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In this paper, we present a new algorithm using the nonmonotone second-order Wolfe’s
line search. By using the negative curvature information from the Hessian, we prove that
the generated sequence converges to the stationary points that satisfy the second-order
optimality conditions. We also report numerical results which show the efficiency and
robustness of the proposed method.
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1. Introduction

In this paper, we consider the following unconstrained optimization problem:

min
x∈Rn

f (x). (1.1)

Assume that f : Rn
→ R is a twice continuously differentiable function, both the gradient g(x) = ▽f (x) and the Hessian

matrix H(x) = ▽
2 f (x) of f exist and are continuous. For the sake of simplicity, we will abbreviate f (xk), g(xk), and H(xk) as

fk, gk andHk, respectively. In addition, the notation ‖·‖ denotes the Euclidean norm on Rn, and λmin(·) stands for theminimal
eigenvalue of a matrix.

There are many iterative algorithms for solving the problem (1.1). They usually first find a descent direction, and then
find a suitable step size along the direction. The key idea of these algorithms is to converge to a stationary point x∗ where
the Hessian matrix H(x∗) is a positive semidefinite matrix. However, the Hessian or its approximation for many practical
problems in engineering is not positive semidefinite, so the classical methods fail. Fortunately, a class of new methods
(see [1–3]) using particular directions of negative curvature successfully overcomes the drawback. The key point of this idea
is to produce a sequence {xk} whose limit point satisfies the second-order optimality conditions. This class of algorithms is
called the second-order line search method.

The traditional second-order line search methods require the monotone descent of the objective values to guarantee
their global convergence (see [4–6]). However, some researches [7–9] indicate that the monotone line search technique
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may have some drawbacks. For example, enforcing monotonicity may reduce the rate of convergence, especially when the
iteration is near a narrow curved valley. Therefore, we allow the objective valuewith nonmonotone property in the iterative
procedure. Grippo et al. [10] first proposed the nonmonotone line search for Newton’s method. Due to the high efficiency
of nonmonotonic methods, this technique has been utilized in many line search methods [11–13] and trust region methods
[2,14–16]. Recently, the nonmonotone technique has been combined with the curvilinear search and second-order line
searchmethods in [3,17,18]. Thenumerical results suggest that the new technique is efficient for unconstrained optimization
problems.

The most popular line search techniques are the Armijo’s rule, the Goldstein’s rule and the Wolfe’s rule. Unlike the
Armijo’s rule, the Goldstein’s rule permits the increase of the stepsize occasionally. Furthermore, the Goldstein’s rule can
guarantee the objective function decrease sufficiently, while prevent the step length from being too small. However, the
Goldstein’s rule has a disadvantage that it is possible to exclude the minimizer value of the optimization problems as that
pointed out in [19]. Therefore, the main aim of our work is to propose the nonmonotone second-order Wolfe’s line search
to overcome the drawbacks mentioned above.

The remainder of this paper is organized as follows. In Section 2, we describe the nonmonotone second-orderWolfe’s line
search and the new algorithm. In Section 3, we establish the convergence of the algorithm for unconstrained optimization.
The numerical implementation is tested on a large set of standard test problems in Section 4.

2. The nonmonotone second-order Wolfe’s rule

In this section, we will describe the nonmonotone second-order Wolfe’s line search rule. First, we give the following
definitions which can be found in [20].

Definition 2.1. A point x is called an indefinite point ifH(x) has at least one negative eigenvalue. Further, if x is an indefinite
point, then d is a direction of the negative curvature if dTH(x)d < 0.

Definition 2.2. Suppose s and d are nonascent directions and meanwhile d is a direction of the negative curvature,
i.e., sTg(x) ≤ 0, dTg(x) ≤ 0, dTH(x)d < 0, then (s, d) is called a descent pair at the indefinite point x; if x is not an indefinite
point, then the pair (s, d) is called a descent pair if they satisfy sTg(x) ≤ 0, dTg(x) ≤ 0, dTH(x)d = 0.

Definition 2.3. Let {‖sk‖} and {‖dk‖} be bounded, if

gT
k sk = 0 implies gk = 0 and sk = 0,

gT
k sk → 0 implies gk → 0 and sk → 0,

dTkH(x)dk → 0 implies λk → 0 and dk → 0,

where λk = min[0, λmin(Hk)], then {(sk, dk)} is an acceptable sequence of the descent pair.

First, we describe the Wolfe’s line search rule. When the step size αk satisfies the following conditions:

f (xk + αkdk) ≤ f (xk) + ραkgT
k dk, (2.1)

gT
k+1dk ≥ δgT

k dk (2.2)

where ρ, δ(0 < ρ < δ < 1) are preassigned constants and dk is the descent direction at xk, then set xk+1 = xk + αkdk. Next,
we recall the nonmonotone Wolfe’s rule. Let

f (xl(k)) = max
0≤j≤m(k)

f (xk−j),

wherem(k) satisfiesm(0) = 0 and 0 ≤ m(k) ≤ min{m(k−1)+1,M} for k ≥ 1 and a nonnegative integerM . The traditional
nonmonotone Wolfe’s rule corresponding to (2.1)–(2.2) can be described as follows (see [8]):

f (xk + αkdk) ≤ max
0≤j≤m(k)


f (xk−j)


+ ραkgT

k dk,

g(xk + αkdk)Tdk ≥ δgT
k dk,

where 0 < ρ < δ < 1. When xk is an indefinite point, we can present the second-order Wolfe’s rule. Let

xk(αk) = xk + α2
k sk + αkdk,

where (sk, dk) is a descent pair at xk. Replacing the Wolfe’s rule (2.1)–(2.2), we require αk to satisfy

f (xk(αk)) ≤ f (xk) + ρα2
k

[
sTkgk +

1
2
dTkHkdk

]
, (2.3)

g (xk(αk))
T x′

k(αk) ≥ δ

gT
k dk + 2αkgT

k sk + αkdTkHkdk

, (2.4)
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Fig. 1. Geometrical interpretation of (2.3)–(2.4) and (2.5)–(2.6).

where 0 < ρ < δ < 1. Corresponding to the second-order rule, we give the nonmonotone second-order rule:

f (xk(αk)) ≤ f (xl(k)) + ρα2
k

[
sTkgk +

1
2
dTkHkdk

]
, (2.5)

g (xk(αk))
T x′

k(αk) ≥ δ

gT
k dk + 2αkgT

k sk + αkdTkHkdk

. (2.6)

Consequently, we only need to find an αk satisfying (2.5)–(2.6), then set xk(αk) = xk +α2
k sk +αkdk. WhenM = 0, (2.5)–(2.6)

reduce to (2.3)–(2.4).
The nonmonotone second-order Wolfe’s rule has a geometric interpretation as shown in Fig. 1. In Fig. 1, data 1 denote

f (xk + α2sk + αdk), data 2 denote f (xk) + ρα2
[gT

k sk +
1
2d

T
kHkdk], data 3 denote c + δ[αgT

k dk + α2(gT
k sk +

1
2d

T
kHkdk)], data

4 denote f (xl(k)) + ρα2
[gT

k sk +
1
2d

T
kHkdk]. We observe that (2.3) and (2.5) provide a sufficient decrease of the function. The

rules (2.4) and (2.6) include the minimizing value of f . In addition, by use of (2.5) and (2.6), the obtained acceptable interval
[a, c] is larger than [a, b], which satisfies (2.3)–(2.4).

Let

φk(α) = f

xk + α2sk + αdk


, (2.7)

where (sk, dk) is a descent pair at xk; then, φ′

k(0) = gT
k dk, φ

′′

k (0) = 2gT
k sk + dTkHkdk. The nonmonotone second-order Wolfe’s

rule (2.5)–(2.6) is equivalent to

φk(αk) ≤ φl(k)(0) +
1
2
ρα2

kφ
′′

k (0) (2.8)

and

φ′

k(αk) ≥ δ

φ′

k(0) + αkφ
′′

k (0)

. (2.9)

From Definition 2.3, we can obtain that φ′

k(0) < 0 or φ′

k(0) ≤ 0 and φ′′

k (0) < 0. The following lemma proves that such
an αk satisfying (2.5)–(2.6) exists under the conditions

sTkgk < 0, whenever gk ≠ 0, (2.10)

and

dTkHdk < 0, whenever gk = 0. (2.11)

Once the descent pair (sk, dk) is impossible to be found, then the iteration will be terminated.

Lemma 2.4. Let φk : R → R be twice continuously differentiable, and suppose that L = {α ∈ [0, +∞) : φk(α) ≤ φk(0)} is
compact. If φ′

k(0) < 0, or if φ′

k(0) ≤ 0 and φ′′

k (0) < 0, then there is an interval of step size satisfying

φk(αk) ≤ φl(k)(0) +
1
2
ρα2

kφ
′′

k (0), (2.12)

φ′

k(αk) ≥ δ

φ′

k(0) + αkφ
′′

k (0)

. (2.13)

Proof. Let β = sup{α ∈ [0, +∞) : φk(α) ≤ φk(0)}. Since either φ′

k(0) < 0 or φ′

k(0) ≤ 0 and φ′′

k (0) < 0, then β > 0.
Moreover, the compactness assumption of L and the continuity of φk imply that β is finite and φk(0) = φk(β). Define h1 and
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h2 : R → R by

h1(α) = φk(α) − φk(0) −
1
2
ρα2φ′′

k (0),

h2(α) = φ′

k(α) − δ

φ′

k(0) + αφ′′

k (0)

,

h3(α) = φk(α) − φl(k)(0) −
1
2
ρα2φ′′

k (0).

Obviously, h1 and h2 are also twice continuously differentiable. Note that

h1(0) = φk(0) − φk(0) = 0,
h′

1(0) = φ′

k(0) < 0

and

h1(β) = φk(β) − φk(0) −
1
2
ρβ2φ′′

k (0) = −
1
2
ρβ2φ′′

k (0) > 0.

Together with the continuity of h1, it implies that the existence of β1 ∈ (0, β], such that

h1(β1) = 0, h′

1(β1) > 0

and

h1(α) < 0, ∀α ∈ (0, β1). (2.14)

On the other hand,

h2(0) = φ′

k(0) − δφ′

k(0) = (1 − δ)φ′

k(0) < 0,
h2(α) = φ′

k(α) − αρφ′′

k (0) + αρφ′′

k (0) − αδφ′′

k (0) − δφ′

k(0)
= h′

1(α) + α(ρ − δ)φ′′

k (0) − δφ′

k(0);

then

h2(β1) = h′

1(β1) + β1(ρ − δ)φ′′

k (0) − δφ′

k(0) > 0.

Also,

h′

2(α) = φ′′

k (α) − δφ′′

k (0),

that is

h′

2(0) = φ′′

k (0) − δφ′′

k (0) = (1 − δ)φ′′

k (0) < 0.

By the continuity property of h2, there is β2 > 0, such that

h2(α) ≥ 0, ∀α ∈ (β2, β1). (2.15)

Since φk(0) ≤ φl(k)(0), by use of (2.14) and (2.15), we can obtain that h3(α) < h1(α) < 0, (2.8) and (2.9) hold when
α ∈ (β2, β1). �

Now, we state the new method with the nonmonotone second-order Wolfe’s rule.

Algorithm 2.5. Step 0. Data: x0, integerM ≥ 0, 0 < ρ < δ < 1, αmax > 0.
Step 1. Set k = 0,m(0) = 0, compute f (x0).
Step 2. Compute gk and Hk. If the termination condition holds, stop.
Step 3. Compute the descent pair (sk, dk) and f (xl(k)).
Step 4. Compute a step size αk < αmax, such that the following conditions hold:

f (xk(αk)) ≤ f (xl(k)) + ρα2
k

[
sTkgk +

1
2
dTkHkdk

]
,

g (xk(αk))
T x′

k(αk) ≥ δ

gT
k dk + 2αkgT

k sk + αkdTkHkdk

.

Step 5. Set xk+1 = xk + α2
k sk + αkdk, and compute f (xk+1), then setm(k+ 1) = min{m(k) + 1,M}, k := k+ 1, go to Step 2.

3. Convergence analysis

In this section, we establish the global convergence of Algorithm 2.5. We first make the following assumptions.

Assumption 3.1. (1) The level set� = {x|f (x) ≤ f (x0)} is compact and f (x) : Rn
→ R is a twice continuously differentiable

function in � for any given x0 ∈ Rn.
(2) The sequence {(sk, dk)} in Algorithm 2.5 is acceptable.
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Lemma 3.2. Suppose that Assumption 3.1 holds and that {xk} is generated by Algorithm 2.5, then the sequence {xk} remains in
�, and { f (xl(k))} is non-increasing and convergent.

Proof. The proof is similar to that of Lemma 3.2 in [19]. �

Lemma 3.3. Suppose that Assumption 3.1 holds, and that Algorithm 2.5 produces an infinite sequence {xk}, then

lim
k→∞

f (xk) = lim
k→∞

f (xl(k)), (3.1)

lim
k→∞

α2
k‖sk‖ = 0, lim

k→∞

αk‖dk‖ = 0, (3.2)

and

lim
k→∞

‖xk+1 − xk‖ = 0. (3.3)

Proof. The proof is similar to that of Lemma 3.3 in [19]. �

Theorem 3.4. Suppose that Assumption 3.1 holds, then Algorithm 2.5 either terminates at some xk such that

gT
k sk = 0, dTkHkdk = 0, (3.4)

or produces an infinite sequence such that

lim
k→∞

gT
k sk = 0, lim

k→∞

dTkHkdk = 0. (3.5)

Proof. First, assume that the algorithm terminates in finitely many iterations, then for sufficiently large k, gT
k sk =

0, dTkHkdk = 0. On the other hand, we consider the case in which the sequence {xk} generated by Algorithm 2.5 is an infinite
sequence.

Let

φk(α) = f

xk + α2sk + αdk


.

As the above stated, we have

φ′

k(0) = gT
k dk ≤ 0

and

φ′′

k (0) = 2gT
k sk + dTkHkdk < 0.

Using Lemma 3.2, we know that the sequence {xk} remains in �. From Lemma 3.3 and (3.1), we have {fk+1 − fl(k)} converges
to zero. It follows that

lim
k→∞

α2
kg

T
k sk = 0 (3.6)

and

lim
k→∞

1
2
α2
kd

T
kHkdk = 0. (3.7)

By use of the equality φ′

k(αk) ≥ δ[φ′

k(0) + φ′′

k (0)αk], we have that

φ′

k(αk) − φ′

k(0) − αkφ
′′

k (0) ≥ −(1 − δ)

φ′

k(0) + αkφ
′′

k (0)


and hence that

φ′

k(αk) − φ′

k(0) − αkφ
′′

k (0) ≥ −(1 − δ)αkφ
′′

k (0).

Using the mean-value theorem yields that for some θk ∈ (0, αk),

φ′′

k (θk) − φ′′

k (0) ≥ −(1 − δ)φ′′

k (0). (3.8)

Now, assume that at least one of limk→∞ gT
k sk = 0 and limk→∞ dTkHkdk = 0 does not hold. First we assume that

limk→∞ gT
k sk = 0 does not hold, while limk→∞ dTkHkdk = 0 holds. Then, there is a subsequence {xki} ⊂ {xk} and a constant

ϵ, such that gT
ki
ski ≥ ϵ and −dTkiHkidki < ϵ, which means

gT
kiski +

1
2
dTkiHkidki


>

1
2
ϵ > 0,
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Table 1
Test function.

P Function name P Function name

1 Helical valley 11 Biggs exp 6
2 Beale 12 Penalty I
3 Brown and Dennis 13 Penalty II
4 Extended Rosenbrock 14 Cube
5 Extended Powell singular 15 Trigonometric
6 Gulf res. and dev 16 Variably dimensioned
7 Gaussian 17 Watson
8 Box 3-dimesional 18 Wood
9 Sc. Rosenbrock 19 Sc. Cube

10 Bro. Bad. Sc. 20 Chebyquad

that is to say,

φ′′

ki(0) >
1
2
ϵ > 0,

which contradicts φ′′

k (0) < 0.
Similarly, if limk→∞ gT

k sk = 0 holds, while limk→∞ dTkHkdk = 0 does not hold, we can obtain a contradiction similarly.
Finally, we prove the contradiction if both of them do not hold. There is a subsequence {xki} ⊂ {xk} and a constant ϵ, such
that gT

ki
ski ≤ −ϵ and dTkiHkidki ≤ −ϵ, which means

−


gT
kiski +

1
2
dTkiHkidki


≥

3
2
ϵ > 0,

that is to say,

− φ′′

ki(0) >
3
2
ϵ > 0. (3.9)

Hence (3.8) implies that αki does not converge to zero. In fact, if αki → 0, then θki → 0 (ki → ∞), and φ′′

ki
(θki)−φ′′

ki
(0) → 0.

We have −(1 − δ)φ′′

k (0) ≤ 0, which contradicts (3.9). On the other hand, if αki ↛ 0(ki → ∞), under the assumption that
limk→∞ gT

k sk = 0 and limk→∞ dTkHkdk = 0 do not hold, we know that (3.6) and (3.7) do not converge to zero, which gives a
contradiction. The contradiction shows that the theorem is true. �

Remark 3.5. From Theorem 3.4, we obtain that either for a finite k, gk = 0 and λk = 0, or gk → 0 and λk → 0 for any
sequence generated by Algorithm 2.5.

Lemma 3.6. Let f : Rn
→ R be continuously differentiable on a compact set �. Assume that f (x) has a finite number of critical

points in �. Then, the sequence {xk} ⊂ � satisfies

lim
k→∞

‖xk+1 − xk‖ = 0, lim
k→∞

‖gk‖ = 0, (3.10)

and

lim
k→∞

xk = x∗, and g(x∗) = 0. (3.11)

Finally, we obtain directly that the sequence {xk} generated by Algorithm 2.5 converges to a second-order stationary
point.

Theorem 3.7. Suppose that Assumption 3.1 holds and that f (x) has finitely many critical points in �. If {xk} generated by
Algorithm 2.5 is an infinite sequence, then {xk} converges to some x∗

∈ � with g(x∗) = 0 and λmin(H(x∗)) ≥ 0.

Since the proof is similar to Theorem 3.7 in [19], we omit it.

4. Numerical result

In this section, we evaluate the behavior of Algorithm 2.5 by using the Bunch–Parlett decomposition. We test on a set of
standard test problemswhich appeared in [21]. In Table 1, we list the test functions. AMATLAB program is coded to perform
the experiments.

We set the parameters ρ1 = 0.1, δ = 0.2, αmax = 10. The stopping criterion is ‖gk‖ ≤ 10−5. The numerical results of our
experiment are reported in Table 2. In Table 2 ‘‘NF-NG-NI’’ and ‘‘FVAL’’ denote the number of function evaluation, the number
of gradient evaluation, the number of indefinite Hk appearing in the iterations of the algorithm, and the final objective
function value, respectively. We denote the size of problems by N . The starting point is 10Lx0, where x0 is the standard
starting point. The sign ‘-’ means that NF is more then 1000, and in this case we think that the algorithm fails (Table 2).
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Fig. 2. Ratio of the iteration number of two methods for problem 1–10.
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Fig. 3. Ratio of the iteration number of two methods for problem 11–20.

In Table 2, we compare the numerical results of monotone and nonmonotone algorithms. We run the program of
Algorithm 2.5 with M = 0 (monotone second-order Wolfe’s line search) and M = 6 (nonmonotone second-order Wolfe’s
line search) respectively. The result is listed in Table 2. In Figs. 2 and 3, we compare the nonmonotone second-orderWolfe’s
line search method (2.8)–(2.9) with the method of Goldstein’s rule in [19], which is characterized by

f (xk(αk)) ≤ f (xl(k)) + ρ1α
2
k

[
sTkgk +

1
2
dTkHkdk

]
and

f (xk(αk)) ≥ f (xk) + ρ2α
2
k

[
sTkgk +

1
2
dTkHkdk

]
,

where ρ1 = 0.1, ρ2 = 1 − ρ1. Comparative experiments are performed on the same standard test functions and the same
standard starting points.
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Table 2
Numerical results for the new algorithm.

M=0 M=6
P N L NF-NG-NI FVAL NF-NG-NI FVAL

1 3 0 27-14-3 1.9349e−023 36-23-7 8.4491e−019
2 2 0 15-10-3 1.9514e−023 13-10-3 2.1580e−016

3
4 0 9-9-0 8.5822e+004 9-9-0 8.5822e+004
4 1 15-15-0 8.5822e+004 15-15-0 8.5822e+004
4 2 24-22-0 8.5822e+004 21-21-0 8.5822e+004

4
10 0 26-18-0 2.1677e−013 18-14-0 7.6782e−020
10 1 107-52-0 8.4973e−013 9-8-0 1.0309e−022
10 2 740-367-0 3.4310e−017 9-8-0 8.0858e−030

5
4 0 16-16-0 4.3788e−009 16-16-0 4.3788e−009
4 1 22-22-0 2.6011e−009 22-22-0 2.6011e−009
4 2 27-27-0 7.8223e−009 27-27-0 7.8223e−009

6 3 0 27-21-5 4.9860e−021 24-19-5 9.0252e−015

7 3 0 2-2-0 1.1293e−008 2-2-0 1.1293e−008
3 1 56-18-12 1.1280e−008 22-8-7 1.1280e−008

8 3 0 13-11-2 9.9279e−011 13-11-2 9.9279e−011

9 (c = 104)

2 0 183-97-0 1.8674e−016 43-31-0 1.9044e−023
2 1 742-358-0 4.9745e−019 9-8-0 1.2337e−028
2 2 – – 9-8-0 0

9 (c = 106)

2 0 – – 43-31-0 1.9056e−023
2 1 – – 9-8-0 1.2326e−026
2 2 – – 9-8-0 0

10 2 1 42-21-13 1.9722e−031 42-21-13 1.9722e−031
11 6 0 71-36-35 0.0057 115-94-93 0.0057

12
4 0 44-23-0 2.2601e−005 17-17-0 2.2513e−005
4 1 61-36-0 2.2500e−005 24-24-0 2.2518e−005

10 0 81-29-0 7.0877e−005 22-21-0 7.0884e−005

13 10 0 402-207-0 8.7880e−006 19-19-0 8.8147e−006

14 2 0 60-22-0 2.0688e−014 31-13-0 1.8188e−027
2 1 – – 21-12-1 4.7509e−015

15

20 0 16-9-2 1.9791e−012 16-9-2 1.9791e−012
60 0 71-20-10 1.4893e−007 48-2-7 1.4893e−007
80 0 94-21-14 7.3761e−007 36-16-5 1.4696e−006

100 0 100-24-13 1.8410e−006 48-20-6 6.9062e−007

16 10 1 17-17-0 1.6819e−014 17-17-0 1.6819e−014
10 2 24-24-0 7.0625e−022 24-24-0 7.0625e−022

17 12 0 13-13-0 4.7224e−010 13-13-0 4.7224e−010

18
4 0 100-57-2 2.0164e−013 34-29-1 2.7319e−020
4 1 58-43-1 6.4757e−019 43-36-2 5.0868e−016
4 2 53-14-1 1.1963e−014 49-41-1 3.4274e−016

19 (c = 106)
4 0 – – 31-13-0 5.5364e−021
4 1 – – 35-19-1 2.0444e−011

20 6 0 102-24-16 1.1842e−014 64-17-9 3.4527e−015

FromTable 2,we see that, for all test problems, the newmethod is efficient and robust, especially for some ill-conditioned
problems. For most of the test problems, it is obvious that the number of ‘‘NF-NG-NI’’ is reduced, or at least the number is
the same as that of the monotone second-order Wolfe’s line search method.

In Figs. 2 and 3, the x-axis corresponds to test problems 1–10 and 11–20 in Table 1, respectively. The y-axis is the ratio
of the numbers of iteration with Goldstein’s rule to Wolfe’s rule:

r =
(NF + NG + NI)G
(NF + NG + NI)N

.

If the Goldstein’s method fails, we set the ratio three, which is the maximum ratio. On the other hand, if the Wolfe’s
method fails, we set the ratio zero. We see that all bars surpass one except for the fourth problem in Fig. 3 (i.e., the
14th problem in Table 1), which indicates that using nonmonotone second-order Wolfe’s method requires less numbers
of iterations to converge than using nonmonotone second-order Goldstein’s method for most problems. For example, for
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the 10th problem in Fig. 3 (i.e., the 20th problem in Table 1), the Goldstein’s method takes roughly 2.5 times of the number
of iteration of the Wolfe’s method does.

5. Conclusions

In this paper, we propose a new method using the nonmonotone second-order Wolfe’s rule for unconstrained
optimization, which is an extension of the traditional nonmonotone Wolfe’s rule and the curvilinear line search. We prove
that the sequences generated by the new algorithm converge to a secondorder stationary point. Finally, we give detailed
numerical experiments and numerical comparison to show that our algorithm is potentially efficient.
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