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We study (1 + λp)-constacyclic codes over Zpm of an arbitrary
length, where λ is a unit of Zpm and m � 2 is a positive integer. We
first derive the structure of (1 + λp)-constacyclic codes of length
ps over GR(pm,a) and determine the Hamming and homogeneous
distances of such constacyclic codes. These codes are then used to
classify all (1 + λp)-constacyclic codes over Zpm of length N =
psn (n prime to p). In particular, the Gray images of (1 + λp)-
constacyclic codes over Zp2 are also discussed.
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1. Introduction

Codes over finite rings have been studied since the early 1970s. After the discovery that certain
good nonlinear binary codes can be constructed from cyclic codes over Z4 via the Gray map [10],
codes over finite rings have received much more attention. In particular, constacyclic codes over finite
rings have been a topic of study (see, for example, [2–4,6,11,13–19]). In [16,17], Wolfmann studied
negacyclic codes over Z4 of odd length and gave some important results about such negacyclic codes.
Tapia-Recillas and Vega generalized these results to the setting of codes over Z2k in [14]. Later, Ling
and Blackford extended most of the results in [14,16,17] to the ring Zpk+1 in [11], where some con-
stacyclic codes over Zpk+1 were characterized. More generally, the structure of negacyclic codes of
length n over a finite chain ring R such that the length n is not divisible by the characteristic p of the
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residue field R̄ was obtained by Dinh and López-Permouth in [6]. The situation when the code length
n is divisible by the characteristic p of the residue field R̄ yields the so-called repeated-root codes.
In recent years, several classes of repeated-root constacyclic codes over finite rings have been studied
extensively (see, for examples, [2–4,6,13,18,19]). Using a transform approach, Blackford [2] classified
all negacyclic codes over Z4 of even length and generalized Wolfmann’s results [16,17] to negacyclic
codes of even length. Sălăgean [13] showed that negacyclic codes of even length over the Galois ring
GR(2a,m) are principally generated. In [4], Dinh studied the structure of λ-constacyclic codes of length
2s over Z2a where λ is any unit of Z2a with form 4k−1, and established the Hamming, homogeneous,
Lee, and Euclidean distances of all such constacyclic codes.

In this paper, we investigate (1 + λp)-constacyclic codes over Zpm of an arbitrary length, where
λ is a unit of Zpm and m � 2 is a positive integer. The class of constacyclic codes over Zpm includes
the following two classes of codes as special cases: (i) when p = 2 the class of constacyclic codes
coincides with the class of λ-constacyclic codes over Z2a where λ is any unit of Z2a with form 4k − 1
(cf. [4]); (ii) when m = 2 and λ = p − 1 the class of constacyclic codes coincides with the class of
(1 − p)-constacyclic codes over Zp2 (cf. [11]). Using the discrete Fourier transform, we classify all
(1 + λp)-constacyclic codes over Zpm of length psn, where gcd(n, p) = 1 and s � 0 is an integer. The
rest of this paper is organized as follows. Section 2 gives some notations and results about constacyclic
codes and Galois rings. In Section 3, we study the structure of (1 + λp)-constacyclic codes of length
ps over GR(pm,a) and determine the Hamming and homogeneous distances of all such constacyclic
codes. In Section 4, we classify all (1 + λp)-constacyclic codes over Zpm of length N = psn (n prime
to p) using the discrete Fourier transform. Section 5 deals with (1 + λp)-constacyclic codes over Zp2

and their images under a generalization of the Gray map.

2. Preliminaries

Let R be a finite commutative ring with identity. An ideal I of the ring R is called principal if it is
generated by one element. If R has a unique maximal ideal, then R is a local ring; if the ideals of R
are linearly ordered, then R is a finite chain ring. The ring R is a finite chain ring if and only if R is
a local ring and its maximal ideal is principal. Examples of finite chain rings include Zpm and Galois
rings. The following results are well-known facts about finite chain rings (cf. [12]).

Proposition 2.1. Let R be a finite commutative chain ring with maximal ideal M and residue field R̄. Let ν be
a fixed generator of M and t the nilpotency index of ν . Then we have

(i) the distinct proper ideals of R are 〈ν i〉, i = 1,2, . . . , t − 1;
(ii) for i = 0,1, . . . , t, |〈ν i〉| = |R̄|t−i .

A polynomial f (x) in Zpm [x] is said to be a basic irreducible polynomial if its reduction modulo p,
denoted by f̄ (x), is irreducible in Zp[x]. Define the Galois ring GR(pm,a) = Zpm [x]/〈h(x)〉, where h(x)
is a monic basic irreducible polynomial in Zpm [x] of degree a. The Galois ring GR(pm,a) is local with
maximal ideal 〈p〉 and residue field Fpa . The polynomial h(x) can be chosen so that ξ = x + 〈h(x)〉 is
a primitive (pa − 1)st root of unity. The set Ta = {0,1, ξ, . . . , ξ pa−2} is a complete set of coset repre-
sentatives modulo 〈p〉 and is called the Teichmüller set, which can be viewed as the set of all solutions
to the polynomial xpa − x over GR(pm,a). Each element r ∈ GR(pm,a) can be written uniquely as

r = ξ0 + pξ1 + p2ξ2 + · · · + pm−1ξm−1,

where ξi ∈ Ta , 0 � i � m − 1. According to the following proposition, r is an invertible element in
GR(pm,a) if and only if ξ0 �= 0.

Proposition 2.2. Let R be a finite commutative ring with identity. If x − y is nilpotent in R, then x is a unit if
and only if y is a unit.
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The set Ta is mapped onto Fpa under the canonical reduction map (modulo p reduction) from
GR(pm,a) to Fpa . Under the representation above, the Frobenius automorphism σ on GR(pm,a) acts
as follows

σ(r) = ξ
p
0 + pξ

p
1 + p2ξ

p
2 + · · · + pm−1ξ

p
m−1.

The map σ is an automorphism of GR(pm,a), fixes only elements of Zpm , and generates the group of
automorphisms of GR(pm,a), which is cyclic of order a.

Hensel’s lemma [12, Theorem XIII.4] is an important tool in studying finite commutative chain
rings, which guarantees that factorizations into a product of pairwise coprime polynomials in Zp[x]
lift to such factorizations over Zpm . If gcd(n, p) = 1, then the polynomial xn − 1 factors uniquely into
monic basic irreducible polynomials in Zpm [x] as xn − 1 = f1(x) f2(x) · · · fr(x). Let a be the order of p
modulo n. Then Fpa contains a primitive nth root of unity. By Hensel’s lemma, GR(pm,a) also has a
primitive nth root ξ of unity. For each j, 0 � j � n − 1, there exists a unique i, 1 � i � r, such that
f i(ξ

j) = 0, and f i(x) is called the minimal polynomial of ξ j over Zpm .
For a finite commutative ring R , a code over R of length N is a nonempty subset of R N , and a

code over R of length N is linear if it is an R-submodule of RN . For some fixed unit ω of R , the
ω-constacyclic shift τω on RN is the shift τω(c0, c1, . . . , cN−1) = (ωcN−1, c0, . . . , cN−2), and a linear
code C of length N over R is ω-constacyclic if the code is invariant under the ω-constacyclic shift τω .
Note that the R-module RN is isomorphic to the R-module R[x]/〈xN − ω〉. We identify a codeword
c = (c0, c1, . . . , cN−1) with its polynomial representation c(x) = c0 + c1x + · · · + cN−1xN−1. Then xc(x)
corresponds to an ω-constacyclic shift of c(x) in the ring R[x]/〈xN −ω〉. Thus ω-constacyclic codes of
length N over R can be identified as ideals in the ring R[x]/〈xN − ω〉.

Throughout this paper, let p be a prime number and λ a unit of Zpm , and let N = psn with
gcd(n, p) = 1 and s being a nonnegative integer.

3. (1 + λp)-Constacyclic codes of length ps over GR(pm,a)

3.1. Structure

We denote R(a) = GR(pm,a)[x]/〈xps − (1 + λp)〉. (1 + λp)-Constacyclic codes of length ps over
GR(pm,a) are precisely the ideals of R(a).

Lemma 3.1. The element x − 1 is nilpotent in R(a).

Proof. In R(a), we have

(x − 1)ps = xps + (−1)ps +
ps−1∑
i=1

(−1)i
(

ps

i

)
xps−i

= 1 + (−1)ps + λp +
ps−1∑
i=1

(−1)i
(

ps

i

)
xps−i . (1)

Since
(ps

i

) ≡ 0 (mod p) for 1 � i � ps − 1, there exists a polynomial f (x) ∈ GR(pm,a)[x] such that

(x − 1)ps = pf (x), which implies (x − 1)psm = 0. Thus, x − 1 is nilpotent in R(a). �
Let

μ : GR
(

pm,a
) → Fpa , μ(r) = r (mod p)
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denote the canonical reduction map from GR(pm,a) to Fpa . The map μ extends naturally to a map
from GR(pm,a)[x] to Fpa [x]. Each element r ∈ GR(pm,a) can be uniquely written as r = r0 + r1 p +
r2 p2 + · · · + rm−1 pm−1 with ri ∈ Ta . We simply write μ(r) = r0.

Lemma 3.2. Let a(x) ∈ R(a). Then

(i) a(x) can be uniquely written as

a(x) = a0 + a1(x − 1) + a2(x − 1)2 + · · · + aps−1(x − 1)ps−1 (2)

where ai ∈ GR(pm,a), 0 � i � ps − 1;
(ii) a(x) is a unit in R(a) if and only if μ(a0) �= 0.

Proof. (i) is obvious. (ii) Note that a(x) can be expressed as a(x) = μ(a0) + pr + (x − 1)g(x), for some
r ∈ GR(pm,a) and g(x) ∈ R(a). Write f (x) = pr + (x − 1)g(x), then f (x) = a(x) − μ(a0). Since x − 1
and p are nilpotent in R(a), it follows that (x − 1)g(x) and ph(x) are nilpotent in R(a). Therefore,
f (x) is nilpotent in R(a). By Proposition 2.2, a(x) is a unit in R(a) if and only if μ(a0) is a unit; if
and only if μ(a0) �= 0. �
Lemma 3.3. In R(a) we have (x − 1)ps = pρ(x), where ρ(x) is a unit in R(a). Thus, the nilpotency index of
x − 1 is psm.

Proof. Write f (x) = ∑ps−1
i=1 (−1)i

(ps

i

)
xps−i . Expanding f (x) in (x − 1), we get

f (x) =
ps−1∑
i=1

ps−i∑
j=0

(−1)i
(

ps

i

)(
ps − i

j

)
(x − 1)ps−i− j. (3)

The constant term of (3) is f (1) = ∑ps−1
i=1 (−1)i

(ps

i

) = −1 − (−1)ps
. Hence, f (x) can be represented as

f (x) = f (1) + p
∑ps−1

i=1 bi(x − 1)i , where bi ∈ GR(pm,a) for 1 � i � ps − 1. From (1), we have

(x − 1)ps = p

(
λ +

ps−1∑
i=1

bi(x − 1)i

)
.

By Lemma 3.2(ii), ρ(x) = λ + ∑ps−1
i=1 bi(x − 1)i is a unit in R(a) since λ is a unit in GR(pm,a). This

completes the proof. �
Theorem 3.4. The ring R(a) is a chain ring with maximal ideal 〈x − 1〉 and residue field Fpa , and the nilpo-
tency index of x − 1 is psm. The ideals of R(a) are 〈(x − 1)i〉, 0 � i � psm.

Proof. Let r(x) be any element in R(a). Then r(x) can be expressed as r(x) = r0 + pr + (x − 1)g(x),
where r0 ∈ Ta , r ∈ GR(pm,a), and g(x) ∈ R(a). If r0 = 0, then r(x) = pr + (x − 1)g(x). By Lemma 3.3,
p = (x − 1)ps [ρ(x)]−1, hence r(x) = (x − 1)h(x) for some polynomial h(x) ∈ R(a). This gives r(x) ∈
〈x − 1〉. If r0 �= 0, then r(x) is a unit in R(a). Therefore, for any element r(x) in R(a), either r(x) is
a unit, or r(x) ∈ 〈x − 1〉. This implies that R(a) is local with maximum ideal 〈x − 1〉. According to
[6, Proposition 2.1], R(a) is a chain ring whose ideals are 〈(x − 1)i〉, 0 � i � psm. �
Corollary 3.5. Let C be a (1+λp)-constacyclic code of length ps over GR(pm,a). Then C = 〈(x−1)i〉 ⊆ R(a),
for some i ∈ {0,1, . . . , psm}, and the number of codewords in C is |C | = pa(psm−i) .
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Proof. Since (1 + λp)-constacyclic codes of length ps over GR(pm,a) are precisely the ideals of R(a),
we have the first result. The second result follows from the fact that R(a) is a finite chain ring with
residue field Fpa (cf. Proposition 2.1). �
3.2. Hamming and homogeneous distances

Using the linear ordering of some classes of constacyclic codes over finite rings or fields, Dinh
computed various kinds of distances of such constacyclic codes in [3–5]. In the following, we use
this technique to compute the Hamming distance of (1 + λp)-constacyclic codes of length ps over
GR(pm,a). Let Ci = 〈(x − 1)i〉 be a nonzero (1 + λp)-constacyclic code of length ps over GR(pm,a), for
some i ∈ {0,1, . . . , psm − 1}. Denote the Hamming distance of Ci by dH (Ci). Since 〈1〉 = C0 ⊃ C1 ⊃
· · · ⊃ C psm−1, it follows that dH (C psm−1) � dH (C psm−2) � · · · � dH (C1) � dH (C0) = 1.

Proposition 3.6. For 0 � i � ps(m − 1), Ci = 〈(x − 1)i〉 ⊆ R(a) has Hamming distance dH (Ci) = 1.

Proof. By Lemma 3.3, C ps(m−1) = 〈(x − 1)ps(m−1)〉 = 〈pm−1〉. Hence, dH (C ps(m−1)) = 1, which implies
dH (Ci) = 1 for 0 � i � ps(m − 1). �

For ps(m − 1) + 1 � i � psm − 1, let i = ps(m − 1) + t with 1 � t � ps − 1, then Ci =
〈(x − 1)ps(m−1)+t〉 = 〈pm−1(x − 1)t〉. Thus, each code Ci is the cyclic code 〈(x − 1)t〉 of length ps

over Fpa multiplied by pm−1. Combining this with [5, Theorem 6.4], we obtain the Hamming distance
of (1 + λp)-constacyclic codes of length ps over GR(pm,a) as follows.

Theorem 3.7. Let Ci = 〈(x − 1)i〉 be a nonzero (1 + λp)-constacyclic code of length ps over GR(pm,a), for
some i ∈ {0,1, . . . , psm − 1}. Then the Hamming distance dH (Ci) of Ci is given by

dH (Ci) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if 0 � i � ps(m − 1),

β + 2, if ps(m − 1) + βps−1 + 1 � i � ps(m − 1) + (β + 1)ps−1

where 0 � β � p − 2,

(t + 1)pk, if psm − ps−k + (t − 1)ps−k−1 + 1 � i � psm − ps−k + tps−k−1

where 1 � t � p − 1, and 1 � k � s − 1.

The homogeneous weight for finite chain rings was defined in [9], where the concept of the Gray
map between (Z4, Lee distance) and (Z2

2, Hamming distance) was extended to the context of finite
chain rings. We recall the definitions for homogeneous weight and homogeneous distance for codes
over GR(pm,a).

Definition 3.8. The homogeneous weight on GR(pm,a) is a weight function on GR(pm,a) given as

whom : GR
(

pm,a
) → N, r �→

⎧⎪⎨⎪⎩
(pa − 1)pa(m−2), if r ∈ GR(pm,a)\〈pm−1〉,
pa(m−1), if r ∈ 〈pm−1〉\{0},
0, if r = 0.

The homogeneous weight of a codeword c = (c0, c1, . . . , cn−1) over GR(pm,a) is the rational sum
of the homogeneous weights of its components. The homogeneous distance dhom(C) of a linear code
C is the smallest homogeneous weight of its nonzero codewords. Now we compute the homogeneous
distance of (1 + λp)-constacyclic codes of length ps over GR(pm,a).

Theorem 3.9. Let Ci = 〈(x − 1)i〉 be a nonzero (1 + λp)-constacyclic code of length ps over GR(pm,a), for
some i ∈ {0,1, . . . , psm − 1}. Then the homogeneous distance dhom(Ci) of Ci is given by
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dhom(Ci) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pa − 1)pa(m−2), if 0 � i � ps(m − 2),

pa(m−1), if ps(m − 2) + 1 � i � ps(m − 1),

(β + 2)pa(m−1), if ps(m − 1) + βps−1 + 1 � i � ps(m − 1) + (β + 1)ps−1

where 0 � β � p − 2,

(t + 1)pa(m−1)+k, if psm − ps−k + (t − 1)ps−k−1 + 1 � i � psm − ps−k + tps−k−1

where 1 � t � p − 1, and 1 � k � s − 1.

Proof. By Lemma 3.3, C ps(m−2) = 〈(x − 1)ps(m−2)〉 = 〈pm−2〉. If 0 � i � ps(m − 2), then 〈1〉 = C0 ⊇ Ci ⊇
C ps(m−2) = 〈pm−2〉. Hence, dhom(Ci) = (pa − 1)pa(m−2) .

If ps(m − 2) + 1 � i � ps(m − 1), then 〈pm−2(x − 1)〉 = C ps(m−2)+1 ⊇ Ci ⊇ C ps(m−1) = 〈pm−1〉. Let
C ′ = 〈pm−2(x − 1)〉 \ 〈pm−1〉. Suppose that C ′ has a codeword c(x) of Hamming weight 1. Then c(x)
can be expressed as pm−2ηxq , where η is a unit in GR(pm,a) and 0 � q � ps − 1. Since ηxq is in-
vertible in R(a), we have pm−2 ∈ 〈pm−2(x − 1)〉. This gives 〈pm−2〉 ⊆ 〈pm−2(x − 1)〉, a contradiction.
Hence, C ′ has no codewords of Hamming weight 1. Note that 2(pa − 1)pa(m−2) � pa(m−1) for posi-
tive integers a � 1 and m � 2, so dhom(C ps(m−2)+1) = pa(m−1) . Also, dhom(C ps(m−1)) = pa(m−1) . Thus,
dhom(Ci) = pa(m−1) .

The third and fourth cases follow from Theorem 3.7 and the fact that each component of code-
words in Ci = 〈(x − 1)i〉 with ps(m − 1) + 1 � i � psm − 1 has the form ξ pm−1, where ξ ∈ Ta . �
4. (1 + λp)-Constacyclic codes of length psn over ZZZpm

Recall that N = psn with gcd(n, p) = 1, where s � 0 is an integer and p is a prime number.
We denote RN = Zpm [x]/〈xN − (1 + λp)〉, so (1 + λp)-constacyclic codes over Zpm of length N are
precisely the ideals of RN . We introduce the quotient ring GR(pm,a)[u]/〈ups − (1 + λp)〉, which
can be obtained from R(a) by substituting the variable u for x. For convenience, we still denote
it by R(a). If a = 1, then R(1) = Zpm [u]/〈ups − (1 + λp)〉. We just write R for R(1). Note that

(1 + λp)pm−1 ≡ 1 (mod pm) by induction on m, so ups+m−1 = 1 in R. There exists a natural Zpm -
module isomorphism ϕ : Rn → Z

N
pm defined by

ϕ
(
c0,0 + c0,1u + · · · + c0,ps−1ups−1, . . . , cn−1,0 + cn−1,1u + · · · + cn−1,ps−1ups−1)
= (c0,0, c1,0, . . . , cn−1,0, c0,1, c1,1, . . . , cn−1,1, . . . , c0,ps−1, c1,ps−1, . . . , cn−1,ps−1).

We have that

ϕ

(
u

( ps−1∑
j=0

cn−1, ju
j

)
,

ps−1∑
j=0

c0, ju
j, . . . ,

ps−1∑
j=0

cn−2, ju
j

)

= (
(1 + λp)cn−1,ps−1, c0,0, c1,0, . . . , cn−2,ps−1

)
.

This gives that a constacyclic shift by u in Rn corresponds to a (1 + λp)-constacyclic shift in Z
N
pm .

Thus, (1 + λp)-constacyclic codes over Zpm of length N = psn (n prime to p) correspond to u-
constacyclic codes over R of length n via the map ϕ .

4.1. Discrete Fourier transform

It is well known that the discrete Fourier transform (DFT) is an important tool to better under-
stand linear codes. Repeated-root cyclic and negacyclic codes over finite rings were studied using the
discrete Fourier transform in [1,2,7,8,19]. Next, we use this transform approach to classify (1 + λp)-
constacyclic codes over Zpm for a given length.
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Let a be the order of p modulo n, and I a complete set of p-cyclotomic coset representatives
modulo n. Let clp(h,n) be the p-cyclotomic coset modulo n containing h, and ah the size of this
coset. Let ξ be a primitive nth root of unity in GR(pm,a).

Definition 4.1. Let c = (c0,0, . . . , cn−1,0, c0,1, . . . , cn−1,1, . . . , c0,ps−1, . . . , cn−1,ps−1) ∈ Z
N
pm , with c(x) =∑n−1

i=0

∑ps−1
j=0 ci, j xi+ jn the corresponding polynomial. The discrete Fourier transform of c(x) is the vec-

tor

(ĉ0, ĉ1, . . . , ĉn−1) ∈ R(a)n,

with ĉh = c(un′
ξh) = ∑n−1

i=0

∑ps−1
j=0 ci, jun′ i+ jξhi, for 0 � h � n − 1, where nn′ ≡ 1 (mod ps+m−1). Define

the Mattson–Solomon polynomial of c to be ĉ(z) = ∑n−1
h=0 ĉn−h zh (here ĉn = ĉ0).

The following lemma shows that a vector of Z
N
pm can be recovered from its discrete Fourier trans-

form.

Lemma 4.2 (Inversion formula). Let c ∈ Z
N
pm with ĉ(z) its Mattson–Solomon polynomial as defined above.

Then

c = ϕ

[(
1, u−n′

, u−2n′
, . . . , u−(n−1)n′) ∗ 1

n

(
ĉ(1), ĉ(ξ), . . . , ĉ

(
ξn−1))]

where ∗ denotes componentwise multiplication.

Proof. Let 0 � t � n − 1. Then

ĉ
(
ξ t) =

n−1∑
h=0

ĉhξ
−ht =

n−1∑
h=0

(
n−1∑
i=0

ps−1∑
j=0

ci, ju
n′i+ jξhi

)
ξ−ht

=
n−1∑
i=0

ps−1∑
j=0

ci, ju
n′ i+ j

n−1∑
h=0

ξh(i−t)

= (
nun′t) ps−1∑

j=0

ct, ju
j.

Hence, u−n′t(1/n)ĉ(ξ t) = ∑ps−1
j=0 ct, ju j . By the definition of the map ϕ , the result easily follows from

a straightforward computation. �
For each element r ∈ GR(pm,a) expressed as r = ξ0 + pξ1 + p2ξ2 + · · · + pm−1ξm−1, where ξi ∈ Ta ,

recall that the Frobenius automorphism σ on GR(pm,a) is given by σ(r) = ξ
p
0 + pξ

p
1 + p2ξ

p
2 + · · · +

pm−1ξ
p

m−1. We can extend the Frobenius automorphism σ to R(ah) by setting σ(u) = u. It is easy
to verify that ĉh ∈ R(ah) and ĉph = σ(ĉh) where subscripts are calculated modulo n. Now let C =
{(ĉ0, ĉ1, . . . , ĉn−1) ∈ R(a)n | ĉh ∈ R(ah), ĉph = σ(ĉh)}. We make C a ring via componentwise addition
and multiplication. It is easy to verify that C ∼= ⊕

h∈I R(ah).

Theorem 4.3. Let N = psn with gcd(n, p) = 1, and let I be a complete set of p-cyclotomic coset representa-
tives modulo n. Then
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γ : RN →
⊕
h∈I

R(ah)

defined by γ (c(x)) = (ĉh)h∈I is a ring isomorphism. In particular, if C is a (1+λp)-constacyclic code over Zpm

of length N, then C is isomorphic to
⊕

h∈I Ch, where Ch is the ideal {c(un′
ξh) | c(x) ∈ C} ⊆ R(ah).

Proof. Define the map γ : RN → C , where γ (c(x)) = (ĉ0, ĉ1, . . . , ĉn−1). Let a(x),b(x) be polyno-
mials over Zpm of degree less than N . Then there exist q(x), r(x) ∈ Zpm [x] such that a(x)b(x) =
q(x)(xN − (1 + λp)) + r(x), where deg(r(x)) < N . So we have a(un′

ξh)b(un′
ξh) = r(un′

ξh), which
means γ (a(x)b(x)) = γ (a(x)) ∗ γ (b(x)), where ∗ denotes the componentwise product. Clearly,
γ (a(x) + b(x)) = γ (a(x)) + γ (b(x)). If γ (c(x)) = 0, then from the Inversion Formula we have∑ps−1

j=0 ct, ju j = 0 for any 0 � t � n − 1. This gives c(x) = 0, and hence γ is an injection. Also,

|C| = ∏
h∈I pahmps = pmN , which means that γ is a bijection. Thus, γ is an isomorphism. �

From Theorems 3.4 and 4.3, we immediately get the following enumeration result.

Corollary 4.4. The number of distinct (1 + λp)-constacyclic codes over Zpm of length N = psn (n prime to p)
is (psm + 1)t , where t is the number of p-cyclotomic cosets modulo n.

Remark. The ideals 〈0〉, 〈1〉, 〈p〉, . . . , 〈pm−1〉 of GR(pm,a) can be identified as the ideals 〈(u − 1)m〉,
〈(u − 1)0〉, 〈(u − 1)1〉, . . . , 〈(u − 1)m−1〉 of GR(pm,a)[u]/〈u − (1 + λp)〉, respectively. This allows s = 0
in Theorem 4.3.

4.2. Generator polynomials

Now we describe a (1 +λp)-constacyclic code over Zpm of length N = psn (n prime to p) in terms
of its generator polynomials. First we give the following lemma.

Lemma 4.5. Let n′ be a positive integer such that nn′ ≡ 1 (mod ps+m−1), and let fh(x) be the minimal poly-
nomial of ξh over Zpm for each h ∈ I . Then

(i) fh(un′
ξ i) is a unit in R(ai) if i /∈ clp(h,n);

(ii) fh(un′
ξh) ∈ 〈u − 1〉 but fh(un′

ξh) /∈ 〈(u − 1)2〉.

Proof. (i) Since fh(x) = ∏
l∈clp(h,n)(x − ξ l), it follows that

fh
(
un′

ξ i) =
∏

l∈clp(h,n)

(
un′

ξ i − ξ l) =
∏

l∈clp(h,n)

[(
un′ − 1

)
ξ i + (

ξ i − ξ l)].
If i /∈ clp(h,n), then ξ i − ξ l �= 0. Note that(

un′ − 1
)
ξ i = (u − 1)

(
un′−1 + un′−2 + · · · + 1

)
ξ i,

and so (un′ − 1)ξ i is noninvertible. Hence, fh(un′
ξ i) is a unit if i /∈ clp(h,n).

(ii) As xn − 1 = ∏
i∈I f i(x), we have

∏
i∈I f i(un′

ξh) = (un′
ξh)n − 1 = u − 1. From (i) we know

that f i(un′
ξh) is a unit in R(ah) for i �= h. Hence fh(un′

ξh) = q(u)(u − 1), where q(u) is a unit
in R(ah). This gives fh(un′

ξh) ∈ 〈u − 1〉. Suppose that fh(un′
ξh) ∈ 〈(u − 1)2〉. Then there exists

g(u) ∈ GR(pm,ah)[u] such that fh(un′
ξh) = g(u)(u − 1)2. Hence q(u)(u − 1) = g(u)(u − 1)2. This

implies u − 1 ∈ 〈(u − 1)2〉, which means 〈u − 1〉 ⊆ 〈(u − 1)2〉. This is a contradiction. Therefore,
fh(un′

ξh) /∈ 〈(u − 1)2〉. �
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Theorem 4.6. Let C be a (1 + λp)-constacyclic code over Zpm of length N = psn (n prime to p). Then C =
〈∏psm

j=0 [g j(x)] j〉, where g j(x)’s are monic coprime divisors of xn − 1 in Zpm [x] (some of the g j(x)’s may be 1).

Proof. By Theorem 4.3, C ∼= ⊕
h∈I Ch , where Ch is the ideal {c(un′

ξh) | c(x) ∈ C} in R(ah). For
each 0 � j � psm, we define g j(x) to be the product of all minimal polynomials of ξh such that

Ch = 〈(u − 1) j〉. If c(x) = r(x)
∏psm

j=0 [g j(x)] j ∈ C for some polynomial r(x) ∈ RN , then c(un′
ξh) =

r(un′
ξh)

∏psm
j=0 [g j(un′

ξh)] j ∈ R(ah). By Lemma 4.5, c(un′
ξh) ∈ 〈(u − 1) j〉, but c(un′

ξh) /∈ 〈(u − 1) j−1〉.

Thus, we can take g(x) = ∏psm
j=0 [g j(x)] j as the generator polynomial of C . �

Corollary 4.7. If C = 〈∏psm
j=0[g j(x)] j〉 is a (1 + λp)-constacyclic code over Zpm of length N = psn

(n prime to p), where g j(x)’s are monic coprime divisors of xn − 1 in Zpm [x], then |C | = pt , where

t = ∑psm
j=0 (psm − j)deg(g j(x)).

Proof. By Theorem 4.3, the size of C is
∏

h∈I |Ch|, where Ch is the ideal of R(ah). If Ch = 〈(u − 1) j〉,
then g j(ξ

h) = 0. By Corollary 3.5, |Ch| = pah(psm− j) . Calculating the product, we get the result. �
4.3. Hamming distance

Lemma 4.8. Let C be a (1 + λp)-constacyclic code over Zpm of length N = psn (n prime to p) with generator

polynomial
∏psm

j=0[g j(x)] j , where g j(x)’s are monic coprime divisors of xn − 1 in Zpm [x]. Then C ∩ 〈pm−1〉 =
〈pm−1 ∏ps

j=1[g j+ps(m−1)(x)] j〉.

Proof. For each h ∈ I , note that the ideal 〈pm−1〉 in RN corresponds to the ideal 〈pm−1〉 =
〈(u − 1)ps(m−1)〉 in R(ah) under the map γ . By the proof of Theorem 4.6, we have

〈
pm−1〉 = 〈(

xn − 1
)ps(m−1)〉 = 〈[

g0(x)g1(x) · · · gpsm(x)
]ps(m−1)〉 ⊆ RN .

Therefore, C ∩ 〈pm−1〉 = 〈pm−1 ∏ps

j=1[g j+ps(m−1)(x)] j〉. �
Recall that c̄(x) ≡ c(x) (mod p). Let C = 〈∏psm

j=0[g j(x)] j〉 be a (1 + λp)-constacyclic code over Zpm

of length N = psn (n prime to p), where g j(x)’s are monic coprime divisors of xn − 1 in Zpm [x]. We

define C∗ = {h̄(x) | pm−1h(x) ∈ C}. We also define C̃ = 〈∏ps

j=1[ḡ j+ps(m−1)(x)] j〉, which is a cyclic code
over Zp of length N = psn (n prime to p).

Theorem 4.9. Let C be a (1 + λp)-constacyclic code over Zpm of length N = psn (n prime to p) with gen-

erator polynomial
∏psm

j=0[g j(x)] j , where g j(x)’s are monic coprime divisors of xn − 1 in Zpm [x]. Let C̃ =
〈∏ps

j=1[ḡ j+ps(m−1)(x)] j〉 be the cyclic code over Zp of length N = psn (n prime to p). Then dH (C) = dH (C̃).

Proof. We first prove C̃ = C∗ . Let c̄(x) be any element in C∗ . Then pm−1c(x) ∈ C . By Lemma 4.8, we

have pm−1c(x) ∈ C ∩ 〈pm−1〉 = 〈pm−1 ∏ps

j=1[g j+ps(m−1)(x)] j〉. This gives

c̄(x) = d̄(x)
ps∏

j=1

[
ḡ j+ps(m−1)(x)

] j ∈ C̃ ,
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for some d̄(x) ∈ Zp[x]. Hence, C∗ ⊆ C̃ . On the other hand, for any b(x) ∈ C̃ ,

b(x) = ē(x)
ps∏

j=1

[
ḡ j+ps(m−1)(x)

] j
,

for some ē(x) ∈ Zp[x]. Since pm−1e(x)
∏ps

j=1[g j+ps(m−1)(x)] j ∈ C ∩〈pm−1〉, we have b(x) ∈ C∗ . It follows

that C̃ ⊆ C∗ , and so C̃ = C∗ . For any nonzero codeword c(x) ∈ C , pm−1c(x) ∈ C and w H (pm−1c(x)) �
w H (c(x)), hence it is sufficient to compute the Hamming distance of C ∩ 〈pm−1〉 so as to obtain
the Hamming distance of C . Note that for any f (x) ∈ Zpm , f (x) and pm−1 f (x) have nonzero coeffi-
cients exactly in those positions where f (x) has unit coefficients, so w H (pm−1 f (x)) = w H ( f̄ (x)). Thus
dH (C) = dH (C̃). �
5. (1 + λp)-Constacyclic codes of length psn over ZZZp2

In this section, we work over the ring Zp2 . In [11], Ling and Blackford gave a necessary and suffi-
cient condition for a (1 − p)-constacyclic codes over Zp2 to be linear, and established the Gray image
of a (1 − p)-constacyclic codes over Zp2 for length relatively prime to p in many cases. Now, we
determine the homogeneous distance of some (1 +λp)-constacyclic codes over Zp2 of length N = psn

(n prime to p) using their residue and torsion codes. We first give a Gray map from Z
N
p2 to Z

pN
p ,

which is a special case of the Gray isometries in [9,11].
To avoid confusion, we denote additions in Zp2 , Z

N
p2 , and Zp2 [x] by +, while additions in Zp , Z

N
p ,

Z
pN
p and Zp[x] are denoted by ⊕. Every element x ∈ Zp2 can be written uniquely as x = r0(x)+ pr1(x),

where ri(x) ∈ {0,1, . . . , p − 1}. The Gray map φ: Zp2 → Z
p
p is defined as φ(x) = (a0,a1, . . . ,ap−1),

where aε = r1(x) ⊕ εr0(x), for 0 � ε � p − 1. We can extend the Gray map φ from Z
N
p2 to Z

pN
p as

follows: for A = (A0, A1, . . . , AN−1) ∈ Z
N
p2 , let φ(A) = (a0,a1, . . . ,apN−1), where aεN+ j = r1(A j) ⊕

εr0(A j), for 0 � ε � p − 1 and 0 � j � N − 1.
Take a = 1 and m = 2 in Definition 3.8, and we get the homogeneous weight on Zp2 :

whom(r) =
⎧⎨⎩

p − 1, if r ∈ Zp2\〈p〉,
p, if r ∈ 〈p〉\{0},
0, if r = 0.

For any A, B ∈ Z
N
p2 , the homogeneous distance dhom is given by dhom(A, B) = whom(A − B). The

Gray map φ is a distance-preserving map from (ZN
p2 ,dhom) to (Z

pN
p ,dH ) (cf. [11, Proposition 2.2]).

A code over Zp2 of length N with M codewords and homogeneous distance d is an (N, M,d) code.
For a linear code C over Zp2 of length N , we can associate to the code C two linear codes over
Zp of length N . The residue code Res(C) = {x ∈ Z

N
p | ∃y ∈ Z

N
p | x + py ∈ C} and the torsion code

Tor(C) = {x ∈ Z
N
p | px ∈ C}. The reduction modulo p from C to Res(C) is given by μ(x) = x (mod p).

Clearly, the map μ is a ring homomorphism with Kerμ ∼= Tor(C). Hence, by the First Isomorphism
theorem of finite groups, we have |C | = |Res(C)||Tor(C)|. In the following, we give the residue and
torsion codes of a (1 + λp)-constacyclic code over Zp2 of length N = psn (n prime to p). Obviously,
they are both cyclic codes over Zp of length N = psn (n prime to p), that is, they are the ideals in
R̄ = Zp[x]/〈xN − 1〉. We abbreviate f for f (x) when the context is clear.

Lemma 5.1. Let f be a monic divisor of xn − 1 in Zp[x]. Then, in R̄, 〈 f ps+l〉 = 〈 f ps 〉, for any positive integer l.
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Proof. Let f̂ = (xn − 1)/ f . Since f and f̂ are coprime in Zp[x], it follows that f l and f̂ ps
are coprime

in Zp[x] for any positive integer l. Therefore, there exist θ,ϑ ∈ Zp[x] such that θ f l + ϑ f̂ ps = 1 in
Zp[x]. Computing in R̄, we have

θ f ps+l = (
1 − ϑ f̂ ps)

f ps

= f ps − ϑ
(
xn − 1

)ps

= f ps
.

Consequently, 〈 f ps+l〉 = 〈 f ps 〉 for any positive integer l. �
Lemma 5.2. Let C be a (1 + λp)-constacyclic code over Zp2 of length N = psn (n prime to p) with generator

polynomial
∏2ps

j=0 g j
j , where g j ’s are monic coprime divisors of xn − 1 in Zp2 [x]. Then

(i) Res(C) = 〈ḡ1 ḡ2
2 · · · ḡ ps−1

ps−1(ḡps · · · ḡ2ps )ps 〉;

(ii) Tor(C) = 〈∏ps

j=1 ḡ j
j+ps 〉.

Proof. It is obvious that Res(C) = 〈∏2ps

j=0 ḡ j
j〉 ⊆ R̄. By Lemma 5.1,

Res(C) = 〈
ḡ1 ḡ2

2 · · · ḡ ps−1
ps−1(ḡps · · · ḡ2ps )ps 〉

.

This gives part (i). Let D = 〈∏ps

j=1 ḡ j
j+ps 〉 ⊆ R̄. As in the proof of Lemma 4.8,

〈p〉 = 〈(
xn − 1

)ps 〉 = 〈
(g0 g1 · · · g2ps )ps 〉 ⊆ Zp2 [x]/〈xN − (1 + λp)

〉
.

So there exists an invertible element r ∈ Zp2 [x]/〈xN − (1 + λp)〉 such that p = r(g0 g1 · · · g2ps )ps
. It

follows that p
∏ps

j=1 ḡ j
j+ps = r(g0 g1 · · · gps )ps ∏ps

j=1 g j+ps

j+ps ∈ C . Hence, D ⊆ Tor(C). From Corollary 4.7

and |C | = |Res(C)||Tor(C)|, we can compute |D| = |Tor(C)|. Therefore, Tor(C) = 〈∏ps

j=1 ḡ j
j+ps 〉. �

Theorem 5.3. Let C be a (1 + λp)-constacyclic code over Zp2 of length N = psn (n prime to p), and let d1
and d2 be the minimum Hamming distances of the residue and torsion codes, respectively. If (p − 1)d1 � pd2 ,
then the minimum homogeneous distance of C is pd2 .

Proof. For any nonzero codeword c ∈ C whose entries have the units of Zp2 , reduction modulo p
must be in Res(C). So whom(c) � (p − 1)d1. On the other hand, note that p Tor(C) is contained in C .
Hence, if (p − 1)d1 � pd2, then dhom(C) = pd2. �
Example 5.4. In Z4[x], x7 − 1 = f1 f2 f3, where

f1 = x − 1, f2 = x3 + 2x2 + x − 1, f3 = x3 − x2 + 2x − 1.

Let C = 〈 f 3
1 f2〉 be the negacyclic code over Z4 of length 14. Then from Lemma 5.2 we have

Res(C) = 〈 f̄ 2
1 f̄2〉 and Tor(C) = 〈 f̄1〉. They are both binary cyclic codes and have parameters [14,9,4]

and [14,13,2]. By Theorem 5.3 and Corollary 4.7, the Gray image φ(C) of C is a (28,222,4) binary
code, which is an optimal code.
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Example 5.5. In Z9[x], x4 − 1 = f1 f2 f3, where

f1 = x − 1, f2 = x + 1, f3 = x2 + 1.

Let C = 〈 f 2
2 f3〉 be the (1+3λ)-constacyclic code over Z9 of length 4, where λ = 1 or 2. Then Res(C) =

〈 f̄2 f̄3〉 is a [4,1,4] ternary cyclic code, and Tor(C) = 〈 f̄2〉 is a [4,3,2] ternary cyclic code. Thus, φ(C)

is a (12,34,6) ternary code, which is an optimal code.

6. Conclusion

In this paper, we have established the structure of (1 + λp)-constacyclic codes of length ps over
GR(pm,a), where λ is a unit of Zpm . With the help of this structure, we have classified all (1 + λp)-
constacyclic codes over Zpm for an arbitrary length. It would be interesting to study other constacyclic
codes over Zpm and their images under a Gray map.
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