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:\HSTRACT 

(riven polynomials cl(X) of degee nl and b(X) of degree n, we represent the 
inverse to the Sylvester resultant matrix of a and 0, if this inverse exists, as a 
canonical 5~1 of m + n dyadic matrices each of which is a rational function of zeros 

of /I aud b. 

A method to solve the equation 

ux + by = c, 

wherea=cl(X), h=h(X),andc=c(h)aregivenandx=x(h)and y=y(X) 
are m~known univariable polynomials of degrees m, n, m + n - 1, n - 1, and 
~11 - 1, respectively, is to solve the system of 1~1 + n linear algebraic equations 

where z = Z(X, y) and d = d( ) c are (m + n)dimensional row vectors com- 
posed of the coefficients of the polynomials x, y, and c, respectively, and 
S = S(a, b) is the (m + n) x (m + n) Syhester resultant matrix of polynomi- 
als a and b. Solving Equation (1) constitutes an important single-input, 
singleautput case in the zereplacement procedure in control theory (see, 
e.g., [2]). In this paper we explicitly represent the matrix S-’ as a canonical 
sum of m + n dyadic matrices each of which is a rational function of zeros of 
a and b; thus we give an explicit solution (x(X), y(X)) for (1). This solution 
may have a practical application in certain situations of adaptive control. 
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Although the formulation of this solution appears very simple (see Corollaries 
1 and 3), the author is able to mention no other work with this solution. 

In the case in which both a( A) and h(X) have no multiple zeros, the 
representation of S ’ is much simpler than in the general case. First, we 

fornuUe the results for this special case. 

THEOREM 1. Let a(X)=cq,h”‘+qP’+ ... +a,,,=a,,(X-a,)(X- 

a,)“.(h-a,,,) CJfld h(h)=h,,h”+hlX”mm’+ .‘. +h,,=h,,(h-p,)(x- 

/?, ) . . (A - p,, ) he conzplfx polynomials, m,,h,, # 0, cJnd S = S( u, h) he their 

1 10 01 - (1 c, 

0 U 0 “I 

. . . . . . . . . . . 

0 . . 

0 . . 

h h, h, 

0 h, h, 
. . . . . . . . . . . 
0 . . 

(J ,,, 

(J I,, 1 

’ 0’ 

lf all zeros cxi are simple (i.e. puirwise different), and all zeros pi are simple, 

then the adjoint matrix adjS is 

+( _ l)“‘“Q’ t 

j=l 

,l$~J 

*#j h(h) 

h(h) 
i [ i 

rown x-pi 

h -4 IA=+, 

(3) 
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rchcw rowk( p( X )) denotes row [ p,, , p I,. . , p, ,] composed of the r~oeffi- 

cG,~ts of the polynomial p(h) = p,,Ak ’ + p,h” I + . . . + pL ,. 

COHOLLARY 1. In the assumptions of Theorem 1 if det S( u, b) # 0, then 

(4) 

und tlzc solution to Equation (1) is given by the form&s 

h(X) Cl(X) 

s(X) = e A - Pj C(P]) 111 x - a, 4 a, ) 
,=I h(X) u(fij) ’ 

y(h)= c 
i=l “(‘1 

h(cr,)’ (3) 

‘-Pi h=p h-a, Azn 

, I 

i.rl., x(X) is the Lugrujzge interpolution polynomiul for the function c( h)/u( A) 
occr the set of zeros of h( A), and y( X ) is the one for the ftlnction c( X )/ h( X ) 

ovf’r the set of zeros of u(X). 

The following corollary describes the asymptotic stnlcture of S ‘, x( h ), 
and y(X) whell a zero of u(h) approaches a zero of I?( A). 

COROLLAFiY 2. Let the coefficients of the polynomials a( X ) = (1 .(A) untl 
h( X ) = h,( X ) clepencl on a parameter r, r E { r }. Denote by x,(X ) and y,( h ) 
tlzc cwrc~sporuling solution.5 of (1). Let r* he an uccumulution point in { r }, 
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In the case of simple zeros the representation of S ’ relates to the 
Lagrunge interpolation formula. In the general case the representation of S ’ 
shall relate to the general Hermite polynomial interpolation formula. A 
version of this formula is presented below for reference. 

Let 

u(X) = u,,( x - a,)““( x - a.,p . (A - a,)“‘\ (6) 
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I)C :I c~miplex polynomial of degree ))I = 111, + )II: + . + III,. u?th zeros 
0 , . . . (1, , III L > 0, k = 1,. , .Y, (I ,, f 0, a,! # a, for k # i. Let jj h ) he a 

c.olrrplex fraction which is defined at A = ayI. and has II~,: - 1 successive 
del-i\.ati\es fl’l(~r),f’“‘(~~),...,f’“‘l “(a,), k=1,2 > f., s. The polynomial 
ij( h ) of degree no larger than 111 - 1 for interpolation f( X ) is as follows: 

mhere II,: ,(A), i=O,l,..., llL,-1, x-=1,2 ,...), 9, are III polynomials of 
degree\ no larger than m - 1. The values of the polynomial p( X ) and its 
Ill I, - 1 sllccessive derivatives are the same as those of the futlction f(X) at 
X=tu,. k=l ,...,I ‘;. 

The polytioinials uA,, are independent of .f arid are 1lniqltely defiilecl 
give]) the zeros of the polynomial n with their nrultiplicaities. They are called 
the firrrt/ot,wldc// polynomials. For any partia&u set { 111 I, ll~?, , 111, } ex- 

plic,it exprmsions for the fundamental polynomials can he derived (3, 51. In 
the statement of Theorem 2 below we assume availal)ility of the fundamental 
polylloiriials II~, , corresponding to the polynomial (I as in (6). 

Similarly, t1 fundamental polynomials r ,, ,( h ) of degree no larger than 
II - 1 correspond to a complex polynomial h(h) of degree II as follows. If 

the zero\ of p(X) are pI,. , ,B,, )I, > O, I = 1,. . , t, P, f P, for 1 f j. th 

i4 the corresponding interpolation polynomial. 
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We introduce the notation A I;( A ) for the followiug A-cohmn~ of height k: 

If li = 111 + II, the subscript can be omitted: A( X ) = A ,I, + ,,( X ). Theorem 1, in 
particular, implies that in the case of simple zeros each column of S ’ is a 
liuear combination of the cohmms obtaiued as the vahles of ;1( A) when X 
takes ou the vahles of the zeros of the polynomials (I aud h. The following 
Theorem 2, in particular, asserts that in the general case, each cohunn of S ’ 
is a linear combination 
derivatives 

‘4 

.Q”‘(h) = 

of the columns obtained as the values of A( A) and its 

“(A) = 

( 1)1 + n _ ,),,,,+,I ~2 

( 1)L + n - 2) x”’ + ” :I 

2x 
1 
0 

( n1 + n - 1) ( n1 + n - 2) X” + ‘I ,’ 

(111 + n - 2)( 111 + n - ,)P “I ’ 

2 
0 
0 

1 

I )... 

wheu A takes on the values of the zeros of the polynomials (I aud 17. 

THEOREM 2. Let a( A) he a complex polynomial of degree 111 as in (fi), 
nnd ict u,,,(X), k = l,..., s, i = l,..., mk, he the m corresponding fundamen- 
ttrl polynomids. Let h(X) he a complex polynomial of degree n as in (7), and 
Irt ~,,~(h), I= l,..., t, j = l,..., n,, be the n corresponding fundamental 
polyrwminls. Let S = S( a, h) he the ( rn + n ) x (~1 + n ) Sylvester matrix 
tl~jincd CI,S it1 Tlleorem 1. 
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I. lf det S f 0, then there exist m polynomicds CTk, ,( A), k = 1,. . . , s, 
i=l , . . ) IIlk, of degree no [urger thun m - 1, cmd n polynomials 17,, j( h ), 

I=1 ,..., t, j=l,..., n,, of degree no [urger thnn n - 1, such that 

?)I, 1 

S(n,b) ‘= 1 fP’(a,)[O )..., o,row,,,(r~,,,(h))]+ ‘.’ 
, = 0 

, =o 

111 1 

+ j;(, dqp,)[row,,( V,.,(X)),0 >..., o] + ‘. . 

+ “~‘*~~‘(p,)[r0w,~(~.~(X)),0 ,...) 01. (8) 
j = 0 

II. For each fixed k = 1,2,. . , s, the mk polynomials CT,, ,, i = 

0, l,..., mk - 1, can he found successively, beginning with i = mk - 1, by 
the following recurrence: 

1 = m1, - 1, 111 1. -2 ,...) 1,o. (9) 

ForeachfixedZ=1,2,..., t, the n, polynomials V,,i, j = O,l,. . . , n, - 1, cun 
be found successively, beginning with j = n, - 1, by the following recur- 
rence: 

1 
V,,,(X) = ~ 

fl(P,) i 
u ,,j(x)- “i’ [ f )u[jqii,)v,,,,(h) > 

j,zj+l I1 I 

j=n,-l,n-2 ,..., 1,O. 

EX;~MPLE. Let ak be a zero of multiplicity nlk = 2 of the polynomial 
(I( h ). In the decomposition (8) two dyadic summand matrices correspond to 



this zero, .2( (Y~ )[O,. . ,O, row,,,( I ‘A,,,( A),] and :I”!( cq)[O,. ,o, lW,,,( r; ,( x ),I. 

Helo\s we derive an explicit expression for C’,,,, and C;,,. Denote (I~( A) = 
(I( A )/( h - a,: )“. The corresponding fundamental polyttomials are [S] 

Follo\vittg the procedure in Theorem 2, we begin with the value i = I)I~ - 1 = 1 
itt (9) and find 

IVote that the value of the sum YL~:LI $_ I in (9) is assumed to he 0 in the above 

c&ttlatiott. since tuk - 1 < i + 1. Next, for i = ?)I~ - 2 = 0 we calculate 

(:ORoLLARY :3. If det S( (1, h) z 0, t/Zen tiyuution (1) leas tk fdkGng 

,sol~ciion: A‘( X ) is the generul Hemite interpolution polynonkl for the> ftmc- 

tiorr c( h)/u( A) ocer the set of zeros (with their ndtiplicities) of h( A), untl 

sitrlilorly y(X) is the interpoldon polynomial for the f~ctdion c( X)/h( X ) 
over th(J scd of zeros (with their multiplicities) of a( X ). 

DISCVSSION. If the zeros of u and h are simple, Theorem 1 represettts 
adj S in the form (3). This represetttatiotr is valid for both cases, det S = 0 attd 
det S # 0. A representation for adj S can be obtained if zeros are ttot simple if 
we tttttltiply both sides of Equation (8) by det S. This represetttatiott is of a 
form sintilar to that in (8): it is a linear combination of dyadic matrices. The 
coltmttta in the dyads are the same as itt (8). The rows are prodttced by the 
operatiott “row” from certain polynotnials, which are equal to CX., and V,, , 
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np to a proportionality constant. These “ row” polynomials are unique given 

the linlitation 011 their degree, since r\. , and V,, , are unique polynomials. 
Iiowever this general representation is not necessarily valid in the case 
det S = 0. If zeros are simple, then the zero terms O( pi) and ll(a,) in the 
tlellomi~lators are canceled by the corresponding terms in det S = 17:“, h( a,) 
= I I ;‘= , (I( ,b’, ) which appears in the numerators. If zeros are not simple, det S 
does not ilecessarily cancel all zero terms in the denominators. 

111 the example above it may be that the coefficients of /I( h ) depend on a 
paraineter 7, 7 E (T}, h(X) = h,(X), the set {T} h as an accumulation point L. 
7 *. and /I~( LYE ) ---) 0 when 7 ---) 7 *, but 17,((~~) f 0 for all 7 f T* and Ih!“(ak)l 
> coast > 0 for all T E { T}. Due to the presence of the terin h”l( a,)/& m,) 
ill ( IO), I;,,,( X)det S retains h( LYE) in the denominator. Because of that, when 
T + T * the smnmand with ‘I( CY,: ) tends to infinity even after multiplication 
I)y det S. 

Dlle to the uniqueness of CT,, , and V,, , in (B), we can be assured that, in 
gel\eral, IIO expression for adj S of the form similar to (8) exists which is valid 
for l)oth the cases det S f 0 and det S = 0. 

;\N APPLI~:ATION. Solving the system of linear algebraic equations (2) is 
easier than finding the zeros of the polynomials (I( A) and h(X). Therefore 
the formulas (5) are inefficient for solving an isolated instance of the zero 
placemeirt equation (1). 

IIowever, in the case in which the coefficients of (I( A) and h(X) are 
continuously changing with time 7, the formnlas (5) appear more attractive. 
Illstead of solving many instances of the system (2), one may track zeros of 
(I( h ) and /I( h ) as they change and substitute these zeros into (ii) or into its 
corresponding generalization. This situation may arise if one uses the zero- 
placement procedure (1) in the course of adaptive control with adjustable and 
time-variAle u(X) = a,(X) and h(X) = h,(h). 

.1. proof is only required for Theorem 2 and Corollary :3. Whereas it is easy 
to establish Corollary 0, given the result of Theorem 2, one can also establish 
it inclependently of Theorem 2, if one computes f( h ) = o( X )x( h ) + h( X ) y( h ) 
and the appropriate number of derivatives of f( X ) for each zero of (I and Il. 

Proof of ?7lcorenl 2. The notation rowk( p( A )) can be extended ill an 
ol)violls way to the case of a column polynomial p of degree no larger than 
k - I, in which case rowA( p( A)) is a k X k matrix. We have 

A(rowJp(X))) = rowL(Ap(A)), (11) 

row~(r?(x))+rowk(q(h)) = rowk(p(h)+ v(h)) (12) 
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for a k X I; complex matrix A and colum~i h-polynomials p(h) and c&h) of 
degree no larger than k - 1 and height k. 

Let (I be the (VI + n ) X ( TM + II ) matrix on the right-hand side of Equa- 
tiotr (8). Applying rules (11) and (12) we obtain 

Q = row,), + ,,(dh)), 

4o)=Y,o)+Y~o)~ 

\there q( X ), q,( X ), qa( X ) are c0l111n~1 X-polynomials of degree no larger than 
~JI + II - 1 and height nt + n, and the polynomials yl and yl. are give11 by 

, 1 
q,(X)= i: “‘~‘~\“l(~i)r;.,(h), q&h)=X”‘i ‘lx .z”‘(p,)y,(x). 

k-1 r-o /=I ,=(I 

The ( UI + 11 ) x ( ))I + n ) identity matrix I,,, ,, can be represented as I,,, ,, = 
row ,I, ,,( .\ ,,, ,,( X )). The condition SQ = IllI _ ,, can be rewritten as 

sq(x)=Az(x). 

Vsillg the specific stnlcture of the Sylvester matrix S, we have 

\L.e can also calculate the corresponding rth derivative 

Since ~(a~)= ~“~(a~)= .. = (1 I )“A ‘I(aL)=O, k=l,..., s,wehave 

c 0 

lj!;,‘(nA)hl~ II > 

I 

r=O,l,..., nlA-l. 
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Stttrtnring all terms S.Ziri( NJC~~, ,.( A), r = 0, 1,. . , I)I~ - 1, k = 1,. . . , ,s. we 

olkiitt 

I 0 
S9I(X) = h(h 1; 

:\ccwding to (9) the following identity holds. 

The SIIIII on the right-hand side of Equatiott (14) is the same as the internal 

SIII~I it) ( 1.‘3). Thus, A( A) = ,I,,,( A), according to the general polynonrial 

interpolation fortnula, and 

S9,(X 1 = 
0 I I -\,,,(A) 

Similarly the identity 

S9,( h ) = I 1 PI.1 ,, ( h ) 

0 

c’at~ I)e established. Hence the representation (8) is proven. 

The tttiiqtteness of polynomials C :. , and 17,. i easily follows from the 

nottsingttlarity of the (rt + m ) x (n + 1t1 ) generalized Vandemottde matrix [:3] 

[A(a,),..., A”“, “(a, ) ,...) ‘I( a,),. . . , .I’“‘~ “(a, ), 

.I( p, ) ,..., .l”‘f “(P,) )...) Al(p,) ,...,. 2’“J “(P,)] 

whets a,! # ,B, for all pairs k, I, k = l,.. . , s, I = I,.. , t. 
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