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Abstract

We study dissident mapgson R™ for m € {3, 7} by investigating liftings® : R” — R™ of
the selfbijectionp : P(R™) — P(R™), nplvl = (n(v A R™))L induced byy. Our main result
(Theorem 2.4) asserts the existence and uniqueness, up to a non-zero scalar multiple, ofé lifting
whose component functions are homogeneous polynomials of dégmatively prime and without
non-trivial common zero. We prove thatkld <m — 2.

We achieve a complete description of all dissident maps of degree one and we solve their isomor-
phism problem (Theorems 4.8 and 4.13). As a consequence, we achieve a complete description of all
real quadratic division algebras of degree one and we solve their isomorphism problem (Theorems
5.1 and 5.3). Moreover we present examples of eight-dimensional real quadratic division algebras of
degree 3 and 5 (Proposition 6.3). This extends earlier results of Osborn [Trans. Amer. Math. Soc. 105
(1962) 202—221], Hefendehl [Geometriae Dedicata 9 (1980) 129-152], Hefendehl-Hebeker [Arch.
Math. 40 (1983) 50—60], Cuenca Mira et al. [Lin. Alg. Appl. 290 (1999) 1-22], Dieterich [Proc. Amer.
Math. Soc. 128 (2000) 3159-3166] and Dieterich and Lindberg [Collog. Math. 97 (2003) 251-276]
on the classification of real quadratic division algebras.
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1. Preliminaries

In accordance with Bourbaki we view 0 as the least natural number. Foneack we
setn={i € N|1<i<n}.ByR.o, R>0wedenote the rays of all positive, non-negative real
numbers respectively. BR"*" we mean the vector space of all real matrices of gizen.

The identity matrix inR"*" is denoted by, We writeR 3", Rpsd', Raq" for the subsets
of R**" which consist of all positive definite, positive definite symmetric, antisymmetric
matrices respectively. Moreover, we &/ = SL,(R) N R7 7 T. We also seR™ = R

and writee = (eq, . .., e;,) for the standard basis IR”. If M € R™ ", thenMT is the
transpose oM, and M denotes the linear ma@d : R* — R™, M(x) = Mx.If Visa
vector space, thefvy, ..., v/] denotes the linear hull of vectors, ..., v, in V, andV*

denotes the dual space Bf Elements in the projective spat®V) are denoted byv],
wherev € V\{0}.

By aEuclidean spacee mean a finite-dimensional Euclidean vector sgaee(V, ( )).
Morphisms between Euclidean spaces, also califtbgonal mapgare linear maps respect-
ing the scalar products. BY = " we denote the:-dimensionaEuclidean column space
(R™, (), where(v, w) = v’ w is the standard scalar product. We write( Py, PdSE),
Ant(E), Def(E) forthe subsets of Hop( E, E) which consist of all positive definite, pos-
itive definite symmetric, antisymmetric, definite linear endomorphisms odspectively.
Moreover, we set Spdg) = SL(E) N PdSE).

A dissident mapn a finite-dimensional Euclidean vector spacés anR-linear map
n:V AV — Vsuchthab, w, n(v A w) are linearly independent wheneverw € V are.
The interest in dissident maps originates in their relevance for the classification problem of
real division algebras. Dissident maps are known to existin the dimensi@n3 8nd 7 only.
They are trivial in dimensions 0 and 1, but still very little understood in dimensions 3 and 7.

The object clasg of all dissident mapg : V AV — V on a Euclidean spadé, briefly
denoted by; = (V, 1), becomes a category by viewing as morphismsgV, ) — (V', 1)
the orthogonal maps : V — V' which satisfyen = 5'(¢ A o). Note that a morphism
a:(V,n) — (V',n)is an isomorphism in the catego#if and only if dimV =dim V',

The polynomial ringR=R[ X1, ..., X,,] hasdth homogeneous summanRg. Recall that
R is a factorial noetherian domain. Theeatest common divisaf a sequences, ..., pe
in R, denoted by gcps, ..., pr) = (d), is the uniqgue minimal principal ide&) in R
containing the idealps, ..., p¢) generated bysq, ..., ps.

Let #" be a category. Whenever a function dir®b(#") — N is defined,”#’, denotes
the full subcategory of#” formed by dinT1(n). For eachX € Ob(#"), lx and[X] denote
the identity morphism orX and the isoclass aof respectively. All categories considered
in this article will besvelte i.e. their isoclasses form a set, denoted by.@h/>. A
subseté C Ob(.) is said toexhaustOb(.¢"), to beirredundant to be across-section
for Ob(#")/= if and only if the canonical map?] : ¥ — Ob(x#")/=, C — [C]is
surjective, injective, bijective respectively. A cross-section fok.@h/—= is also said to
classify.#". By aclassificationof .7 (up to isomorphism) we mean the explicit display of
a cross-section for Qbr") /.

Amap f : X — Y is calledG-equivariantif and only if it respects underlying actions
of a groupG on X andY in the sense that(gx) = gf (x) holds for allg € G andx € X.
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2. Existence and uniqueness of liftings

Lety : E A E — E be adissident map on the Euclidean column spgaeet”, where
3<m < ool Thenyinduces a selfmapp : P(E) — P(E) of the (m — 1)-dimensional
real projective space, given ly[v] = (n(v A E))*. According to[7, Proposition 2.2]ip
is always bijective. Howeverp may or may not be collinear (cf7, Propositions 2.4 and
4.5)). In view of the fundamental theorem of projective geom¢iryp. 88] this fact can
be expressed equivalently by stating tiigtmay or may not be liftable to a linear bijection
® . E — E. The present article puts a unifying perspective on this puzzling behaviour
of np by showing that;p in fact always admits a liftingd : E — E of degreed with
1<d<m — 2 (Theorem 2.4), wheré is a linear bijection if and only i/ = 1. We begin
our investigation by introducing rigorous terminolagy.

A quasi-lifting ofyp outside A, or briefly aquasi-lifting of #p, is a map® : £ —
E*, ®(v) = (p1(v),..., ¢, (v)) having the following properties:

@) {¢1, ..., 0,} C Rg for somed € N\{0O};

(b) A is a proper algebraic subset Bfsuch thatv—1(0) c A andyp[v] = [®(v)] for all
v e E\A;

(©) gcdy. ... 0,) = (D).

A lifting of np is a quasi-lifting ofyp outside{0}.

Letd=(¢q, ..., ¢,) be aquasi-lifting ofjp. Thesupportof @ is defined byl (®)={i €
m | ¢; # 0}. Itis non-empty, according to (b). Thiegreeof @ is defined by de@ = dege;
foralli € 1(®). It is well-defined and satisfies dég>1, according to (a). For every
A € R\{0}, the mapl® = (Loq, ..., Lp,,) is also a quasi-lifting ofjp.

Lemma 2.1. If ® and ¥ are quasi-liftings ofjp, then¥ = 4@ for a uniquel € R\{0}.

Proof. Let® = (¢4, ..., ¢,,) be a quasi-lifting ofjp outsideA and¥ = (4, ..., ¥,,) be
a quasi-lifting ofyp outsideB. SetC = A U B. Note thatE'\ C is non-empty and open. Due
to (b) we have for alb € E\C that

(Y1), ... ¥, D] = [P )] = nplv] = [P2W)] = [(@1(v), ..., @, V)],

and hence

WP1(v), . ¥, (V) = () (P (V) ..., @ (V) «y

for a uniqueu(v) € R\{0}. This implies! (®) = I(¥). Setl = I (®) and letu : E\C —
R\{0} be the function defined by (1). Then we can write (1) equivalently as system

1In view of the (1,2,4,8)-theorem of Hopt3], Bott and Milnor[2] and Kervaire[15] (cf. [12]), combined
with Osborn’s theorenfil9] (cf. [6]), this hypothesis implies that € {3, 7}. Nevertheless we shall develop our
theory of liftings independent of the (1,2,4,8)-theorem, up to Corollary 3.3.

2Inthe present section we consider, for technical reasgohs)stead ofE as the codomain of a quasi-liftirg
of np. Accordingly we consideP(E*) instead of?(E) as the codomain ofy, i.e. we interpreﬁp[v]=(n(v/\E))J-
as(q(v A E))t = (¢ € E¥|n(v A E) C keré} € P(E*). We identify E* = (R"*1)* with R1*™ and Ry,
respectively.
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of equations

Yi=np; Viel 2)

of real-valued functions defined di\C. Multiplying for arbitrary j € I all equations in
(2) by ¢; and eliminating the unknown functignby means of}; = u¢;, we obtain the
new system of equations

Vioj =@, VG, j)el? ©)

of real-valued polynomial functions defined @\ C. BecauseE\C is non-empty and
open, (3) remains valid when viewed as a system of equations in the polynomial ring
R[X1, ..., X;y]. Thus we can conclude with (c) that

) =gcd;p;1jel)=gcdoy;ljel)=(¢;)
holds for alli € I, and hence
vi=we, Viel 4)

for uniquely determined numbers € R\{0}. From (3) and (4) we deduce the system of
equations

Y -
pi=-—-L=-L=yp; Vi j el
i P
in the rational function field®(X1, ..., X,,). Accordingly A = g, for all i € I is a well-
defined non-zero real number which, substituted into (4), yiélds (Y4, ..., ¥,,) =
Mpqs ..., @,) = AP. Moreover, 4 is uniquely determined by? and ¥, because

®#£0. O

Let H be a hyperplane it and leth = (h2, ..., h,,) be a basis irH. The datay andh
determine amap" : E — E*, defined for alb € E by

®"(v) = det? (v Ah2) | ... | A ).

Lemma 2.2. The map®" : E — E*, o"(v) = (¢](v), ..., ¢l (v)) has the following
properties

) {¢}..... o0} C Ru-1;
(i) (@"M)~1©0) = H;
(i) yplv]=[P"(v)] forall v € E\H;
(iv) Each ofthe real polynomiakg'l‘, ce, cpl‘n vanishes on the complex hyperplatied i H
in C™.

Proof. (i) Each vectow € E determines a real matrix

M"() = M Ah2) | ... |n(wAhy)) e Rm > (m—1)
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and, deleting fromV"(v) the i-th row, a real quadratic matrix"(v) € R~ Dx(n=1)
l

mx(m—1)

Consideringv € E as indeterminate vector, we obtain matrice$§ € R} and
M;,h € Ri’"’l)x(’”’l) with entries in the dual spadé* = R; of E. Thus we conclude that

ol =detle; |1(?Ah2) | ... [N(?A hy)) = (—D”ldetM;h € Rn-1

foralli € m.

(i) For anyv € E, the identityd" (v) = 0 holds if and only if the columns d¥" (v) are
linearly dependent. Becauses dissident, the latter holds if and onlyife H.

(iii) If v e E\H, thenke®"(v) =[(v Ah2), ..., 1 Ahw)]=n0 A H) =n(v A E).
Consequentlyp" (v) € (7(v A E))*\{0}, and hencéd" (v)] = ((v A E))* = np[v].

(iv) Complexify the giverR-linear dissident map : E A E — E to aC-linear mapy :
C™ A C™ — C™, and define the complex polynomiaﬁ%l, . go?:’m inC[X1, ..., Xul
by ¢ ;(z) =dette; [nc(z Ah2) | ... [nc(z Ahy)) foralli € m andz € C™. Observing
thatpll .(v) = ¢'(v) foralli € m andv € R™ we deduce thap? , = ¢ foralli € m. If
z€ H®iH,thenthe columnse(z A h2), ..., nc(z A hy) areC’—IinearIy dependent and
hencep!! (z) = ol ,(z) =0foralli e m. O

Giveny andh as before, with corresponding map = (¢!, ..., fl), we choose now
@" € R\{0} such thato") = gcd(el, ..., of) and setp; = ¢l'/o" for all i € m.

Proposition 2.3. The map® : E — E*, ®(v) = (¢1(v), ..., 0,,(v)) is a quasi-lifting of
np outsideH, satisfyingl< deg®d<m — 2.

Proof. First we verify that® satisfies the defining conditions (a)—(c) for a quasi-lifting of
np outsideH.

(a) Because every factor of anon-zero homogeneous polynomial ishomogeneous, Lemma
2.2(i) implies thaf ¢, . . ., On} C Rgford=m—1— dege". According to Lemma 2.2(ii)
and (iii), the identity

nplv] = [@" )] = [p"W)(P1(v), ..., 0, W] =[(P1(V), ..., @y (V)] 5)

holds for allv € E\H. Becauseyp is bijective, its restriction td®(E)\[P(H) is injective
which, together with (5), implies that> 1.

(b) The hyperplaneH is a proper algebraic subset &f. The inclusion®1(0) ¢
(@")~1(0)=H holds by definition of and Lemma 2.2(ii). The identitys [v]=[(¢4(v), . . .,
¢,,(v))] =[@(v)] holds for allv € E\H by (5) and definition ofp.

(c) ged ey, - - ., @,,) = (1) holds by definition of the polynomials,, ..., ¢,,.

It remains to show thaf <m — 2, or equivalently that deg" >1. Choose® € R1\{0}
suchthat(H)={0}. Thenthe zero set @fin C" is the complex hyperplan# ({)=H ®i H
and the vanishingidealdf @i H in Ris ¥ (H ®i H)=.9 % ({)=Rad ) =(¢), by Hilbert’s
Nullstellensatz. We conclude with Lemma 2.2(iv) tl{m'&‘, ceey go?,,} CHIH®IH)= (&
and hencéo") = gcdo!, ..., of) C (¢), proving that deg" > degé =1. O
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Two functionsF : E — E* andG : E — E* are calledassociatedf and only if
G = JF for some/ € R\{0}. The set of all associated paif8, G) forms an equivalence
relation, calledassociationon the vector spacg*) of all functions fromE to E*. The
equivalence class af : E — E* under association is called tlassociate classf F. If
F # 0 then its associate class is the punctured[ling {0}.

Theorem 2.4. Lety be a dissident map on the-dimensional Euclidean column spaEe
where3<m < oo. Then the following assertions hold true

(i) There exists a lifting ofp.
(i) The set of all liftings ofyp forms precisely one associate clasg ki) £\ {0}.
(iii) The degree of alifting of p is uniquely determined by It satisfiesl < deg® <m —
2. Moreover deg® = 1if and only ifyp is collinear.
(iv) Every lifting ofyp has supporin.
(v) Every quasi-lifting ofjp is a lifting of np.

Proof. (i) For eachi € m choose a basis; in the coordinate hyperplang; = e,.l in E.
The datay andh; determine, according to Proposition 2.3, a quasi-lifthhg: £E — E*
of np outsideH;. Setd = @1. Due to Lemma 2.1 there afg, ..., 4, in R\{0} such that
&= ;; foralli € m. Thus® is a quasi-lifting ofyp outsideH, for all i € m. Hence® is
a quasi-lifting ofyp outside(;,, H; = {0}, i.e. alifting of .

(i) follows directly from (i), the definition of a lifting ofjp and Lemma 2.1.

(iii) The degree of a lifting® of yp does not depend on the choice®f because any
two liftings of 7p are associated. The lifting of #p constructed in the proof of (i) satisfies
1< deg@<m — 2, according to Proposition 2.3. If ddg= 1 then® : E — E*is a
linear bijection and hencgp = P(®) is collinear. Conversely, ifip is collinear then the
fundamental theorem of projective geometry asserts the existence of adifohgp such
that degd = 1.

(iv) For every lifting @ of yp, the assumption € m\I(®) implies imyp C P(H,),
contradicting the surjectivity ofp.

(v) According to (i) and Lemma 2.1, every quasi-lifting of #p is associated with a
lifting @ of np. HenceVY is a lifting of yp. O

Identifying E* with E via the linear bijectiorE* — E, ¢ = (x, ?) — x and identifying
P(E*) with P(E) accordingly via the collinear bijectidA(E*) — P(E), [¢]=[{(x, )] —
[x] we recover our original view ofp : P(E) — P(E) as a selfbijection of*(E) and
of its lifting @ : E — E as a selfmap oF. Henceforth we shall maintain this original
viewpoint.

3. Liftings of isomorphic dissident maps

Lety : EAE — E andy : E A E — E be dissident maps on the-dimensional
Euclidean column spade, where 3<m < oco. Let® : E — E be alifting ofyp : P(E) —
P(E) and letd’ : E — E be alifting ofy, : P(E) — P(E).
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Proposition 3.1. If ¢ : # — 5 is an isomorphisnthen
(i) o®o~t= A for auniquel € R\{0}, and
(i) deg® = deg?'.

Proof. (i) By Lemma 2.1 it suffices to show that the ma@s—' : E — E satisfies the
defining conditions (a)—(c) for a quasi-lifting gf,. To do so, let/ =deg® andg;, ..., ¢,
in Ry\{0} such that?(v) = (p1(v) ... (pm(v))T forall v € E. Moreover, letS € O,,(R) be
the orthogonal matrix representiagn e.

(a) We introduce the functiong : E — Randy; : E — R, wherei € m, on setting
0; = ;0 tandy; = Z?:l Sijo;- Then{qpq, ..., ¢,} C Ry together with the linearity of
o~ Limplies that{g,, ..., ¢,,} C Rs and hencéy, ..., ,,} C Rs. Onthe other hand, the
functionsy, ..., ,, are just the component functionsebs 1, because

@107t (v) 01(v) Y1 (v)
) 0 (V) ¥y, (V)

holds for allv € E.

(b) Because is linear bijective and is a lifting of 7p we have thato®o—1)~1(0)={0}. If
v € E\{0},then[@(c v)]=nploe tv]= (o~ v A E))* implies that ®(c~1v), n(c v A
E))={0}. Hence{c®o~1(v), i’ (v A E)) = (6oL (v), an(c~1v A E)) = {0} which in turn
implies thatfo®o~1(v)] = (7' (v A )" =y [v].

(c) Choose) € R\{0} such that(y) = gcd(yy, ..., ¥,,). From® = (¢, ... (pm)T and
c®o = (..., we deduce viab = oY odo Yo thate; = Y, S ;o for all
i € m. Nowy|y; forall j € m implies thatja|y ;o for all j € m and henceja|gp; for all
i € m. Thus we have botty,, ..., ¢,) C (o) and gcdeq, ..., ¢,,) = (1). Thisimplies
(Yo) = (1) and henc&y) = (1).

(i) Part (a) of the proof of (i) shows that d@g= dego®s—1, and (i) implies that
dego®o! =degd’. O

To enable a concise summary of what we have achieved so far, we introduce further
notation. With then-dimensional Euclidean column spaEe= ", where 3<m < oo, we
associate the set

EE)={(V,n) eé&|V=E}
of all dissident maps o#t, the set

YL (E)={P: E — E| lifts np for somen € &(E)}
of all liftings on E, and the set

A L(E) ={[PI\{0} | ® € Z(E)}
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of all associate classes of liftings @ The orthogonal group = O,,(R) acts from the
left on each of these sets by

On X 8(E) — 8(E), o-n=on(c Ao b);
On X ZL(E) — Z(E), - ®=0cbs
Op x A L(E) - AL(E), - (PI\{0}) =[cPs\{0}.

Corollary 3.2. Let E = ", where3<m < co. Then the following statements hold true

(i) The lift mapping¢ : §(E) — L (E), £(n) = [P]\{0} where® lifts np, is well-

defined surjective andD,,-equivariant

(i) The degree mappindeg: .o/ Z(E) — m — 2, deg[®]\{0}) = deg®, is well-defined
and constant on eadd,,-orbit of .o/ Z(E).

(i) The lift mappingt : §(E) — o/ Z(E) induces a surjective mapping of orbit sets
€:E(E)/Op — A L(E)/Op, £(Op - 1) = Op - £().

(iv) The degree mappindeg: ./ ¥ (E) — m — 2induces a mappindeg: ./ #(E)/O,,
— m — 2,degO,, - ([P]\{0})) = deg®.

Proof. (i) and (ii) follow immediately from Theorem 2.4 and Proposition 3.1, while (iii)
and (iv) are trivial consequences of (i) and (ii)J

Corollary 3.2 establishes the commutative diagram

Z(E)
14 J deg
E(E) — oA L (E) — m-—=2
\ \ l
8(E)/O, — AJL(E)/O, — m-—2
¢ deg

where¢, ¢ and the canonical vertical maps are surjective. The fibredegh ¢ form a
partition for the isoclasses of dissident mapsirand the fibres of form a partition for
the fibres ofdego ¢. Thus the analysis of the above diagram provides a strategy towards a
possible classification of all dissident maps, up to isomorphism. The remaining part of the
present article will exemplify this view.

We begin by gathering obvious information on the g&tB) and.# (E). For everyd € m
we denote by7 ,,; the setof all map® : E — E, @(v) = (¢1(v) ... (pm(v))T such that
{01, ... @) CRa\[O}, @1(0)={0}and gcd ey, ..., ¢,,)=(1). Note that# ,,; =GL(E).

Corollary 3.3. Let E = ", where3<m < co. Then the setg'(E) and £ (E) admit the
following description

(i) fm¢(3,7},thens(E) =0 and Z(E) = 0.
(iiy If m=3,thend(E) # ¥ and{lg} C L(E) C GL(E).
(iii) 1f m=7,then&(E) # ¥ and{lz} C L(E) C GL(E) U (U5—p F74).
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Proof. (i) If n € &(E), then the vector spacg, = R x R", endowed with thék-bilinear
multiplication (o, v)(f, w) = (aff — (v, w), cw + fv +n(v Aw)), iS a real quadratic division
algebra, by Osborn’s theorem (¢f.9,6]). The (1,2,4,8)-theorem (cf12]) implies that
m+1e{l,2,4,8}, and hence that € {3, 7}.

(i) Let m = 3. The standard vector proddctiz : E A E — E is given byna(eq A ep) =
e3, m3(e2 A e3) = e1 andng(es A e1) = ez. Being a vector product is a dissident map
on E such thattzp = lpg). If @ € Z(E), then degp = 1 by Theorem 2.4(iii), and hence
@& e F31=GL(E).

(iii) Let m = 7. Writing vectors inE in the form(l%), where(v, o, w) € R® x R x R3,
the standard vector product : E A E — E is given by

v v ow’ —o'w + n3(v AV) — nz3(w A W)
m((oc)/\(oc’)):( —(v, w') + (w, v') )
w w’ —ov' + o'v —m3(v Aw') — m3(w A V)

(cf.[7] or[17]). Being a vector product;7 is a dissident map oA such thattzp = Ip(g). If
& € Y (E), then 1< deg® <5 by Theorem 2.4(iii), and henae € Ufl:l F7.=GL(E)U
Uj—2Z ). O

In the next section we shall refine the preliminary information contained in Corollary 3.3
by giving, in casen € {3, 7}, both an exact description of the S€( E)NGL(E) of all linear
liftings on E and a complete description of the $8( E) = {7 € &(E) | deg£(y)) = 1} of
all dissident maps of' having degree one.

4. Dissident maps of degree one

Recall that an arbitrary algebrais said to bdlexibleif and only if (ab)a = a(ba) holds
for all (a, b) € A2. Besides, we call a dissidentmap V A V — V flexibleif and only if
n(u A v), w) = (u, n(v A w)) for all (u, v, w) € V3. This terminology is justified by the
equivalence (ix (iv) in Proposition 4.1 below. Flexible dissident maps generalize vector
products, by definition. But on the level of the induced selfbijectiprihey are no longer
distinguishable from vector products. This fact even characterizes the flexible dissident
maps, according to the equivalence<)(iii) in the following proposition.

Proposition 4.1. For each dissident map : V A V — V, the following assertions are
equivalent

() nis flexible
(i) (v, (v Aw)) =0forall (v, w) e V2.
(i) np =Ip).
(iv) The real quadratic division algebrd, = R x V, with multiplication («, v) (8, w) =
(afp — (v, w), ow + Pv + n(v A w)), is flexible

3Avector producbn a Euclidean spadéisalinearmagp : VAV — V suchthatn(uAv), w)=(u, n(vAw))
for all (u, v, w) € V3, and|n(u A v)| = 1 for all orthonormal pairsu, v) € V2.
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Proof. (i) = (ii). If (v, w) € V2, then(v, n(v A w)) = (n(v Av), w) =0.

(i) = (). If (u, v, w) € V3, then 0= (w +u, n((w +u) Av)) = (w, n(u AV)) + (u, n(w A
v)) = Av), w) — (u, (v A w)).

(i) < (iii) holds by definition ofyp.

(ii) < (iv). A routine calculation shows that

(o, V) (B, w)) (21, v) = (o, VI((B, w) (21, v))

is equivalent tqv, n(v A w)) =0, for all ((«, v), (B, w)) € Ay x Ay. O

We denote by’ the full subcategory of formed by all flexible dissident maps. Theorems
of Darp6, Cuenca Mira et al. assert that a classificaticzﬁgoifs obtained from the standard
vector productig by homothetyf4], and a complete description 6f; is obtained from the
standard vector produttzz by vectorial isotopy3].

Heading for a precise version of these statements (Theorem 4.2 below), we denote by
v* € GL(E') the adjoint of anyy € GL(E’), defined by(y(v), w) = (v, y*(w)) for all
(v, w) € (E")2. The right group action

Homp(E' AE' E') x GL(E") — Homp(E' AE E)), p-y=7"u(y Ay),
called “vectorial isotopy” irf3], is easily seen to induce a map
GLE) — &L, v n7-9.

By G» we denote both the automorphism group &) = {¢ € O(E') |n7 - ¢ = 77}
and its matrix versioS € O7(R) | n7 - S = m7}. This notation is justified by the fact that
Aut(n7) is a compact, connected, simple real Lie group of dimension 14 and therefore an
exceptional compact Lie group of tye (cf. [20, Theorem 11.33]

Theorem 4.2. (i) The family{in3 | A € R.¢} is a cross-section fo@b(é)g)/—&
(i) The family{n7- 0|0 € PdE")} exhaust@b(éa;).
(i) Forall 3,8 € PAYE’), the set of all morphisms : 77 - § — n7 - 4 in & admits the
descriptionMor(n7 - 9, 17 - 0) = {0 € G2 | 6da— L = §).

Proof. For proofs of (i) and (ii) we refer t¢4, proof of Proposition 6.1and[3, proof
of Theorem 5.7]Our proof of (iii) is a refinement of the proof of the corresponding (but
slightly weaker) statement contained®& Theorem 5.7]We include it here for the reader’s
convenience. B

Let 5,6 € PdSE’) be given. If¢ € Mor(n7 - 8,77 - 9), thena € O(E’) such that
n7-80=(n7-9)-0=n7-(d5). Thust = 65 L is in GL(E’) and satisfieg7 - t = n7. We
infer from [3, Proposition 3.8thatt € Gp. Now | = ao* =6 w5713 implies that
32 =16°t"1 = (x6171)2, and hence_thath 1011, Soo = 57115 = (5 1t Heé =1, and
therefores € G, such thatdo1 = 6.

4See proof of Corollary 3.3 for definition af3 andn7.
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Conversely, ifr € G2 satisfiessdo~1 =6, then(n7 - 0) - ¢ =7 - (900) =17 - (66) = (n7 -
o) - 0 = m7 - 0 shows that € Mor(n7 - 0, n7-90). O

From now on letn € {3, 7}. We define thalegreeof a dissident mag € & (EF") to be
the degree of a liftingp of np. More generally, we define théegreeof a dissident map
v € &), to be the degree of anye &(F") such thab—=5. This notion is well-defined by
Proposition 3.1(ii), and it gives rise to the degree map dégy, — m — 2 by Theorem
2.4(iii).

Setting &7/ (") = &£(F™) N &7 and &X(F™) = {y € &(F™)| degy = 1}, we obtain
the filtration of full subcategorieg’ (F") c &Y(E™) c &(F™). More generally, set-
ting 6”‘,1,, ={n € &, | degy = 1}, we obtain the filtration of full subcategoriﬁfl C
&L C .

In the remaining part of the present section we shall demonstrate how our theory of
liftings can be applied in order to extend the above classificaticfg’db a classification

of &3, and the above complete descriptionrgcff to a complete description 6%.

Proposition 4.3. Let E = ", wherem € {3, 7}.

(i) If ¢ € 6/ (E) ande € Def(E), thenzp € §*(E) ande~* lifts (cg)p.
(i) 1fn e &Y(E) and @ lifts np, thend e Def(E) and®*ny € &7 (E).

Proof. (i) Given (e, ) € Def(E) x &1 (E), let(v, w) € E2be a non-proportional pair and
assume tha, w, ep(v Aw)) is linearly dependent. Thep (v A w) € [v, w]. Onthe other
handp(vAw) € [v, w]*, sincep is flexible. Hencép (v Aw), ep(v Aw)) =0. Definiteness
of ¢ implies thatp(v A w) = 0, contradicting the dissidence of So (v, w, ep(v A w))
must be linearly independent. Accordingly € &(E).

The identities(e *(v), cp(v A w)) = (v, (v A w)) = 0, valid for all (v, w) € E?,
show that[¢e~*(v)] = (e@)plv] holds for allv € E\{0}. Hencee™* lifts (¢¢)p, and thus
ep € EX(E).

(iIf ne &Y(E) and @ lifts np, then® € GL(E) and(v, ®*n(v A w)) = (®(v), n(v A
w)) = 0 holds for all(v, w) € E2. Henced*n(v A w) € [v, w]*. If (v,w) € E?is
non-proportional, them*n(v A w) # 0 becauseb* € GL(E) andy is dissident, and
therefored™n(v A w) ¢ [v, w]. Accordingly @*5 € §(E) and so, by Proposition 4.1, even
o e &7 (E).

To prove definiteness ab, letv € E be such thatv, @(v)) = 0. If v # 0, thenv €
[@(v)]* = (v A E), contradicting the dissidence gf Hencev = 0. Accordingly @ is
anisotropic. By Sylvester’s inertia theorem this implies thas definite. [

Corollary 4.4. LetE =", wherem € {3, 7}.

() Z(E)NGL(E)=Def(E).
(i) The mapDef(E) x &/ (E) — SYE), (e, @) — ¢ is well-defined and surjective
(iii) For all (¢, ¢), (z, @) € Def(E) x &7 (E), the identityep = @ holds if and only
if (22, 29) = (2. @) for some’. € R\{0}.
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(iv) Forall (e, @), (, @) € Def(E) x &/ (E), the set of all morphisms : ¢p — @ in &
admits the description

Mor(ce, & @) = {6 € O(E)|(Joca L, A top(c A o)) = (B, P)
for some A € R\{0}}.

Proof. (i) and (ii) are immediate consequences of Proposition 4.3.

(iii) If ep = zp, then Proposition 4.3(i) and Theorem 2.4(ii) imply that = Ag~* for
some/ € R\{0}. Consequentlyic =¢ and%qo = @. The converse implication is trivially
true.

(iv) Observing that(cea™t, 6p(c A 0)~1) € Def(E) x &/ (E) whenever(e, @) €
Def(E) x &7(E) ande € O(E), the statement is a straightforward consequence of
(i). O

Focusing now om = 3, we proceed to demonstrate in several steps how from the above
results a classification @f3 can be derived in a streamlined manner.

Proposition 4.5. (i) The family{ens | ¢ € PA(E®)} exhaustOb(£3).
(i) For all ¢,z € Pd(E®), the set of all morphisms : enz — &nz in & admits the
descriptionMor (en3, E13) = {6 € SO(E3) | 0oL =&}.

Proof. (i) If ¢ € PA(E®) theneniz € &3, by Proposition 4.3(i). Conversely, ifany=(V, v) €
&3 is given, choose an orthonormal basisVinto obtainy € &(E%) = &*(E%) such that
v=>1n. Choose a lifting® of np. Proposition 4.3(ii) ensures thdt € Def(E3). Moreover,
Proposition 4.3(ii) and Theorem 4.2(i) imply thét'n— in3 for some/ € R.o. Hence
there exists @ € O(E®) such that(c®*c 1) (an(a A 0)™1) = 6(P*n) (6 A 0) "L = Ina.
This implies tha=>an(c A 0) L = 6@ *6~Lin3 = enz, wheree = Jod*¢~ 1 is definite
becausep is. Finally, —ls : enzg— (—¢)7z is an isomorphism, and one af—¢ is positive
definite.

(i) If o € Mor(eng, en3), then Corollary 4.4(iv) asserts that
(loso~ L, ) ons(o A o) ™Y = (G, 3)
for some/ € R\{0}. Hence
12l = |l Im3(e1 A e2)] = loma(a A 0) "L(er A ep)] = 1.

Since botle and%é = oeo 1 are positive definite, it follows that= 1. Moreovergns(c A
0)~1 = nz implies thats € SO(E3).

Conversely, ifr € SO(E3) satisfiesrea™ 1 =¢, theno (enz) (6 A 0) "L = (seo 1) (om3(o A
o)1) = &ns, becausers is SQE3)-equivarian® Hences € Mor(ens, en3). O

Recall that a groupoid is a small category all of whose morphisms are isomorphisms.
The object set P@®) becomes a groupoid by viewing as morphisms ¢ — ¢ the

5The SQ[E3)-equivariance oftg follows easily from the fact thatrz(u A v), w) = det(u|v|w) holds for all
(u, v, w) € (B33,
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special orthogonal endomorphisms SO(E®) which satisfyseo~1 = ¢'. Then the functor
% : PAE®) — &3, given on objects by(e) = ens and on morphisms b (¢) = o, is
well-defined, dense and full by Proposition 4.5, and faithful by definition.

Corollary 4.6. The functor? : PA(E3) — &3 is an equivalence of categories

Setting7 ={d € R3]0 < d1 <d»<ds} we denote, for any € 7, by D, the diagonal
matrix in R3*3 with diagonal sequence We endow the object sB x 7 with the structure
of a groupoid by declaring as morphisrfis: (y,d) — (y’,d’) the special orthogonal
matricesS € SO3(R) satisfying(Sy, SD;ST) = (y', Dy).

Everyy € R determines an antisymmetric linear endomorphjgm= n3(yA?) of 3.
Everyd € 7 determines a symmetric positive definite linear endomorpldiges D, of
E3. Hence every paify, d) € R3 x 7 determines a positive definite linear endomorphism
&ya =M, + 054 Of E3. The functor7 : R®x 7~ — Pd(E®), given on objects by (y, d) =z,q
and on morphisms by (S) = S is well-defined, again due the $8%)-equivariance oft3.

Corollary 4.7. The functorZ : R® x 7 — PA(E®) is an equivalence of groupoids

Proof. The functorZ is dense by Jacobi’s spectral theor®nfaithful by definition and full
by SQ(E3)-equivariance ofiz and uniqueness of the decomposition of a positive definite
matrix into its antisymmetric and positive definite symmetric pafil

As an immediate consequence of Corollaries 4.6 and 4.7 we obtain the following descrip-
tion of the category’s in terms of the groupoi®® x 7.

Theorem 4.8. The composed functét# : R®x 7 — &3is an equivalence of categories

Due to the equivalences of categories

F g
REx 7 — PAE}) — &3

the problems of classifyings, PAE®) andR® x 7 up to isomorphism are all equivalent.

The latter one can be solved without effort by means of geometrical conception!
Indeed, letus interpret the groupdid x 7~ geometrically by identifying its objects, d)

with those configurations it® which are composed of a pointand an ellipsoidz,; = {z €

R3| " Dyz =1} in normal position. A morphisny, d) — (y/,d’) in R3 x 7 exists only if

d =d’. Accordingly, identifying SQ(R) with SO(E®), the morphismsy, d) — (y',d’) in

R3 x 7 are identified with those rotation symmetries of the ellipsbjd= E,» which send

ytoy’. Thus the problem of classifying® x 7 up to isomorphism splits into th& -family

of normal form problems given by the natural group actiéps< R® — R3, (S, y) — Sy

whereG,={S € SO3(R) | S$D4ST =Dy} is the rotation symmetry group of the ellipsdig,

6We choose to translate the German standard name “Hauptachsentransformation” for this theorem as “spec-
tral theorem”. We attribute it to Jacobi due to his artifdd] in which he presented a constructive method for
the numerical solution of the characteristic equation of a real symmetric matrix. Sef#&)sd¢orwort and
Section 13]
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for anyd € 7. The solution of these normal form problems amounts to an easy exercise in
elementary geometry. Leaving the verification of details to the interested reader, we content
ourselves with presenting the results.

By %r we denote the category of groups. The image of the@aps — 4r, d — Gy
consists of four subgroups of @) only, namelynamely

G1=SO3(R),
0
Gy— M S€0,(R),
00/ detS

Seoz(R)},

{71
) I

Their fibres7; ={d € 7 | G4 = G,;} are

T1=1{d € 7 |dr=d2=d3},
Tor=1{d e T |d1=dr<d3},
T 3=1{d € T |dy <dr»=d3},
Ta=1{d e T |d1<dr<d3}.

Cross-section%; for the orbit set®t®/G; are given by

%1=R>0 x {0} x {0},

(622 {O} X R}O X R}O,

€3=R>0x R>0 x {0},

@a=(Roo x Rog x R) U {y € (R>0)%| y1y2 =0}

This accomplishes the classification ot x 7, along with the classifications of PEP)
and&s. Let us summarize the result.

Theorem 4.9. (i) The set of configurations = | J!_, (%; x 7;) classifiesR® x 7.
(i) The set of positive definite endomorphism&s) = {eyq | (v, d) € €} classifiePd(E3).
(iii) The set of dissident mags7 (%) = {&,q4n3| (y, d) € %} classifiesss.

Let us now switch tan = 7. Here, a pattern of reasoning can be carried through which is
reminiscent of the above one fiar= 3, although not quite analogous. It yields a description
of the category’2 i_n terms of thg matrix triple categof. >’ x R;(X,S? X Rzggsto be defined
below. We start with the following fundamental lemma.

Lemma 4.10. For all (¢, 9), (. 6) € PAE") x PdSE"), the set of all morphisms : &(n7 -
0) — &(m7 - 0) in & admits the description



14 E. Dieterich et al. / Journal of Pure and Applied Algebra 204 (2006) 133—-154

Mor(e(ni7 - 8), &(n7 - ) = {0 € Go|(hoea L, 2736067 1)

= (&, 0) for some ) € R.g).

Proof. If ¢ € Mor(e(n7 - 9), &(n7 - 3)), then Theorem 4.2(ii) and Corollary 4.4(iv) imply
thate € O(E’) such that

Gaso™ L, ) a(ny - )6 A o) ™Y = &, 17 - 9)

for somel € R\{0}. Since botte and A1z = geo ! are positive definite, it follows that
4> 0. Equality of the second components in the above identity can be expressed in the form
(n7-8) -0~ Y = A(n7 - ) = n7 - (¥/35) which means that € Mor (7 - 3, 17 - (230)). We
conclude with Theorem 4.2(jii) that € G, andeds1 = 23 3.

Conversely, ife € G, satisfies(lgea1, J~30661) = (z, ) for some/ > 0, then we
conclude with Theorem 4.2(iii) that

o € Mor (w7 - (A~36), 17 - 8) = Mor(A~ (w7 - 6), 77 - 9).

Hencel ™ a(n7 - 8)(c A @)~ =n7- 5. Now Corollary 4.4(iv) implies that € Mor (s(r7 -
8), &7 - 0)). [

In order to eliminate the troublesome factoappearing in Lemma 4.10, we restrict
PdSE’) to the subset SpdB’)=SL(E’)NPdSE’). Viewing PA E’) x SpdgE’) as the object
set of a groupoid whose morphisms (¢, 6) — (, ) are the orthogonal endomorphisms
o € G, which satisfy(eea—1, 0do—1) = (2, ), we easily obtain the following result.

Proposition 4.11. (i) The family{e(n7 - 8) | (¢, 0) € PA(E’) x SpdgE’)} exhaustOb(£).
(i) For all (¢, §), (2, 0) € PAE") x SpdgE’), the set of all morphisms : &(n7 - §) —
e(n7 - §) in & admits the description

Mor (e(n7 - 8), &(nt7 - 0)) = {0 € Gz | (cea™ L, 666~ 1) = (5, 9)}.

(iii) The functor? : PA(E”) x SpdgE’) — &2, given on objects b (e, 8) = &(n7 - 9)
and on morphisms by (o) = ¢, is an equivalence of categories

Proof. (i) If (¢,0) € PAE’) x SpdsE’), thene(nzy - §) € &3 by Theorem 4.2(ii) and
Corollary 4.3(i). Conversely, lat € 5% be given. Arguing as in the proof of Proposition
4.5(i), however with application of Theorem 4.2(ii) instead ofTheorem 4.2(i), onefinds apair
(& 3) € PAE") x PASE7) such thak(r7-0)=>v. Seti=(detd)~ 7. Then(e, §)=(Jz, 4~ 30) ¢
PA(E’) x SpdgE’)such thak(n7 - §) = &(n7 - 9)>v.

(ii) follows directly from Lemma 4.10, together with dét= 1 = deto.

(i) The functor¥ is well-defined on objects and dense by (i), well-defined on morphisms
and full by (ii), and faithful by definition. O

Passing to the level of matrices, we restrict Iikev\FrI%%‘S7 to the subseR;;‘JS— SL7(R)N

Rise - We viewRly x RIAT x REX [ as the object set of a groupoid whose morphisms
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(B, C, D) — (B, C, D) are the orthogonal matricése G, which satisfy(SBST, SCST,
SDST) = (B, C, D).

Proposition 4.12. The functor# : R1X! x [R;gg x [REZXJS—> PA(E”) x SpdsE’), given on
objects by# (B, C, D) = (B + C, D) and on morphlsms by (S) = S, is an equivalence

of categories

Proof. The functorZ is dense and full by the unique decomposition of a positive definite
endomorphism into its antisymmetric and positive definite symmetric part, and faithful by
construction. [

Now the announced matricial description of the categ@r;s animmediate consequence
of Propositions 4.11(iii) and 4.12.

<7 IR7><7

l. .
pds X Rspds ™ 57 is an equivalence

Theorem 4.13. The composed funct@t# : R/ x R
of categories

It seems worth while to restate in explicit terms some of the information encoded in
Theorem 4.13.

Corollary 4.14. (i) For each matrix triple(B, C, D) € R;;] X [R{;gg X RZ;JS the linear

map%Z (B, C, D) : R“AR’ — R’, vAw > (B+C)Dn7(DvADw),isa7-dimensional
dissident map of degree one
(i) For each7-dimensional dissident map of degree one there exists a matrix triple

(B, C, D) € RI3T x RIG x R such thaty.7 (B, C, D).

(iii) For all matrix triples (B, C, D), (B, C, D) € R{n" x R75I x RIx[, the dissident

maps¥%Z (B, C, D) and 9.7 (B, C, D) are isomorphic if and only if there exists an or-
thogonal matrixS € G such that

(SBST, scs™,sps"y=(B,C, D).

Moreover, the classification problems for the three categories involved in the sequence
of equivalences

7 4
Ron x ROGd x ROG. —  PAE’) x SpdsE’) — &7

are all equivalent.
There seems to be no easy way to find an explicit cross-section ((R?QBX Rggg

sSJs)/—’- Yet there do exist cumbersome strategies which eventually may succeed. Inter-
esting first steps in this direction are to be foungdnSection 7]
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5. Real quadratic division algebras of degree one

Let us briefly recall some basic notions from real algebra. Aa&gmbrais a real vector
spaceA, endowed with ariR-bilinear multiplicationA x A — A,(x,y) — xy. By a
realdivision algebrave mean a real algebra satisfying:@im A < oo and having no zero
divisiors (i.exy=0onlyif x=0ory=0). By areafjuadratic algebrave mean areal algebra
A such that 0< dim A < oo, there exists an identity elementlA and 1 x, x2 are linearly
dependent for each € A. Morphisms between quadratic algebras are algebra morphisms
respecting the identity elements.dissident triple(V, &, i) consists of a Euclidean space
V, alinear formé : VAV — Rand a dissident map : V AV — V. A morphism
o (V.& ) — (V, ¢, ) between dissident triples is an orthogonal map V. — V
satisfying both? = &(o A @) andon =7j(o A o).

Now we switch our investigation from the categatyf all dissident maps to the related
category? of all real quadratic division algebras. The crucial link between these categories
is provided by the category of all dissident triples. Indeed, each dissident trighe &, )
determines a real quadratic division algebf&V, &, n) = R x V, with multiplication
given by

) (B _ (B — (v, w)+E@Aw)
(v) (w>_< ow + fv+nv A w) )
The assignment&V, &, n) — #(V, ¢, n) ande — i x ¢ establish a functos? : & —
2 which, by Osborn’s theorerfl9, p. 204] is an equivalence of categories. It induces
equivalences of full subcategoriet : ,,_1 — 2, for alln € N\{0}.

We aspire to classify2. The (1,2,4,8)-theorem implies that the problem of classifying
2 is equivalent to the problem of classifying, for all n € {1, 2, 4, 8}. In view of the
equivalences of categorie : ,_1 — 2, the latter problem is equivalent to the problem
of classifying,, for all m € {0, 1, 3, 7}. For trivial reasons{(E°, o, 0)} classifiesZg and
{(EY, 0, 0)} classifiesZ1. Since #(E°, 0, 0)=>R and #(EL, 0, 0)=>C, we conclude that
{R} classifies2; and{C} classifies2,. Thus the problem of classifying is reduced to the
problem of classifyingzz and Z~.

We define thedegreeof a dissident tripl€V, &, ) € 93U 97 by dedV, &, ) = degp.
Theorem 2.4(jii) implies that d&gy, &, n)=21forall(V, &, n) € Y3and 1< deqV, &, ) <5
forall (V, &, n) € 7. For alld € 5we denote b)@% the full subcategory af/7 formed by
{(V, &, n) | degn = d}. Similarly we define the&legreeof a real quadratic division algebra
A € 2,U92gbydegA=deqV, &, n) forany(V, & n) € 23UZ7suchthat? (V, & n)>A.
Again we have thatdeg=1forall A € 24 and 1< degA <5forall A € 2g. Foralld € 5
we denote by@% the full subcategory of2g formed by{A | degA = d}. The equivalence
of categoriest’ : 97 — 2g induces equivalences of full subcategori&s: 9‘;’ — 24 for
alld €5.

In the present section we extend the classificatiofp{Theorem 4.9(iii)) to a classi-
fication of 24 (Theorem 5.2(iv)), and the complete descriptiorﬁéf(Theorem 4.13) to
a complete description o?% (Theorem 5.3). This is achieved by adapting the pattern of
reasoning which in Section 4 was designedﬁglandé”% to the enlarged context 6f3 and
9%, respectively. In particular we exhibit new functéfeind% extending the equivalences
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% and.# from Corollaries 4.6 and 4.7 and Propositions 4.11(iii)) and 4.12 respectively. We
skip however to verify that these new functors again are dense, full and faithful, because all
required arguments partly are quotations from Section 4, partly routine.

Letus begin with the equivalence of categoriés 73 — 24. We view Ant(E3) x Pd(E3)
as the object set of a groupoid whose morphisms (i, &) — (u, ¢) are the special
orthogonal endomorphismse SO(E3) which satisfy(ouo—1, 6ec~1) = (z, 2). Then the
functor

% - Ant(E3) x PAES) — 3,

given on objects by (u, &) = (E°, ¢y em3) whereg, (v Aw) = (v, u(w)), and on morphisms
by % (o) =0, is an equivalence of categoriésMoreover we viewR® x 3 x 7 as the object

set of a groupoid whose morphisris: (x, y,d) — (%, 7, d) are the special orthogonal
matricesS € S03(R) which satisfy(Sx, Sy, SD;ST) = (%, 7, D). Then the functor

F R x R®x 7 — Ant(E%) x PA(E3),

given on objects By 7 (x, y, d) = (u,, &yq) and on morphisms by (S) = S, is an equiv-
alence of groupoids. Altogether we have reached the following description of the category
94 in terms of the groupoik® x R3 x 7.

Theorem 5.1. The composed functo# 4.7 : R® x R® x 7 — 2, is an equivalence of
categories

The sequence of equivalences

F @ H
RRxR3x7 — At xPAE3) — 93 — 9,

together with the cross-secti@for Ob(R® x R® x 77) />, obtained by elementary geomet-
ric considerations analogous to those explained in Section 4 and displd@eBinposition
4.3(i)], yields classifications of all four involved categories at once.

Theorem 5.2. (i) The set of configuratiors classifiesi® x R® x 7.
(if) The set of pairs of endomorphism#s(%) = {(u,, eya) | (x, y,d) € %) classifies
Ant(E3) x PA(E3).
(iii) The set of dissident triple&7 (%) = {(E°, éﬂx, eyam3)| (x, y,d) € %} classifiesza.
(iv) The set of real quadratic division algebra8%.7 (€)=

Rx 3 (* AN af —vTw + det(v | x | w)
e w) \ow + fv+eygm3(v A w)

classifies?,.

(x,y,d) € ‘6}

"To prove that? is full, apply Proposition 4.5(ii).
8See paragraph preceding Corollary 4.7 for definitiop ofinde, ;.
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Let us resume with the equivalengé : 7 — 2%. We view

Ant(E’) x PAE’) x SpdsE’)

as the object set of a groupoid whose morphisms
o (12 0) — (L 0)

are the orthogonal endomorphismg G which satisfy
(O',UO'_l, cea L, gdc ) = (1, &, ).

Then the functor
% : Ant(E’) x PA(E") x SpdgE’) — 73,

given on objects by (u, ¢, 0) = (E, S &(m7 - 0)), where¢ (v A w) = (v, u(w)), and on
morphisms by%(a) = o, is an equivalence of categories. Moreover we view

RiAT x RE x Rfﬁs? x RZ;JS
as the object set of a groupoid whose morphisms
S:(A,B,C,D)— (A, B,C,D)
are the orthogonal matrice&se G, which satisfy
(SAST, SBST, scST,sDSTy= (A, B, C, D).
Then the functor
F R x RIXT x Rgg_j x R;;gﬁ Ant(E’) x PAE") x SpdsE"),

given on objects by7 (A, B, C, D) = (A, B + C, D) and on morphisms by (S) = S, is
an equivalence of groupoids. Composing these equivalerteé and.# we obtain the
following matricial description of the catego%.

Theorem 5.3. The composed functor
HYGT R;nt X R;m x RZ);;S? X R;;Js* 23

is an equivalence of categories
Let us restate explicitly three items which are implicit in Theorem 5.3.

Corollary 5.4. (i) For each matrixquadrupleA, B, C, D) € Ry’ xRox < RIG < RO {
the algebra# 4% (A, B, C, D) = R x R’, with multiplication

o B\ _ af —v'w+ v Aw
v w)  \ow+ pv+ (B+ C)Dry(Dv A Dw) )’

is an eight-dimensional real quadratic division algebra of degree one
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(i) For each eight-dimensional real quadratic division algelpaof degree one there
exists a matrix quadrupled, B, C, D) € Rix" x Rox" x RIG x RE:{such that#' 4.7
(A,B,C,D)=>0. o

(iii) For all matrix quadruples(A, B, C, D), (A, B, C, D) € Rin" x Ry x RIAT x

R.X! the algebras#' %7 (A, B, C, D) and #%7 (A, B, C, D) are isomorphic if and
only if there exists an orthogonal matrike G, such that

(SAST, SBST, sCST,sDST)y= (A, B, C, D).

Moreover, the classification problems for the four categories involved in the sequence
of equivalences#, ¢4, # are all equivalent. Regarding the prospects of finding an explicit
cross-section for OBRL:7 x RL: Rpdq x REydd/—>, the comment we added to Corollary
4.14 applies even stronger to the present situation.

6. Real quadratic division algebras of higher degree

Recall that thedoubleof a real quadratic algebr4 is defined by7"(A) = A x A with
multiplication(w, x)(y, z)=(wy—2zx, xy+zw), wherey, 7 denote the conjugates of z.°
This doubling construction is easily seen to provide an endofuncton the category of
all real quadratic algebras, acting on morphisms/bgt) = ¢ x ¢. The endofunctor”
in turn induces, due tfb, p. 946] a functory” : 24 — 2g. Recall that the category,

is fully understood, in view of the equivalencé%.Z : R® x R3 x 7 — 2, (cf. Theo-
rems 5.1 and 5.2). Thus the context
g
HEGF 4

RExR¥x 7 — 94

provides a source for the construction of 8-dimensional real quadratic division algebras
which appear to be of interest. We simplify notation on setting) = # 9.7 (x) and
B(x)=7(A)forallk e R®xR¥x 7,andg=(111".

Theorem 6.1. For everyx € R3 x R® x 7, the following assertions are equivalent

(i) «= (0,0, A13) for somei > 0.
(i) A(x)is flexible
(i) B(x) is flexible
(iv) degB(kx) =1.

Proof. For a proof of (i)« (i) see[4, Proposition 6.1]For a proof of (i)« (iii) see[7,
Proposition 4.5]Givenx € R® x R® x .7, let (E/, (x), n(x)) be a dissident triple such
that #(E’, &(k), n(x))=> B(x). Then degB(x) = degn(x) = degd(x), whered(x) is a

9 Frobenius’s Lemm49,16] asserts that each vectorin a real quadratic algebra decomposes uniquely
according toy = o1+ v, wherex € R andv € A is purely imaginary, i.ev? € R1 butv ¢ R1\{0}. Theconjugate
of y is defined ag = o1 — v.
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lifting of n(x)p. By Theorem 2.4(iii), de@(x) = 1 if and only ify(x)p is collinear. By[7,
Proposition 4.5]5(x)p is collinear if and only ifk = (o, 0, A13) for somel > 0. Thus (i)
< (iv) holds true. O

In analogy to the geometrical interpretatiorfofx 7 preceding Theorem 4.9 we likewise
interpret the categori® x R3 x 7 geometrically by identifying its objects, y, d) with
those configurations ift® which are composed of a pair of points, y) and an ellipsoid
Eq={z € R®| 7T D4z =1} in normal position. The morphisnis, y, d) — (x’, y’,d’) are
identified with those rotation symmetries Bf; = E; which simultaneously sendto x’
andy to y’. In these terms, Theorem 6.1 has the following immediate consequence.

Corollary 6.2. If a configurationx € R® x R3 x .7 is not a sphere with a double point in
the origin, then the degree of the eight-dimensional real quadratic division algsloka is
greater thanl.

Thus the composed functor #47 : R x R® x 7 — 25, k — B(k) yields a
wealth of real quadratic division algebras of higher degree. Simultaneously this is, to our
knowledge, the only to date known construction of division algebras of that type.

One may wonder which values the map d&@) : R® x R® x 7 — 5, k — degB(k)
actually attains. Giver € R3 x R® x .7, lety(x) € &(E7) be the dissident map appearing
in the proof of Theorem 6.1. In order to determine the degree of a liiag of n(x)p and
hence ded®(x) = deg®(x), it suffices in view of Theorem 2.4(v) to calculadgx) as a
quasi-lifting of () p outside the hyperplang with basish = (e, .. ., e7). In accordance
with Proposition 2.3 we have that

h h
¢(K):<¢1(K> '<p7(;<>>,

M) N ()
where the real homogeneous polynom'taﬂ‘$r<) andq)h(;c) in R[X1, ..., X7] are given by
ol (k) = detle; | n(K)(?A e2) | ... |n(K)(? A e7))

foralli € 7, and(¢"(x)) = gcd(gf (%), . .., B(x)), respectively.
Inthese terms we calculated explicitly the liftidgrc) of 1 () p for a general configuration
k € R® x R3 x 7, using maple 9.5. The curious reader may verify these calculations by
using the work sheet found under the web addhggs//www.math.uu.seflars/liftings.
Reading off the degree di(x) one obtains the following refinement of Corollary 6.2.

Proposition 6.3. Letk = (x, y,d) € R® x R® x 7.
(i) If y=0and(x,d) = (0, d113), thendegB(x) = 1.
(i) If y=0and(x,d) # (0, d113), thendegB (k) = 3.
(i) If y # 0,thendegB(x) =5.

This material motivates the conjecture that the degree of a real quadratic division algebra
always is odd. An equivalent formulation is the following.
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Conjecture 6.4. If B € 2g,thendegB € {1, 3, 5}.

Being functorial, the constructioR® x R3 x 7 — 2g, k — B(k) induces a mapping
Ob(R® x R® x 7)/> — Ob(2g)/=> ., [k] — [B(kx)] between the sets of isoclasses
of the involved categories. The functer — B(x) is faithful by construction, but not
full. (If e.g. k= (0, 0, 13), then Auix) = SO3(R) is a real Lie group of dimension 3, while
Aut(B(x))=Aut(0)=Gyis areal Lie group of dimension 14.) Nevertheless, we conjecture
that the induced mapping] — [B(x)] is injective. Equivalently this may be formulated
as follows.

Conjecture 6.5. If k, k' € R3 x R® x 7 satisfyB(x)=> B(x'), thenk>«/.

A partial proof of Conjecture 6.5 which, among other arguments, also makes use of
Proposition 6.3, can be found jh8, Section 7]
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