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Abstract

Let F be a field with 2 =0, W (F) the Witt ring of symmetric bilinear forms over F and Wy (F)
the W (F)-module of quadratic forms over F. Let I C W(F) be the maximal ideal. We compute
explicitly in / }’Z’ and /" W, (F) the annihilators of n-fold bilinear and quadratic Pfister forms, thereby
answering positively, in the case 2 = 0, certain conjectures stated by Kriiskemper in [M. Kriiskem-
per, On annihilators in graded Witt rings and in Milnor’s K-theory, in: B. Jacob et al. (Eds.), Recent
Advances in Real Algebraic Geometry and Quadratic Forms, in: Contemp. Math., vol. 155, 1994,
pp- 307-320].
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let F be a field with 2 = 0. We denote by W (F) the Witt ring of symmetric nonsingular
bilinear forms over F and by W, (F) the W (F)-module of nonsingular quadratic forms
over F (see [3.4,11]).

For a; € F* = F — {0}, 1 <i < n, we denote by (aj, ..., a,) the bilinear form with
diagonal Gramm matrix and entries a; on the diagonal. The quadratic form x2 + xy + ay?,
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a € F, is denoted by [1, a]. The maximal ideal Ir of W(F) is additively generated by
the forms (1,a) = ((a)), a € F*, so that the powers I, n > 1, are additively generated
by the n-fold bilinear forms {((ay, ..., a,)) = (1,a1)--- (1, a,), a; € F*. The submodules
I"W,(F), n > 1, are generated by the n-fold quadratic Pfister forms {(ay, ..., ay; all =
{ar,...,an) -[1,al,a; € F*,a € F.

We have the filtrations W(F) D Ir D 112, D and Wy (F) D IWy(F) D ---. The
graded objects I}/ 11,’45+1 and "W, (F)/1 n+l W, (F) are denoted by I % respectively
"W, (F). 12 means W (F) and I°W, (F) means W, (F).

In this paper we will study annihilators of n-fold Pfister forms. Let x = ((ay, ..., an))
be an n-fold bilinear Pfister form. For any m > 0 we set

annb,, (x) = {y € I} | xy =0},

anng,, (x) = {y e I"W,(F)|xy =O},

annb,, (x) = {y € I} | xy =0},

anngy, (x) = {y € I" Wy (F) | xy =0}.
If x = (a1, ..., an; al] is a quadratic n-fold Pfister form, we set

annb,, (x) = {y ely |yx :0},
annb,, (x) = {j € I} | x =0}.

The main results of this paper are contained in the following two theorems.
1.1. Theorem.

(1) Let x = (a1, ...,an)) be a bilinear n-fold Pfister form over F with x # 0 in W(F).
Then for any m > 1

annib,, (x) = annby (x) I,

annq, (x) = 1% - annqo(x) + annby (x) "~ W, (F).

(ii) Let x = {(a1,...,an;al] be a quadratic n-fold Pfister form over F with x # 0 in
Wy (F). Then form > 1

annib,, (x) = annby (x) 1"
And the much stronger:
1.2. Theorem.

(i) Let x = {ay,...,an)) be a bilinear n-fold Pfister form over F with x # 0 in W(F).
Then for any m > 1
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annb,, (x) = annb; (x)I?_l,

annq,, (x) = 1% - annqq(x) + annb; (x) 1"~ W, (F).

(i) Let x = {(a1,...,an;al] be a quadratic n-fold Pfister form over F with x # 0 in
Wy (F). Then form > 1

annb,, (x) = annbl(x)I?_l.

These results were conjectured by M. Kriiskemper in [9] for fields of characteristic
different from 2. Recently in [11] Orlov, Vishik and Voevodsky announced the positive
answer of Kriiskemper’s conjecture for the graded Witt ring of a field of characteristic
# 2. Based on these results, Arason and Elman proved in [1] the ungraded version of this
conjecture in the case 2 # 0.

The proof of Theorem 1.1 will be given in Section 4 and it is based on Kato’s correspon-
dence between quadratic or symmetric bilinear forms and differential forms over F. We
will shortly explain this correspondence in Section 3 (see [4,7]) and prove there some tech-
nical results needed in the proof of Theorem 1.1. In Section 2 we show that Theorem 1.2
follows from Theorem 1.1.

The terminology used in this paper is standard and we refer to [4,10,12] for details on
basic facts needed in the paper.

2. Proof of Theorem 1.2

We will assume Theorem 1.1 and derive from it Theorem 1.2. Recall that a 2-basis
of a field F of characteristic 2 is a set B = {b; | i € I} C F such that the elements
]_[iel bfi, g € {0,1} and only finitely many &; # 0, form a basis of F over F2. An
n-fold bilinear Pfister form ((ai,...,a,)) over F is % 0 in W(F), i.e. it is anisotropic
over F, if and only if {ay,...,a,} are part of a 2-basis of F (i.e. 2-independent). In
this case the subfield F 2(a1, ...,ap) of F consists of all elements of F represented by
the form ({ay, ..., a,)). The elements of F represented by the pure part {{ay,...,a,)) of
(a1, ...,ay)) form a subgroup denoted by F?(ay,...,a,) . Recall that (ay,...,a,)) is
defined by {ai,...,a,)) = (1) L {ay,...,a,)). Moreover if F has a finite 2-basis, say
{b1,...,bn}, then I'! =0 forallm > N + 1 (see [10]).

We will need the following

2.1. Lemma.

(i) Let x be an n-fold bilinear Pfister form, x # 0, and z € IF such that zx € Ilff+2, ie.
z € annby (x). Then

Z=z0t+tw

with zo € I, zox =0 and w € I3.
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(ii) Let x be an n-fold bilinear Pfister form, x #0, and z € W, (F) with xz € [t Wy (F).
Then

=720t w
with zo € Wy (F), xz0 =0 and w € IW,(F).

Proof. (i) For any z € Ir we can write z = (1, d) + w with d = det(z) and w € I%. Then
Xz € 11’,’,+2 implies (1,d)x € I,’,i+2, and since (1, d)x is (n + 1)-fold Pfister form, it follows
(1,d)x =0in W(F).

(ii) Any z € W, (F) can be written as

z=[1,d]+w

with d = Arf(z) € F and w € IW,(F) (see [12]). Here Arf(z) means the Arf invariant of
the form z (see [3] or [12]). From xz, xw € I"T'W, (F), it follows x[1,d] € "W, (F)
and hence x[1,d]=0. O

Let us now prove Theorem 1.2. We assume first that F" has a finite 2-basis, i.e. / {VV =g
for some integer N. Let x # 0 (in W(F)) be an n-fold bilinear Pfister form. The con-
tentions D in (i) (and (ii)) are obvious. Let y € annb,,(x), i.e. y € I }", yx = 0. Hence
y € annby, (x) and Theorem 1.1 implies y = > z;¥;.0 with z; € annb;(x), yio € I;”_l.
Then y — Y ziyio € IZ‘H. Using Lemma 2.1(i) we can write z; = z;,0 + w; with z; 0 €
annby(x) and w; € I%. Then y; =y — Y zioYio € I?‘H and moreover y1x = 0. The same
argument implies y; — Y z;1yi1 € I}?H
ating this process we obtain, for any k > 0, elements z; ; € annb;(x) and y;; €
0 <1 <k such that y — Zi’,zi,zyi,l € I;,"Jrk. Choosing k > N + 1 —m we obtain y =
Zi’l Zi1Vil € annbl(x)I;"_l, since I}VVH =0.

Let now y € anng,,(x), i.e. y € I"W,(F) with xy = 0. Theorem 1.1 implies y =
S yizi+ Y a;v; with y; € I, 7 € annqo(x), ii; € annb; (x), v, € I~ W, (F). Hence
Y — Y YiZi — ) ujvj € Im“Wq(F). Using Lemma 2.1 we can find z; 0 € annqg(x),
ujo € annby(x) such that z; =z 0 +w;, w; € IW,(F) and uj =ujo+1t;,1; € 1127- We
obtain

with elements z; 1 € annb (x), y;1 € I} Iter-
Im+l—l
F £

yI=y-— Zyizi,o - Zuj‘ovj e "', (F)
with y;x = 0. Iterating this procedure we obtain after k > N + 1 — m steps that
y € I}*annqq(x) + annby (x) 1™~ W, (F).
The proof of part (ii) of Theorem 1.2 is similar and we omit the details. Thus we have

proved Theorem 1.2 in the case / }VV +1 =0 for some N. Let us now consider the general
case.
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Let x a bilinear n-fold Pfister form over F, x # 0 in W (F) and take y € annb,, (x), i.e.
y € I} with yx = 0. This relation involves only finitely many elements of F', say the finite
set S C F. Let Fy:=F(S) C F, where F = prime field contained in F. Then there exist
an n-fold bilinear Pfister form x¢ over Fy and yg € 1 ;’g suchthat x =x0Q F, y=y0 ® F
and xpyp = 0. Since Fy has a finite 2-basis, we obtain from the first part of the proof that
yo € annby (xq)/ 1’%_1 and hence y € annbj (x)/ ;"_1. The same argument applies for the
other assertions in Theorem 1.2 and this concludes the proof of Theorem 1.2. O

2.2. Remark. If x is a bilinear n-fold Pfister form over F', then one can describe explicitly
the annihilators annb; (x) C W (F) and annqy(x) C W, (F) as follows

annbj(x) = Y W(F)(L.d), (2.3)
deDp(x)*

annqy(x) = Y W(F)[L.d]. (2.4)
deDrp(x)

Here Dp(z) denotes the set in F of elements represented by the form z. The result (2.3)
is shown in [6] and (2.4) in [5]. If x denotes now a quadratic n-fold Pfister form over F,
x #0in W, (F), then (see [8])

annbj(x) = Y W(F)(1,d). (2.5)
deDp(x)*

In Section 4 we will give an independent proof of these facts based on Kato’s corre-
spondence (see Section 3) and on the arguments used in this section.

3. Quadratic, symmetric bilinear and differential forms

In this section we will briefly describe Kato’s correspondence between quadratic, bilin-
ear and differential forms over a field F with 2 = 0 and prove a technical result needed in
the proof of Theorem 1.1 (see [2,4,7]).

Let .Q}, = F d F be the F'-space of 1-differential forms generated over F' by the symbols
da,a € F,withd(a+b) =da—+db,d(ab) =adb+bda.Foranyn > 1 set .(2} = /\" .Q}7
and let d:.Q;’, — .Q;‘H be the differential operator d(xdx; A --- Adx,) =dx Adx; A
--- Adx,, where A denotes exterior multiplication. For example if ¢ € F is represented in
a2-basisB={b;|icl}asc=) , cgbg, where € = (¢&;), &; € {0, 1} and almost all ¢; =0,
we have dc =) ; D;(c)db; where Dj(c) is the partial derivative of ¢ with respect to b;,
ie. Di(c)=b;" Y, c2b® (see [1]).

Let p: 2} — 2%/d .Q}_l be the Artin—Schreier operator defined on generators by

d d d d
&)(xﬂ/\.../\ xn):(xz—x)ﬂ/\-u/\ n modd.Q?_l

X1 Xn X1 Xn
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and denote by vr(n) its kernel and by H ntl(p ) its cokernel (see [1])._In [7] it is shown
that there are natural isomorphisms o : vp(n) = I and 8: H n+l(Fy ~ n W, (F) given on
generators by a(dx% Ao A %) = {{x1,...,x,)) mod I;H and

d d
ﬂ<xﬂ Aeoop 28 ) = ((x1.....xp:x[] mod I"T'W, (F).

X1 Xn
The fact that vg(n) is additively generated by the pure logarithmic forms dx% A A %
follows from a result of Kato which we explain now. Let us fix a 2-basis 5 of F, B = {b; |
i € I}, and endow [ with a total ordering. For any j € I, let F}, respectively F.;, be the
subfields of F generated over F2 by b;, i < j, respectively b;, i < j. Forany n > 1let ,
be the set of maps «: {1, ...,n} — I such that o(i) < @(j) whenever 1 <i < j <n, and
endow X, with the lexicographic ordering.
We obtain a filtration of £2% given by the subspaces .Q" o> Tespectively £2%
dhﬁ dbg(1)

~ bpay
An important result of Kato, named here as Kato’s lemma asserts that for any a e X,

yeF,if p(y b“) et _ + d.Q” , then there exist v € 27 _, and a; € Fj;), 1 <

F,<a

which

F,<a’

b
are generated by the elements NG t ) w1th B < a, respectively 8 < a.

F,<«a

i <n, such that y9be b =v+ da”ll Ao A % (see [6]). This implies that any u € 2%
satisfying o (1) e d 97;_1, can be written as

d d
u= Y SO L S 3.0

y<a O Ay (n)

with ay, ;) € F) ;)\ F<y (). Then the following result will be used in Section 4 during the
proof of Theorem 1.1.

3.2. Lemma. Let B {bi |i € I} be a 2-basis of F with a given ordering on I Leta € X,
and y ., <, cy b L be a differential form with cq # 0 such that }_,, cy b edQy L
Then there exist elements M; € Foq(), 1 <i <n, such that

o =boyMy + - - + byyM,.

Proof. Let k € I be the index with ¢, € Fx\ F<x. We claim that k = a(i) for some 1 <i <
n. Otherwise we have k > a(n) or k < (1) or a(j) <k < a(j+ 1) for some 1 < j < n.
From the choice of k we have ¢, = br A + B with A, B € F;, A #0. Then

dby db,
dt=byA+ B —
(brA + )ba +> ¢ b,

Yy <a

and applying the operator d to this form, since d> = 0, we get

dby dbk dby dA by
+ b A B b; D;
by bk k ba A + ZZ (CV)

O»

y<aiel
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where D;(cy ), as mentioned above, denotes the partial derivative of ¢, with respect to b;.

Looking at the coefficient of dhﬂ A dbb" we obtain

biA= Z biDi(cy),

(a,)=(yi,i)

where («, k) respectively (y;, i) denotes the unique A € X, 1 with Im(A) = Im() U {k}
respectively Im(X) = Im(y;) U {i}. Since for those i we have i > k, A € F_; and
D;(D;(cy;)) =0, we conclude A =0, which is a contradiction. Thus k = (i) for some
1<i<n.

Let cq = by ;)M; + B with M;, B € F_4(;). Then

db
dt = (boiyM; +B) +ch r
y <o
But

ba(l)M b —ba(z)M a(l)A.../\ﬂA.../\ﬂ
o

by (1) by (i) Do)

db dbyi— d by db
—d(ba(l)M)/\ boz(l) Aeee A a(i—1) A o (i+1) A A a(n)

(1) ba(i-1) bai+1) ban)
db dM; db
+ bayM; ——— {0 N Nt A\ N LG
ba(l) M; ban)

so that replacing ¢ by

db dbyi— dby db
l‘/=t+ba(i)Mi ba(l) A A a(i—1) A a(i+1) Ao A o (n)

’

(1) ba(i-1) Dai+1) ba(n)
and since
db dM; db
ba(i)Mi a(l)/\.../\_lA.../\ﬂEQ< ”’
ba(1) M; by (n)
we get

d/:Bdba —G—Zc’ dby

with certain c;, € F and B € F_a(i). We proceed again as before with B instead of ¢, and
the lemma follows by induction. O

An immediate generalization of Lemma 3.2 is
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3.3. Proposition. Let

db
chb—yy =d(t) + p (w)

y<a

with cy # 0, where B=1{b; | i € 1} is a given 2-basis of F (and a fixed ordering in I) and
te .Q;Z,_l, we .{22 Then there exist elements u € F, M; € F4y, 1 <i <n, such that

Ca = @u + bayMi + - -+ + ba(n) M.
Proof. Let us write w as Zyg sy % with f5 # 0. Then we have
db _
Z (cy — @(fy))b—y cdop .
14

y <max{a,d}

If § > o, we have
db _
P (f) " ed 2y "+ 2} s
Y

and, by Kato’s lemma (see [7]), we conclude that

db, da day
s——=——A---A
b, aij a,

/

+u,

da n—1 r_ o dap
aﬂ”)ed.QF , we replace w by w’ = w a

/ n : day
where u’ € 21 _;. Since 50(? ARERWA
A which has lower maximal multi-index 8’. By iterative application of the above
procedure we may assume that § < «. In this case we have

day
T

db
Z(cy —p(fy)—Ledep
y<a by

Now using Lemma 3.2 we obtain the desired conclusion. 0O

4. Annihilators of differential forms in vy (m) and H™*1(F)
The groups vr (m) act on the groups H"+!(F) through exterior multiplication

Azvp(m) x H'YF) > H™ (R,

A:vp(m) X vp(n) > vp(m +n),

and we can define for any x € vr(n) the annihilators
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annby, (x) = {y € v (m) | xy =0in vp(m +n)},
anng,, (x) = {y € H"'(F) | xy =0in """ (F)}.
Also if x € H"T1(F), we define
annb,, (x) = {y € vp(m) | yx =0in H" "+ (F)}.

Through Kato’s isomorphisms (see Section 3) these annihilators are isomorphic to the
corresponding graded annihilators of bilinear and quadratic forms, namely, if x € vr(n)

o :annby, (x) 2 annby, (a (x)),
f :annq,, (x) =~ anng, («(x)),
and if x € H'"TL(F),
o :annb, (x) = annb,, (B(x)).
Thus, Theorem 1.1 is equivalent to the following

4.1. Theorem.

(i) Letx = da% ARERWA dﬂ% € vp(n) be a pure logarithmic differential form, x # 0. Then
1

foranym >

annb,, (x) = annb; (x) Avp(m — 1),
anng,, (x) = vp(m) A anngg(x) + annb; (x) A H™ (F).
(i) If x :a% A A d— #0in H'" T\ (F), then in vy (m)
annb,, (x) = annb; (x) A vp(m — 1).

Proof. Let B={b; | i € I} be a2-basis of F such thatay,...,a, € B are the first elements
in some ordering of /. Let y € annb,, (x). Using Kato’s lemma we can write

da da
y= Y 5 d00 L, G

yez, @y (m)

with ay, i) € Fyi)\F<y (i), &y € {0, 1}. Let « € X, be maximal with g, # 0. Then

d
y= 9o mod 2m

Ay F,<«x
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The assumption xy = 0 means
da; da da da; da da
— A A— A2 [ — A /\Zsy—yzo.
ai an Ay ai ap a

Assume first (1) > n and define § = (1,...,n,a(l),...,a(m)) € X,4+p. It follows § >
(1,...,n,y) forall y € X, with y < . From the last relation we conclude

dai A---Aday, /\daa(l)/\---/\daa(m):o

which is a contradiction to the fact that ay, ..., ay,, du(1), ..., du@n) are 2-independent.
Thus we have a(1) < n, and this implies x A da ":i;) =0, ie. da ”‘i” € annby (x). Hence

y — % € annb,, (x) and moreover y — dﬂ € Q%
get the first assertion in (i).
Take now y € annq,,(x) C H"*!(F). Then

Proceeding by induction on o we

db _
y= Z Cyb_yy mod p2F +d Q27 !

with x Ay € p 2™ +d it e,

an

d da, db
Y e SR A AR A St eyt Fdeutn, (4.2)
yez, 9 14

(Here the elements b, ;) belong to B.) Let o € X, be maximal with ¢, # 0. If (1) <
then Ty ““) € annb; (x) and cad{’x"‘ = Yy o Ghey dbb“("’) € annb; (x) A H’"(F)

T obey T b
and y —co 3= dba ¢ .Q;” ~o- Hence we may proceed by induction on . Thus we can assume
a(l)>n and we define § = (1,...,n,0(1),...,a(m)) € X,4,. We see in (4.2) that § is
the maximal multi-index with coefficient ¢y 7% 0. Using now Proposition 3.3, we conclude

from (4.2) that

ca =)+ Eqy

with E, = Zl’-’zl a; M; + Z;-":l ba(jyMy(jy and My € Fj. Here we have chosen the order-
ing of B such that ay, ..., a, are the first elements.
Inserting ¢, in y we get

dby
by

dbe
[so (u) + ZazM + Zba(;)Maui .

i=1 j=1

mod p 7 +d 27+ 2F .

Y =Ca




304 R. Aravire, R. Baeza / Journal of Algebra 299 (2006) 294-308

dby.
y—[zaz z] |:Zb¢¥(j)M0t(J):| ™

j=1

Since My € F, we have a,-Midbﬂ € vr(m) A anngq(x) because a,-Mida% Ao A % =
. o n

d(a,-M,'da% A A A da—’f;l) € d.Q;f-_l implies a; M; € annqy(x) (we have used d M; A
x =0). The same argument shows, since My () € F.q(j), that

d b d My
ba(jyMa(j)——= bt —d(bamMa(/))+ba<J>Ma(n i

edF + 2} <a(j)
a(j)

and hence

m

db _
(ZbaU)Ma(j)) b—a edQp~'+F .

j=1 “

Thus we have
-1
y=y+z modpQR7 +dRy

with y' € .Q;’,f _o» Y €anng,, (x) and z € vp(m) A anngy(x). Applying now the above pro-
cedure to y’ we get our second assertion by induction on «. This proves (i).

(i) Letx =a d“ll Ao A da“” € H"t1(F) be a pure element, x # 0. We fix as before a

2-basis B={b; |i € I} of F such that ai, ..., a, are the first elements in B in some or-
dering of 1. Let y € annb,,(x) C vp(m). From Kato’s lemma we have y = Zyezm &y d[%
with g, € {0, 1} and ay, ;) € F) i)\ F<y (i), 1 <i <m. We write
day day
e
O I
yeXy yeXy
y(H<n y()>n
For y € X}, with y(1) < n we have da ”“) € annby (x) since a, 1) € F, = FX(ai, ..., an)

and hence the first summand in this decomposmon is in annbj(x) A vp(m — 1). Thus
.. d .
the second summand is in annb,,(x) and we can assume y = Zy ex, &y aiyy with all y

such that y (1) > n. Let @ be maximal in this sum with &, # 0. We can replace B by
a new 2-basis B’ = {c; | i € I} such that Ca(j) = da(j), 1 < j <m and ¢; = b; for all
i¢{a(l),...,am)}.Letd=(1,...,n,a(l),...,a(m)) € X,,,. Hence

d
O=yAx=a— modp2p™ +dQpm= 4+ utm,
cs

Then Proposition 3.3 implies

n m
a=gpu)+ ZC:’M,' + an(j)Ma(j)
i=1 j=1
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with My € F. Let s € {1,...,m} be maximal with M) # 0 and set Q =a + pu +

YoMy, ie. Q=Y ca(jyMagj)- Then cags) = My(h (Q + Y521 Ca(jyMagj))- In-
serting in y we get modulo vr (1)

de dc dc
),Eﬂ/\.../\ﬂ/\.../\M mod vp 4 (m)
Ca(1) Cals) Ca(m)
_ dca(l) A dMa(S)(Q + Zj ICW(J)M‘X(/)) A dcot(m)
Ca(l) M, (Q + Y catjyMaj)) Ca(m)
_ dayMoqry) 4O+ 3521 cah Maci) o deamm)
(Ca(tyMa(1) 0+ 3321 caty Ma)) Car(m)

Here we have inserted My ) whenever it is # 0, without altering the congruence modulo

VF, <o (m). Use now the relatlon A dbb = dg’bb) A d(a“:bb) to conclude

d(Ca(l)Ma(l)) A A d(Q + Z] ICU‘(])MOI(])) N dca(m)

y= mod v, . (m)

(ca(yMa1y) 0+ Z] | Ca(HMa(j) Ca(m)
d d dc
Ei/\.../\_Q/\.../\ﬂ
fl 0 Co(m)
with certain fi,..., fs—1 € F. Since dﬁQ € annb; (x) (we can assume a € F? without re-

.. d
striction), we get df% Ao A % A A % € annby(x) A vp(m — 1). Thus we have

shown y € annb; (x) A vp(m — 1) + vr, <o (m). We apply now induction on « to conclude
the proof of (ii). O

Let us briefly compute the annihilators annb; (x) and annq(x) for x = d{% A A % €

vr(n) and annby (x) for x = adt% Ao A % e H"I(F).
4.3. Proposition.

(1) Letx:%/\---Ada—i”evF(n),x#O. Then

d
annb (x) = {—Z ‘z € Fz(al,...,an)*},
Z
annqy(x) = {z € F/pF |z € F(ai,...,an)'},

where FX(ay, ..., a,) are the pure elements in F2(ay, ..., a,) (notice that H'(F) =
F/pF).
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11 J— d dn +1
(ii) Letx—aail‘/\-nAa—ieH" (F), x #0. Then

d *
annb; (x) = {?Z ‘ze Dr((ai, ..., an; all) },

where D (q) denotes the elements represented in F by the quadratic form q.

Proof. (i) Let x = dﬂ% A A d‘% #0invp(n). If % € annb; (x) C vr (1), then

day da, dz
— A A

AN— =0
ai dap Z
in vp(n + 1), which means that ay, ..., a,, z are 2-dependent, and since ay, ..., a, are
2-independent, this means z € F 2(a1, ..., ay)* (which is the set in F* of elements repre-

sented by the n-fold Pfister form ((ay, ..., an))).
Letnow y € H!(F) = F/gF be in annqy(x). Then yda% A A % =0in H"*1(F),
and this means
dap da,

y_/\.../\
al an

cpRp+dp

Taking a 2-basis of F so that ay, ..., a, are the first elements of it (in some ordering), we
conclude from Proposition 3.3

y=pu+b
withu € F and b € F?(ay, ..., a,) . This proves (i).

(i) Let x = adﬁ A A “ai € H"(F), x #0 and take 4 € annb; (x) C vp(1). This
means

da; da, dz
a— A= A "/\—65@92+1+d.{2}.

ai an z
dag day dz __ 2 * .
IfT/\m/\a—/\?_O,thenwegetasbeforezeF (ar,...,ap)* C Drp({ay,...,ay;

n
al])*. Assume dﬂ% A A daﬂ A dz—z # 0. Then we can assume that ay, ..., a,, z are the first
n

elements of some 2-basis of F' (in some ordering), and applying now Proposition 3.3 we
obtain a = pu + b withb € F%(ay, ...,a,,z),ie.b=z-h+g withh € F(ai, ...,a,)*
and g € F2(ay,...,a,) .

Thus z=h"'(pu+a+g) € Dr({{ai, ...,a,; al])*. This proves (ii). O

The isomorphisms vy (m) >~ I’ and H™"!(F) >~ I" W, (F) enable us to translate this
result into the language of bilinear and quadratic forms.
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Let x = {(ay, ..., a,)) be a bilinear anisotropic n-fold Pfister form. Then we have

annby (x) = {(z)) | z € Dp(x)*},
amnqo(x) = {Z € F/pF |z € Dr(x')*},

where we identify 79 W, (F) with F/pF through the Arf-invariant.
If x = (a1, ..., an; al] is a quadratic anisotropic n-fold Pfister form, then

annb; (x) = {{(z) | z € Dr(x)*}.

Now the technique used in Section 2 enables us to compute the full annihilators

annbj (x), annqq(x) if x = (@1, ..., a,)) and annb; (x) if x = {{ay, ..., au; a|], thereby ob-
taining the results (2.3), (2.4) and (2.5). Let us prove for example (2.3) (the others cases are
left as exercises). Let x = (a1, ...,an)) and take y € annb;(x) C Ir. Then y € annb; (x)

and hence y = ((z)) for some z € Dp(x)*. Thus y — ((z)) € I? and (y — ((z)))x =0, i.e.
vy —{(z)) € annby(x) = annb; (x) - Ir. Write y — {(z)) = Y_ y;v; with y; € annb; (x), v; € IF.
Then y; — ((z;)) € I% for some z; € Dp(x)* and hence

y—(2h =Y Kz € I,

Iterating this procedure and assuming / 1’;’ +1 =0 for some N, we get (2.3). The general
case can be reduced to the assumption / jpv =g using the trick of Section 2. This proves
(2.3). The same argument applies for (2.4) and (2.5). Thus we have a complete description

of the annihilators of Pfister forms over a field F with 2 =0.
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