounded by a constant
depending only on $\|\mu\|$ and the Sidon constant of S.
Proof. We first prove our theorem for \mathbb{Z}^{k}. The general case is obtained by a transfinite induction argument which was suggested to the authors by a reading of [6].

Assume

$$
\mathbb{Z}^{k} \cong \Gamma_{1} \oplus \cdots \oplus \Gamma_{n}
$$

where the Γ_{i} are finitely generated subgroups of \mathbb{R} and the order is lexicographic (from left to right). We know all full orders on \mathbb{Z}^{k} are obtained this way; see [7, p. 104].

Let $\mu \in M\left(\mathbb{T}^{k}\right)$ such that $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash S\right)$. We suppose that $n>1$ or else we are back in the Archimedean ordered case. Put

$$
\mathbb{Z}_{t}=\{0\} \oplus \cdots \oplus\{0\} \oplus \Gamma_{t} \oplus \Gamma_{t+1} \oplus \cdots \oplus \Gamma_{n}
$$

where $1<t \leqslant n$. Denote by \mathscr{K}_{t-1} the family of subgroups K of \mathbb{T}^{k} satisfying

$$
\begin{equation*}
K^{\perp} \nsubseteq \mathbb{Z}_{t} \tag{4d.1}
\end{equation*}
$$

It follows from Proposition 4c that

$$
\mu_{\kappa} \in F\left(N_{1}, \ldots, N_{j}, \Gamma\right)
$$

if $K \in \mathscr{H}_{1}$. Suppose there exists a $K_{1} \in \mathscr{K}_{1}$ such that $\mu_{K_{1}} \neq 0$. Put $\mu_{K_{1}}=p_{1}$ and notice that

$$
\begin{equation*}
\left\|\mu-\rho_{1}\right\| \leqslant\|\mu\|-1 \tag{4~d.2}
\end{equation*}
$$

Since $\left(\mu-\rho_{1}\right)^{\wedge}$ is integer-valued off $-\mathscr{P} \cup S$ we again apply argument to $\mu-\rho_{1}$ being careful to pick only subgroups which belonging to \mathscr{K}_{1}. This argument ends in a finite number of steps with the result that

$$
\begin{equation*}
\mu=\rho_{1}+\rho_{2}+\cdots+p_{r}+\eta \tag{4d.3}
\end{equation*}
$$

where each $\hat{\rho}_{i}$ is integer-valued and η is ϕ_{1}-continuous. Here

$$
\phi_{1}: \mathbb{Z}^{k} \rightarrow \Gamma_{1}
$$

is the natural projection of \mathbb{Z}^{k} into the "ordering coordinate." Put $\mu_{1}=\rho_{1}+\cdots+\rho_{r}$. Notice in (4d.3) that $\hat{\eta}$ is integer valued off $-\mathscr{F} \cup S$. By

Proposition $4 \mathrm{c}, \hat{\eta}_{K}$ is integer-valued on \mathbb{Z}_{2} for all $K \in \mathscr{K}_{2}$. Suppose $\hat{\eta}_{K_{2}}\left(\gamma_{0}\right) \neq 0$ for some $\gamma_{0} \in \mathscr{F}^{+}$and $K_{2} \in \mathscr{K}_{2}$. Put $\eta_{K_{2}}=\eta_{1}$. Then

$$
\begin{equation*}
\left\|\eta-\eta_{1}\right\| \leqslant\|\eta\|-1 \tag{4d.4}
\end{equation*}
$$

Since $\left(\eta-\eta_{1}\right)^{\wedge}$ is integer-valued off $-\mathscr{P} \cup S$ we again apply argument to $\eta-\eta_{1}$ being careful to pick only subgroups in \mathscr{K}_{2}. This argument ends in a finite number of steps with the result that

$$
\begin{equation*}
\eta=\eta_{1}+\eta_{2}+\cdots+\eta_{m}+\xi \tag{4d.5}
\end{equation*}
$$

each $\hat{\eta}_{i}$ integer-valued on \mathbb{Z}_{2}. Put $\sum_{i=1}^{m} \eta_{i}=\mu_{2}$. Then by the main result of the previous section we know there are $\beta_{i}, i=1,2, \ldots, N$, such that

$$
\begin{equation*}
\mathscr{B}\left(\mu_{2}\right) \cap \mathscr{P} \subset \bigcup_{i=1}^{N} \beta_{i}+\mathbb{Z}_{2} \tag{4d.6}
\end{equation*}
$$

since $\left(\mu_{2}\right)_{K}=0$ all $K \in \mathscr{K}_{1}$. Moreover, $\hat{\mu}_{2}$ is integer-valued on \mathbb{Z}_{2}. We gather that there exists a $v_{2} \in M\left(\mathbb{T}^{k}\right)$ such that $\hat{v}_{2}=\hat{\mu}_{2}$ on \mathscr{F}^{+}satisfying
(i) \hat{v}_{2} is integer-valued on \mathbb{Z}^{k};
(ii) $\left\|v_{2}\right\| \leqslant N\left\|\mu_{2}\right\|$.

In (4d.5) recall that $\xi_{K}\left(\mathscr{P}^{+}\right)=0$ for all $K \in \mathscr{\mathscr { K } _ { 2 }}$ and that ξ is integervalued off $-\mathscr{P} \cup S$. Suppose there exists a $K_{3} \in \mathscr{K}_{3}$ such that $\xi_{K_{3}}\left(\gamma_{0}\right) \neq 0$ for some $\gamma_{0} \in \mathscr{P}^{+}$. Put $\xi_{K_{3}}=\xi_{1}$ and notice that

$$
\begin{equation*}
\left\|\xi-\xi_{1}\right\| \leqslant\|\xi\|-1 \tag{4d.7}
\end{equation*}
$$

Since $\left(\xi-\xi_{1}\right)^{\wedge}$ is integer-valued off $-\mathscr{P} \cup S$ we apply argument to $\xi-\xi_{1}$ being careful to pick only subgroups in \mathscr{F}_{3}. The argument ends in a finite number of steps with the result that

$$
\begin{equation*}
\xi=\xi_{1}+\xi_{2}+\cdots+\xi_{l}+\rho, \tag{4d.8}
\end{equation*}
$$

where each ξ_{i} is integer-valued on \mathbb{Z}_{3}. Put $\sum_{1}^{l} \xi_{i}=\mu_{3}$. Corollary 3 c .2 of the previous section now shows that for some $\gamma_{i}, i=1,2, \ldots, N$,

$$
\begin{equation*}
\mathscr{B}\left(\mu_{3}\right) \cap \mathscr{P} \subset \bigcup_{i=1}^{N} \gamma_{i}+\mathbb{Z}_{3}, \tag{4d.9}
\end{equation*}
$$

because $\left(\mu_{3}\right)_{K}^{\sim}\left(\mathscr{S}^{+}\right)=0 \forall K \in \mathscr{K}_{2}$. Thus we interpolate $\hat{\mu}_{3}$ on \mathscr{F}^{+}by an integer-valued transform \hat{v}_{3} such that

$$
\left\|v_{3}\right\| \leqslant N\left\|\mu_{3}\right\| \leqslant N\|\mu\| .
$$

This finite descent argument ends by showing that

$$
\mu=\mu_{1}+\mu_{2}+\cdots+\mu_{s}+\tau
$$

with $\hat{v}_{i}=\hat{\mu}_{i}$ on $\mathscr{P}^{+}(i=2,3, \ldots, s), s \leqslant\|\mu\|$. It is also clear that τ is semistrongly continuous. By the corollary to Theorem 3 e , we see that \hat{t} coincides with the transform of a trigonometric polynomial \hat{t} on $\mathscr{P}^{+} \backslash S$. The norm of this trigonometric polynomial depends only on the Sidon constant of S and $\|\mu\|$. Put $\mu_{1}=v_{1}$. Then for the v of our theorem take $\sum_{i=1}^{S} v_{i}+t$ composed with an appropriate polynomial. Since $\left\|v_{i}\right\| \leqslant N\|\mu\| \quad(i=1,2, \ldots, s)$, $\sum_{i=1}^{S}\left\|v_{i}\right\| \leqslant N\|\mu\|^{2}$. This proves the theorem for $I=\mathbb{Z}^{k}$.

Next, let Γ be countable with

$$
\Gamma=\bigcup_{i=1}^{\infty} \Gamma_{i}
$$

where $\Gamma_{i+1} \supset \Gamma_{i}$ and each Γ_{i} is finitely generated. Let $\mu \in M(G)$ with $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \cap S\right)$. Then if we restrict $\hat{\mu}$ to Γ_{i} by defining

$$
\hat{\omega}_{i}(\gamma)=\hat{\mu}(\gamma), \quad \gamma \in \Gamma_{i}
$$

there is a $\sigma_{i} \in M\left(G / \Gamma_{i}^{\perp}\right)$ such that

$$
\hat{\sigma}_{i}(\gamma)=\hat{\omega}_{i}(\gamma), \quad \gamma \in \Gamma_{i} \backslash(-\mathscr{P} \cup S),
$$

and

$$
\sigma_{i} \in F\left(N_{1}, \ldots, N_{j} ; \Gamma_{i}\right)
$$

Put

$$
\zeta_{i}(\gamma)=\hat{\sigma}_{i}(\gamma), \quad \gamma \in \Gamma_{i}
$$

and

$$
\zeta_{i}(\gamma)=0 \quad \text { if } \quad \gamma \in \Gamma \backslash \Gamma_{i} .
$$

We need to show $\left\|\zeta_{i}\right\|=\left\|\sigma_{i}\right\|$. Consider the continuous linear functional on $C(G)$ defined by

$$
T(f)=\int_{G / \Gamma_{i}^{\perp}} \int_{G} \overline{f(x y)} d m_{G}(x) d \sigma_{i}(y)
$$

where m_{G} is the Haar measure on $G .\|T\|=\left\|\sigma_{i}\right\|$. For $\gamma \in \Gamma_{i}$,

$$
\begin{aligned}
T(\gamma) & =\int_{G / \Gamma_{i}^{\perp}} \int_{G} \bar{\gamma}(x y) d m_{G}(x) d \sigma_{i}(y) \\
& =\int_{G / \Gamma_{i}^{\perp}} \int_{G} \bar{\gamma}(y) d m_{G}(x) d \sigma_{i}(y) \\
& =\int_{G / \Gamma_{i}^{\perp}} \bar{\gamma}(y) d \sigma_{i}(y)=\hat{\sigma}_{i}(\gamma) .
\end{aligned}
$$

Now, for $\gamma \in \Gamma \backslash \Gamma_{i}$,

$$
\int_{G / \Gamma_{i}^{\dot{1}}} \int_{G} \bar{\gamma}(x y) d m_{G}(x) d \sigma_{i}(y)=0 .
$$

Thus ζ_{i} is the measure corresponding to T by the Riesz Representation Theorem.

Inasmuch as $\left\|\sigma_{i}\right\|$ depends only on $\|\mu\|$ and the Sidon constant of S, if follows that any weak-* cluster point v of $\left\langle\sigma_{i}\right\rangle$ interpolates $\hat{\mu}$ off $-\mathscr{P} \cup S$ with the required bound on $\|v\|$.

The proof for the general case is obtained by a transfinite induction argument on the cardinality of Γ. Let y_{0} be the smallest ordinal number such that the set Y of predecessor's of y_{0} has the cardinality of Γ. Let γ_{y} denote the $1-1$ correspondence between Y and $\Gamma \backslash\{0\}$.

For each $y \in Y$ put Γ_{y} equal to the group generated by $\left\{\gamma_{x}: x \leqslant y\right\}$. Then $\Gamma=\bigcup_{y \in Y} \Gamma_{y}$ and if $y_{1}<y_{2}$ then $\Gamma_{y_{1}} \subset \Gamma_{y_{2}}$. Note also that card $\Gamma_{y}<\operatorname{card} \Gamma$ for all $y \in Y$ and card Γ_{y} is infinite.

Suppose $\mu \in M(G)$ and $\mu \in F\left(N_{1}, \ldots, N_{j} ; \mathscr{P}^{+} \backslash S\right)$. Then if we restrict $\hat{\mu}$ to Γ_{y} we can find a net $\lambda_{y} \in M(G)$ with $\hat{\lambda}_{y}=\hat{\mu}$ for all $\gamma \in \Gamma_{y} \backslash\left(\mathscr{P}^{+} \backslash S\right)$ satisfying
(a) $\lambda_{y}=0$ off $\Gamma_{y} ;$
(b) $\lambda_{y} \in F\left(N_{1}, \ldots, N_{j} ; \Gamma\right)$;
(c) $\left\|\lambda_{y}\right\| \leqslant M$.

Thus any weak-* cluster point of the net λ_{y} is the required v which interpolates $\hat{\mu}$ off $-\mathscr{P} \cup S$. This concludes our proof.

For some related work the reader is referred to [11].

Acknowledgments

The results of this paper were presented in the harmonic analysis seminar at Kansas State University in 1977-1978. We take pleasure in thanking Robert E. Dressler and Karl Stromberg for helpful conversations.

References

1. H. Divenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93-97.
2. K. de Leeuw and Y. Katznelson, The two sides of a Fourier-Stieltjes transform and almost idempotent measures, Israel J. Math. 8 (1970), 213-229.
3. I. Glicksberg and I. Wik, The range of Fourier-Stieltjes transforms of parts of measures, in Conference on Harmonic Analysis, pp. 73-77, Lecture Notes in Mathematics, No. 266, Springer-Verlag, Berlin/New York, 1972.
4. C. Graham and O. C. McGehee, "Essays in Commutative Harmonic Analysis," Springer-Verlag, Heidelberg/New York, 1979.
5. H. Helson, On a theorem of Szegö, Proc. Amer. Math. Soc. 6 (1955), 235-242.
6. I. Kessler, Semi-idempotent measures on Abelian groups, Bull Amer. Math. Soc. 73 (1967). 258-260.
7. A. I. Kokorin and V. M. Kopylov, "Fully Ordered Groups," Wiley, New York/Toronto, 1974.
8. J. M. López and K. A. Ross, "Sidon Sets," Dekker, New York, 1975.
9. Y. Meyer, "Algebraic Numbers and Harmonic Analysis," North-Holland, Amsterdam, 1973.
10. L. Pigno, Transforms vanishing at infinity in a certain direction and semi-idempotent measures, Math. Scand. 41 (1977), 153-158.
11. L. Pigno and B. Smith, Almost idempotent measures on compact Abelian groups, J. Funct. Anal. 38 (1980), 61-70.
12. L. T. Ramsey, Fourier-Stieltjes transforms of measures with a certain continuity property, J. Funct. Anal. 25 (1977), 306-316.
13. L. T. Ramsey and B. B. Wells, Fourier-Stieltjes transforms of strongly continuous measures, Michigan Math. J. 24 (1977), 13-19.
