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Abstract

We define a classical probability analogue of Voiculescu’s free entropy dimension that we shall call the
classical probability entropy dimension of a probability measure on R

n. We show that the classical prob-
ability entropy dimension of a measure is related with diverse other notions of dimension. First, it can be
viewed as a kind of fractal dimension. Second, if one extends Bochner’s inequalities to a measure by requir-
ing that microstates around this measure asymptotically satisfy the classical Bochner’s inequalities, then we
show that the classical probability entropy dimension controls the rate of increase of optimal constants in
Bochner’s inequality for a measure regularized by convolution with the Gaussian law as the regularization
is removed. We introduce a free analogue of the Bochner inequality and study the related free entropy
dimension quantity. We show that it is greater or equal to the non-microstates free entropy dimension.
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1. Introduction

In [12], using his notion of free entropy χ , Voiculescu introduced the free entropy dimension
of a non-commutative law. If X1, . . . ,Xn ∈ (M, τ) are self-adjoint non-commutative random
variables in a tracial W ∗-probability space, then

δ(X1, . . . ,Xn) = n + lim sup
t→0

χ(Xt
1, . . . ,X

t
n)

|log t | ,

where Xt
j = Xj + tSj and S1, . . . , Sn form a free semicircular family, free from X1, . . . ,Xn.

Voiculescu’s motivation was to introduce a kind of asymptotic Minkowski content of matricial
microstate spaces associated to the joint law of X1, . . . ,Xn. Indeed, for a variation of the defin-
ition of free entropy dimension, K. Jung has proved a formula that involves asymptotic packing
numbers [8]. Moreover, he proved (again, for a version of the definition above), that one ob-
tains the same number whether one uses semicircular perturbations or some other perturbation
Xt

j = Xj + tYj , where Y1, . . . , Yn are some n-tuple, free from X1, . . . ,Xn and having finite free
entropy.

The free entropy dimension is a remarkable quantity, with unexpected connections to other
branches of mathematics. For example, if X1, . . . ,Xn generate the group algebra of a discrete
group Γ , δ(X1, . . . ,Xn) is related by an inequality to the L2-Betti numbers of the group Γ

(this is based on a number of results, see [6,9]). Unfortunately, the exact values of free entropy
dimension are known in only a few cases. For example, in the case of a single variable X with
law given by a probability measure μ on R, δ(μ) = 1 − ∑

t∈R
μ({t})2.

One of the most important questions surrounding δ is the question of its invariance under
various functional calculi. It is hoped that δ(X1, . . . ,Xn) = δ(Y1, . . . , Ym) if X1, . . . ,Xn and
Y1, . . . , Ym generate the same von Neumann algebra (i.e., are “non-commutative measurable
functions of each other”). However, the question is open even if it is asked for continuous func-
tions (that is, assuming that the C∗-algebras generated by X1, . . . ,Xn and Y1, . . . , Ym are the
same). What is known, for a version of the definition of free entropy dimension, is that its value
is preserved under algebraic changes of generators. Solving these problems would be of great
interest to von Neumann algebra theory.

In the first part of the present paper, we turn to look at the classical analogue of free entropy
dimension. Given a probability measure μ on R

n (which can be though of as the law of n real
random variables X1, . . . ,Xn), we consider the measure μt = μ∗νt , where νt is the Gaussian law

νt

(∏
dxj

)
= 1

(2πt2)n/2
exp

(
− 1

2t2

∑
x2
j

)∏
dxj .

Thus μt is the law of Xt
1, . . . ,X

t
n with Xt

j = Xj + tGj , and G1, . . . ,Gn independent Gaussian
random variables, independent from X1, . . . ,Xn. We then set

δc(μ) = n − lim inf
t→0

H(μt)

|log t | ,

where for a non-negative Lebesgue absolutely-continuous measure p(x)dx,

H
(
p(x)dx

) =
∫

p(x) logp(x)dx.
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(The change of sign here is due to the fact that H(μt) ∈ (−∞,+∞] behaves as the analogue of
−χ ). We prove that the same definition is obtained if replaces in the definition of δc the Gaussian
laws νt by push-forwards by the homotethy s �→ ts of a fixed law ν with finite entropy.

One of the main results of this paper relates δc(μ) with a kind of average fractal dimension of
the measure μ. In particular, we prove that δc(μ) remains the same if μ is replaced by a push-
forward by a Lipschitz function. However, the value of δc(μ) may change if we push forward μ

by a continuous or measurable function.
We also show (Proposition 3.5) that there is a connection between δc and the “entropy dimen-

sion” (also called “α = 1 Rényi dimension”) h∗ recently studied by Batakis and Heurteaux, see
[3] and references therein. In particular, using the results of [3], we show that δc is dominated by
the packing dimension Dim∗. We are very grateful to the referee of the paper for telling us about
this work and suggesting a possible link.

We prove a number of technical properties of δc. Among the ones of independent interest
is the fact that (in the case that lim sup in its definition is a limit) δc is affine: δc(

∑
αjμj ) =∑

αj δc(μj ) in the case that μj are probability measures and αj � 0,
∑

αj = 1.
The second part of the paper relates the rate of increase of optimal constants in an ad hoc

notion of Bochner’s inequality for measures with entropy dimension. We say that a probability
measure μ satisfies Bochner’s inequality with constants (n,K(n)) ∈ (R+)2 if for all smooth f ,

μ
(
Γ2(f,f )

)
� 1

n
μ

(
(	f )2) − K(n)μ

(
Γ (f,f )

)
, (1)

where Γ (f,f ) and Γ2(f,f ) are the carré du champ and carré du champ itéré, respectively. Intu-
itively, one should think of n as the dimension of the support of μ and K(n) as an estimate for the
smallest eigenvalue of the Ricci curvature of the support in the sense that if μ = δx , we recover
the classical Bochner inequality at the point x, with n the dimension of the manifold where x lives
and −K(n) a lower bound on the Ricci curvature (cf. e.g. [1,2]). The definition is actually ob-
tained by considering the microstates ΓN(μ, ε) := {x1, . . . , xN ∈ RN : d(N−1 ∑N

i=1 δxi
,μ) < ε},

viewing it as a submanifold of R
N with some dimension [nN ] and Ricci curvature bounded be-

low by −K(n). Letting then N going to infinity and ε go to zero gives (1). We now replace μ with
με = μ ∗ νε and let, for a non-negative real number n, K(ε,n) be the extended non-negative real
number such that μ√

ε satisfies Bochner’s inequality (1) with constants (n,K(n, ε)). We then set

δ�(μ) = 1 − inf

(
lim inf
ε→0

∫ 1
ε

K(n, y) dy

|log ε| + 1

)
n,

where the inf is taken over all n � 0. We prove that with this definition, δ� = δc.
In the third and final part of the paper, we study the free non-commutative analogue of the

inequality (1) and the related free entropy dimension quantity, which we show to be less than or
equal to the non-microstates free entropy dimension.

2. Equivalent definitions of δc

The main result of this section is that one can replace in the definition of δc(μ) the convolution
with the Gaussian measure by convolution with dilations of any other probability measure ν that
has finite entropy. We first consider some properties of δc, which are of independent interest.
Throughout this section, it will be convenient to assume that ν is a finite positive measure, but
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to drop the assumption that its total mass is 1. We will also denote by Dt : R → R the dilation
map x �→ tx. For simplicity of notation, we give all statements and proofs for a measure on R.
However, these go through unaltered for measures on R

n. Also, all lim inf could be replaced by
lim sup if one would prefer to define δc with a lim sup.

Lemma 2.1.

(a) Let ν be a Lebesgue absolutely continuous finite measure on R, νt = D∗
t (ν) (where Dt is the

map x �→ tx is a dilation). Let μ be a probability measure α > 0 a constant. Set μt = μ∗ νt .
Then

lim inf
t→0

H(αμt)

log t
= α lim inf

t→0

H(μt )

|log t | .

(b) Let ν be a non-negative Lebesgue absolutely continuous measure for which ν(R) = δ < ∞.
Let μ be a probability measure on R and denote νt = D∗

t (ν) and μt = μ ∗ νt .
If

∫
log

(
1 + |x|)dν(x) < ∞, and

∫
log

(
1 + |x|)dμ(x) < ∞, (2)

then

0 � lim inf
t→0

H(μt)

|log t | .

On the other hand, if H(ν) < ∞, then

lim inf
t→0

H(μt )

|log t | � lim sup
t→0

H(μt )

|log t | � δ.

(Here and below H(q(x)dx) = ∫
q(x) logq(x) dx for any non-negative measurable func-

tion q , even if q(x) dx is not a probability measure.)

Proof. (a) follows from the formula H(αμ) = αH(μ) + μ(R) logα and the fact that μt(R) =
ν(R) is independent of t ∈ R.

(b) We may assume without loss of generality that δ = 1 by a rescaling up to using (a).
For the first inequality, recall that for any probability measure ν, any non-negative function f ,

Jensen’s inequality implies that

∫
f (x) logf (x)dν(x) �

∫
f (x)dν(x) log

(∫
f (x)dν(x)

)
.

Therefore, if we let ν(dx) = p(x)dx be a probability measure absolutely continuous with respect
to the Lebesgue measure, we can write

H
(
f (x)dx

) =
∫

f (x)
log

f (x)
p(x)dx +

∫
logp(x)f (x) dx �

∫
logp(x)f (x) dx
p(x) p(x)
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if
∫

f (x)dx = 1. We can for instance take p(x) = 1
2(1+|x|)2 to obtain the lower bound

H
(
f (x)dx

)
� − log 2 − 2

∫
log

(
1 + |x|)f (x)dx

for all f � 0 so that
∫

f (x)dx = 1.
Now, since ν is absolutely continuous with respect to Lebesgue measure, so is the measure

μt(dx) = ft (x) dx. Applying the above to ft , we deduce

H(μt ) � − log 2 − 2
∫

log
(
1 + |x|)dμt(x)

� − log 2 − 2
∫

log
(
1 + |x|)(1 + t |y|)dμ(x)dν(y)

� − log 2 − 2
∫

log
(
1 + |x|)dμ(x) − 2

∫
log

(
1 + |y|)dν(y),

where the last bound holds for t � 1. Hence, when (2) is satisfied, H(μt) is bounded below
independently of t � 1, which gives the desired lower bound.

We next prove the upper bound. By the entropy power inequality (see e.g. [11]), we have that

exp
(−2H(μt)

)
� exp

(−2H(μ)
) + exp

(−2H(νt )
)

� exp
(−2H(νt )

)
= exp

(−2H(ν) + 2 log t
)
.

Thus

H(μt) � H(ν) − log t

so that

lim sup
t→0

H(μt)

|log t | � lim sup
t→0

H(ν) − log t

|log t | = 1

as claimed. �
Lemma 2.2. Let n ∈ N and μ = ∑n

i=1 μi for some non-negative measures (μi,1 � i � n) so
that μi(R) = ai > 0,

∑n
i=1 ai = 1. Let ν be a probability measure on R so that H(ν) < ∞. Then

lim inf
t→0

H(μ ∗ νt )

|log t | = lim inf
t→0

1

|log t |
∑

aiH
(
a−1
i μi ∗ νt

)
. (3)

Note that since H(ν) is assumed finite, H(a−1
i μi ∗ νt ) � |log t | by the previous lemma and

so the sum in the right-hand side of (3) is well defined.
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Proof. Since ν is absolutely continuous with respect to Lebesgue measure with density p, so is
μ ∗ νt and

pμ(x) = dμ ∗ νt

dx
(x) = 1

t

∫
p

(
x − y

t

)
dμ(y).

We assume first that n = 2 and denote in short pi(x) = a−1
i pμi

(x) for i = 1,2, so that∫
pi(x) dx = 1. Then the density of μ ∗ νt is given by

∑
aipi(x) and hence

H(μ ∗ νt ) =
∫ ∑

i

aipi(x) log
∑
j

ajpj (x) dx =
∑

i

ai

∫
pi(x) log

(∑
j

ajpj (x)

)
dx.

As a consequence,

H(μ ∗ νt ) −
∑

aiH
(
a−1
i μi ∗ νt

) =
∑

i

ai

∫
pi(x) log

(∑
j ajpj (x)

aipi(x)

)
dx +

2∑
i=1

ai logai.

Then for each i = 1,2

∑
j

ajpj (x)

aipi(x)
= 1 + ajpj (x)

aipi(x)
,

where in the last term i, j ∈ {1,2} and i �= j .
Since for y � 0, 0 � log(1 + y) � y and since pj (x), pi(x) � 0, we conclude that

0 � log

(
1 + ajpj (x)

aipi(x)

)
� ajpj (x)

aipi(x)
.

Hence

0 � H(μ ∗ νt ) −
2∑

i=1

aiH
(
a−1
i μi ∗ νt

)
�

∑
j

∫
ajpj (x) dx +

∑
ai logai � 1 +

∑
ai logai.

If μ = ∑n
i=1 μi for n > 2, we first apply the above bound with μ′

1 = μ1,μ
′
2 = ∑n

i=2 μi and
a′

1 = a1, a′
2 = ∑n

i=2 ai , and then proceed by induction, replacing μ by (
∑n

i=2 ai)
−1 ∑n

i=2 μi .
We get in this way

0 � H(μ ∗ νt ) −
n∑

i=1

aiH
(
a−1
i μi ∗ νt

)
� n − 1 +

n∑
i=1

ai logai.

Thus

lim
t→0

H(μ ∗ νt ) − ∑n
i=1 aiH(a−1

i μi ∗ νt )

|log t | = 0,

which implies the claim. �
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We have as an immediate corollary a somewhat surprising property of δc.

Corollary 2.3. Assume that μj are probability measures for which lim sup in the definition of δc is
a limit. Then the map μ �→ δc(μ) is affine: if αj � 0,

∑
αj = 1, then δc(

∑
αjμj ) = ∑

αj δc(μj ).

Note that this property is very particular to the commutative case. Indeed, recall that the
formula for the free entropy dimension of a single self-adjoint variable with law μ can be equiv-
alently written as

δ(μ) = 1 −
∑
t∈R

μ × μ
({

(t, t)
})

so that δ(μ) is quadratic in μ. By the Cauchy–Schwarz inequality, one has δ(
∑n

i=1 aiμi) �∑n
i=1 aiδ(μi) but equality can hold only if for all t ∈ R, μi({t}) does not depend on i ∈

{1, . . . , n}.
Lemma 2.4. Let for n ∈ N, ν = ∑n

i=1 ν(i) so that ν(i)(R) = ai . Assume that H(a−1
i ν(i)) is finite

for all i. Then

lim inf
t→0

H(μ ∗ νt )

|log t | = lim inf
t→0

1

|log t |
∑

aiH
(
a−1
i μ ∗ ν

(i)
t

)
.

Proof. The proof is very similar to that of Lemma 2.2 and we first assume n = 2. We let ν
(i)
t =

D∗
t ν(i) where Dt : R → R is the map Dt(x) = tx. We have:

μ ∗ νt =
∑

i

μ ∗ ν
(i)
t =

∑
i

ai

(
a−1
i μ ∗ ν

(i)
t

)
.

Thus if we set

pi(x) = d
(
a−1
i μ ∗ ν

(i)
t

)
/dx

then the density of μ ∗ νt is given by
∑

aipi(x) and hence

H(μ ∗ νt ) =
∫ ∑

i

aipi(x) log
∑
j

ajpj (x) dx =
∑

i

ai

∫
pi(x) log

(∑
j

ajpj (x)

)
dx.

Hence, we deduce as in the proof of Lemma 2.2 that

0 � H(μ ∗ νt ) −
∑

aiH
(
pi(x) dx

)
�

∑
j

∫
ajpj (x) dx +

∑
aj logaj � 1 +

∑
aj logaj .

Thus

lim
t→0

H(μ ∗ νt ) − ∑
aiH(pi(x) dx)

|log t | = 0,

which implies the claim. �
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Corollary 2.5. Given ν(dx) = f (x)dx, with ν(R) = 1 and H(ν) < ∞, set νt = D∗
t (ν) where

Dt : R → R, given by Dt(x) = tx. Let μ be a probability measure on R. Then given ε > 0 there
exists M sufficiently large so that if we denote by νM the measure ν([−M,M])−1ν|[−M,M],
νM
t = Dt(ν

M) and by μM the measure μM = μ[−M,M]−1μ|[−M,M], then

∣∣∣∣ lim inf
t→0

H(μ ∗ νt )

|log t | − lim inf
t→0

H(μM ∗ νM
t )

|log t |
∣∣∣∣ < ε.

Proof. This follows from first decomposing μ as μ|[−M,M] + μ|[−M,M]c , so that Lemma 2.2
shows that

∣∣∣∣ lim inf
t→0

H(μ ∗ νt )

|log t | − μ
([−M,M]) lim inf

t→0

H(μM ∗ νt )

|log t |
∣∣∣∣

� μ
([−M,M]c) lim sup

t→0

H(μ([−M,M]c)−1μ|[−M,M]c ∗ νt )

|log t |
� μ

([−M,M]c)
where the last inequality is due to Lemma 2.1(b) since ν(R) = 1.

We next decompose ν as ν|[−M,M] + ν|[−M,M]c and apply Lemma 2.4. Since H(ν) is finite,
also H(ν|[−M,M]) and H(ν|[−M,M]c ) are finite and so

∣∣∣∣ lim inf
t→0

H(μM ∗ νt )

|log t | − ν
([−M,M]) lim inf

t→0

H(μM ∗ νM
t )

|log t |
∣∣∣∣

� ν
([−M,M]c) lim sup

t→0

H(μ|[−M,M] ∗ D∗
t (νM)

|log t |
� ν

([−M,M]c)
again by Lemma 2.1(b). Since

∣∣∣∣(μ([−M,M])ν([−M,M]) − 1
)

lim inf
t→0

H(μM ∗ νM
t )

|log t |
∣∣∣∣ � μ

([−M,M]c) + ν
([−M,M]c)

the proof is complete if we take M big enough so that 2(μ([−M,M]c)+ν([−M,M]c)) � ε. �
Lemma 2.6. Assume that ν(dx) = f (x)dx with suppf = E a bounded subset of R, and that
for some constant C > ε > 0, |f − C| < ε on E. Let ν′(dx) = CχE dx and set νt = D∗

t (ν),
ν′
t = D∗

t (ν′). Assume furthermore that the support of μ is a bounded subset of R. Then

∣∣∣∣ lim inf
t→0

H(μ ∗ ν′
t )

|log t | − lim inf
t→0

H(μ ∗ νt )

|log t |
∣∣∣∣ � ελ(E).
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Proof. Let

pt (x) := dμ ∗ νt

dx
(x) =

∫
f

(
t−1(x − y)

)1

t
dμ(y),

p′
t (x) := dμ ∗ ν′

t

dx
(x) = C

∫
χE

(
t−1(x − y)

)1

t
dμ(y).

Using the fact that μ is a probability measure, we have:

∣∣pt(x) − p′
t (x)

∣∣ �
∫

εχE

(
t−1(x − y)

)1

t
dμ(y) = ε

C
p′

t (x).

Thus ∫
pt(x) logpt (x) dx =

∫
pt (x) logp′

t (x) dx −
∫

pt(x) log
pt (x)

p′
t (x)

dx,

implies

∣∣∣ ∫ pt (x) logpt(x) dx −
∫

pt(x) logp′
t (x) dx

∣∣∣ � max
∣∣log

(
1 ± C−1ε

)∣∣ = f
(
C−1ε

)
,

with f (C−1ε) → 0 as C−1ε → 0. Hence

∣∣H (
μ ∗ ν′

t

) − H(μ ∗ νt )
∣∣ �

∣∣∣ ∫ (
pt(x) − p′

t (x)
)

logp′
t (x) dx

∣∣∣ + f
(
C−1ε

)
� ε

C

∫
p′

t (x)
∣∣logp′

t (x)
∣∣dx + f

(
C−1ε

)
.

It follows that∣∣∣∣∣ lim inf
t→0

H(μ ∗ ν′
t )

|log t | − lim inf
t→0

H(μ ∗ νt )

|log t |
∣∣∣∣ � ε

C
lim sup

t→0

∫
p′

t (x)|logp′
t (x)|dx

|log t | . (4)

Now, let At = {x: 0 < p′
t (x) � 1} ⊂ tE + suppμ. Then logp′

t (x) > 0 for x /∈ At and
logp′

t (x) � 0 for x ∈ At . Therefore,

∫
p′

t (x)
∣∣logp′

t (x)
∣∣dx =

∫
p′

t (x) logp′
t (x) dx − 2

∫
At

p′
t (x) logp′

t (x) dx.

Since for y ∈ [0,1], the function y logy is bounded from below by −e−1 and from above by 0, we
get that for x ∈ At , 0 � −p′

t (x) logp′
t (x) � e−1. Since At ⊂ E + suppμ for t � 1, the Lebesgue

measure λ(At ) is bounded uniformly in t . Thus, we find that

lim inf

∫
p′

t (x)|logp′
t (x)|dx = lim inf

∫
p′

t (x) logp′
t (x) = lim inf

H(μ ∗ ν′
t ) .
t→0 |log t | t→0 |log t | t→0 |log t |
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But since H(ν′) = Cλ(E) logC is finite, we can use Lemma 2.1 to conclude that the right-hand
side above is bounded by Cλ(E), the mass of ν. Hence, we have proved with (4) that∣∣∣∣ lim inf

t→0

H(μ ∗ ν′
t )

|log t | − lim inf
t→0

H(μ ∗ νt )

|log t |
∣∣∣∣ � ελ(E). �

Theorem 2.7. Let ν be an arbitrary probability measure with H(ν) finite. Assume that μ is a
probability measure, and assume that μ and ν satisfy (2). Then if we denote by D∗

t the push-
forward of a measure by the dilation x �→ tx, we have that

lim inf
t→0

H(μ ∗ D∗
t (ν))

|log t | = lim inf
t→0

H(μ ∗ D∗
t (χ[0,1]))

|log t | .

In particular, the limit is independent of the measure ν.

Proof. Fix ε > 0. By Corollary 2.5, we may assume, without changing lim inft→0
H(μ∗D∗

t (ν))

|log t |
by more than ε/2, that μ and ν are supported on bounded sets. In particular, ν is Lebesgue
absolutely continuous with density q(x) ∈ L1(R) with E = suppq a subset of finite Lebesgue
measure. Given ε > 0 we may find a subset E0 ⊂ R and a constant M so that q(x) < M on E0
and ν(E0)

−1 � 1 − ε/8. By Corollary 2.5 we may replace ν by ν(E0)
−1ν|E0 without affecting

the value of lim inft→0
H(μ∗D∗

t (ν))

|log t | by more than ε/4. Next, since the density p(x) of ν is now a
bounded function on the support of ν, we may find a finite collection of disjoint subsets Ej ⊂ E0
and constants Cj with the property that on each Ej , |pj − Cj | < ε/λ(E)8 and that Cj is the
average value of f on Ej (in particular,

∑
Cjλ(Ej ) = ∫

f (x)dx = 1). According to Lemma 2.6
we may replace on each Ej ν|Ej

with χEj
at a penalty of at most ελ(Ej )/8. Hence we may

replace ν with the probability measure
∑

CjχEj at a penalty of at most (ελ(E)/8) ·∑λ(Ej ) �
ε/8. By Lemma 2.4 it follows that

lim inf
t→0

H(μ ∗ νt )

|log t | = lim inf
t→0

∑ H(μ ∗ D∗
t (CjχEj

))

|log t | .

Finally, by Lebesgue almost everywhere differentiability theorem, we may find, for each Ej

disjoint intervals I
(j)

1 , . . . , I
(j)
kj

of rational length with the property that Ej and
⋃

k I
(j)
k differ by

at most λ(Ej ) · ε/8. Applying once again Lemmas 2.2 and 2.4, we conclude that we may assume
at a further penalty of ε/8 that ν = ∑

KrχEr where Er are a finite collection of intervals. Up
to subdivision, we may assume that all the Er have the same Lebesgue measure (or length). We
conclude that

lim inf
t→0

H(μ ∗ νt )

|log t | = lim inf
t→0

∑
Kr

H(μ ∗ D∗
t (χEr ))

|log t | + o(ε),

where Kr is a family of non-negative real numbers so that
∑

Krλ(Er) = 1 and Er are intervals.
Since H(q(x) dx) = H(q(x −y)dx), we may replace any interval Er in the previous formula

by a shifted interval Ej + kj for any constant kj . Hence, since all the Er have the same length,
H(μ ∗ D∗

t (χEr )) does not depend on r and so we have

lim inf
H(μ ∗ νt ) = lim inf

1 H(μ ∗ D∗
t (χE1)) + o(ε),
t→0 |log t | t→0 λ(E1) |log t |
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here E1 is an interval with right-hand point at the origin. Note that E1 could be chosen as small
as wished and so letting ε going to zero we have

lim inf
t→0

H(μ ∗ νt )

|log t | = lim
a↓0

lim inf
t→0

H(μ ∗ D∗
t (χ[0,a]))

a|log t | .

This shows in particular that lim inft→0
H(μ∗νt )|log t | does not depend on the probability measure ν

with finite entropy and so we also have

lim inf
t→0

H(μ ∗ νt )

|log t | = lim inf
t→0

H(μ ∗ D∗
t (χ[0,1]))

|log t | . �
3. δc and fractal dimension

If μ is a probability measure on R, one can consider the (lower) point-wise dimension of μ:

f μ(x) = lim inf
t→0

μ[x − t, x + t]
log t

.

This function quantifies the logarithmic rate of growth of the measures of t-balls around x and
hence is a kind of local fractal dimension of μ. For example, certain Cantor–Lebesgue measures

μ = 1

2
(δ−1 + δ1) ∗ 1

2
(δλ + δ−λ) ∗ 1

2
(δλ2 + δ−λ2) ∗ · · · , 0 < λ < 1/2,

satisfy f μ = α = − log2 λ on the Cantor set supporting μ and f μ = 0 outside of it. We show
that δc is very close to the average value (computed with respect to μ) of the function f μ, apart
from the question of exchanging integration against μ and the limit lim inft→0.

Theorem 3.1. Let μ be a probability measure on R, and let

dt (x) = − logμ[x − t/2, x + t/2]
|log t | .

Then

δc(μ) = lim sup
t→0

∫
dt (y) dμ(y).

Proof. By Theorem 2.7 we may write

δc(μ) = 1 − lim inf
t→0

H(μ ∗ νt )

|log t | ,

where νt = D∗
t χ[−1/2,1/2] = 1

t
χ[−t/2,t/2]. Let pt(x) be the density of μt :

pt(x) = (
μ ∗ D∗

t χ[−1/2,1/2]
)
(x) = 1

μ
([x − t/2, x + t/2]).
t
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Now,

H(μt) =
∫

pt(x) logpt(x) dx

=
∫ ∫

1

t
χ[−t/2,t/2](x − y)dμ(y) logpt(x) dx

=
∫ ∫

1

t
χ[−t/2,t/2](x) logpt (x + y)dx dμ(y).

Since pt(x + y) = 1
t
μ[x + y − t/2, x + y + t/2] and [y + x − t/2, y + x + t/2] ⊂ [y − t, y + t]

as long as −t/2 � x � t/2, we find that for |x| � t/2, pt(x + y) � 1
t
μ[y − t, y + t]. Thus

H(μt) �
∫ ∫

1

t
χ[−t/2,t/2](x) log

1

t
μ[y − t, y + t]dx dμ(y)

=
∫

1

t
χ[−t/2,t/2](x) dx

∫
log

1

t
μ[y − t, y + t]dμ(y)

=
∫

log
1

2t
μ[y − t, y + t]dμ(y) +

∫
log 2dμ(y) =

∫
log

1

2t
μ[y − t, y + t] + log 2

(since μ is a probability measure). It follows that

lim inf
t→0

H(μt )

|log t | � lim inf
t→0

∫
log 1

t
μ[y − t/2, y + t/2]dμ(y)

|log t | = lim inf
t→0

∫
logpt(y) dμ(y)

|log t | .

Let now δ > 0 and set C = 1 + δ. Let ν′ = χ[−C/2,C/2], ν′′ = ν′ − χ[−1/2,1/2]. Let μ′
t =

μ ∗ D∗
t (ν′), μ′′

t = μ ∗ D∗
t (ν′′). Thus μ′

t = μt + μ′′
t . Let p′

t (x), p′′
t (x) be the densities of μ′

t and
μ′′

t , respectively. Then we have:

∫
pt (x) logp′

t (x) dx −
∫

pt(x) logpt(x) dx =
∫

pt (x) log
p′

t (x)

pt (x)
dx

=
∫

pt (x) log
pt(x) + p′′

t (x)

pt (x)
dx

=
∫

pt (x) log
(
1 + p′′

t (x)/pt (x)
)
dx.

Since 0 � log(1 + z) � z for z � 0, we conclude that

0 �
∫

pt(x) log
(
1 + p′′

t (x)/pt (x)
)
dx

�
∫

pt(x)p′′
t (x)/pt (x) dx

=
∫

p′′
t (x) dx = μ′′

t (R) = δ.
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It follows that

∣∣∣ ∫ pt (x) logp′
t (x) dx −

∫
pt(x) logpt(x) dx

∣∣∣ � δ. (5)

Now, p′
t (x) = 1

t
μ[x − Ct/2, x + Ct/2]. If |x| < t/2, then [y − δt/2, y + δt/2] ⊂ [y + x −

Ct/2, y + x + Ct/2]. Thus p′
t (x + y) � 1

t
μ[y − δt/2, y + δt/2] as long as |x| < t/2. It follows

that

∫
pt(x) logp′

t (x) dx =
∫ ∫

1

t
χ[−t/2,t/2](x) logp′

t (x + y)dμ(y)dx

�
∫ ∫

1

t
χ[−t/2,t/2](x) log

1

t
μ[y − δt/2, y + δt/2]dμ(y)dx

=
∫

log
1

t
μ[y − δt/2, y + δt/2]dμ(y)

=
∫

log
1

δt
μ[y − δt/2, y + δt/2]dμ(y) + log δ. (6)

Thus, first by (5) and then (6) we obtain

lim inf
t→0

H(μt )

|log t | = lim inf
t→0

∫
pt(x) logp′

t (x) dx

|log t |

� lim inf
t→0

∫
log 1

δt
μ[y − δt/2, y + δt/2]dμ(y)

|log t | = lim inf
t→0

∫
logpt(y) dμ(y)

|log t | ,

where we finally made the change of variable t ′ = δt . Combining this with the previous estimate
proves that

δc(μ) = 1 − lim inf
t→0

∫
log t−1μ[x − t/2, x + t/2] dμ(x)

|log t |

= 1 − lim inf
t→0

∫ [
logμ[x − t/2, x + t/2]

|log t | + − log t

|log t |
]

dμ(x)

= lim sup
t→0

∫
dt (x) dμ(x). �

Corollary 3.2. Assume that μ is a probability measure, which is dimension regular; i.e., there
exists some μ-measurable function α(x) and strictly positive constants C, c, and t0 so that for
any x in the support of μ and all 0 < t < t0 one has

ctα(x) � μ[x − t/2, x + t/2] � Ctα(x). (7)

Then δc(μ) = ∫
α(x)dμ(x).
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Note that in all the previous results, we could have changed the lim inf into a lim sup and vice
versa. Under the hypotheses of the corollary we would thus obtain

δc(μ) = 1 − lim inf
t→0

H(μt)

|log t | = 1 − lim sup
t→0

H(μt)

|log t | =
∫

α(x)dμ(x).

Proof. We find that

dt (x) = − logμ[x − t/2, x + t/2]
|log t |

satisfies the inequalities

α(x) log t + log c

|log t | � −dt (x) � α(x) log t + logC

|log t | ,

so that for t < 1,

α(x) − log c

|log t | � dt (x) � α(x) − logC

|log t | .

Integrating these inequalities against dμ(x), passing to the limit as t → 0 and using Theorem 3.1,
we obtain that δc(μ) = ∫

α(x)dμ(x). �
Example 3.3. (i) Let 0 < α < 1 and let μα be the Cantor–Lebesgue measure given by

μα = 1

2
(δ−1 + δ1) ∗ 1

2
(δλ + δ−λ) ∗ 1

2
(δλ2 + δ−λ2) ∗ · · · , λ = 2−α.

Then μα satisfies (7) with α(x) = α for all x in the support of μα . Thus δc(μα) = α.
(ii) Let μ = δ0 be a delta measure at 0. Then (7) is satisfied with α = 0 on the support of μ.

Hence δc(μ) = 0.
(iii) Let μ be Lebesgue absolutely continuous with density p(x). Then μ = μM + μ⊥

M

where μM = μ|{x: p(x)�M}. Furthermore, μ⊥
M(R) → 0 as M → ∞. Thus by Lemma 2.1,

limM→∞ δc(μ
⊥
M) = 0 and hence δc(μ) = limM→∞ δc(μM)+ δc(μ

⊥
M) = limM→∞ δc(μM). Since

H(μM) < ∞ and by the entropy power inequality H(μM ∗ ν) � H(μM) for any ν, we find that
δc(μM) = 1. Thus δc(μ) = 1.

It is curious to note that one has a classical analogue of the connection between free entropy
dimension and group cohomology. In the classical case, the L2 Betti numbers are replaced with
ordinary Betti numbers and the statement greatly trivializes.

Let Γ be a discrete Abelian group, and let Γ̂ be the its Pontrjagin dual Γ̂ = Hom(Γ,

{z ∈ C: |z| = 1}). Then Γ̂ is compact, and each γ ∈ Γ can be identified with a bounded function
on Γ̂ by γ (φ) = φ(γ ), φ ∈ Γ̂ . Let H 1(Γ,C) denote the group cohomology of Γ with coeffi-
cients in C (viewed as a trivial Γ -module).

Theorem 3.4. Let Γ be a finitely generated discrete Abelian group with generators γ1, . . . , γn.
Identify CΓ ⊂ L∞(Γ̂ ,μ), where μ is a Haar measure of Γ̂ , normalized to have measure 1 at
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each connected component of Γ̂ . Let ν be the law of the 2n-tuple X1, . . . ,X2n, X2k = γk + γ −1
k ,

X2k−1 = −i(γk − γ −1
k ). Then

δc(ν) = dimC H 1(Γ ;C).

Proof. Let Γ = Γ1 ⊕ Γ2, where Γ1 is a finite group of order l and Γ2 is a free Abelian group on
p generators. Then Γ̂ = Γ1 × T

p , where T denotes the unit circle in the complex plane. Since μ

is the Haar measure on Γ̂ , it is dimension regular of dimension p. Hence δc(ν) = lp.
On the other hand, H 1(Γ ;C) = H 1(Γ̂ ;C

p) = C
p and thus also has dimension lp. �

We end this section by showing that there is a connection between δc and the “entropy dimen-
sion” quantity h∗ considered in [3]. We are very grateful to the referee of the paper for telling us
about this work and suggesting a possible link.

Let m be a probability measure on [0,1) and fix an integer � > 1. Following [3], let

hn(m) = − 1

n log�

�n−1∑
i=1

m
([

i�−n, (i + 1)�−n
))

log
(
m

([
i�−n, (i + 1)�−n

)))
,

h∗
�(m) = lim sup

n→∞
hn(m).

We will write h∗(m) rather than h∗
�(m) if the value of � is clear.

Proposition 3.5. Let � and m be as above. For each n and ε, let

X(�, ε,n) =
⋃
k

(
(1 − ε)(k + 1)

�n
,
(k + 1)

�n

]
.

With this notation, we have:

(i) If lim sup in the definition of δc is attained along the sequence �−n, then h∗
�(m) � δc(m).

(ii) h∗
�(m) � δc(m) + infε lim supn m(X(�, ε, n)).

Proof. Fix ε > 0 and let t = ε�−n and fix 0 < ε < 1. Let An = n log� hn(m). Then

An = −
∑

k

m
[
k/�n, (k + 1)/�n

)
logm

[
k/�n, (k + 1)/�n

)

= −
∑

k

(k+1)/�n∫
k/�n

logm
[
k/�n, (k + 1)/�n

)
dm(x)

= −
∑

k

(k+1−ε)/�n∫
k/�n

logm
[
k/�n, (k + 1)/�n

)
dm(x)

−
∑

m
[
(k + 1 − ε)/�n, (k + 1)/�n

)
logm

[
k/�n, (k + 1)/�n

)
.

k
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Note that if x ∈ [k/�n, (k + 1 − ε)/�n), then [x, x + t) ⊂ [k/�n, (k + 1)/�n). Therefore if we let
as before X(�, ε,n) = ⋃

k[(k + 1 − ε)/�n, (k + 1)/�n), we find that

An �
∫

x /∈X(�,ε,n)

− logm[x, x + t) dm(x)

−
∑

k

logm
[
k/�n, (k + 1)/�n

)
m

[
(k + 1 − ε)/�n, (k + 1)/�n

)

�
1∫

0

− logm[x, x + t) dm(x)

−
∑

k

m
[
(k + 1 − ε)/�n, (k + 1)/�n

)
logm

[
(k + 1 − ε)/�n, (k + 1)/�n

)
.

It follows that, since for any ak � 0 such that
∑K

k=1 ak = 1,
∑K

k=1 ak logak � logK−1,

An �
1∫

0

− logm[x, x + t) dm(x)

− m
(
X(�, ε,n)

)
log

(
�−n

) − m
(
X(�, ε,n)

)
logm

(
X(�, ε,n)

)
.

Hence by Theorem 3.1,

lim sup
n

hn(m) � lim sup
t

1

|log t | + log ε

1∫
0

− logm[x, x + t) dm(x)

+ lim sup
n

m
(
X(�, ε,n)

) + lim
n

e−1/
∣∣log�−n

∣∣
= δc(m) + lim sup

n
m

(
X(�, ε,n)

)
.

Thus

h∗
�(m) � δc(m) + inf

ε
lim sup

n
m

(
X(�, ε,n)

)
.

On the other hand, if we assume that the lim sup in the definition of δc is attained along the
sequence t = 1/�n,

δc(m) = lim sup
t=�−n→0

−1

|log 2t |
∫

log
[
m

([x − t, x + t])]dm(x)

= lim sup
n→∞

−1

n log�

∑
k

(k+1)/�n∫
n

log
[
m

([
x − 1/�n, x + 1/�n

])]
dm(x)
k/�
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� lim sup
n→∞

−1

n log�

∑
k

m
([

k/�n, (k + 1)/�n
))

log
[
m

[
k/�n, (k + 1)/�n

)] = h∗(m),

where we again used Theorem 3.1 an the observation that for any x ∈ [k/�n, (k + 1)/�n],
[k/�n, (k + 1)/�n) ⊂ [x − 1/�n, x + 1/�n]. �

As shown in [3, Theorem 1.2] the dimension h∗ is always dominated by the packing dimen-
sion (see [7]) given

Dim∗(μ) = inf
{
Dim(E): μ(E) = 1

}
with Dim(E) the packing dimension of the set E. (Equality does not hold in general, see [3,
Proposition 4.1].) Combining this with the previous estimate gives

Proposition 3.6. If the lim inf in the definition of δc is a limit, then δc(μ) � Dim∗(μ).

4. δc via Fisher information and a notion of Ricci curvature

In this section, we relate δc with quantities related with differential calculus. Let us remark,
in the spirit of Voiculescu [13], that we can express δc via the asymptotics of the associated
Fisher information. To that end, recall that for a probability measure μ(dx) = p(x)dx absolutely
continuous with respect to Lebesgue measure, the Fisher information is given by

F(μ) =
∫ (

∂x logp(x)
)2

p(x)dx.

Note that if Psμ = μ√
s = μ ∗ ps with ps = ν√

s the centered Gaussian law with covariance s,

since ∂s
dPsμ
dx

= 1
2 (

dPsμ
dx

)′′, ∂sH(Psμ) = − 1
2F(Psμ) from which one sees that the entropy H and

the Fisher information F are related by

H(μ) − H(μ1) = 1

2

1∫
0

F(Psμ)ds.

Taking μ = Ptμ gives, since H(μ1) is always bounded, that

δc(μ) = 1 − lim inf
t→0

∫ 1
t

F (Psμ)ds

2|log t
1
2 |

= 1 − lim inf
t→0

∫ 1
t

F (Psμ)ds

|log t | . (8)

Observe that if ps is the density of Psμ

∂x logps(x) = 1√
s
E

[
g|X + √

sg
]

when g is a standard Gaussian variable independent from X with law μ. This shows by Cauchy–
Schwarz inequality that

0 � F(Psμ) � 1
(9)
s
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and so proves again that 0 � δc(μ) � 1. Moreover, (8) already reveals that δc(μ) is related with
the behavior of the Fisher information of Ptμ for small t and in fact, with the way that Ptμ

approaches μ as t goes to zero. Let us give some heuristics by assuming that we have the stronger
statement that

F(Ptμ) ≈t→0
1 − δc(μ)

t

(
1 + o(1)

)
and show that this entails that the convergence of Ptμ towards μ is at least of the order√

(1 − δc(μ))t . In fact, Fisher’s information can be equivalently defined by

F(Ptμ) := 2 sup
f

{
Ptμ(	f ) − 1

2
Ptμ

(
(f ′)2)} = sup

f

(Ptμ(	f ))2

Ptμ((f ′)2)
,

where the supremum is taken over all twice differentiable functions f (and is achieved here at
logpt ). Consequently, we find that for all twice differentiable function f ,

(
Ptμ(	f )

)2 � F(Ptμ)‖f ′‖2∞.

As a consequence,

∣∣Ptμ(f ) − μ(f )
∣∣ �

t∫
0

∣∣∂sPsμ(f )
∣∣ds

= 1

2

t∫
0

∣∣Psμ(	f )
∣∣ds

� 1

2
‖f ′‖∞

t∫
0

√
1 − δc(μ)

s

(
1 + o(1)

)
ds

� ‖f ′‖∞
√(

1 − δc(μ)
)
t
(
1 + o(1)

)
.

Extending this inequality to all Lipschitz functions gives a bound on the Dudley distance between
Ptμ and μ:

d(Ptμ,μ) := sup
f Lipschitz with norm�1

∣∣Ptμ(f ) − μ(f )
∣∣ �

√(
1 − δc(μ)

)
t
(
1 + o(1)

)
.

We believe that the relation between the short time asymptotics of Ptμ and δc should be deeper
that this result even though we could not prove it here. However, we shall prove here another
definition for δc which is closely related with Bochner’s inequality, a classical tool to estimate
the short time asymptotics of the heat kernel in a compact Riemannian manifold. We shall restrict
ourselves here to measures on R but could as well consider measures on a compact Riemannian
manifold with Ricci curvature bounded below (eventually by a negative real number). To make
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this generalization more transparent, we denote 	 the Laplace–Beltrami operator on R (i.e. the
second spatial derivative). We let Γ be the carré du champ given by

Γ (f,g) = 1

2

(
	(fg) − f 	g − g	f

)
,

and Γ2 be the carré du champ itéré

Γ2(f,f ) = 1

2

(
	Γ (f,f ) − 2Γ (f,	f )

)
.

In the case where M = R, we simply have

Γ (f,f ) = (f ′)2, Γ2(f,f ) = (f ′′)2.

Note that in the case of a connected Riemannian manifold with metric g, Laplace–Beltrami
operator 	 and gradient ∇ , the same definitions hold and give

Γ (f,f ) = g(∇f,∇f ), Γ2(f,f ) = (Hessf,Hessf )g + Ric(∇f,∇f )

with Ric the Ricci tensor. Bochner’s (or curvature-dimension) inequality CD(n,K) states that

Γ2(f,f )(x) � 1

n
(	f )2(x) − KΓ (f,f )(x)

for all smooth function f and at all points x of the manifold. n corresponds to the dimension of
the manifold whereas the best constant −K corresponds to the smallest eigenvalue of the Ricci
tensor. It is well known (see Bakry and Ledoux [1], Bakry and Qian [2], etc.) that the coefficient
n governs the short time scaling of the heat kernel (as t−n/2). Here n � 0 and K is a real number
which we will assume finite for a while. In the real one-dimensional case, we clearly have K = 0
and n = 1, but the constant n of course is universal and does not depend on any measure. We
next define the measure-dependent Bochner inequality as follows.

Definition 4.1. We say that a probability measure μ on R satisfies Bochner’s inequality with
constants CDm(K,n) if there exists δ > 0 so that for all 0 < ε′ � δ, all smooth functions f ,

Pε′μ
(
Γ2(f,f )

)
� 1

n

[
Pε′μ(	f )

]2 − K(ε′, n)Pε′μ
(
Γ (f,f )

)
.

In the sequel, it will appear that interesting cases appear when the constant K(n, ε′) may blow
up with ε′, reason why K will be later some non-negative arbitrary function; n is some positive
real number.

Remark. Note here that assuming that Bochner’s inequality is true in expectation would lead to
the stronger definition

Pε′ ∗ μ
(
Γ2(f,f )

)
� 1

Pε′ ∗ μ
[
(	f )2] − K(ε′, n)Pε′ ∗ μ

(
Γ (f,f )

)
.

n
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However, the idea is that what we want is that the points belonging to the microstates

Γδ,μ :=
{
x1, . . . , xN : d

(
1

N

∑
δxi

,μ

)
< δ

}

approximately satisfy Bochner’s inequality when N goes to infinity and ε goes to zero. Applying
the classical Bochner’s inequality to functions of the form F(x1, . . . , xN) = N−1 ∑

f (xi + εgi)

for independent standard Gaussian variables (g1, . . . , gN), ε > 0 and letting N go to infinity
gives our actual definition of measure-dependent Bochner’s inequality. Hence, roughly speaking,
(n,−K(ε,n)) represent the dimension and the smallest eigenvalue of the Ricci tensor of a mani-
fold where the entries (x1 + √

εg1, . . . , xN + √
εgN) live when the (x1, . . . , xN) belong to Γδ,μ,

for δ arbitrarily small.

Based on measure-dependent Bochner’s inequalities we shall now define a new entropy di-
mension.

Definition 4.2. Let μ be a probability measure on R
d . We define the CD-dimension as

δ�(μ) := d − inf
μ satisfies CDm(n,K)

(
lim inf
ε→0

∫ 1
ε

K(y,n)dy

log ε−1
+ 1

)
n.

Above, the infimum is taken over all couples (n,K(·, n)) such that μ satisfies CDm(n,K).

We now prove that δ� equals δc. We first prove that

Lemma 4.3. For any probability measure μ on R
d ,

δ�(μ) � δc(μ).

Proof. Note that for d = 1, (	f )2 = Γ2(f,f ) but that the following argument will generalize to
dimension d by Cauchy–Schwarz inequality which gives dΓ2(f,f ) � (	f )2. Integrating with
respect to μ implies that for all ε � 0

[
Pεμ(	f )

]2 � Pεμ
[
(	f )2] � Pεμ

[
Γ2(f,f )

]
.

On the other hand, with pε the density of Pεμ with respect to Lebesgue measure,

[
Pεμ(	f )

]2 = (
Pεμ

[
f ′(logpε)

′])2

� Pεμ
[
(f ′)2]Pεμ

[(
(logpε)

′)2]
= Pεμ

[
Γ (f,f )

]
F(Pεμ).

Therefore, for all α ∈ [0,1], we have

[
Pεμ(	f )

]2 � αPεμ
[
Γ2(f,f )

] + (1 − α)F (Pεμ)Pεμ
[
Γ (f,f )

]
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and so μ satisfies CDm(n,K) with n = α and

K(ε,n) = n−1(1 − n)F (Pεμ)

for all α ∈ [0,1]. Then,

lim inf
ε→0

(
log ε−1)−1

1∫
ε

K(y,n)dy � (1 − n)n−1 lim inf
ε→0

(
log ε−1)−1

1∫
ε

F (Pyμ)dy,

and so

δ�(μ) � 1 − inf
n�d

[
n + (1 − n) lim inf

ε→0

(
log ε−1)−1

1∫
ε

F (Pyμ)dy

]
= δc(μ)

where we used (log ε−1)−1
∫ 1
ε

F (Pyμ)dy � d by (9) to say that the infimum is taken at
n = 0. �
Proposition 4.4. If a probability measure μ on R satisfies CDm(K,n), then

lim inf
ε→0

(
log ε−1)−1

1∫
ε

F (Pyμ)dy � lim inf
ε→0

[(
log ε−1)−1

1∫
ε

K(y,n)dy + 1

]
n.

As an immediate corollary of Proposition 4.4 we have

Theorem 4.5. For any probability measure μ on R,

δ�(μ) = δc(μ).

Whereas it can be easily seen that the characteristic (n,−K) of a manifold are invariant by
Lipschitz map (simply by taking local quadratic functions), invariance is not so transparent for
measure-dependent Bochner’s inequality and we could not prove interesting invariance property
of δ�. However, the above theorem and Section 5 show that δ� is invariant under Lipschitz
maps.

Proof. Let us first put Pεμ = Pε ∗ μ with ε > 0 and write

F(Pεμ) = 2 sup
f

{
Pεμ(	f ) − 1

2
Pεμ

(
Γ (f,f )

)}
.

Now, let for x ∈ [0, δ], φ(x) = Px ∗ Pεμ(Γ (Pδ−xf,Pδ−xf )) with Pεf (x) = Pε(f (x) dx) by
definition. Differentiating with respect to x, we find that
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φ′(x) = Px ∗ Pεμ
(
Γ2(Pδ−xf,Pδ−xf )

)
� 1

n

[
Px ∗ Pεμ(	Pδ−xf )

]2 − K(x + ε,n)Px ∗ Pεμ
(
Γ (Pδ−xf,Pδ−xf )

)
= 1

n

(
(Pεμ	Pδf )2) − K(x + ε,n)φ(x),

where we used the fact that Px is a semigroup which commutes with the Laplacian. Also, we
have used our measure-dependent Bochner’s inequality with f → Pδ−xf and ε′ = x + ε. We set

L(x) = e
∫ 1
x K(y,n)dy . Integrating x ∈ [0, δ], we deduce that

Pδ ∗ Pεμ
(
Γ (f,f )

)
� Pεμ

(
Γ (Pδf,Pδf )

)L(ε + δ)

L(ε)
+ 1

n
Pεμ

(
(	Pδf )

)2
δ∫

0

L(ε + δ)

L(ε + x)
dx.

(10)

We thus obtain that for all a ∈ [0,1],

F(Pε+δ) � 2 sup
f

{
aPεμ(	Pδf ) − 1

2
Pεμ

(
Γ (Pδf,Pδf )

)L(ε + δ)

L(ε)

+ (1 − a)Pεμ(	Pδ ∗ f ) − 1

2n

δ∫
0

L(ε + δ)

L(ε + x)
dx

(
Pεμ(	Pδf )

)2

}

� a2 L(ε)

L(ε + δ)
F (Pεμ) + (1 − a)2 n∫ δ

0
L(ε+δ)
L(ε+x)

dx
. (11)

The optimum with respect to a is taken at

a = n

L(ε)
L(ε+δ)

∫ δ

0
L(ε+δ)
L(ε+x)

dx F (Pεμ) + n
.

We conclude

F(Pε+δμ) �
n

L(ε)
L(ε+δ)

F (Pεμ)∫ δ

0
L(ε)

L(ε+x)
dx F (Pεμ) + n

= n∂δ

[
log

( δ∫
0

L(ε)

L(ε + x)
dx F(Pεμ) + n

)]
. (12)

Integrating with respect to δ ∈ [0,1 − ε] thus gives

n−1

1∫
F(Pxμ)dx � log

(
n−1

1∫
L(ε)

L(x)
dx F(Pεμ) + 1

)

ε ε
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� log

(
n−1ε−1

1∫
ε

L(ε)

L(x)
dx + 1

)
,

where we used again εF (Pεμ) � 1 by (9). Consequently

n−1 lim inf
ε→0

(
log ε−1)−1

1∫
ε

F (Pxμ)dx � lim inf
ε→0

(
log ε−1)−1 log

(
n−1ε−1d

1∫
ε

L(ε)

L(x)
dx + 1

)

= lim inf
ε→0

(
log ε−1)−1 log

(
ε−1

1∫
ε

L(ε)

L(x)
dx

)
.

Now,

1∫
ε

L(ε)

L(x)
dx � e

∫ 1
ε K(y,n)dy

and so we arrive at

n−1 lim inf
ε→0

(
log ε−1)−1

1∫
ε

F (Pxμ)dx � d + lim inf
ε→0

(
log ε−1)−1

1∫
ε

K(y,n)dy (13)

which is the desired inequality. �
We finally give a lower bound of δ� in the spirit of [10]. To do this, let us defined, for a

Cb
1(R,R) function g,

Fg(μ) = 2 sup
f

{
μ(g	f ) − 1

2
μ

(
Γ (f,f )

)}
.

For simplicity, we consider the case d = 1 (although the proof for general d is very similar).

Proposition 4.6. For any probability measure μ on R,

δc(μ) = δ�(μ) � 1 − inf
h∈F̄μ

μ
[
(1 − h)2]

with F̄μ the set of continuous functions so that

lim inf
δ→∞

(
log δ−1)−1

1∫
δ

Fh(Pxμ)dx = 0.
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This lower bound has the advantage to give a more intuitive picture of the dimension; for
instance, if μ has a smooth density such that the gradient of its logarithm is uniformly bounded,
on a subset A of M , we take h = 1 in some interior set As of A, |h| � 1 and h = 0 outside A. It
is easy to see that Fh(μ) < ∞ and so h ∈ Fμ. Thus, we get

δc(μ) = δ�(μ) � μ(A).

Note however that such a lower bound is already contained in Theorem 3.1.

Proof of Proposition 4.6. We take h ∈ Fμ. We can assume without loss of generality that μ[(1−
h)2] �= 0 since otherwise the bound is trivial (h being equal to one almost surely, and hence
Fh = F implying that δc = δ� = d). Let Jh be such that

Pεμ(Jhf ) = Pεμ(hf ′).

For h identically equal to 1, Jh is the usual score function logpε(s)/s, where pε is the density
of Pεμ. It is not hard to see that for ε > 0, Jh exists and in fact one has the bound

[
Pεμ(Jhf

′)
]2 � Fh(Pεμ)Pεμ

(
Γ (f,f )

)
.

We now write

Pεμ(	f ) = Pεμ(h	f ) + Pεμ
(
(1 − h)	f

)
= Pεμ(Jhf

′) + Pεμ
(
(1 − h)	f

)
.

Using the inequalities

[
Pεμ(Jhf

′)
]2 � Fh(Pεμ)Pεμ

(
Γ (f,f )

)
and

[
Pεμ

(
(1 − h)	f

)]2 � Pεμ
(
(1 − h)2)Pεμ

(
(	f )2)

� Pεμ
(
(1 − h)2)Pεμ

(
Γ2(f,f )

)
.

Using that for all α > 0, for all x, y ∈ R, (x + y)2 � (1 +α)x2 + (1 +α−1)y2 we thus derive the
inequality

[
Pεμ(	f )

]2 � (1 + α)Fh(Pεμ)Pεμ
(
Γ (f,f )

) + (
1 + α−1)Pεμ

(
(1 − h)2)Pεμ

(
Γ2(f,f )

)
that is the CDm(n,K) inequality with

n = n(ε) = (
1 + α−1)Pεμ

(
(1 − h)2), K(ε,n) = n−1(1 + α)Fh(Pεμ).
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Since h is continuous, Pεμ((1 − h)2) converges towards μ((1 − h)2) �= 0 and since
lim inf(log ε−1)−1

∫ 1
ε

Fh(Pxμ)dx goes to zero,

lim inf
ε→0

(
log ε−1)−1

1∫
ε

K(x,n)dx = 0.

Thus, δ�(μ) � 1 − infα(1 + α−1)μ((1 − h)2) = 1 − μ((1 − h)2) and optimizing over h ∈ F̄μ

yields the desired estimate. �
5. Lipschitz invariance

Our main result is that δc is invariant under push-forwards by bi-Lipschitz maps.

Theorem 5.1. Let f : R → R be bi-Lipschitz, i.e., we assume that for some m,M > 0 and all
x, y ∈ R,

m|x − y| � ∣∣f (x) − f (y)
∣∣ � M|x − y|.

Let η = f ∗μ be the push-forward of μ. Then δc(μ) = δc(η).

Proof. For any y = f (x),

η[y − t/2, y + t/2] = μ
(
f −1[y − t/2, y + t/2]) � μ

[
x − t/(2M),x + t/(2M)

]
.

It follows that

1

|log t |
∫

logη

[
y − t

2
, y + t

2

]
dη(y) � 1

|log t |
∫

μ

[
f −1(y) − t

2M
,f −1(y) + t

2M

]
dη(y)

= 1

|log t |
∫

μ

[
x − t

2M
,x + t

2M

]
dμ(x)

= 1

|log s + logM|
∫

μ

[
x − s

2
, x + s

2

]
dμ(x),

where s = t/M . Using Theorem 3.1 we conclude that

δc(η) � δc(μ).

Replacing f by its inverse yields the reverse inequality. �
It should be noted that one cannot expect much more invariance for δc than is given by Theo-

rem 5.1. Indeed, Cantor sets in R can be made homeomorphic in a way that distorts their fractal
dimensions.
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6. Non-commutative Bochner’s inequality

In this last section, we generalize the notion of measure-dependent Bochner’s inequality of
Section 4. To this end, we first define the appropriate notions of carré du champ and carré du
champ itéré.

6.1. Carré du champ

We recall first that the carré du champ and the carré du champ itéré in R
n are given, for

f : Rn → C by

Γ (f,f ) =
n∑

i=1

|∂if |2, Γ2(f,f ) =
n∑

i,j=1

|∂xi
∂xj

f |2.

In the case of m Hermitian matrices XN with complex entries xk
ij , 1 � i � j � N , 1 � k � m,

	 = 2
m∑

k=1

∑
1�i<j�N

∂xk
ij
∂x̄k

ij
+

m∑
k=1

∑
1�i�N

∂xk
ii
∂xk

ii

and so, if f,g : R
2mN2 → C, we set

Γ1(f, g) = 2
m∑

k=1

∑
i<j

∂xk
ij
f ∂x̄k

ij
ḡ +

m∑
k=1

∑
i<j

∂xk
ii
f ∂xk

ii
ḡ

and

Γ2(f, g) =
m∑

k,l=1

∑
ij

∑
ml

(∂xl
ij
∂xk

ml
f ∂x̄l

ij
∂x̄k

ml
ḡ).

To define the notion of carré du champ and carré du champ itéré for tracial states we consider
first the situation of a tracial state τ , which is the limit of some random matrix model.

More precisely, assume that we are given some probability measures ηN on the spaces of m-
tuples of N ×N self-adjoint matrices. For each finite N , consider the non-commutative law μ̂N :
for any polynomial Q in m variables, we set

μ̂N (Q) =
∫

1

N
tr

(
Q

(
X1√
N

, . . . ,
Xm√

N

))
dνN(X1, . . . ,Xm).

Note that for a fixed polynomial P , the function

f
((

xk
ml

)1�k�m

1�m�l�N

) := F(X) = tr

(
P

(
X1√ , . . . ,

Xm√
))
N N
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is just a function on the space R
mN2

of m-tuples of self-adjoint N × N matrices, and thus one
can consider for each finite N the carré du champ and the carré du champ itéré for such functions
f defined on the manifold R

mN2
taken with the measure νN .

Let us now make the assumption that as N → ∞, the laws μ̂N converge weakly to some limit
law τ . In other words, we assume that for any polynomial Q in X1, . . . ,Xm, we have

lim
N→∞ μ̂N (Q) = τ(Q).

An example is to take νN to the law of independent standard Gaussian variables and τ the law of
m free semi-circular variables. Let us denote by ∗ the involution

(zXi1 · · ·Xik )
∗ = z̄Xik · · ·Xi1

for any il ∈ {1, . . . ,m}. Since tr(P ) = tr(P ∗), we have as N → ∞, and denoting in short X =
(X1, . . . ,Xm),

Γ
μ̂N

1 (P,Q) :=
∫ ∑

k

∑
i,j

∂Xk
ij

(
tr

(
P

(
X√
N

)))
∂X̄k

ij

(
tr

(
Q∗

(
X√
N

)))
dνN(X)

=
∫

N−1
∑

k

∑
i,j

[
DkP

(
X√
N

)]
ij

[
DkQ

(
X√
N

)∗]
ji

dνN(X)

=
∫ ∑

k

N−1 tr
(
DkP (X)

(
DkQ(X)

)∗)
dνN(X)

≈
∑

k

τ
(
DkP (X)

(
DkQ(X)

)∗) := Γ τ
1 (P,Q),

where we have denoted by Dk the cyclic derivative on polynomial, given by

DkP =
∑

P=P1XkP2

P2P1

if P is a monomial (and extending by linearity to all polynomial then), and noticed, as can be
readily checked on monomials, that (DkP )∗ = DkP

∗. Similarly,

Γ
μ̂N

2 (P,Q)

:=
∫ m∑

k,l=1

∑
i,j

∑
p,q

∂Xl
ij
∂Xk

pq

(
tr

(
P

(
X√
N

)))
∂X̄l

ij
∂X̄k

pq

(
tr

(
Q∗

(
X√
N

)))
dνN(X)

=
∫

N−2
m∑

k,l=1

[∂l ◦ DkP � 1pq ]ij [∂l ◦ DkQ
∗ � 1qp]ji

(
X√
N

)
dνN(X)

=
∫

N−2
m∑

k,l=1

[∂l ◦ DkP � 1pq ]ij [∂l ◦ DkQ
∗ � 1qp]ji

(
X√
N

)
dνN(X)

≈
m∑

τ ⊗ τ
(
(∂l ◦ DkQ)∗ � ∂l ◦ DkP

) := Γ τ
2 (P,Q),
k,l=1
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where ∂k denotes the non-commutative derivative with respect to the variable Xk (∂kP =∑
P=P1XkP2

P1 ⊗ P2 for a monomial P ), A ⊗ B � C = ACB , (A ⊗ B)∗ = B∗ ⊗ A∗ and
A ⊗ B � A′ ⊗ B ′ = BA′ ⊗ AB ′. 1kl is the matrix with zeroes except in kl. Hence, we define

Definition 6.1. For any non-commutative law τ of m self-adjoint variables, we define its non-
commutative carré du champ to be the bilinear function on C〈X1, . . . ,Xm〉 so that for any P,Q ∈
C〈X1, . . . ,Xm〉,

Γ τ
1 (P,Q) =

m∑
i=1

τ
(
DiP (DiQ)∗

)

and its non-commutative carré du champ itéré to be the bilinear function on C〈X1, . . . ,Xm〉 so
that for any P,Q ∈ C〈X1, . . . ,Xm〉,

Γ τ
2 (P,Q) =

m∑
k,l=1

τ ⊗ τ
(
(∂l ◦ DkQ)∗ � ∂l ◦ DkP

)
.

We also denote in short

Γ τ
i (P,Q) = 〈P,Q〉τ,i .

Observe that the above notation makes sense since Γ τ
i are positive bilinear forms. This is obvious

for Γ τ
1 . For Γ τ

2 , one needs to observe that if τ is a tracial state, P,Q → τ ⊗ τ(P � Q∗) is non-
negative. But if P = ∑

αiAi ⊗ Bi ,

τ ⊗ τ
(
P � P ∗) =

∑
αiᾱj τ

(
AiA

∗
j

)
τ
(
BiB

∗
j

)
� 0

since the matrices (τ (AiA
∗
j ))i,j , (τ (BiB

∗
j ))i,j are non-negative.

Let us introduce the notation:

∂2
k ≡ 1

2
(∂k ⊗ 1 + 1 ⊗ ∂k) ◦ ∂k,

M(A ⊗ B ⊗ C) ≡ B ⊗ AC

and

Lτ :=
∑

k

(τ ⊗ I )
(
M ◦ ∂2

k

)
.

Then when the entry-wise Laplacian 	 = ∑
∂xk

ij
∂x̄k

ij
acts on F(Xl

ij ) = f (X1, . . . ,Xm), we get

that

	F = Lτ f
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when the law of X approximates τ . If F = N−1 tr(P ), we get

	F ≈ τ(LτP ).

Note here that

τ(LτP ) =
m∑

i=1

τ ⊗ τ(∂i ◦ DiP )

as can be readily checked by taking P to be a monomial. Let S = (S1, . . . , Sm) be a free Brown-
ian motion, free with X = (X1, . . . ,Xm) with law τ , and φ a tracial state on a von Neumann
algebra containing S and X. We then have

P(X + St ) = P(X) +
t∫

0

LφX+Ss
(P )(X + Ss) ds +

t∫
0

m∑
i=1

∂iP (X + Ss) � dSi
s,

where the last term is a martingale. We denote τt the distribution of (X1 + S1
t , . . . ,Xm + Sm

t ) for
t � 0.

6.2. Non-commutative Bochner’s inequality

We recall that Bochner’s inequality reads in the classical context as

Γ2(f,f ) � 1

n
(	f )2 − KΓ1(f,f )

for some fixed constants n � 0, K ∈ R. Remark that n is of the order of the dimension, so of
order N2 in the context of matrices, so we let N = n/N2 and apply this inequality to F = tr(P )

we get if μ̂N
X ≈ τ , as N goes to infinity,

〈P,P 〉τ,2 � 1

N
[
τ(LτP )

]2 − K〈P,P 〉τ,1.

Therefore,

Definition 6.2. We shall say that a non-commutative law τ satisfies a CDm(K,N ) inequality iff
for all ε small enough,

〈P,P 〉τε ,2 � 1

N
[
τε(Lτε P )

]2 −K(N , ε)〈P,P 〉τε ,1

for any polynomial function P .
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We can therefore define

Definition 6.3.

δ�(τ ) = m − inf
τ satisfies CDm(K,N )

(
K̄(N ) + 1

)
N ,

where

K̄(N ) = lim inf
ε→0

(
log ε−1)−1

1∫
ε

K(N , y) dy.

We next want to compare this definition of a non-commutative dimension with already exist-
ing entropy dimension. We recall that in the non-commutative setting, Voiculescu [14] defined
the following notion of Fisher entropy and related entropy dimension. For a tracial state τ , we
define its Fisher information by

Φ∗(τ ) =
m∑

i=1

sup
P∈C〈X1,...,Xm〉

{
τ ⊗ τ

(
∂i

(
P + P ∗)) − τ

(
PP ∗)}

= sup
P∈C〈X1,...,Xm〉m

{
m∑

i=1

τ ⊗ τ
(
∂i

(
Pi + P ∗

i

)) −
m∑

i=1

τ
(
PiP

∗
i

)}
.

Then, as in (8), the microstates-free free entropy dimension is given by

δ∗(μ) = m − lim inf
t→0

∫ 1
t

Φ∗(τs) ds

|log t | , (14)

where τs denotes the free additive convolution of the law τ with the law of an m-tuple of (0, s)-
semicircular variables. Here, we shall consider a variant of δ∗ based on the following definition
of Fisher information as found in [4]:

Φ̄∗(τ ) = sup
P∈C〈X1,...,Xm〉

{
m∑

i=1

τ ⊗ τ
(
∂i

(
DiP + DiP

∗)) −
m∑

i=1

τ
(
DiPDiP

∗)}

and

δ̄∗(τ ) = m − lim inf
t→0

∫ 1
t

Φ̄∗(τs) ds

|log t | .

Observe that Φ̄∗ � Φ∗ and so δ̄∗(τ ) � δ∗(τ ). Equality is achieved if the conjugate variables
belong to the cyclic gradient space, which appears to be often (if not always) the case (see
Voiculescu [14] and Cabanal Duvillard, Guionnet [5]). This is the case, in particular, if we are
dealing with the law τ of a single variable (i.e., m = 1).
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In the sequel, we shall as well denote (J i
τ )1�i�m for the projection of the conjugate variable

on the cyclic gradient space, i.e.

τ ⊗ τ(∂i ◦ DiP ) = τ
(
J i

τ DiP
)

for all polynomials P . We next prove

Proposition 6.4.

δ�(τ ) = δ̄∗(τ ).

In particular,

δ�(τ ) � δ̄∗(τ ) � δ(τ ),

where δ(τ ) denotes the microstates entropy dimension.

Proof. Let us first remark that by definition

τ(LτP ) =
m∑

i=1

τ ⊗ τ(∂i ◦ DiP ) =
m∑

i=1

τ
(
J i

τ DiP
)

and therefore ∣∣τ(LτP )
∣∣2 � Φ̄∗(τ )Γ τ

1 (P,P ).

On the other hand,

∣∣τ(LτP )
∣∣2 � m

m∑
i=1

∣∣τ ⊗ τ(∂i ◦ DiP )
∣∣2

with ∣∣τ ⊗ τ(∂i ◦ DiP )
∣∣2 � τ ⊗ τ

(
∂i ◦ DiP � (∂i ◦ DiP )∗

)
by Cauchy–Schwarz inequality, which holds because of the positivity of the positive bilinear
form P,Q → τ ⊗ τ(∂i ◦ DiP � (∂i ◦ DiP )∗). Hence, for any α ∈ [0,1]∣∣τ(LτP )

∣∣2 � mαΓ τ
2 (P,P ) + (1 − α)Φ̄∗(τ )Γ τ

1 (P,P ).

This proves that Bochner’s inequality is satisfied with N = mα and K(N , ε) =
(1 −N /m)Φ̄(τε)N−1 from which we get

m − δ�(τ ) = inf
{
N

(
1 + K̄(N )

)}
� inf

N∈[0,m]

{
N + (1 −N /m) lim inf

∫ 1
ε

Φ̄∗(τs) ds

|log ε|
}

= m − δ̄∗(τ ),

where we used that
∫ 1
ε Φ̄∗(τs ) ds ∈ [0,m] which holds since Φ̄∗(τs) � s−1.
|log ε|
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For the other inequality, let x, ε � 0 and X be an m-tuple of random variables having the law
τx+ε obtained as free convolution of the law τ with the semicircular law of variance x + ε. Let
δ � x and let Sδ−x be an m-tuple of semicircular variables of variance δ−x, free from X. Denote
by τ(·|X) the conditional expectation onto the algebra generated by X. We then introduce, in the
spirit of the proof in the classical case, the function

φ(x) =
m∑

i=1

τx+ε

(∣∣Diτ
(
P(X + Sδ−x)|X

)∣∣2)

(note that τ(P (X + Sδ−x)|X) is a polynomial in X and hence is in the domain of Di ).
We have

φ′(x) =
m∑

i=1

τx+ε

(
Lτx+ε

∣∣Diτ
(
P(X + Sδ−x)|X

)∣∣2)

− 2�τx+ε

(
Diτ

(
Lτδ+ε P (X + Sδ−x)|X

)(
Diτ

(
P(X + Sδ−x)|X

)∗))
, (15)

where we used the fact that the law of X+Sδ−x under τx+ε is the law of X+Sδ−x + S̄x+ε , with S̄

a free Brownian motion independent from S,X, which has the same law τδ+ε of X +Sδ+ε . Now,
let us compute Lτx+ε (PQ) for polynomials P,Q. Lτx+ε is a second order differential operator;
it will either act on P , or Q, or both:

Lτx+ε (PQ) = Lτx+ε (P )Q + PLτx+ε (Q) + R(P,Q).

To compute R(P,Q) note that this contribution comes from

∂2
k (PQ) − ∂2

k (P ) × 1 ⊗ 1 ⊗ Q − P ⊗ 1 ⊗ 1 × ∂2
k (Q) = ∂kP �̄ ∂kQ

with A ⊗ B �̄ A′ ⊗ B ′ = A ⊗ BA′ ⊗ B ′. Observe that

M(A ⊗ B �̄ A′ ⊗ B ′) = BA′ ⊗ AB ′ = A ⊗ B � A′ ⊗ B ′.

Therefore

m∑
i=1

τx+ε

(
R

(
Diτ

(
P(X + Sδ−x)|X

)
,Diτ

(
P(X + Sδ−x)|X

)))
= Γ

τx+ε

2

(
τ
(
P(X + Sδ−x)|X

)
, τ

(
P(X + Sδ−x)|X

))
.

Finally, it is easy to see that

Lτx+ε

(
Diτ

(
P(X + Sδ−x)|X

)) = Diτ
(
Lτδ+ε P (X + Sδ−x)|X

)
.

Indeed, since LτP (X) = ∂t τ (P (X + St )|X)|t=0 if X has law τ , we have
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Lτx+ε

(
Diτ

(
P(X + Sδ−x)|X

))
= lim

t→0
Di

1

t

(
τ
(
P(X + Sδ−x + St )|X

) − τ
(
P(X + Sδ−x)|X

))
= Diτ

(
lim
t→0

1

t
τ
(
P(X + Sδ−x + St ) − P(X + Sδ−x)|X,Sδ−x

)|X)

= Diτ
(
Lτδ+ε P (X + Sδ−x)|X

)
,

where we applied free Itô’s calculus to t → P(X + Sδ−x + St ). Thus, using (15), we obtain that

φ′(x) = Γ
τx+ε

2

(
τ
(
P(X + Sδ−x)|X

))
� 1

N
[
τx+ε

(
Lτx+ε

{
τ
(
P(X + Sδ−x)|X

)})]2 − KΓ
τx+ε

1

(
τ
(
P(X + Sδ−x)|X

))
. (16)

We can now proceed exactly in the lines of the proof of Proposition 4.4 to conclude that Φ̄∗(τε)

satisfies the bound

Φ̄∗(τε) �
N L(ε)

L(ε+δ)
Φ̄∗(τε)∫ δ

0
L(ε)

L(ε+x)
dxΦ̄∗(τε) +N

(17)

with L(y) = e
∫ 1
y K(x,N ) dx as before. The rest of the proof is exactly as in the classical case. �

Corollary 6.5. If τ is the law of a single variable (i.e., m = 1) then

δ�(τ ) = δ̄∗(τ ) = δ(τ ) = 1 − τ ⊗ τ(χ	),

where χ	 is the characteristic function of the diagonal 	 ⊂ R
2 and we identify τ with a measure

on R.

Proposition 6.6. Let X = (X1, . . . ,Xm) have the given law τ , M = W ∗(X1, . . . ,Xm) and let
G = (Gij ) ∈ Mm×m(L2(M⊗̄Mo)) be a fixed matrix. Let Φ̄G be the Fisher information defined
by

Φ̄G = sup
P∈C〈X1,...,Xm〉

{
m∑

i=1

τ ⊗ τ
(
∂G
i

(
DiP + DiP

∗)) −
m∑

i=1

τ
(
DiPDiP

∗)}

where ∂G
i (Xj ) = Gij . Then

δ̄∗(τ ) = δ�(τ ) � m
(

1 − inf
G∈Fτ

τ (1 − G)2
)

with Fτ the set of G ∈ Mm×m(L2(M ⊗̄ Mo)) so that (log ε−1)−1
∫ 1
ε

dt Φ̄∗
G(τt ) goes to zero.

The proof is exactly the same as the previous one except that the use of Bochner inequality is
simply replaced by the fact that any measure satisfies CDm(m,0) as we have seen in the proof of
the previous theorem.
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