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Abstract

We study dissident maps� on Rm for m ∈ {3,7} by investigating liftings� : Rm → Rm of
the selfbijection�P : P(Rm) → P(Rm), �P[v] = (�(v ∧ Rm))⊥ induced by�. Our main result
(Theorem 2.4) asserts the existence and uniqueness, up to a non-zero scalar multiple, of a lifting�
whose component functions are homogeneous polynomials of degreed, relatively prime and without
non-trivial common zero. We prove that 1�d�m− 2.

We achieve a complete description of all dissident maps of degree one and we solve their isomor-
phism problem (Theorems 4.8 and 4.13). As a consequence, we achieve a complete description of all
real quadratic division algebras of degree one and we solve their isomorphism problem (Theorems
5.1 and 5.3). Moreover we present examples of eight-dimensional real quadratic division algebras of
degree 3 and 5 (Proposition 6.3). This extends earlier results of Osborn [Trans. Amer. Math. Soc. 105
(1962) 202–221], Hefendehl [Geometriae Dedicata 9 (1980) 129–152], Hefendehl-Hebeker [Arch.
Math. 40 (1983) 50–60], Cuenca Mira et al. [Lin.Alg.Appl. 290 (1999) 1–22], Dieterich [Proc.Amer.
Math. Soc. 128 (2000) 3159–3166] and Dieterich and Lindberg [Colloq. Math. 97 (2003) 251–276]
on the classification of real quadratic division algebras.
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1. Preliminaries

In accordance with Bourbaki we view 0 as the least natural number. For eachn ∈ N we
setn={i ∈ N |1� i�n}. By R>0,R�0 we denote the rays of all positive, non-negative real
numbers respectively. ByRm×n we mean the vector space of all real matrices of sizem×n.
The identity matrix inRn×n is denoted byIn. We writeRn×n

pd , Rn×n
pds , Rn×n

ant for the subsets

of Rn×n which consist of all positive definite, positive definite symmetric, antisymmetric
matrices respectively. Moreover, we setRn×n

spds = SLn(R) ∩Rn×n
pds . We also setRm =Rm×1

and writee= (e1, . . . , em) for the standard basis inRm. If M ∈ Rm×n, thenMT is the
transpose ofM, andM denotes the linear mapM : Rn → Rm, M(x) =Mx. If V is a
vector space, then[v1, . . . , v�] denotes the linear hull of vectorsv1, . . . , v� in V , andV ∗
denotes the dual space ofV . Elements in the projective spaceP(V ) are denoted by[v],
wherev ∈ V \{0}.

By aEuclidean spacewe mean a finite-dimensional Euclidean vector spaceV = (V , 〈 〉).
Morphisms between Euclidean spaces, also calledorthogonalmaps, are linear maps respect-
ing the scalar products. ByE = Em we denote them-dimensionalEuclidean column space
(Rm, 〈 〉), where〈v,w〉 = vT w is the standard scalar product. We write Pd(E), Pds(E),
Ant(E), Def(E) for the subsets of HomR(E,E)which consist of all positive definite, pos-
itive definite symmetric, antisymmetric, definite linear endomorphisms ofE respectively.
Moreover, we set Spds(E)= SL(E) ∩ Pds(E).

A dissident mapon a finite-dimensional Euclidean vector spaceV is anR-linear map
� : V ∧ V → V such thatv,w, �(v ∧w) are linearly independent wheneverv,w ∈ V are.
The interest in dissident maps originates in their relevance for the classification problem of
real division algebras. Dissident maps are known to exist in the dimensions 0,1,3 and 7 only.
They are trivial in dimensions 0 and 1, but still very little understood in dimensions 3 and 7.

The object classE of all dissident maps� : V ∧V → V on a Euclidean spaceV , briefly
denoted by�= (V , �), becomes a category by viewing as morphisms� : (V , �)→ (V ′, �′)
the orthogonal maps� : V → V ′ which satisfy�� = �′(� ∧ �). Note that a morphism
� : (V , �)→ (V ′, �′) is an isomorphism in the categoryE if and only if dimV = dimV ′.

The polynomial ringR=R[X1, . . . , Xm] hasdth homogeneous summandRd . Recall that
R is a factorial noetherian domain. Thegreatest common divisorof a sequencep1, . . . , p�
in R, denoted by gcd(p1, . . . , p�) = (d), is the unique minimal principal ideal(d) in R
containing the ideal(p1, . . . , p�) generated byp1, . . . , p�.

Let K be a category. Whenever a function dim: Ob(K)→ N is defined,Kn denotes
the full subcategory ofK formed by dim−1(n). For eachX ∈ Ob(K), IX and[X] denote
the identity morphism onX and the isoclass ofX respectively. All categories considered
in this article will besvelte, i.e. their isoclasses form a set, denoted by Ob(K)/→̃. A
subsetC ⊂ Ob(K) is said toexhaustOb(K), to be irredundant, to be across-section
for Ob(K)/→̃ if and only if the canonical map[?] : C → Ob(K)/→̃, C �→ [C] is
surjective, injective, bijective respectively. A cross-section for Ob(K)/→̃ is also said to
classifyK. By aclassificationof K (up to isomorphism) we mean the explicit display of
a cross-section for Ob(K)/→̃.

A mapf : X → Y is calledG-equivariantif and only if it respects underlying actions
of a groupG onX andY in the sense thatf (gx)= gf (x) holds for allg ∈ G andx ∈ X.
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2. Existence and uniqueness of liftings

Let � : E ∧ E → E be a dissident map on the Euclidean column spaceE = Em, where
3�m<∞.1 Then� induces a selfmap�P : P(E) → P(E) of the(m − 1)-dimensional
real projective space, given by�P[v] = (�(v ∧E))⊥. According to[7, Proposition 2.2], �P

is always bijective. However,�P may or may not be collinear (cf.[7, Propositions 2.4 and
4.5]). In view of the fundamental theorem of projective geometry[1, p. 88], this fact can
be expressed equivalently by stating that�P may or may not be liftable to a linear bijection
� : E → E. The present article puts a unifying perspective on this puzzling behaviour
of �P by showing that�P in fact always admits a lifting� : E → E of degreed with
1�d�m − 2 (Theorem 2.4), where� is a linear bijection if and only ifd = 1. We begin
our investigation by introducing rigorous terminology.2

A quasi-lifting of�P outsideA, or briefly aquasi-lifting of �P, is a map� : E →
E∗, �(v)= (�1(v), . . . ,�m(v)) having the following properties:
(a) {�1, . . . ,�m} ⊂ Rd for somed ∈ N\{0};
(b) A is a proper algebraic subset ofE such that�−1(0) ⊂ A and�P[v] = [�(v)] for all

v ∈ E\A;
(c) gcd(�1, . . . ,�m)= (1).
A lifting of �P is a quasi-lifting of�P outside{0}.

Let�=(�1, . . . ,�m) be a quasi-lifting of�P. Thesupportof � is defined byI (�)={i ∈
m |�i �= 0}. It is non-empty, according to (b). Thedegreeof � is defined by deg�=deg�i
for all i ∈ I (�). It is well-defined and satisfies deg��1, according to (a). For every
� ∈ R\{0}, the map��= (��1, . . . , ��m) is also a quasi-lifting of�P.

Lemma 2.1. If � and� are quasi-liftings of�P, then�= �� for a unique� ∈ R\{0}.

Proof. Let �= (�1, . . . ,�m) be a quasi-lifting of�P outsideA and�= (�1, . . . ,�m) be
a quasi-lifting of�P outsideB. SetC=A∪B. Note thatE\C is non-empty and open. Due
to (b) we have for allv ∈ E\C that

[(�1(v), . . . ,�m(v))] = [�(v)] = �P[v] = [�(v)] = [(�1(v), . . . ,�m(v))],
and hence

(�1(v), . . . ,�m(v))= �(v)(�1(v), . . . ,�m(v)) (1)

for a unique�(v) ∈ R\{0}. This impliesI (�) = I (�). SetI = I (�) and let� : E\C →
R\{0} be the function defined by (1). Then we can write (1) equivalently as system

1 In view of the (1,2,4,8)-theorem of Hopf[13], Bott and Milnor[2] and Kervaire[15] (cf. [12]), combined
with Osborn’s theorem[19] (cf. [6]), this hypothesis implies thatm ∈ {3,7}. Nevertheless we shall develop our
theory of liftings independent of the (1,2,4,8)-theorem, up to Corollary 3.3.

2 In the present section we consider, for technical reasons,E∗ instead ofE as the codomain of a quasi-lifting�
of �P.Accordingly we considerP(E∗) instead ofP(E)as the codomain of�P, i.e. we interpret�P[v]=(�(v∧E))⊥
as (�(v ∧ E))⊥ = {	 ∈ E∗ | �(v ∧ E) ⊂ ker	} ∈ P(E∗). We identifyE∗ = (Rm×1)∗ with R1×m andR1,
respectively.
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of equations

�i = ��i ∀i ∈ I (2)

of real-valued functions defined onE\C. Multiplying for arbitraryj ∈ I all equations in
(2) by �j and eliminating the unknown function� by means of�j = ��j , we obtain the
new system of equations

�i�j = �i�j ∀(i, j) ∈ I2 (3)

of real-valued polynomial functions defined onE\C. BecauseE\C is non-empty and
open, (3) remains valid when viewed as a system of equations in the polynomial ring
R[X1, . . . , Xm]. Thus we can conclude with (c) that

(�i )= gcd(�i�j | j ∈ I )= gcd(�i�j | j ∈ I )= (�i )
holds for alli ∈ I , and hence

�i = �i�i ∀i ∈ I (4)

for uniquely determined numbers�i ∈ R\{0}. From (3) and (4) we deduce the system of
equations

�i i =
�i
�i

= �j
�j

= �j ∀(i, j) ∈ I2

in the rational function fieldR(X1, . . . , Xm). Accordingly� = �i for all i ∈ I is a well-
defined non-zero real number which, substituted into (4), yields� = (�1, . . . ,�m) =
�(�1, . . . ,�m) = ��. Moreover, � is uniquely determined by� and �, because
� �= 0. �

LetH be a hyperplane inE and leth= (h2, . . . , hm) be a basis inH . The data� andh
determine a map�h : E → E∗, defined for allv ∈ E by

�h(v)= det(?| �(v ∧ h2) | . . . | �(v ∧ hm)).

Lemma 2.2. The map�h : E → E∗, �h(v) = (�h
1(v), . . . ,�

h
m(v)) has the following

properties.

(i) {�h
1, . . . ,�

h
m} ⊂ Rm−1;

(ii) (�h)−1(0)=H ;
(iii) �P[v] = [�h(v)] for all v ∈ E\H ;
(iv) Each of the real polynomials�h

1, . . . ,�
h
m vanishes on the complex hyperplaneH ⊕ iH

in Cm.

Proof. (i) Each vectorv ∈ E determines a real matrix

Mh(v)= (�(v ∧ h2) | . . . | �(v ∧ hm)) ∈ Rm×(m−1)
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and, deleting fromMh(v) the i-th row, a real quadratic matrixMh
î
(v) ∈ R(m−1)×(m−1).

Consideringv ∈ E as indeterminate vector, we obtain matricesMh ∈ R
m×(m−1)
1 and

Mh
î
∈ R(m−1)×(m−1)

1 with entries in the dual spaceE∗ = R1 of E. Thus we conclude that

�h
i = det(ei | �(?∧ h2) | . . . | �(?∧ hm))= (−1)i+1 detMh

î
∈ Rm−1

for all i ∈ m.
(ii) For anyv ∈ E, the identity�h(v)= 0 holds if and only if the columns ofMh(v) are

linearly dependent. Because� is dissident, the latter holds if and only ifv ∈ H .
(iii) If v ∈ E\H , then ker�h(v)= [�(v ∧ h2), . . . , �(v ∧ hm)] = �(v ∧H)= �(v ∧E).

Consequently�h(v) ∈ (�(v ∧ E))⊥\{0}, and hence[�h(v)] = (�(v ∧ E))⊥ = �P[v].
(iv) Complexify the givenR-linear dissident map� : E∧E → E to aC-linear map�C :

Cm ∧Cm → Cm, and define the complex polynomials�h
C,1, . . . ,�

h
C,m in C[X1, . . . , Xm]

by �h
C,i (z) = det(ei | �C(z ∧ h2) | . . . | �C(z ∧ hm)) for all i ∈ m andz ∈ Cm. Observing

that�h
C,i (v)= �h

i (v) for all i ∈ m andv ∈ Rm we deduce that�h
C,i = �h

i for all i ∈ m. If
z ∈ H ⊕ iH , then the columns�C(z ∧ h2), . . . , �C(z ∧ hm) areC-linearly dependent and
hence�h

i (z)= �h
C,i (z)= 0 for all i ∈ m. �

Given� andh as before, with corresponding map�h = (�h
1, . . . ,�

h
m), we choose now

�h ∈ R\{0} such that(�h)= gcd(�h
1, . . . ,�

h
m) and set�i = �h

i /�
h for all i ∈ m.

Proposition 2.3. The map� : E → E∗, �(v)= (�1(v), . . . ,�m(v)) is a quasi-lifting of
�P outsideH , satisfying1� deg��m− 2.

Proof. First we verify that� satisfies the defining conditions (a)–(c) for a quasi-lifting of
�P outsideH .

(a) Because every factor of a non-zero homogeneous polynomial is homogeneous, Lemma
2.2(i) implies that{�1, . . . ,�m} ⊂ Rd for d=m−1−deg�h. According to Lemma 2.2(ii)
and (iii), the identity

�P[v] = [�h(v)] = [�h(v)(�1(v), . . . ,�m(v))] = [(�1(v), . . . ,�m(v))] (5)

holds for allv ∈ E\H . Because�P is bijective, its restriction toP(E)\P(H) is injective
which, together with (5), implies thatd�1.

(b) The hyperplaneH is a proper algebraic subset ofE. The inclusion�−1(0) ⊂
(�h)−1(0)=H holds by definition of�and Lemma 2.2(ii).The identity�P[v]=[(�1(v), . . . ,

�m(v))] = [�(v)] holds for allv ∈ E\H by (5) and definition of�.

(c) gcd(�1, . . . ,�m)= (1) holds by definition of the polynomials�1, . . . ,�m.
It remains to show thatd�m − 2, or equivalently that deg�h�1. Choose	 ∈ R1\{0}

such that	(H)={0}. Then the zero set of	 in Cm is the complex hyperplaneZ(	)=H⊕iH
and the vanishing ideal ofH⊕iH inR isI(H⊕iH)=IZ(	)=Rad(	)=(	), by Hilbert’s
Nullstellensatz. We conclude with Lemma 2.2(iv) that{�h

1, . . . ,�
h
m} ⊂ I(H ⊕ iH)= (	)

and hence(�h)= gcd(�h
1, . . . ,�

h
m) ⊂ (	), proving that deg�h� deg	= 1. �
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Two functionsF : E → E∗ andG : E → E∗ are calledassociatedif and only if
G = �F for some� ∈ R\{0}. The set of all associated pairs(F,G) forms an equivalence
relation, calledassociation, on the vector space(E∗)E of all functions fromE toE∗. The
equivalence class ofF : E → E∗ under association is called theassociate classof F . If
F �= 0 then its associate class is the punctured line[F ]\{0}.

Theorem 2.4. Let� be a dissident map on them-dimensional Euclidean column spaceE,
where3�m<∞. Then the following assertions hold true.

(i) There exists a lifting of�P.
(ii) The set of all liftings of�P forms precisely one associate class in(E

∗)E\{0}.
(iii) The degree of a lifting� of�P is uniquely determined by�. It satisfies1� deg��m−

2.Moreover, deg�= 1 if and only if�P is collinear.
(iv) Every lifting of�P has supportm.
(v) Every quasi-lifting of�P is a lifting of�P.

Proof. (i) For eachi ∈ m choose a basishi in the coordinate hyperplaneHi = e⊥i in E.
The data� andhi determine, according to Proposition 2.3, a quasi-lifting�i : E → E∗
of �P outsideHi . Set�= �1. Due to Lemma 2.1 there are�1, . . . , �m in R\{0} such that
�= �i�i for all i ∈ m. Thus� is a quasi-lifting of�P outsideHi for all i ∈ m. Hence� is
a quasi-lifting of�P outside

⋂
i∈mHi = {0}, i.e. a lifting of�P.

(ii) follows directly from (i), the definition of a lifting of�P and Lemma 2.1.
(iii) The degree of a lifting� of �P does not depend on the choice of�, because any

two liftings of �P are associated. The lifting� of �P constructed in the proof of (i) satisfies
1� deg��m − 2, according to Proposition 2.3. If deg� = 1 then� : E → E∗ is a
linear bijection and hence�P = P(�) is collinear. Conversely, if�P is collinear then the
fundamental theorem of projective geometry asserts the existence of a lifting� of �P such
that deg�= 1.

(iv) For every lifting � of �P, the assumptioni ∈ m\I (�) implies im �P ⊂ P(Hi),
contradicting the surjectivity of�P.

(v) According to (i) and Lemma 2.1, every quasi-lifting� of �P is associated with a
lifting � of �P. Hence� is a lifting of �P. �

IdentifyingE∗ with E via the linear bijectionE∗ → E, 	= 〈x,?〉 �→ x and identifying
P(E∗)with P(E) accordingly via the collinear bijectionP(E∗)→ P(E), [	]=[〈x,?〉] �→
[x] we recover our original view of�P : P(E) → P(E) as a selfbijection ofP(E) and
of its lifting � : E → E as a selfmap ofE. Henceforth we shall maintain this original
viewpoint.

3. Liftings of isomorphic dissident maps

Let � : E ∧ E → E and�′ : E ∧ E → E be dissident maps on them-dimensional
Euclidean column spaceE, where 3�m<∞. Let� : E → E be a lifting of�P : P(E)→
P(E) and let�′ : E → E be a lifting of�′P : P(E)→ P(E).



6 E. Dieterich et al. / Journal of Pure and Applied Algebra 204 (2006) 133–154

Proposition 3.1. If � : � → �′ is an isomorphism, then
(i) ���−1 = ��′ for a unique� ∈ R\{0}, and

(ii) deg�= deg�′.

Proof. (i) By Lemma 2.1 it suffices to show that the map���−1 : E → E satisfies the
defining conditions (a)–(c) for a quasi-lifting of�′P. To do so, letd=deg� and�1, . . . ,�m
in Rd\{0} such that�(v)= (�1(v) . . .�m(v))

T for all v ∈ E. Moreover, letS ∈ Om(R) be
the orthogonal matrix representing� in e.

(a) We introduce the functions
i : E → R and�i : E → R, wherei ∈ m, on setting

i = �i�

−1 and�i =
∑m

j=1 Sij
j . Then{�1, . . . ,�m} ⊂ Rd together with the linearity of

�−1 implies that{
1, . . . , 
m} ⊂ Rd and hence{�1, . . . ,�m} ⊂ Rd . On the other hand, the
functions�1, . . . ,�m are just the component functions of���−1, because

���−1(v)= S

 �1�

−1(v)
...

�m�−1(v)


= S


 
1(v)

...


m(v)


=


 �1(v)

...

�m(v)




holds for allv ∈ E.
(b) Because� is linear bijective and� is a lifting of�P we have that(���−1)−1(0)={0}. If

v ∈ E\{0}, then[�(�−1v)]=�P[�−1v]=(�(�−1v∧E))⊥ implies that〈�(�−1v), �(�−1v∧
E)〉={0}. Hence〈���−1(v), �′(v∧E)〉=〈���−1(v), ��(�−1v∧E)〉={0}which in turn
implies that[���−1(v)] = (�′(v ∧ E))⊥ = �′P[v].

(c) Choose� ∈ R\{0} such that(�) = gcd(�1, . . . ,�m). From� = (�1 . . .�m)
T and

���−1 = (�1 . . .�m)
T we deduce via� = �−1(���−1)� that�i =

∑m
j=1 Sji�j� for all

i ∈ m. Now �|�j for all j ∈ m implies that��|�j� for all j ∈ m and hence��|�i for all
i ∈ m. Thus we have both(�1, . . . ,�m) ⊂ (��) and gcd(�1, . . . ,�m)= (1). This implies
(��)= (1) and hence(�)= (1).

(ii) Part (a) of the proof of (i) shows that deg� = deg���−1, and (i) implies that
deg���−1 = deg�′. �

To enable a concise summary of what we have achieved so far, we introduce further
notation. With them-dimensional Euclidean column spaceE = Em, where 3�m<∞, we
associate the set

E(E)= {(V , �) ∈ E |V = E}

of all dissident maps onE, the set

L(E)= {� : E → E |� lifts �P for some� ∈ E(E)}

of all liftings onE, and the set

AL(E)= {[�]\{0} |� ∈L(E)}
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of all associate classes of liftings onE. The orthogonal group Om = Om(R) acts from the
left on each of these sets by

Om × E(E)→ E(E), � · �= ��(�−1 ∧ �−1);
Om ×L(E)→L(E), � · �= ���−1;
Om ×AL(E)→AL(E), � · ([�]\{0})= [���−1]\{0}.

Corollary 3.2. LetE = Em, where3�m<∞. Then the following statements hold true.

(i) The lift mapping� : E(E) → AL(E), �(�) = [�]\{0} where� lifts �P, is well-
defined, surjective andOm-equivariant.

(ii) The degree mappingdeg:AL(E)→ m− 2,deg([�]\{0})= deg�, is well-defined
and constant on eachOm-orbit ofAL(E).

(iii) The lift mapping� : E(E) → AL(E) induces a surjective mapping of orbit sets
� : E(E)/Om →AL(E)/Om, �(Om · �)=Om · �(�).

(iv) The degree mappingdeg:AL(E)→ m− 2 induces a mappingdeg:AL(E)/Om

→ m− 2,deg(Om · ([�]\{0}))= deg�.

Proof. (i) and (ii) follow immediately from Theorem 2.4 and Proposition 3.1, while (iii)
and (iv) are trivial consequences of (i) and (ii).�

Corollary 3.2 establishes the commutative diagram

L(E)

� ↓ deg
E(E) −→ AL(E) −→ m− 2
↓ ↓ ‖

E(E)/Om −→ AL(E)/Om −→ m− 2
� deg

where�, � and the canonical vertical maps are surjective. The fibres ofdeg◦ � form a
partition for the isoclasses of dissident maps onE, and the fibres of� form a partition for
the fibres ofdeg◦ �. Thus the analysis of the above diagram provides a strategy towards a
possible classification of all dissident maps, up to isomorphism. The remaining part of the
present article will exemplify this view.

We begin by gathering obvious information on the setsE(E) andL(E). For everyd ∈ m
we denote byFmd the set of all maps� : E → E, �(v) = (�1(v) . . .�m(v))

T such that
{�1, . . . ,�m} ⊂Rd\{0},�−1(0)={0}and gcd(�1, . . . ,�m)=(1). Note thatFm1=GL(E).

Corollary 3.3. LetE = Em, where3�m<∞. Then the setsE(E) andL(E) admit the
following description.

(i) If m /∈ {3,7}, thenE(E)= ∅ andL(E)= ∅.
(ii) If m= 3, thenE(E) �= ∅ and{IE} ⊂L(E) ⊂ GL(E).
(iii) If m= 7, thenE(E) �= ∅ and{IE} ⊂L(E) ⊂ GL(E) ∪ (⋃5

d=2F7d).
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Proof. (i) If � ∈ E(E), then the vector spaceA� = R × Rm, endowed with theR-bilinear
multiplication(�, v)(�, w)=(��−〈v,w〉, �w+�v+�(v∧w)), is a real quadratic division
algebra, by Osborn’s theorem (cf.[19,6]). The (1,2,4,8)-theorem (cf.[12]) implies that
m+ 1 ∈ {1,2,4,8}, and hence thatm ∈ {3,7}.

(ii) Let m=3. The standard vector product3 3 : E ∧E → E is given by3(e1∧ e2)=
e3, 3(e2 ∧ e3) = e1 and3(e3 ∧ e1) = e2. Being a vector product,3 is a dissident map
onE such that3P = IP(E). If � ∈L(E), then deg�= 1 by Theorem 2.4(iii), and hence
� ∈F31=GL(E).

(iii) Let m= 7. Writing vectors inE in the form
(
v
�
w

)
, where(v, �, w) ∈ R3 ×R×R3,

the standard vector product7 : E ∧ E → E is given by

7

((
v

�
w

)
∧
(
v′
�′
w′

))
=
( �w′ − �′w + 3(v ∧ v′)− 3(w ∧ w′)

−〈v,w′〉 + 〈w, v′〉
−�v′ + �′v − 3(v ∧ w′)− 3(w ∧ v′)

)

(cf. [7] or [17]). Being a vector product,7 is a dissident map onE such that7P= IP(E). If
� ∈L(E), then 1� deg��5 by Theorem 2.4(iii), and hence� ∈⋃5

d=1F7d =GL(E)∪
(
⋃5
d=2F7d). �

In the next section we shall refine the preliminary information contained in Corollary 3.3
by giving, in casem ∈ {3,7}, both an exact description of the setL(E)∩GL(E) of all linear
liftings onE and a complete description of the setE1(E)= {� ∈ E(E) | deg(�(�))= 1} of
all dissident maps onE having degree one.

4. Dissident maps of degree one

Recall that an arbitrary algebraA is said to beflexibleif and only if (ab)a= a(ba) holds
for all (a, b) ∈ A2. Besides, we call a dissident map� : V ∧ V → V flexibleif and only if
〈�(u ∧ v),w〉 = 〈u, �(v ∧ w)〉 for all (u, v,w) ∈ V 3. This terminology is justified by the
equivalence (i)⇔ (iv) in Proposition 4.1 below. Flexible dissident maps generalize vector
products, by definition. But on the level of the induced selfbijection�P they are no longer
distinguishable from vector products. This fact even characterizes the flexible dissident
maps, according to the equivalence (i)⇔ (iii) in the following proposition.

Proposition 4.1. For each dissident map� : V ∧ V → V , the following assertions are
equivalent:

(i) � is flexible.
(ii) 〈v, �(v ∧ w)〉 = 0 for all (v,w) ∈ V 2.

(iii) �P = IP(V ).
(iv) The real quadratic division algebraA� = R × V , with multiplication(�, v)(�, w)=

(��− 〈v,w〉, �w + �v + �(v ∧ w)), is flexible.
3A vector producton a Euclidean spaceV is a linear map : V∧V → V such that〈(u∧v),w〉=〈u, (v∧w)〉

for all (u, v,w) ∈ V 3, and|(u ∧ v)| = 1 for all orthonormal pairs(u, v) ∈ V 2.
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Proof. (i) ⇒ (ii). If (v,w) ∈ V 2, then〈v, �(v ∧ w)〉 = 〈�(v ∧ v),w〉 = 0.
(ii) ⇒ (i). If (u, v,w) ∈ V 3, then 0=〈w+u, �((w+u)∧ v)〉= 〈w, �(u∧ v)〉+ 〈u, �(w∧
v)〉 = 〈�(u ∧ v),w〉 − 〈u, �(v ∧ w)〉.
(ii) ⇔ (iii) holds by definition of�P.
(ii) ⇔ (iv). A routine calculation shows that

((�, v)(�, w))(�, v)= (�, v)((�, w)(�, v))
is equivalent to〈v, �(v ∧ w)〉 = 0, for all ((�, v), (�, w)) ∈ A� × A�. �

We denote byEf the full subcategory ofE formed by all flexible dissident maps.Theorems
of Darpö, Cuenca Mira et al. assert that a classification ofE

f
3 is obtained from the standard

vector product3 by homothety[4], and a complete description ofEf7 is obtained from the
standard vector product4 7 by vectorial isotopy[3].

Heading for a precise version of these statements (Theorem 4.2 below), we denote by
�∗ ∈ GL(E7) the adjoint of any� ∈ GL(E7), defined by〈�(v), w〉 = 〈v, �∗(w)〉 for all
(v,w) ∈ (E7)2. The right group action

HomR(E
7 ∧ E7, E7)×GL(E7)→ HomR(E

7 ∧ E7, E7), � · �= �∗�(� ∧ �),

called “vectorial isotopy” in[3], is easily seen to induce a map

GL(E7)→ E
f
7 , � �→ 7 · �.

By G2 we denote both the automorphism group Aut(7) = {� ∈ O(E7) |7 · � = 7}
and its matrix version{S ∈ O7(R) |7 · S = 7}. This notation is justified by the fact that
Aut(7) is a compact, connected, simple real Lie group of dimension 14 and therefore an
exceptional compact Lie group of typeG2 (cf. [20, Theorem 11.33]).

Theorem 4.2. (i) The family{�3 | � ∈ R>0} is a cross-section forOb(Ef3 )/→̃.

(ii) The family{7 · � | � ∈ Pds(E7)} exhaustsOb(Ef7 ).
(iii) For all �, � ∈ Pds(E7), the set of all morphisms� : 7 · � → 7 · � in E admits the

descriptionMor(7 · �, 7 · �)= {� ∈ G2 |���−1 = �}.

Proof. For proofs of (i) and (ii) we refer to[4, proof of Proposition 6.1]and [3, proof
of Theorem 5.7]. Our proof of (iii) is a refinement of the proof of the corresponding (but
slightly weaker) statement contained in[3, Theorem 5.7]. We include it here for the reader’s
convenience.

Let �, � ∈ Pds(E7) be given. If� ∈ Mor(7 · �, 7 · �), then� ∈ O(E7) such that
7 · �= (7 · �) · �= 7 · (��). Thus�= ���−1 is in GL(E7) and satisfies7 · �= 7. We

infer from [3, Proposition 3.8]that � ∈ G2. Now I = ��∗ = �
−1

����−1�
−1

implies that

�
2= ��2�−1= (���−1)2, and hence that�= ���−1. So�= �

−1
��= (��−1�−1)��= �, and

therefore� ∈ G2 such that���−1 = �.

4 See proof of Corollary 3.3 for definition of3 and7.
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Conversely, if� ∈ G2 satisfies���−1= �, then(7 · �) · �= 7 · (��)= 7 · (��)= (7 ·
�) · �= 7 · � shows that� ∈ Mor(7 · �, 7 · �). �

From now on letm ∈ {3,7}. We define thedegreeof a dissident map� ∈ E(Em) to be
the degree of a lifting� of �P. More generally, we define thedegreeof a dissident map
� ∈ Em to be the degree of any� ∈ E(Em) such that�→̃�. This notion is well-defined by
Proposition 3.1(ii), and it gives rise to the degree map deg: Em → m− 2 by Theorem
2.4(iii).

SettingEf (Em) = E(Em) ∩ Ef andE1(Em) = {� ∈ E(Em) | deg� = 1}, we obtain
the filtration of full subcategoriesEf (Em) ⊂ E1(Em) ⊂ E(Em). More generally, set-
ting E1

m = {� ∈ Em | deg� = 1}, we obtain the filtration of full subcategoriesEfm ⊂
E1
m ⊂ Em.
In the remaining part of the present section we shall demonstrate how our theory of

liftings can be applied in order to extend the above classification ofE
f
3 to a classification

of E3, and the above complete description ofE
f
7 to a complete description ofE1

7.

Proposition 4.3. LetE = Em, wherem ∈ {3,7}.
(i) If � ∈ Ef (E) and� ∈ Def(E), then�� ∈ E1(E) and�−∗ lifts (��)P.

(ii) If � ∈ E1(E) and� lifts �P, then� ∈ Def(E) and�∗� ∈ Ef (E).

Proof. (i) Given(�,�) ∈ Def(E)×Ef (E), let (v,w) ∈ E2 be a non-proportional pair and
assume that(v,w, ��(v∧w)) is linearly dependent. Then��(v∧w) ∈ [v,w]. On the other
hand�(v∧w) ∈ [v,w]⊥, since� is flexible. Hence〈�(v∧w), ��(v∧w)〉=0. Definiteness
of � implies that�(v ∧ w) = 0, contradicting the dissidence of�. So (v,w, ��(v ∧ w))
must be linearly independent. Accordingly�� ∈ E(E).

The identities〈�−∗(v), ��(v ∧ w)〉 = 〈v,�(v ∧ w)〉 = 0, valid for all (v,w) ∈ E2,
show that[�−∗(v)] = (��)P[v] holds for allv ∈ E\{0}. Hence�−∗ lifts (��)P, and thus
�� ∈ E1(E).

(ii) If � ∈ E1(E) and� lifts �P, then� ∈ GL(E) and〈v,�∗�(v ∧ w)〉 = 〈�(v), �(v ∧
w)〉 = 0 holds for all(v,w) ∈ E2. Hence�∗�(v ∧ w) ∈ [v,w]⊥. If (v,w) ∈ E2 is
non-proportional, then�∗�(v ∧ w) �= 0 because�∗ ∈ GL(E) and� is dissident, and
therefore�∗�(v ∧ w) /∈ [v,w]. Accordingly�∗� ∈ E(E) and so, by Proposition 4.1, even
�∗� ∈ Ef (E).

To prove definiteness of�, let v ∈ E be such that〈v,�(v)〉 = 0. If v �= 0, thenv ∈
[�(v)]⊥ = �(v ∧ E), contradicting the dissidence of�. Hencev = 0. Accordingly� is
anisotropic. By Sylvester’s inertia theorem this implies that� is definite. �

Corollary 4.4. LetE = Em, wherem ∈ {3,7}.
(i) L(E) ∩GL(E)= Def(E).

(ii) The mapDef(E)× Ef (E)→ E1(E), (�,�) �→ �� is well-defined and surjective.
(iii) For all (�,�), (�,�) ∈ Def(E) × Ef (E), the identity�� = � � holds if and only

if (��, 1
��)= (�,�) for some� ∈ R\{0}.
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(iv) For all (�,�), (�,�) ∈ Def(E)× Ef (E), the set of all morphisms� : �� → �� in E
admits the description

Mor(��, � �)= {� ∈ O(E)|(����−1, �−1��(� ∧ �)−1)= (�,�)
f or some � ∈ R\{0}}.

Proof. (i) and (ii) are immediate consequences of Proposition 4.3.
(iii) If �� = ��, then Proposition 4.3(i) and Theorem 2.4(ii) imply that�−∗ = ��−∗ for

some� ∈ R\{0}. Consequently�� = � and 1
�� = �. The converse implication is trivially

true.
(iv) Observing that(���−1, ��(� ∧ �)−1) ∈ Def(E) × Ef (E) whenever(�,�) ∈

Def(E) × Ef (E) and � ∈ O(E), the statement is a straightforward consequence of
(iii). �

Focusing now onm= 3, we proceed to demonstrate in several steps how from the above
results a classification ofE3 can be derived in a streamlined manner.

Proposition 4.5. (i) The family{�3 | � ∈ Pd(E3)} exhaustsOb(E3).
(ii) For all �, � ∈ Pd(E3), the set of all morphisms� : �3 → �3 in E admits the

descriptionMor(�3, �3)= {� ∈ SO(E3) |���−1 = �}.
Proof. (i) If � ∈ Pd(E3) then�3 ∈ E3, by Proposition 4.3(i). Conversely, if any�=(V , �) ∈
E3 is given, choose an orthonormal basis inV to obtain� ∈ E(E3) = E1(E3) such that
�→̃�. Choose a lifting� of �P. Proposition 4.3(ii) ensures that� ∈ Def(E3). Moreover,
Proposition 4.3(ii) and Theorem 4.2(i) imply that�∗�→̃�3 for some� ∈ R>0. Hence
there exists a� ∈ O(E3) such that(��∗�−1)(��(� ∧ �)−1) = �(�∗�)(� ∧ �)−1 = �3.

This implies that�→̃��(�∧ �)−1 = ��−∗�−1�3 = �3, where�= ���−∗�−1 is definite
because� is. Finally,−IE3 : �3→̃(−�)3 is an isomorphism, and one of�,−� is positive
definite.

(ii) If � ∈ Mor(�3, �3), then Corollary 4.4(iv) asserts that

(����−1, �−1�3(� ∧ �)−1)= (�, 3)

for some� ∈ R\{0}. Hence

|�| = |�| |3(e1 ∧ e2)| = |�3(� ∧ �)−1(e1 ∧ e2)| = 1.

Since both� and 1
� �= ���−1 are positive definite, it follows that�= 1. Moreover,�3(�∧

�)−1 = 3 implies that� ∈ SO(E3).
Conversely, if� ∈ SO(E3) satisfies���−1= �, then�(�3)(�∧�)−1= (���−1)(�3(�∧

�)−1)= �3, because3 is SO(E3)-equivariant.5 Hence� ∈ Mor(�3, �3). �

Recall that a groupoid is a small category all of whose morphisms are isomorphisms.
The object set Pd(E3) becomes a groupoid by viewing as morphisms� : � → �′ the

5 The SO(E3)-equivariance of3 follows easily from the fact that〈3(u ∧ v),w〉 = det(u|v|w) holds for all
(u, v,w) ∈ (E3)3.
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special orthogonal endomorphisms� ∈ SO(E3) which satisfy���−1= �′. Then the functor
G : Pd(E3) → E3, given on objects byG(�) = �3 and on morphisms byG(�) = �, is
well-defined, dense and full by Proposition 4.5, and faithful by definition.

Corollary 4.6. The functorG : Pd(E3)→ E3 is an equivalence of categories.

SettingT= {d ∈ R3 |0<d1�d2�d3} we denote, for anyd ∈ T, byDd the diagonal
matrix inR3×3 with diagonal sequenced.We endow the object setR3×Twith the structure
of a groupoid by declaring as morphismsS : (y, d) → (y′, d ′) the special orthogonal
matricesS ∈ SO3(R) satisfying(Sy, SDdS

T)= (y′,Dd ′).
Everyy ∈ R3 determines an antisymmetric linear endomorphism�y = 3(y∧?) of E3.

Everyd ∈ T determines a symmetric positive definite linear endomorphism�d = Dd of
E3. Hence every pair(y, d) ∈ R3×T determines a positive definite linear endomorphism
�yd=�y+�d of E3. The functorF : R3×T→ Pd(E3), given on objects byF(y, d)=�yd
and on morphisms byF(S)= S is well-defined, again due the SO(E3)-equivariance of3.

Corollary 4.7. The functorF : R3 ×T→ Pd(E3) is an equivalence of groupoids.

Proof. The functorF is dense by Jacobi’s spectral theorem,6 faithful by definition and full
by SO(E3)-equivariance of3 and uniqueness of the decomposition of a positive definite
matrix into its antisymmetric and positive definite symmetric part.�

As an immediate consequence of Corollaries 4.6 and 4.7 we obtain the following descrip-
tion of the categoryE3 in terms of the groupoidR3 ×T.

Theorem 4.8. The composed functorGF : R3×T→ E3 is an equivalence of categories.

Due to the equivalences of categories

F G
R3 ×T −→ Pd(E3) −→ E3

the problems of classifyingE3, Pd(E3) andR3 ×T up to isomorphism are all equivalent.
The latter one can be solved without effort by means of geometrical conception!

Indeed, let us interpret the groupoidR3×Tgeometrically by identifying its objects(y, d)
with those configurations inR3 which are composed of a pointy and an ellipsoidEd ={z ∈
R3 | zTDdz=1} in normal position. A morphism(y, d)→ (y′, d ′) in R3×T exists only if
d = d ′. Accordingly, identifying SO3(R) with SO(E3), the morphisms(y, d)→ (y′, d ′) in
R3×T are identified with those rotation symmetries of the ellipsoidEd =Ed ′ which send
y toy′. Thus the problem of classifyingR3×T up to isomorphism splits into theT-family
of normal form problems given by the natural group actionsGd×R3 → R3, (S, y) �→ Sy

whereGd={S ∈ SO3(R) |SDdS
T=Dd} is the rotation symmetry group of the ellipsoidEd ,

6 We choose to translate the German standard name “Hauptachsentransformation” for this theorem as “spec-
tral theorem”. We attribute it to Jacobi due to his article[14] in which he presented a constructive method for
the numerical solution of the characteristic equation of a real symmetric matrix. See also[21, Vorwort and
Section 13].
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for anyd ∈T. The solution of these normal form problems amounts to an easy exercise in
elementary geometry. Leaving the verification of details to the interested reader, we content
ourselves with presenting the results.

ByGr we denote the category of groups. The image of the mapG? :T→ Gr, d �→ Gd
consists of four subgroups of SO3(R) only, namelynamely

G1 = SO3(R),

G2

G3

S

S

det S

det S

0
0

0
0

0 0

0 0

S O2

S O2

G4 =
{(1

1
1

)
,

(1
−1

−1

)
,

(−1
1

−1

)
,

(−1
−1

1

)}
.

Their fibresTi = {d ∈T |Gd =Gi} are

T1 = {d ∈T | d1 = d2 = d3},
T2 = {d ∈T | d1 = d2<d3},
T3 = {d ∈T | d1<d2 = d3},
T4 = {d ∈T | d1<d2<d3}.

Cross-sectionsCi for the orbit setsR3/Gi are given by

C1 = R�0 × {0} × {0},
C2 = {0} × R�0 × R�0,

C3 = R�0 × R�0 × {0},
C4 = (R>0 × R>0 × R) ∪ {y ∈ (R�0)

3 | y1y2 = 0}.
This accomplishes the classification ofR3 ×T, along with the classifications of Pd(E3)

andE3. Let us summarize the result.

Theorem 4.9. (i) The set of configurationsC=⋃4
i=1(Ci ×Ti ) classifiesR3 ×T.

(ii) The set of positive definite endomorphismsF(C)={�yd | (y, d) ∈ C} classifiesPd(E3).
(iii) The set of dissident mapsGF(C)= {�yd3 | (y, d) ∈ C} classifiesE3.

Let us now switch tom= 7. Here, a pattern of reasoning can be carried through which is
reminiscent of the above one form=3, although not quite analogous. It yields a description
of the categoryE1

7 in terms of the matrix triple categoryR7×7
ant ×R7×7

pds ×R7×7
spdsto be defined

below. We start with the following fundamental lemma.

Lemma 4.10. For all (�, �), (�, �) ∈ Pd(E7)× Pds(E7), the set of all morphisms� : �(7 ·
�)→ �(7 · �) in E admits the description
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Mor(�(7 · �), �(7 · �))= {� ∈ G2|(����−1, �−1/3���−1)

= (�, �) f or some � ∈ R>0}.

Proof. If � ∈ Mor(�(7 · �), �(7 · �)), then Theorem 4.2(ii) and Corollary 4.4(iv) imply
that� ∈ O(E7) such that

(����−1, �−1�(7 · �)(� ∧ �)−1)= (�, 7 · �)
for some� ∈ R\{0}. Since both� and�−1� = ���−1 are positive definite, it follows that
�>0. Equality of the second components in the above identity can be expressed in the form

(7 · �) · �−1 = �(7 · �)= 7 · (�1/3�) which means that� ∈ Mor(7 · �, 7 · (� 1
3 �)). We

conclude with Theorem 4.2(iii) that� ∈ G2 and���−1 = �
1
3 �.

Conversely, if� ∈ G2 satisfies(����−1, �−
1
3 ���−1) = (�, �) for some�>0, then we

conclude with Theorem 4.2(iii) that

� ∈ Mor(7 · (�− 1
3 �), 7 · �)=Mor(�−1(7 · �), 7 · �).

Hence�−1 �(7 · �)(�∧ �)−1= 7 · �. Now Corollary 4.4(iv) implies that� ∈ Mor(�(7 ·
�), �(7 · �)). �

In order to eliminate the troublesome factor� appearing in Lemma 4.10, we restrict
Pds(E7) to the subset Spds(E7)=SL(E7)∩Pds(E7).Viewing Pd(E7)×Spds(E7)as the object
set of a groupoid whose morphisms� : (�, �)→ (�, �) are the orthogonal endomorphisms
� ∈ G2 which satisfy(���−1, ���−1)= (�, �), we easily obtain the following result.

Proposition 4.11. (i) The family{�(7 · �) | (�, �) ∈ Pd(E7)×Spds(E7)} exhaustsOb(E1
7).

(ii) For all (�, �), (�, �) ∈ Pd(E7) × Spds(E7), the set of all morphisms� : �(7 · �)→
�(7 · �) in E admits the description

Mor(�(7 · �), �(7 · �))= {� ∈ G2 | (���−1, ���−1)= (�, �)}.
(iii) The functorG : Pd(E7) × Spds(E7) → E1

7, given on objects byG(�, �) = �(7 · �)
and on morphisms byG(�)= �, is an equivalence of categories.

Proof. (i) If (�, �) ∈ Pd(E7) × Spds(E7), then �(7 · �) ∈ E1
7 by Theorem 4.2(ii) and

Corollary 4.3(i). Conversely, let� ∈ E1
7 be given. Arguing as in the proof of Proposition

4.5(i), however with application ofTheorem 4.2(ii) instead ofTheorem 4.2(i), one finds a pair

(�, �) ∈ Pd(E7)×Pds(E7)such that�(7·�)→̃�. Set�=(det�)− 3
7 .Then(�, �)=(��, �−

1
3 �) ∈

Pd(E7)× Spds(E7)such that�(7 · �)= �(7 · �)→̃�.
(ii) follows directly from Lemma 4.10, together with det�= 1= det�.
(iii) The functorG is well-defined on objects and dense by (i), well-defined on morphisms

and full by (ii), and faithful by definition. �

Passing to the level of matrices, we restrict likewiseR7×7
pds to the subsetR7×7

spds=SL7(R)∩
R7×7

pds . We viewR7×7
ant ×R7×7

pds ×R7×7
spdsas the object set of a groupoid whose morphismsS :
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(B,C,D)→ (B,C,D) are the orthogonal matricesS ∈ G2 which satisfy(SBST, SCST,
SDST)= (B,C,D).

Proposition 4.12. The functorF : R7×7
ant ×R7×7

pds ×R7×7
spds→ Pd(E7)×Spds(E7), given on

objects byF(B,C,D)= (B + C,D) and on morphisms byF(S)= S, is an equivalence
of categories.

Proof. The functorF is dense and full by the unique decomposition of a positive definite
endomorphism into its antisymmetric and positive definite symmetric part, and faithful by
construction. �

Now the announced matricial description of the categoryE1
7 is an immediate consequence

of Propositions 4.11(iii) and 4.12.

Theorem 4.13.The composed functorGF : R7×7
ant ×R7×7

pds ×R7×7
spds→ E1

7 is an equivalence
of categories.

It seems worth while to restate in explicit terms some of the information encoded in
Theorem 4.13.

Corollary 4.14. (i) For each matrix triple(B,C,D) ∈ R7×7
ant × R7×7

pds × R7×7
spds, the linear

mapGF(B,C,D) : R7∧R7 → R7, v∧w �→ (B+C)D7(Dv∧Dw), is a7-dimensional
dissident map of degree one.

(ii) For each7-dimensional dissident map� of degree one there exists a matrix triple
(B,C,D) ∈ R7×7

ant × R7×7
pds × R7×7

spdssuch thatGF(B,C,D)→̃�.

(iii) For all matrix triples (B,C,D), (B,C,D) ∈ R7×7
ant × R7×7

pds × R7×7
spds, the dissident

mapsGF(B,C,D) andGF(B,C,D) are isomorphic if and only if there exists an or-
thogonal matrixS ∈ G2 such that

(SBST, SCST, SDST)= (B,C,D).

Moreover, the classification problems for the three categories involved in the sequence
of equivalences

F G
R7×7

ant × R7×7
pds × R7×7

spds −→ Pd(E7)× Spds(E7) −→ E1
7

are all equivalent.
There seems to be no easy way to find an explicit cross-section for Ob(R7×7

ant × R7×7
pds ×

R7×7
spds)/→̃. Yet there do exist cumbersome strategies which eventually may succeed. Inter-

esting first steps in this direction are to be found in[4, Section 7].
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5. Real quadratic division algebras of degree one

Let us briefly recall some basic notions from real algebra. A realalgebrais a real vector
spaceA, endowed with anR-bilinear multiplicationA × A → A,(x, y) �→ xy. By a
realdivision algebrawe mean a real algebra satisfying 0<dimA<∞ and having no zero
divisiors (i.e.xy=0 only if x=0 ory=0). By a realquadratic algebrawe mean a real algebra
A such that 0<dimA<∞, there exists an identity element 1∈ A and 1, x, x2 are linearly
dependent for eachx ∈ A. Morphisms between quadratic algebras are algebra morphisms
respecting the identity elements. Adissident triple(V , 	, �) consists of a Euclidean space
V , a linear form	 : V ∧ V → R and a dissident map� : V ∧ V → V . A morphism
� : (V , 	, �) → (V , 	, �) between dissident triples is an orthogonal map� : V → V

satisfying both	= 	(� ∧ �) and��= �(� ∧ �).
Now we switch our investigation from the categoryE of all dissident maps to the related

categoryQ of all real quadratic division algebras. The crucial link between these categories
is provided by the categoryD of all dissident triples. Indeed, each dissident triple(V , 	, �)
determines a real quadratic division algebraH(V , 	, �) = R × V , with multiplication
given by

(
�
v

)(
�
w

)
=
(

��− 〈v,w〉 + 	(v ∧ w)
�w + �v + �(v ∧ w)

)
.

The assignments(V , 	, �) �→ H(V , 	, �) and� �→ IR × � establish a functorH : D →
Q which, by Osborn’s theorem[19, p. 204], is an equivalence of categories. It induces
equivalences of full subcategoriesH : Dn−1 → Qn, for all n ∈ N\{0}.

We aspire to classifyQ. The (1,2,4,8)-theorem implies that the problem of classifying
Q is equivalent to the problem of classifyingQn for all n ∈ {1,2,4,8}. In view of the
equivalences of categoriesH : Dn−1 → Qn the latter problem is equivalent to the problem
of classifyingDm for all m ∈ {0,1,3,7}. For trivial reasons,{(E0, o, o)} classifiesD0 and
{(E1, o, o)} classifiesD1. SinceH(E0, o, o)→̃R andH(E1, o, o)→̃C, we conclude that
{R} classifiesQ1 and{C} classifiesQ2. Thus the problem of classifyingQ is reduced to the
problem of classifyingD3 andD7.

We define thedegreeof a dissident triple(V , 	, �) ∈ D3 ∪D7 by deg(V , 	, �)= deg�.
Theorem 2.4(iii) implies that deg(V , 	, �)=1 for all(V , 	, �) ∈ D3 and 1� deg(V , 	, �)�5
for all (V , 	, �) ∈ D7. For alld ∈ 5 we denote byDd

7 the full subcategory ofD7 formed by
{(V , 	, �) | deg� = d}. Similarly we define thedegreeof a real quadratic division algebra
A ∈ Q4∪Q8 by degA=deg(V , 	, �) for any(V , 	, �) ∈ D3∪D7 such thatH(V , 	, �)→̃A.
Again we have that degA=1 for allA ∈ Q4 and 1� degA�5 for allA ∈ Q8. For alld ∈ 5
we denote byQd8 the full subcategory ofQ8 formed by{A | degA = d}. The equivalence
of categoriesH : D7 → Q8 induces equivalences of full subcategoriesH : Dd

7 → Qd8, for
all d ∈ 5.

In the present section we extend the classification ofE3 (Theorem 4.9(iii)) to a classi-
fication ofQ4 (Theorem 5.2(iv)), and the complete description ofE1

7 (Theorem 4.13) to
a complete description ofQ1

8 (Theorem 5.3). This is achieved by adapting the pattern of
reasoning which in Section 4 was designed forE3 andE1

7 to the enlarged context ofD3 and
D1

7, respectively. In particular we exhibit new functorsG andF extending the equivalences
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G andF from Corollaries 4.6 and 4.7 and Propositions 4.11(iii) and 4.12 respectively. We
skip however to verify that these new functors again are dense, full and faithful, because all
required arguments partly are quotations from Section 4, partly routine.

Let us begin with the equivalence of categoriesH : D3 → Q4.We view Ant(E3)×Pd(E3)

as the object set of a groupoid whose morphisms� : (�, �) → (�, �) are the special
orthogonal endomorphisms� ∈ SO(E3) which satisfy(���−1, ���−1) = (�, �). Then the
functor

G : Ant(E3)× Pd(E3)→ D3,

given on objects byG(�, �)=(E3, 	�, �3)where	�(v∧w)=〈v, �(w)〉, and on morphisms
byG(�)=�, is an equivalence of categories.7 Moreover we viewR3×R3×T as the object
set of a groupoid whose morphismsS : (x, y, d) → (x, y, d) are the special orthogonal
matricesS ∈ SO3(R) which satisfy(Sx, Sy, SDdS

T)= (x, y,Dd). Then the functor

F : R3 × R3 ×T→ Ant(E3)× Pd(E3),

given on objects by8 F(x, y, d)= (�x, �yd) and on morphisms byF(S)= S, is an equiv-
alence of groupoids. Altogether we have reached the following description of the category
Q4 in terms of the groupoidR3 × R3 ×T.

Theorem 5.1. The composed functorHGF : R3 × R3 ×T → Q4 is an equivalence of
categories.

The sequence of equivalences

F G H
R3 × R3 ×T −→ Ant(E3)× Pd(E3) −→ D3 −→ Q4

together with the cross-sectionC for Ob(R3×R3×T)/→̃, obtained by elementary geomet-
ric considerations analogous to those explained in Section 4 and displayed in[8, Proposition
4.3(i)], yields classifications of all four involved categories at once.

Theorem 5.2. (i) The set of configurationsC classifiesR3 × R3 ×T.
(ii) The set of pairs of endomorphismsF(C) = {(�x, �yd) | (x, y, d) ∈ C} classifies

Ant(E3)× Pd(E3).
(iii) The set of dissident triplesGF(C)={(E3, 	�x , �yd3)| (x, y, d) ∈ C} classifiesD3.
(iv) The set of real quadratic division algebrasHGF(C)={

R × R3,

(
�
v

)(
�
w

)
=
(

��− vTw + det(v | x |w)
�w + �v + �yd3(v ∧ w)

)∣∣∣∣ (x, y, d) ∈ C

}

classifiesQ4.

7 To prove thatG is full, apply Proposition 4.5(ii).
8 See paragraph preceding Corollary 4.7 for definition of�x and�yd .
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Let us resume with the equivalenceH : D1
7 → Q1

8. We view

Ant(E7)× Pd(E7)× Spds(E7)

as the object set of a groupoid whose morphisms

� : (�, �, �)→ (�, �, �)

are the orthogonal endomorphisms� ∈ G2 which satisfy

(���−1, ���−1, ���−1)= (�, �, �).
Then the functor

G : Ant(E7)× Pd(E7)× Spds(E7)→ D1
7,

given on objects byG(�, �, �)= (E7, 	�, �(7 · �)), where	�(v ∧ w)= 〈v, �(w)〉, and on
morphisms byG(�)= �, is an equivalence of categories. Moreover we view

R7×7
ant × R7×7

ant × R7×7
pds × R7×7

spds

as the object set of a groupoid whose morphisms

S : (A,B,C,D)→ (A,B,C,D)

are the orthogonal matricesS ∈ G2 which satisfy

(SAST, SBST, SCST, SDST)= (A,B,C,D).
Then the functor

F : R7×7
ant × R7×7

ant × R7×7
pds × R7×7

spds→ Ant(E7)× Pd(E7)× Spds(E7),

given on objects byF(A,B,C,D)= (A,B + C,D) and on morphisms byF(S)= S, is
an equivalence of groupoids. Composing these equivalencesH,G andF we obtain the
following matricial description of the categoryQ1

8.

Theorem 5.3. The composed functor

HGF : R7×7
ant × R7×7

ant × R7×7
pds × R7×7

spds→ Q1
8

is an equivalence of categories.

Let us restate explicitly three items which are implicit in Theorem 5.3.

Corollary 5.4. (i) For eachmatrix quadruple(A,B,C,D) ∈ R7×7
ant ×R7×7

ant ×R7×7
pds ×R7×7

spds,

the algebraHGF(A,B,C,D)= R × R7, with multiplication(
�
v

)(
�
w

)
=
(

��− vTw + vTAw

�w + �v + (B + C)D7(Dv ∧Dw)
)

,

is an eight-dimensional real quadratic division algebra of degree one.
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(ii) For each eight-dimensional real quadratic division algebraQ of degree one there
exists a matrix quadruple(A,B,C,D) ∈ R7×7

ant × R7×7
ant × R7×7

pds × R7×7
spdssuch thatHGF

(A,B,C,D)→̃Q.
(iii) For all matrix quadruples(A,B,C,D), (A,B,C,D) ∈ R7×7

ant × R7×7
ant × R7×7

pds ×
R7×7

spds, the algebrasHGF(A,B,C,D) andHGF(A,B,C,D) are isomorphic if and
only if there exists an orthogonal matrixS ∈ G2 such that

(SAST, SBST, SCST, SDST)= (A,B,C,D).

Moreover, the classification problems for the four categories involved in the sequence
of equivalencesF,G,H are all equivalent. Regarding the prospects of finding an explicit
cross-section for Ob(R7×7

ant ×R7×7
ant ×R7×7

pds ×R7×7
spds)/→̃, the comment we added to Corollary

4.14 applies even stronger to the present situation.

6. Real quadratic division algebras of higher degree

Recall that thedoubleof a real quadratic algebraA is defined byV(A) = A × A with
multiplication(w, x)(y, z)=(wy−zx, xy+zw), wherey, z denote the conjugates ofy, z.9

This doubling construction is easily seen to provide an endofunctorV on the category of
all real quadratic algebras, acting on morphisms byV(�) = � × �. The endofunctorV
in turn induces, due to[5, p. 946], a functorV : Q4 → Q8. Recall that the categoryQ4
is fully understood, in view of the equivalenceHGF : R3 × R3 ×T → Q4 (cf. Theo-
rems 5.1 and 5.2). Thus the context

Q8
HGF ↑ V

R3 × R3 ×T −→ Q4

provides a source for the construction of 8-dimensional real quadratic division algebras
which appear to be of interest. We simplify notation on settingA(�) = HGF(�) and
B(�)=V(A(�)) for all � ∈ R3 × R3 ×T, and 13 = (1 1 1)T.

Theorem 6.1. For every� ∈ R3 × R3 ×T, the following assertions are equivalent:

(i) �= (0,0, �13) for some�>0.
(ii) A(�) is flexible.

(iii) B(�) is flexible.
(iv) degB(�)= 1.

Proof. For a proof of (i)⇔ (ii) see[4, Proposition 6.1]. For a proof of (i)⇔ (iii) see[7,
Proposition 4.5]. Given� ∈ R3 × R3 ×T, let (E7, 	(�), �(�)) be a dissident triple such
thatH(E7, 	(�), �(�))→̃B(�). Then degB(�) = deg�(�) = deg�(�), where�(�) is a

9 Frobenius’s Lemma[9,16] asserts that each vectory in a real quadratic algebraA decomposes uniquely
according toy = �1+ v, where� ∈ R andv ∈ A is purely imaginary, i.e.v2 ∈ R1 butv /∈R1\{0}. Theconjugate
of y is defined asy = �1− v.
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lifting of �(�)P. By Theorem 2.4(iii), deg�(�)= 1 if and only if�(�)P is collinear. By[7,
Proposition 4.5], �(�)P is collinear if and only if� = (o, o, �13) for some�>0. Thus (i)
⇔ (iv) holds true. �

In analogy to the geometrical interpretation ofR3×TprecedingTheorem 4.9 we likewise
interpret the categoryR3 ×R3 ×T geometrically by identifying its objects(x, y, d) with
those configurations inR3 which are composed of a pair of points(x, y) and an ellipsoid
Ed = {z ∈ R3 | zTDdz= 1} in normal position. The morphisms(x, y, d)→ (x′, y′, d ′) are
identified with those rotation symmetries ofEd = Ed ′ which simultaneously sendx to x′
andy to y′. In these terms, Theorem 6.1 has the following immediate consequence.

Corollary 6.2. If a configuration� ∈ R3×R3×T is not a sphere with a double point in
the origin, then the degree of the eight-dimensional real quadratic division algebraB(�) is
greater than1.

Thus the composed functorVHGF : R3 × R3 × T → Q8, � �→ B(�) yields a
wealth of real quadratic division algebras of higher degree. Simultaneously this is, to our
knowledge, the only to date known construction of division algebras of that type.

One may wonder which values the map degB(?) : R3 × R3 ×T → 5, � �→ degB(�)
actually attains. Given� ∈ R3×R3×T, let�(�) ∈ E(E7) be the dissident map appearing
in the proof of Theorem 6.1. In order to determine the degree of a lifting�(�) of �(�)P and
hence degB(�) = deg�(�), it suffices in view of Theorem 2.4(v) to calculate�(�) as a
quasi-lifting of�(�)P outside the hyperplaneH with basish= (e2, . . . , e7). In accordance
with Proposition 2.3 we have that

�(�)=
(

�h
1(�)

�h(�)
, . . . ,

�h
7(�)

�h(�)

)
,

where the real homogeneous polynomials�h
i (�) and�h(�) in R[X1, . . . , X7] are given by

�h
i (�)= det(ei | �(�)(?∧ e2) | . . . | �(�)(?∧ e7))

for all i ∈ 7, and(�h(�))= gcd(�h
1(�), . . . ,�

h
7(�)), respectively.

In these terms we calculated explicitly the lifting�(�)of�(�)P for a general configuration
� ∈ R3 × R3 ×T, using maple 9.5. The curious reader may verify these calculations by
using the work sheet found under the web addresshttp://www.math.uu.se/∼lars/liftings.

Reading off the degree of�(�) one obtains the following refinement of Corollary 6.2.

Proposition 6.3. Let�= (x, y, d) ∈ R3 × R3 ×T.

(i) If y = 0 and(x, d)= (0, d113), thendegB(�)= 1.
(ii) If y = 0 and(x, d) �= (0, d113), thendegB(�)= 3.

(iii) If y �= 0, thendegB(�)= 5.

This material motivates the conjecture that the degree of a real quadratic division algebra
always is odd. An equivalent formulation is the following.

http://www.math.uu.se/~lars/liftings
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Conjecture 6.4. If B ∈ Q8, thendegB ∈ {1,3,5}.

Being functorial, the constructionR3 × R3 ×T → Q8, � �→ B(�) induces a mapping
Ob(R3 × R3 ×T)/→̃ → Ob(Q8)/→̃ , [�] �→ [B(�)] between the sets of isoclasses
of the involved categories. The functor� �→ B(�) is faithful by construction, but not
full. (If e.g. �= (0,0,13), then Aut(�)=SO3(R) is a real Lie group of dimension 3, while
Aut(B(�))=Aut(O)=G2 is a real Lie group of dimension 14.) Nevertheless, we conjecture
that the induced mapping[�] �→ [B(�)] is injective. Equivalently this may be formulated
as follows.

Conjecture 6.5. If �, �′ ∈ R3 × R3 ×T satisfyB(�)→̃B(�′), then�→̃�′.

A partial proof of Conjecture 6.5 which, among other arguments, also makes use of
Proposition 6.3, can be found in[18, Section 7].
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