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In this paper we show that almost every sample function of the N-parameter Bessel process 
associated with the N-parameter Wiener process has a local maximum. In addition some properties 
related to the local maxima are investigated. 

r rsample functions Wiener process 
‘Bessel process local maxima 1 

1. Introduction and preliminaries 

Let WtN’ be the N-parameter Wiener process, that is a real-valued separable 
Gaussian process with zero means and covariance n: 1 (si A ti) where s = (Si), t = (ri), 
SiaQ, tia0, i=l,...,N. Then W’N*d’ is to be the process with values in the 
d-dimensional Euclidean space R d such that each colmponent is an N-param,eter 
Wiener process, the components being independent. Write W = W(N.d’ for simpli- 
city, and denote the ith component ‘of W by W’. Define the N-parameter Bessel 
process associated with W by 

It is shown that almost every sample function of B, has a local maximum. 
Furthermore, some properties related to the local maxima of B, are investigated. 

As in Orey and Pruitt [S]‘, our parameter space is R y, that is the set of t E RN with 

all components nonnegative. When dealing with a point t in the parameter space we 
sometimes write t = (tl, . . . , tN) or simple (ti). In case all fi = 0, we write t = (0). For 
s = (si) and t = (ti) with Si s ti, the interval X:1 [sip ti] is denoted by A(s, t), and by 
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A(t) in case s = (0). Denote by S(s, t), the symmetric difference of A(s) and A(t). 
Then it is easy to check that ifs, t E I?:, the variance of Wi(t) - W’(s) is IS(s, t)l where 
1.1 denotes the N-dimensional Lebesgue measure. Furthermore, W has continuous 
sample functions and independent increments. We denote the increment of W over 
A(s, t) by W(A (s, t)). For further information on W, the reader is referred to [I, 
4-13-j. 

Local maxima of the sample functions of the two-parameter Wiener process have 
been studied by Tran [8]. However, due to the complex sample function behavior 
of the N-parameter Bessel process and the complicated geometrical structures in 
higher dimensions, Tran’s method does not provide a simple generalization to the 
problem considered in this paper. A much more involved argument is needed 
here. 

Throughout the paper, we will assume that a set of probability zero has been 
deleted from the probability space so that all sample functions of B, are continuous. 

Definition I. The sample function B( - , to) has a local maximum at s if there 
exists an open set 0 containing s such that 0 c I?: and B(t, O) sB(s, W) for all 
EO. 

We shall need the Orey-Pruitt analogue of the familiar zero-one law. Let Ce, be the 
class of time intervals in I?? with vertices of the form (ki2-“), ki nonnegative 
integers, and having all sides of equal length, and for n > 0 each member of %‘n is to be 
a. subcube of one in %o. Let Voo =UrsO (&,, and 9n = a( W(A), A E %T,,), 3Fa = 
VrzO gn. Thus 9’ is the Bore1 field generated by the indicated class of random 
variables and & is the smallest Bore1 field including all sn. For a subset D of 
I??, we put V,(D) ={A E %,,:A c D}, &(D) = B{ W(A):A E V,(D)), S&,(D) = 
\ir=, Sri(D) then we have the following lemma. 

Lemma 1 ([S]). Let D, c R y, m = 1,2, . . . , with D, & 0. If A E %(Dm) for every m, 
then P(A) = (0, 1). 

Lemma 2. Let Q be a nonnegative, nondecreasing, continuous function defined for 
i’arge arguments. Then for almost all cc) there is an E (w ) such that for all intervals A (s, t) 
with A (s, t) c A ((1)) and IA (s, t)l < E (w), 

I W(A (s, t))l == IA (s, t)l”*4(lA (s, d-‘) 

if and only if 

(log 5) 
3N+d/2-2 

e-42(6)‘2 d5 

converges. 

For the proof of Lemma 2, see [S, p. 1471. 
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In this sectici we prove the main theorem dealing with thle existence of the local 
maxima of the sample functions1 of the Bessel process &. 

Theorem I. For almost all sam,ple functions of the Bessel process B, defined irr (l), 
there exists a local maximum. 

Proof. Let s be the center of the unit interval U, and let C,, c Lr be a cube with center 
at s, sides parallel to the coordinate axes and equal to a,. Let u n and vn be the 
smallest and the largest vertex of C’,, i.e. closest and farthest from the origin (0). Pick 
C,, with min(u7,. . . , u&)>& 

Consider two points snk and vnk of 4cy determined by sik =$, v;” = v& sl” = 
vlk=uy forjfk where lcj<AT. 

Define 

A,i = fi [ Wi(snk) - W’(u) > 2a!,12, Wi(snk) - Wi(vnk) > 2aL’2], 
k=l 

Bni = fi [ Wi(snk) - W’(U) < -2aff2, Wi(snk) - Wi(vnk) < -2ai’*], 

Cni = [,‘,“,f Wf 2 01, Eni = [SUP Wf S 01, 
n CCC” 

Fni = [ SUP 1 W’(A(s, t))l C (2N-’ - 1)-1aA’2 : 
s,tE: u 

Isj - ti 1 s a, for some i, j with i # j] 

The variables Wi(snk)- W’(u), Wi(snk)- Wi(vnk) i tre normally distributed with 

mean 0 and variances greater than 4 -N+1’2an. Thus P(Ani) > p for some constant p. 
Let {a,) be a sequence of positive numbers with an i 0 and let 13, be the interior of 

S(un, v”). Clearly WnJ p) as ani (21. Observe that the event [Ani infinitely often] E 
&(Dn). Thus, from Lemma 1, it follows that 

P[A+ infinitely often] = 1. 

Analogously, 

P[Bni infinitely often] = 1. 

Let rp > 0. Then by Lemma 2, or by the continuity of the sample functions of \%I9 

[ 
6 Cn,I 4>7j 4 asnO+~. 

n=no 1 
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Furthermore, 
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[A&ni infinitely often] 2 P [ (Ani infinitely often) fi 
n=no 

Cni] 

Since P[ Wi > +J converges to 4 as 7 + 0, by picking q small enough and then ~1~ large 
enough, the probability of the last event can be made as close to 4 as desired. 

It is now clear that 

P[A,iCni v B,i.Epgi) i-0.) = 1. 

Also, by Lemma 2 and by the independence of the components of W 

h (A,iCniFni U B,iEniFni) i.o. = 1. 
i = 1 1 

We claim that 

[ fi (A&‘niFni ” B,,E.,F.,)] C [SUP Bt > SUP Bt]* 
i = 1 tee; tcac, 

(2) 

(3) 

Observe that [n;+, (A&niFni v B,iEniF”i)] can be written as the union of 2d events. 
Each of these events is the intersection of d sets with the ith set (1 s i s d) being 
either A&n&i of B,iEniFni. TO complete the proof of (3), it is sufficient to show that 
every one of these 2d events is a subset of [sup,,~ B, > SUptEaC,, B,]. Without loss of 
generality we will show 

[ A &GP.ni] c [::s Bt ’ SUP BtI* 
i = 1 n teat, 

(4) 

A slight variation of the proof along the same lines can be applied to show that the 
remaining 26 - 1 events are also subsets of [sup,,c B, > sul>tEac, B,]. 

Let t e K, where X,, is the boundary of C,,, and let 

where 

Observe 
Let 

C(ti) = 
i 

t i, if U~<ti<V~y 

S i, otherwise. 

that pt lies in the interior of C,. 

H, = n { fi [W’(p’)- w’(t):*a:/2]}. 
tcac, i=l 
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We will complete the proof of (4) by P*- qwing 

[ h An,C.tEni] c [H, 0 Cni] 3 

i = 1 
(3 

(6) 

Observe that for any 1 s i 6 d, 

W’(p”)- W’(t) = W’((u(t,), t2, . . . , tfv))- W’((t,, t2, * 0 . , trv)i 

-I- W’(b(td, u(t2), t3, l l ’ 9 thr)) - W’((td, t2, ’ l l 9 thr)) 

+* l 
l + W’((&I), &a), l . . 3 u(k))) - w’((&I), l l 0 3 &V-l), tN))* (7) 

Consider the random variable 

w’((u(tl), l l 9 9 u(fj-l), u(tj), tj+l, l l l 9 fN)) 

The variance of this variable is equal to 

(ull’+er;)* l ’ (Uy_, +e~JU(tj)-tjl(Uy+l +ey+l) l l l (ub+e;t) (9) 

where 0 G el G a,. Observe that (9) can be expanded into a sum of 2N-’ terms. At this 
point, it is easy to see that (8) is equal to 

W’((z& . . ” , Uy-19 u(tj), Uy-t-19 l l l 9 U;t)) 

- W’((U;, . . s 3 Uin_l, tj, UT+l, m l l 9 Uk>)+Li 

where L’ can be decomposed into no more than 2N-’ - 1 random variables, such that 
each random variable is the increment of W’ over r.n interval in U with at least two 
sides smaller than or equal to a,. 

The random variables in (8) is zero if u( tj) = tja Assume a( ti) f tj and let 

w E rf= 1 A&p&i]. Then o E & for each i. Hence 

p?(w)J c (2N-1 - l)(2N-1 - 1)-‘ay2 = lzy2. 

NOW, U(tj) = $ and tj = ur or U: since u(tj) # tj. Therefore 

w’((u;, . . . , Uin_l, U(tj), Uy+l, l l l 9 U;tr>, 03 

- W’((Uy, . . . 3 Uin_l, tj, Uy+l, l . * 9 Uk), mb 

I 

W’(s”j, w) - W’(u, w), if tj = Uy, 

= 

i(vnj, w), if ti = vy, 
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which is greater than 2ai’” since o E A,i. We obtain 

w’((u(tl), l l l 9 u(tj-I), n(tj), tj+l, l l l 9 tN), w) 

By (71 and (10) we have 

W’(P’, w)- Vyi(t, o)>[# Ofj’S, 1 ej<N, with V(tj)# tj]ai’*. 

If t E aCn, tj is equal to cry or vi” and a&) = $ for some 16 j =Z IV. Therefore cr(ti) # tj 

for some j and [# of j’s, 1 c j s N, with a(tj) # tj] 3 1. Hence for o E A,i, W’(p’, w) - 
W’(t, w)> aA’* for ah t E Ka and for all i. 

We have shown w E H,. Furthermore o E ny=, Cmi since o E [n;=, A,iC,iF,i]. 
The proof of (5) is completed. 

Let us turn to the proof of (6). We argue by contradiction. Let w E [HJ., n;=, C’ni] 
aYnd assume o& [sup,,~ B, >suptEac, B,]. Then suptEac, B(t, o) asupIEd; B(t, w). 

Now, B(t, w) 

BU, 

since p ’ is an 
We obtain 

d 

c 
i = I 

is a continuous function of t on aCn. Hence for some 1 E ac,, 

w)= sup B(t,w)~;~~B(t,+B(p’,o) 
tcac, n 

interior point of C,. 
(W’(Z, a))* > ( W'(p', w))’ for some 1 G a’ 6 d since 

l/2 
. 

I 

Since u E [inf Wf 201, both W’(l, W) and W’(p’, O) are nonnegative. Therefore 
W’(l,0)3 W’(p’, W) for some 1 6 i G d, contradicting the fact that W’(p’, o) - 
W’(1, 0) > a:‘*. 

The proof of (6) is completed. From (2) ancl(3), we conclude that with probability 
one, the event [sup,,6,: B t > supt,=ac, B,] occurs infinitely often. 

Pick o E [sup,,6,: B, > suptEac, B,]. Since B(t, W) is a continuous function of t on 
C,, there exists an I E C, such that B(2, W) = suptec, B(t, w). If I E a& then 

sup B(t, w) = B(2, w) = sup B(t, w) a,s,udp, B(t, w), 
tcac, tee, n 

contradicting the fact that o E [sup,,c”, B, > supteac,, B,]. Finally, Cz can be chosen to 
be the open set 0 c J?y mentioned in Definition 1. 

The proof is now completed. Recall that s was picked to be the center of U. 
Actually, s can be chosen to be any point in U*. Therefore, for almost all sample 
functions of B,, the set of local maxima is dense in 

We shall now investigate some properties of the local maxima of B,. 
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itlsn 2. The sample function B( l , a) has a strict local maximum at s if there 
exists an open set 0 containing s such that 0 c R? and B(t, w ) < B(s, o) for all t E 0. 

We have the following theorem. 

Theorem 2. Fur almost every sample function of (B,, t E R y>, all the local maxima are 
strict and the set of local maxima is countable. 

Proof. Let I and J be two disjoint, closed intervals in the interior of R y. We claim 
that 

P{sup R, = sup B,} = 0. 
tEI tEJ 

Let I = A(u, v), J = A(s, t). Denote the complementsof A(t) and A(v) by [A(t)]’ and 
[A (v)]‘. Since I and J are disjoint intervals, it is clear that 

contains a nondegenerate interval, i.e., an interval with a posit& N-dimensional 
Lebesgue measure. Let I’ be any such interval, and without loss of generality assume 
that 

I’cA(u)n[A(t)]‘. 

Consider now 

P[supB,=s~pB~]=P[sup[(W:)~+ i (W:)2]1’2 
tE1 tEJ tfzl i=2 

=sup[ f (w:)2]1’2 l 

tEJ i = 1 
(12) 

Let W’(T) be the increment of W’ DV~T 1’: Since W’ has independent increments, 
for t E I, we can write 

w: = w,’ - W’(I’) + w’(r) 

such that W’(P) is independent of W: - W’(I’) for all UE I. Also, W’(I’) is 

independent of suptE J [xy_= I ( Wf )‘I since I’ c [A (t)]‘. 
Let X = W’(I’), Yt = W,’ - W’(I’). Then the a-fields generated !)y X and 

wt, wf, . . . . WP,M, w,‘,..., Wp, t EJ) are independent. Let (J?,9, P) be the 
original probability space and let (&, PI, PI) and (a2, $2, &) be two identical 
copies of (J2,9!, P). Define 

s = (WI, m&En, x&sup{ (X(w,)+ Yt(cLs&2+ ; (W&J# 
[ 

I/:! 

PEI i=2 
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Let xs denote the indicator function of S. Using independence and Fubini’s 
theorem and following an argument similar to that of [3, p. 371, we obtain that (12) is 
equal to 

J J xs(w, odPddwPdd4 = n 
2 1 

n 

=J 
fJ2 

pl[sup(tx+ ~(02))~+ it w1(w2~~2]~'~ 
tel i=2 

= sup ( ; 
tcJ i=l 

( Wf (02))2} *,] P2(dW2). 

For an arbitrary fixed 02, consider 

Pl[sup((x+ y&2)j2+ ; (W:(W2N2}1'2=suP( i ~w:b2N2]1'2]* 
tEI i=2 td i=l 

(13) 

We shall now show that (13) equals zero for a fixed 02. Consider the function f(x), 
defined by 

f(x) =sup((... + yt(02))2+ ; 0)‘JL/1. tcI i=2 

Note that f(x) equals the supremum of the distance from the origin of the set 0, in 
Rd defined by 

It is now easy to see that as x varies from -co to MO, the set 0, is translated along a 
vector parallel to a coordinate axis and so f(x) decreases and then increases as x goes 
from --80 to +OO. For a fixed 02, (13) equals 

PIIX=f-+~ j, Wb2N2)] (14) 

w-here f-’ ia the inverse of fi It is clear tha,:” there are at most 2 values of 
f?;suptE, Cf=, ( Wf (o~))~), and since X is normal random variable, (14) equals 0. 
Thus, for each fixed 02, (13) equals zero. The proof of (11 j follows by htegrating (13) 
ove:r the probability space. 

Consider tlhe set n[suptEIBt # supteJBt] where the intersection is taken over all 
intervals I and J with rational least and largest vertices, i.e., +he coordinates of u, v, s, 
t are all rational. 

We claim that rl[sup,,& # suptEJ B,] is contained in the set of CPD such that all 
local maxima of B( l , o) are strict. Let w E n[sup,, : 3, # suptaJ B,] and suppose 
B ( l , or)) has a local maximum at s. Then there exists an open set 0 c R 7 with s E 0 and 
B(c, o) G B(s, w:l for all l E 0. If this local maximum is nut strict, then there exists an 
1 E 0 with 1 f s such that (s, w). Let 1, J be two disjoint, closed intervals 
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with rational least and largest vertices such that 2 E I c 0 and s E J c 0. Then 

sup B(t, 0) = B(1, w) = B(s, o) = sup B(t, o), 
fEI rl2.T 

contradicting the fact that o E ~[suP,~~ B, # supIEJ B,]. Clearly 

SUPtd &II = 1. l 

Countability of the set of local maxima is a consequence of the following lemma. 

Lemma 3. Let f be a continuous, real valued function af RF with all local maxima 
strict. Then f has countably many local maxima. 

This lemma is a straightforward generalization of the univariate case, the proof of 
which can be found in [3, p. 381. 
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