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ABSTRACT K-Ras functions as a critical node in the mitogen-activated protein kinase (MAPK) pathway that regulates key
cellular functions including proliferation, differentiation, and apoptosis. Following growth factor receptor activation K-Ras.GTP
forms nanoclusters on the plasma membrane through interaction with the scaffold protein galectin-3. The generation of nanoclus-
ters is essential for high fidelity signal transduction via the MAPK pathway. To explore the mechanisms underlying K-Ras.GTP
nanocluster formation, we developed a mathematical model of K-Ras-galectin-3 interactions. We designed a computational
method to calculate protein collision rates based on experimentally determined protein diffusion rates and diffusion mechanisms
and used a genetic algorithm to search the values of key model parameters. The optimal estimated model parameters were vali-
dated using experimental data. The resulting model accurately replicates critical features of K-Ras nanoclustering, including
a fixed ratio of clustered K-Ras.GTP to monomeric K-Ras.GTP that is independent of the concentration of K-Ras.GTP. The model
reproduces experimental results showing that the cytosolic level of galectin-3 determines the magnitude of the K-Ras.GTP clus-
tered fraction and illustrates that nanoclustering is regulated by key nonequilibrium processes. Our kinetic model identifies
a potential biophysical mechanism for K-Ras nanoclustering and suggests general principles that may be relevant for other
plasma-membrane-localized proteins.
INTRODUCTION
The mitogen-activated protein kinase (MAPK) pathway

transmits signals from activated growth factor receptors at

the cell surface to transcription factors in the nucleus to regu-

late cellular functions including proliferation, differentiation,

and apoptosis (1,2). The MAPK module comprises a set of

three protein kinases, Raf, MEK, and ERK, which have

highly conserved molecular architecture and act sequen-

tially. The MAPK pathway is an ideal model system for

mathematical modeling because the regulatory mechanisms

operating on the pathway are well characterized, at least in

terms of the molecular components. Over the last decade,

MAPK signaling has been used repeatedly as a testable para-

digm for pioneering computational systems biology (3–5).

Although the principal hierarchy of the signaling pathway

and its activation sequence are well established, recent

data have yielded additional information on critical protein-

protein interactions, regulatory loops, and spatiotemporal

organization. Recent advances in the molecular under-

standing of MAPK signaling pose new challenges for math-

ematical modeling strategies (6).

Ras GTPases are guanine-nucleotide-binding proteins

that act as molecular switches on the inner leaflet of the

plasma membrane. Ras proteins function as a critical node

between growth factor receptors and the MAPK pathway. In

response to growth factor receptor activation, Ras proteins
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are activated by guanine nucleotide exchange factors.

In the active GTP-bound state, Ras.GTP recruits down-

stream effectors from the cytosol to the plasma membrane.

In the case of the MAPK module, Ras.GTP provides signal

input by recruiting Raf to the plasma membrane, where the

kinase is activated, in turn triggering activation of MEK

and ERK.

Differences in the strength and/or duration of a growth

factor signal induce distinct cellular outcomes. Therefore

to maintain tissue homeostasis, mechanisms are required to

convert the strength of a growth factor signal into the appro-

priate level of intracellular signal with high fidelity. Recent

experimental studies show that K-Ras exhibits a tightly regu-

lated nonrandom distribution on the inner leaflet of the

plasma membrane (7–10). Approximately 40% of K-Ras

proteins are organized into nanoclusters of around seven

proteins with radii of ~9 nm. The 60% of nonclustered

K-Ras proteins remaining are arrayed as monomers (8).

We have recently shown that K-Ras nanoclusters, but not

K-Ras monomers, recruit and activate Raf and therefore

act as signaling platforms (5,11). Each nanocluster operates

as a transient low-threshold digital switch that dumps a fixed

quantum of ERKpp into the cytosol (5). Thus, K-Ras nano-

clusters allow the plasma membrane to operate as an analog-

digital-analog signal converter that transduces the strength of

an epidermal growth factor (EGF) signal into a corresponding

level of cytosolic activated ERKpp with high fidelity (5,12).

Central to this signal transmission mechanism is the fixed

ratio of K-Ras.GTP proteins in nanoclusters to K-Ras.GTP
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FIGURE 1 Model of K-Ras protein diffusion and collision to form nano-

clusters. In this model, K-Ras.GTP diffuses randomly on the plasma

membrane. Gal3 is confined to the cytosol unless recruited to the plasma

membrane by K-Ras.GTP (1). Assembly of K-Ras nanoclusters proceeds

by collision of Ras-Gal3 complexes to form dimers (2) and subsequently

pentamers (3-5). Formation of nanoclusters with a higher stochiometry is

possible by collision of additional K-Ras.GTP proteins or Ras-Gal3

complexes with Ras-Gal3 pentamers (6,7). Disassembly of a nanocluster

can proceed either by complete disaggregation into the constituent

K-Ras.GTP monomers and Ras-Gal3 complexes (8,10) or by loss of single

K-Ras.GTP or Ras-Gal3 complexes (6,7,9).
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proteins diffusing as monomers, which remains constant

over a multilog range of K-Ras.GTP expression levels (8).

The fixed K-Ras.GTP clustered fraction results in a linear

relationship between the number of K-Ras.GTP nanoclusters

on the plasma membrane and the stimulating EGF concentra-

tion (5,8).

How the fixed K-Ras clustered fraction is achieved has yet

to be elucidated. However, we have recently shown that the

formation of the K-Ras.GTP nanocluster is dependent upon

the recruitment of the b-galactoside-binding protein galectin-

3 (Gal3) from the cytosol to the plasma membrane, where

it forms an integral component of the nanocluster (13).

The interaction between Gal3 and K-Ras is GTP- and farne-

syl-dependent and requires a putative prenyl-binding pocket

on Gal3 (14). An important question arising from these data

is, how does Gal3 contribute to K-Ras.GTP nanocluster

organization? Gal3 contains a C-terminal carbohydrate-

recognition-binding domain and an N-terminal proline-

and-glycine-rich domain (15). Gal3 can form higher-order

oligomers such as pentamers and hexamers through homo-

typic N-terminal interactions (16,17). The oligomerization

of secreted Gal3 is implicated in regulating growth factor

receptor activation and immune cell function (18–20). There-

fore, oligomerization of cytosolic Gal3 may also be required

for intracellular function.

Taken together, these data raise a number of complex

biological questions relating to plasma membrane nanoscale

organization and K-Ras signal transduction. Although it

is recognized that protein diffusion and collision on the

plasma membrane are stochastic processes (10,23–25), sto-

chastic models have been restricted to the study of the

dynamics of very simple systems due to the huge computa-

tional time involved (21,22,26–28). To model biochemical

reaction systems, or protein diffusion with multiple complex

species, deterministic approaches in terms of ordinary dif-

ferential equations are still the dominant method (29–31).

In addition, the availability of adequate experimental data

for determining kinetic rates and protein concentrations

represents a significant challenge for this type of computa-

tional modeling work. For example, the number of Gal3

molecules in the cytosol for recruitment by K-Ras.GTP is

not known, because Gal3 distributes into a number of

different pools in the cell. Although a number of strategies

have been developed for estimating parameters from exper-

imental observations, the very real possibility exists that

there are multiple different parameter sets that can realize

the same experimental observation, but that reflect very

different underlying mechanisms (26–28). Here, we develop

a mathematical model of K-Ras nanocluster formation on

the plasma membrane based on experimental discoveries

to investigate the critical function of Gal3 in K-Ras.GTP

nanocluster formation and address these challenges in

computational biology by using a genetic algorithm to

search for the values of key parameters in the mathematical

model.
METHODS

A computational model for K-Ras.GTP
nanocluster formation

Recently, we showed that Gal3 is recruited to plasma membrane nanoclus-

ters by K-Ras.GTP and operates as a scaffolding protein for the signaling

platform (13). To investigate how Gal3 interaction might regulate

K-Ras.GTP nanocluster formation, we developed a mathematical model

to simulate the diffusion and collision of K-Ras proteins on the plasma

membrane (Fig. 1). The model system contains two species of protein: acti-

vated K-Ras (K-Ras.GTP) and its specific binding partner Gal3. K-Ras

proteins are randomly distributed on the plasma membrane, whereas

Gal3 localizes to the cytosol but can be recruited by K-Ras.GTP to form

K-Ras.GTP-Gal3 (Ras-Gal3) complexes (Fig. 1, reaction 1). These Ras-

Gal3 complexes diffuse randomly on the plasma membrane and bind to

each other to form dimers through the extended N-terminal domain of

Gal3 (17) (Fig. 1, reaction 2). A Ras-Gal3 dimer may disassociate or

bind to another Ras-Gal3 complex to form a trimer. This binding process

can continue until a pentamer of Ras-Gal3 complexes is formed (Fig. 1,

reactions 3–5). Although K-Ras.GTP can bind to Ras-Gal3 complexes to

form the dimeric, trimeric, or tetrameric (Ras)i-(Ras-Gal)j complexes by

random diffusion, the probabilities of these binding reactions are relatively

very small compared to the fast formation of Ras-Gal3 pentamers.

For simplicity, these binding reactions are therefore not included in the

model.

A pentamer of Ras-Gal3 complexes is regarded as the basic core structure

of a nanocluster. K-Ras.GTP and Ras-Gal3 complexes can still bind to the

Ras-Gal3 pentamer by random diffusion and collision with a consequent

increase in the number of Ras proteins in the nanocluster (Fig. 1, reactions

6 and 7). A Ras nanocluster is thus defined as any protein complex contain-

ing five or more Ras proteins. When a nanocluster disassembles, it separates

completely into individual Ras proteins and/or Ras-Gal3 complexes (Fig. 1,

reaction 8). For a nanocluster with more than five Ras proteins, additional

Ras proteins attached to the Ras-Gal3 pentamer can disassociate from the

pentameric nanocluster (Fig. 1, reactions 6 and 7). In addition, a Ras-

Gal3 complex can disassociate from a nanocluster as separate Ras and

Gal3 proteins (Fig. 1, reaction 9). If this Ras-Gal3 complex is one of the

complexes in the core pentamer of a nanocluster, this disassociation can

lead to the disassembly of the nanocluster (Fig. 1, reaction 10). All biochem-

ical reactions of the system are listed below.
Biophysical Journal 99(2) 534–543
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Ras þ Gal3 %
a1

d1

Ras� Gal3 (1)

Ras� Gal3 þ Ras� Gal3 %
a2

d2

ðRas� Gal3Þ2 (2)

Ras� Gal3 þ ðRas� Gal3Þ2 %
a3

d3

ðRas� Gal3Þ3 (3)

Ras� Gal3 þ ðRas� Gal3Þ3 %
a4

d4

ðRas� Gal3Þ4 (4)

Ras� Gal3 þ ðRas� Gal3Þ4 %
a5

d5

ðRas� Gal3Þ5 (5)

ðRas� Gal3Þi� ðRasÞj þ Ras %
a6

d6ij

ðRas� GalÞi

� ðRasÞðj þ 1Þ (6)

ðRas� Gal3Þi� ðRasÞj þ Ras

� Gal3 %
a7

d7ij

ðRas� Gal3Þði þ 1Þ � ðRasÞj (7)

ðRas� Gal3Þi� ðRasÞj /
d8

i � ðRas� Gal3Þ þ j � ðRasÞ
(8)

ðRas� Gal3Þi� ðRasÞj /
d9i ðRas� Gal3Þði� 1Þ � ðRasÞj

þ Ras þ Gal3ðiR6Þ
(9)

ðRas� Gal3Þi� ðRasÞj /
d10 ði� 1Þ � ðRas� Gal3Þ

þ ðj þ 1Þ � ðRasÞ þ Gal3: (10)

It is assumed that binding rates, a3, a4, and a5, are equal to a2, because

these binding reactions are all based on the same properties of the extended

N-terminal domain of Gal3. The disassociation rates d8, d6ij (j � d8), and

d7ij ((i � 5) � d8) are based on the averaged lifetime of a K-Ras protein

in a nanocluster (9,10); in addition, d9i ¼ (i -5) � d9. All other rates

(a1, d1, a2, d2, a6, a7, d9, and d10) were estimated using a genetic algorithm.

Since the averaged number of K-Ras.GTP in a nanocluster is 7 and the

minimal number of Ras protein in a nanocluster is 5, we assume for

simplicity that the maximal number of Ras proteins in a nanocluster is 10.

This system contains 136 reactions and 27 complex species. Therefore,

due to the huge computational time that would be required, it is not practical

to develop a spatial stochastic model to investigate the collision of K-Ras

and Gal3 on the plasma membrane. The recruitment and binding reactions

are assumed to occur in a homogeneous environment and molecular spatial

heterogeneity is not considered. We developed a deterministic model (Sup-

porting Material) in terms of a system of 27 ordinary differential equations

based on the reactions listed above. The deterministic model was simulated

using the Runge-Kutta method for solving stiff differential equations

(ode23s in MATLAB).
Method for calculation of collision rates

To further develop the mathematical model, we designed a numerical

method to estimate protein collision rates on the plasma membrane.
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The method, which is based on experimentally determined protein diffusion

mechanisms, has the following assumptions.

1. The diffusion rate of K-Ras.GTP on the plasma membrane is 1 mm2/s (24).

2. It is assumed that a Ras-Gal3 complex has the same diffusion rate, given

the weak dependence of diffusion rate on molecular diameter (25).

3. When a nanocluster forms, it becomes immobile on the plasma

membrane (10) and its diffusion rate is therefore zero.

4. It is assumed that the area of a Ras protein is 2 nm2, corresponding to

a radius of 0.8 nm.

5. We assume that Gal3 is the same size as a Ras protein, and thus that the

radius of a Ras-Gal3 complex is 1.6 nm. The mean radius of a K-Ras

nanocluster is 9 nm (8).

6. The maximal number of K-Ras.GTP proteins that can be generated on the

plasma membrane of a BHK cell is 774,000 (5).

7. Since ~42% of K-Ras proteins are localized in nanoclusters at equilib-

rium (8), we use a K-Ras.GTP number of 448,920 (774,000 � 0.58) to

calculate the collision rates of the Ras-Gal3 complex. This calculation

gives the maximum number of K-Ras.GTP nanoclusters as 46,440 (5).

8. The maximal area of the square simulation surface is 1256.44 mm2 (the

surface area of a cell with radius 10 mm).

9. The lateral diffusion of Brownian particles in a medium characterized by

a diffusion coefficient D is described by the cumulative distribution func-

tion of the square displacements r2, given by

P
�
r2;Dt

�
¼ 1� Cexp

�
� r2

r2
0ðDtÞ

�
; (11)

where C is a normalized factor and C ¼ 1 in this work. Here, P(r2, Dt) is the

probability that the Brownian particle starting at the origin will be found

within a circle of radius r at the time lag, Dt (23,24). Equation 11 is valid

when Dt is very short, for example, when Dt¼ 5 ~ 60 ms (24). K-Ras protein

diffusion on the plasma membrane satisfies the mean-square displacement of

r2
0ðDtÞ ¼ 4DDt (23,24,32). Previous work has validated Eq. 11 using the

theory of diffusion-limited reactions in two dimensions (33). It is clear

that the return probability for a random walker in two dimensions (as the

time lag Dt becomes large) is 1.

Assuming that two species of proteins with molecular numbers N1 and N2,

diffusion rates D1 and D2, and radii r1 and r2 are randomly distributed on

a square surface (with length L) whose area is equal to that of the cell surface,

we can formulate the following method to calculate the protein collision rate

on the plasma membrane.

1. Generate two random samples of U(0,L), which is the uniformly distrib-

uted random variable on interval (0, L), as (xi, yi), to determine the loca-

tion of each protein in the square with length L. To avoid any initial

protein collision, the distance between any two proteins should be larger

than the sum of their radius.

2. For a given very small Dt, calculate the new position of each protein

based on the lateral diffusion of Brownian particles (Eq. 11). Two random

samples (s1, s2) are generated from the uniformly distributed random vari-

able U(0,1) to determine the moving distance, r, and direction, q, of

a protein over Dt based on

s1 ¼ P
�
r2;Dt

�
; q ¼ 2ps2:

The protein will then move from the previous position (xi0, yi0) to new

position (xi1, yi1), determined by

xi1 ¼ xi0 þ rcosðqÞ; yi1 ¼ yi0 þ rsinðqÞ:
If the new position is outside the square, a position inside the square will

be determined according to periodic boundary conditions.

3. Calculate the distance from each protein of the first species to every

protein of the second species and count the number of protein collisions,

M, if the distance between them is less than the sum of the radii of the

corresponding proteins.
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4. Calculate the collision rate by

k ¼ MS

N1N2Dt
:

If it is a dimeric reaction, the collision rate is

k ¼ 2MS

NðN � 1ÞDt
:

where S is the volume of the reactant area. It is assumed that the surface

area of a cell is the unit 1.
Genetic algorithm for estimating
model parameters

The genetic algorithm is an effective technique to find approximate solutions

for complex search problems. We used a MATLAB toolbox to estimate nine

model parameters including eight kinetic rates and the number of Gal3 mole-

cules (34). The fitness function of a dynamic model can be defined either as

the difference between time-scaled data or the difference between equilib-

rium data (35). In our work, the estimation error is defined as the difference

between simulation results and two experimental observations: the constant

fraction (~42%) of K-Ras.GTP in nanoclusters over a wide range of

K-Ras.GTP numbers (8) and the averaged number (~7) of K-Ras.GTP/nano-

cluster (8). The widely used mean-square relative error was used to measure

the model estimation error, defined by

Error ¼
X10

i¼ 1

"
ðCKRasðiÞ � 0:42Þ2

0:422
þ ðANKRasðiÞ � 7Þ2

72

#
;

(12)

where CKRas(i) and ANKRas(i) are the simulated fraction of clustered

K-Ras and averaged number of K-Ras/nanocluster, respectively, when the
K-Ras.GTP number is i � 10% of the maximal number of K-Ras.GTP.

To have biological relevance, the Ras nanocluster fraction must reach

a steady state in <5 min; therefore, estimates that did not generate steady-

state simulations by 5 min were discarded.
RESULTS

Calculation of collision rates

To develop the mathematical model, we needed to estimate

realistic collision rates on the plasma membrane. Thus, we

calculated the collision rate a20 using a fixed number of

Ras-Gal3 complexes and different time lags, Dt, as described

in Methods. To reduce the computational time, we set the

number of Ras-Gal3 complexes to 10% of the maximal

number of K-Ras.GTP molecules and reduced the simulation

surface area proportionally. When the time lag is relatively

large, the diffusion distance of a protein may be greater

than the averaged distance between two proteins. Thus, there

is a decreased probability of protein collision. To avoid

missing any possible collision events, Dt should satisfyffiffiffiffiffiffiffiffiffi
DDt
p

< r, where D is the protein diffusion rate (1 mm2/s)

and r is the radius of a Ras-Gal3 complex (~1.6 nm).

Fig. 2 A gives the calculated protein collision rates with time

lags ranging from Dt¼ 10-5 s to Dt ¼ 10-12 s. The calculated

collision rate increased as the time lag decreased. When the

time lag was below a threshold value, which is Dt ¼ 10-10 s,

the calculated collision rate remains constant (Fig. 2 A). This

threshold value is well below the value of r=
ffiffiffiffi
D
p

. We used

this time lag as a standard to calculate other collision rates,

because the threshold value can also be applied to the

random diffusion of K-Ras proteins (radius ~0.8 nm) and
FIGURE 2 Computation of protein collision

rates on the plasma membrane. (A) Collision rate

(a20/s) of Ras-Gal3 complexes calculated for

different time lags. (B) Collision rate (a20/s) of

Ras-Gal3 complexes calculated for a fixed time

lag, Dt ¼ 10�10 s and different numbers of

K-Ras.GTP proteins on the plasma membrane.

The maximal number of K-Ras.GTP on the plasma

membrane is denoted as the unit 1. (C) Collision

rates of Ras (a60/s) and Ras-Gal3 complexes (a70/

s) with nanoclusters based on a fixed time lag, Dt
¼ 10�10 s, and different numbers of K-Ras.GTP

proteins in nanoclusters on the plasma membrane.

(D) Calculated collision rate (a20/s) of Ras-Gal3

complexes if diffusion is restricted to a proportion

of the diffusion area.

Biophysical Journal 99(2) 534–543
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collisions with larger nanoclusters (radius ~9 nm). Our data

show that collision rate a20 is independent of the numbers

of Ras-Gal3 complexes and nanoclusters in the system

(Fig. 2 B), as are the collision rates of K-Ras.GTP (a60) and

Ras-Gal3 complexes (a70) with nanoclusters (Fig. 2 C).

These results support our assumption that protein diffusion

and collision occur in a homogeneous reaction system.

When the system reaches the steady state via protein binding

and disassociation reactions, this assumption may need to be

reexamined. Since varying protein numbers had no signifi-

cant impact on the collision rates, we used constant collision

rates for all molecular numbers of K-Ras in the system.

We next tested the influence of cell surface area on the

calculated collision rates. Results in Fig. 2, A–C, are based

on a diffusion area equal to the area of the cell surface. Since

K-Ras may diffuse on only a proportion of the cell surface if,

for example, it is excluded from liquid-ordered nanodomains

(7,8), we calculated the collision rates based on different

proportions of the diffusion area. If the surface area is

smaller, protein concentration will lead to larger collision

rates. However, the change in collision rate is not significant

unless the diffusion area decreases to <40% of the maximal

area (Fig. 2 D). We therefore use rates obtained from the

maximal diffusion area.
Estimation of model parameters

In the implementations of the genetic algorithm, we assumed

that the initial estimates of the kinetic rates were uniformly

distributed in the range (0,Wmax). To achieve a small estima-

tion error, the value of Wmax was determined by simulation.

To find all of the possible values for the Gal3 number,

we used a search range from zero to 5 times the maximal

K-Ras.GTP number.

According to the Arrhenius equation, the protein binding

reaction rate, ai, can be represented by

ai ¼ ai0exp

�
Eact

RT

�
; i ¼ 1 � 7; (13)

where ai0 is the protein collision rate, Eact the activation

energy, R the gas constant, and T the absolute temperature.

Here, the value of the exponential function exp (Eact/(KT))

represents the probability of complex formation (Pc). Based

on the protein collision rates calculated in section Calcula-

tion of collision rates, the Pc values of binding rates a2, a6,

and a7 were estimated by using the genetic algorithm. For

simplicity, we assumed that the values of a2 ~ a5 are equal,

since these reactions, up to and including pentamerization,

involve the same molecular mechanism, i.e., oligomerization

of Gal3. The Pc values of these binding rates could,

however, be slightly different.

Because of possible local maxima in the genetic algo-

rithm, we selected the 10 best sets of estimated parameters

that had the smallest estimation errors. The Gal3 numbers
Biophysical Journal 99(2) 534–543
are presented in Fig. 3 A as the ratio of Gal3 number to the

maximal number of K-Ras.GTP. The estimated ratio ranges

from 0.43 to 0.71 and the averaged ratio is 0.5445. The best

estimate of the Gal3 number with the minimal estimation

error is ~56% of the maximal K-Ras.GTP number. The

mean, standard deviation, and range of these 10 estimates

are presented in Table 1. We used the set of parameters

that generated the smallest estimation error as the final esti-

mate, which is given in Fig. 3. The probabilities of a collision

leading to complex formation are significantly different

among the protein binding reactions. It is high during the

assembly of a pentameric Ras-Gal3 nanocluster (Pc ¼
0.0715 for a2 ~ a5) but is low for the incorporation of addi-

tional K-Ras proteins (Pc ¼ 9.96 �10�5 for a6) or Ras-Gal3

complexes (Pc ¼ 1.8 � 10�4 for a7) into nanoclusters. We

discuss the implications of this formulation later.

We next expanded the search area for each parameter from

(0,Wmax) to (0,kWmax) to determine whether this would fur-

ther improve the accuracy of simulated nanocluster forma-

tion. Although it may be likely to find a set of kinetic rates

with smaller estimation errors from a larger search space,

the estimated kinetic rates from a larger search space may

not be able to produce simulations with smaller estimation

errors due to the possible local maxima in the genetic algo-

rithm. We searched the model kinetic rates from search space

(0,kWmax) for every parameter, where k ¼ 1, 2, 5, or 10. For

each value of k, we obtained 20 sets of estimated parameters

and found that the value of the minimal estimation error was

in fact proportional to the value of k (results not shown).

Therefore, we used the kinetic rates in Fig. 3 from search

space (0, Wmax) as the final estimated parameters.
Simulated dynamics of nanocluster formation

Fig. 3 shows clustering data and simulated system dynamics

using the best estimates of the model parameters. Fig. 3, B
and C, shows the simulated fractions of K-Ras.GTP in nano-

clusters and the average K-Ras number/nanocluster, respec-

tively. At equilibrium, which was achieved after ~2 min of

simulation time, the simulation successfully realized the

observed experimental results with ~42% of K-Ras.GTP

proteins in nanoclusters (8). Furthermore, the simulation

returned the average number of Ras proteins/nanocluster as

~7, a result that again matches experimental data (8). The

distribution histogram of the number of nanoclusters with

different numbers of K-Ras.GTP in Fig. 3 D shows that

the number of K-Ras.GTP in complexes with two, three,

or four Ras proteins is ~2.1% of the total K-Ras proteins

on the plasma membrane. Fig. 3 D also shows that the

number of nanoclusters with five or more Ras proteins is

inversely proportional to the number of Ras proteins in the

nanocluster. Thus, the number of nanoclusters with 10 Ras

proteins is~43% of the number of nanoclusters with five

Ras proteins, these data lend support to our simplifying

assumption of excluding nanoclusters with>10 Ras proteins



FIGURE 3 Estimated Gal3 numbers and simu-

lated nanocluster formation dynamics. (A) Esti-

mated Gal3 numbers in 10 sets of model parameters

using the genetic algorithm. The Gal3 numbers are

presented as the ratio of Gal3 to Ras. (B) Simulation

results of K-Ras nanocluster formation showing the

progression of the system to equilibrium. We simu-

lated the complete model shown in Fig. 1 for 5 min

of real time with the following estimated kinetic

rates: a1 ¼ 1.2786 � 10�7/ s, d1 ¼ 0.0595/ s,

a2 ¼ 0.0101/ s, d2 ¼ 0.9483/ s, a6 ¼ 2.4791 �
10�5/ s, a7 ¼ 4.7839 � 10�4/ s, d6 ¼ 2.5/ s, d7 ¼
2.5/ s, d8 ¼ 2.5/ s, d9 ¼ 0.0999/ s, and d10 ¼
0.0596/ s. The nonzero initial conditions are

[Ras] ¼ 774,000, [Gal3] ¼ 43,730. (C) Average

K-Ras.GTP number in each nanocluster during

the course of the simulation. (D) Distribution of

nanoclusters with different numbers of K-Ras.GTP

proteins. (E) Stochastic simulation results of K-Ras

nanocluster formation showing the progression of

the system to equilibrium. We simulated biochem-

ical reactions 1–10 (see Methods) for 5 min of real

time with the same kinetic rates as in B. (F)

Average K-Ras.GTP number in each nanocluster

during the course of the simulation.
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from the model. The ability of the model to equilibrate by

2 min of simulation is an important result, because Ras.GTP

loading in response to acute growth factor stimulation also

occurs on this timescale (5).

To further validate the deterministic model, a stochastic

model based on the same 136 reactions (Eqs. 1–10) was

also developed and we used the stochastic simulation algo-

rithm to simulate the biochemical reactions (Eqs. 1–10)

directly. The stochastic simulation results (Fig. 3, E and F)

show only slight fluctuations in the simulated clustered
TABLE 1 Mean and standard deviation (SD) of the 10 sets of estim

a1 d1

Mean 7.505E-8/s 0.0384/s

SD 2.991E-8 0.0131

Range (4.07E-8,1.36E-7) (0.020,0.060)

a7 d9

Mean 5.305E-4/s 0.0994/s

SD 7.960E-7 6.494E-4

Range (5.27E-4,5.31E-4) (0.098,0.1)

The Gal3 number is the product of 774,000 and the value in this table.

The value d8 (2.5/s) is determined by experiments. The values of d6 and d7 are
fractions and average numbers of K-Ras.GTP/nanocluster.

The simulations in Fig. 3 therefore support the use of a deter-

ministic model to simulate stochastic protein diffusion and

collision when the K-Ras.GTP number is large.
The number of Gal3 molecules determines
the fraction of K-Ras.GTP in nanoclusters

To test the importance of the number of Gal3 molecules

available for recruitment, we simulated the system dynamics
ated model parameters

a2 d2 a6

8.027E-3/s 0.9501/s 2.928E-5/s

4.853E-3 0.0467 4.741E-6

(3.36E-3,0.02) (0.872,0.997) (1.27E-5,3.92E-5)

d10 Gal3

0.0538/s 0.5443

0.0121 0.0968

(0.034,0.0791) (0.429,0.710)

assumed to be equal to that of d8.
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FIGURE 4 The Gal3 number determines nano-

cluster formation. (A) Fraction of K-Ras.GTP in

nanoclusters with different numbers of Gal3 in

the cytosol. The model was simulated for 5 min

of real time with Gal3/K-Ras.GTP ratios of 0.25,

0.565, and 1 (circles, ratio ¼ 0.25; squares,

ratio ¼ 0.565; diamonds, ratio ¼ 1). (B) Average

K-Ras number/nanocluster with different numbers

of Gal3 in the cytosol (circles, Gal3/K-Ras.GTP

ratio ¼ 0.25; squares, ratio ¼ 0.565; diamonds,

ratio ¼ 1). (C) Fraction of K-Ras.GTP in nanoclus-

ters assuming a fixed Gal3 number in the cytosol

and estimating other modeling parameters based

on the assumed Gal3 number (circles, Gal3 ¼
0.565� (max K-Ras number) and all the other rates

as presented in Fig. 2; squares, Gal3¼ (max K-Ras

number); diamonds, Gal3 ¼ 2 � (max K-Ras num-

ber); triangles, Gal3 ¼ 5 � (max K-Ras number)).

(D) Clustered fraction of K-Ras when Gal3 number

equals the maximal number of K-Ras.GTP. In each

case shown, one of the kinetic rates was changed to

realize the experimental result that ~42% of K-Ras

molecules are in nanoclusters when the K-Ras

number is maximal (circles, a1 ¼ a1 / 2.8; squares,

d1 ¼ d1 � 1.25; diamonds, a2 ¼ a2 / 28; triangles,

d2 ¼ d2 � 700). In all four figures, the maximal

number of K-Ras.GTP on the plasma membrane

is denoted as the unit 1.
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with different numbers of Gal3 and K-Ras.GTP proteins.

The results in Fig. 4 A show that for each expression

level of Gal3 the fraction of K-Ras.GTP in nanoclusters

remains constant over the complete range of K-Ras.GTP

protein numbers tested. This is an important result, because

the model successfully realizes a constant fraction of

K-Ras.GTP proteins in nanoclusters over a wide range of

K-Ras.GTP expression levels, as observed in intact cells

(8). Fig. 4 A also shows that the fraction of K-Ras proteins

in nanoclusters is directly proportional to the number of

Gal3 molecules available for recruitment. When the num-

ber of Gal3 molecules available for recruitment is equal to

~56% of the maximal number of K-Ras.GTP on the plasma

membrane, the fraction of K-Ras.GTP in nanoclusters is

always ~42% (Fig. 3 A). If the Gal3 levels are lower

or higher, the clustered fraction is reset accordingly, but

remains constant against K-Ras.GTP levels. The simula-

tion results also suggest that the average number of

K-Ras.GTP/nanocluster is weakly dependent on the number

of K-Ras.GTP proteins on the plasma membrane. If the

number of K-Ras.GTP on the plasma membrane is low

(~10% of the maximal number), then the majority of nano-

clusters are pentamers (Fig. 4 B). The results shown in

Fig. 4 indicate that the clustered fraction of K-Ras.GTP

is determined by the cytosolic concentration of Gal3. Our

previous cell biological experiments revealed that the

level of K-Ras.GTP clustering increased in proportion to

increased Gal3 expression levels (13). The simulations of

the mathematical model are fully consistent with these bio-

logical results.
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To explore in more detail the relationship between the

numbers of Gal3 and K-ras.GTP in the model with the main-

tenance of a fixed clustered fraction, we conducted two

further experiments. First, given that the number of Gal3

molecules in the model system is close to the number of

K-Ras.GTP in nanoclusters, we asked whether or not we

could realize a constant fraction of 42% K-Ras.GTP in nano-

clusters with a much larger Gal3 number. We set the Gal3

number to be equal to, or 2 times or 5 times, the maximal

K-Ras.GTP number. For each Gal3 number the genetic algo-

rithm was used to search for new values of eight model

kinetic rates (a1, d1, a2, d2, a6, a7, d9, and d10) that provided

the closest fit to our experimental data. The simulated clus-

tered fractions based on these different assumed Gal3

numbers are presented in Fig. 4 C. In all three tests, the clus-

tered fractions showed a much greater dependence on

K-Ras.GTP numbers than that shown in Fig. 4 A.

Second, we modified the system so that the number of

Gal3 molecules in the cytosol for recruitment was equal to

the maximal number of K-Ras.GTP molecules on the plasma

membrane. We then adjusted each of the four kinetic rates

a1, d1, a2, and d2 to realize the observed value of 42% of

K-Ras.GTP in nanoclusters for the maximal number of

K-Ras.GTP proteins. However, in direct contrast to our

experimental results, these simulation results indicated

that for each of these four kinetic rates the simulated frac-

tion of K-Ras.GTP in nanoclusters was always dependent

on the number of K-Ras.GTP proteins (Fig. 4 D). Since

any change in one of these four parameters generated

a similar decreasing pattern for the percentage of K-Ras.GTP
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in nanoclusters, any combination of changes in these four

parameters will generate results similar to those presented

in Fig. 4 D. In sum, these results illustrate that the number

of Gal3 proteins in the cytosol available for recruitment is

a key parameter that determines the fraction of K-Ras.GTP

in nanoclusters.
Rapid formation of Ras-Gal3 pentamers

The estimated rate of Ras-Gal3 pentamer formation (a2 ¼
0.0101/ s) presented in Fig. 3 is much larger than the rate

of a Ras-Gal3 complex binding to nanoclusters (a7 ¼
4.7839� 10�4/s). To explore the relevance of the fast forma-

tion of Ras-Gal3 pentamers to K-Ras nanoclustering, we

tested the possibility of having a smaller binding rate, a2.

We set the value of a2 to be 0.001/s, 0.0001/s, and

0.00001/s, respectively, and used the genetic algorithm to

search the other seven kinetic rates together with the Gal3

number based on each assumed value of a2. The simulation

results in Fig. 5 indicate that the system cannot generate the

constant fractions of K-Ras in nanoclusters if the value of

a2 is very small. When the value of a2 is 0.00001/s, which

is close to a7 in Fig. 2, simulated clustered fractions are

much smaller than the experimentally observed value

(~42%). Simulation results in Fig. 4 are consistent with

experimental observations that the conversion of Gal3 from

monomer to pentamer is fast (11) and suggest that the fast

formation of Gal3 pentamers is a second key feature of the

mechanism for delivering a constant fraction of K-Ras.GTP

molecules in nanoclusters. These estimated rates also vali-

date our initial assumption to exclude the weak binding of

K-Ras.GTP to Ras-Gal3 complexes in the formation of

dimeric, trimeric, or tetrameric (Ras)i-(Ras-Gal)j complexes

by random diffusion.
FIGURE 5 Nanocluster formation for different values of binding rate a2.

Fraction of K-Ras.GTP in nanoclusters assuming a fixed value of binding

rate a2 and estimating other kinetic rates and Gal3 number based on the

assumed value of a2: diamonds, a2 ¼ 0.0101 / s; squares, a2 ¼ 0.001 / s;

circles, a2 ¼ 0.0001 / s; triangles, a2 ¼ 0.00001 / s. The maximal number

of K-Ras.GTP on the plasma membrane is denoted as the unit 1.
Robustness of the model

We evaluated the robustness properties of the proposed

model by testing the effect on the system dynamics of

varying one of the eight estimated reaction rates (a1, d1,

a2, d2, a6, a7, d9, and d10). For each set of reaction rates,

we determined the fraction of K-Ras.GTP in nanoclusters

and the average number of K-Ras.GTP proteins/nanocluster

for different K-Ras.GTP numbers. The clustered fraction is

sensitive to changes in kinetic rates a1, d1, a2, d9, or d10,

but is robust to changes of the other kinetic rates, d2, a6, or

a7 (Fig. S1 in the Supporting Material). The fraction of

K-Ras.GTP in nanoclusters is also robust to changes in

K-Ras.GTP number for different values of the six reaction

rates (a1, d1, a2, d2, a6, and a7). We also show that variation

of kinetic rates a1, d1, a2, d2, d9, or d10 has no significant

influence on the average number of K-Ras.GTP proteins/

nanocluster (Fig. S2). Increasing or decreasing a6 or a7,

however, affects the number of K-Ras molecules/nanocluster

(Fig. S2). In summary, the simulation results in Fig. S1 show

that the model is robust to changes of K-Ras.GTP numbers

under a variety of different system conditions.
DISCUSSION

The formation of K-Ras nanoclusters, which function as

transient nanoscale digital switches in MAPK activation, is

essential for Ras signal transduction (5). How K-Ras.GTP

nanoclusters form and what mechanism operates to maintain

the K-Ras clustered fraction at a constant level over a wide

range of K-Ras.GTP concentrations is unresolved. We tackle

this problem here using in silico modeling to show that inter-

actions between K-Ras and a cytosolic pool of Gal3 play

a central role in driving K-Ras nanoclustering on the plasma

membrane. We developed a mathematical model to simulate

the dynamics of K-Ras nanoclustering on the plasma

membrane. We applied a genetic algorithm to search the

possible model parameters capable of realizing the experi-

mental observations and to validate the optimal estimated

parameters representing the collision mechanisms. In addi-

tion, a computational method was designed to calculate

protein collision rates based on experimentally determined

protein diffusion rates and diffusion mechanisms. Calculated

collision rates were constant over a wide range of protein

numbers, supporting our use of a homogeneous reaction

system to describe the two-dimensional Ras protein diffusion

on the plasma membrane. The model successfully realizes the

constant fraction of clustered Ras based on the known

biochemistry of Gal3 and, it is important to note, predicts

that a key mechanism for this constant fraction is the avail-

ability of Gal3 protein in the cytosol for recruitment to the

plasma membrane. Furthermore, our simulations demonstrate

that the probability of protein complex formation is a useful

parameter to use in combination with constant collision rates

to define binding rates that realize experimental data.
Biophysical Journal 99(2) 534–543
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Based on our published results of quantitative EM and

FLIM-FRET imaging (13), the in silico model proposes

that Gal3 proteins are recruited to the plasma membrane

as a result of molecular collisions with freely diffusing

K-Ras.GTP monomers. The resulting K-Ras.GTP-Gal3

complexes rapidly assemble into pentameric complexes

driven by molecular interactions between the constituent

Gal3 proteins. Pentameric nanoclusters may accumulate addi-

tional K-Ras.GTP or K-Ras.GTP-Gal3 complexes. However,

our simulations show that the probability of successful incor-

poration of additional K-Ras proteins after collision with

a K-Ras.Gal3 pentamer must be much lower than during the

assembly of the pentamer, perhaps reflecting a different

biophysical retention mechanism. One possibility is that the

relatively stable complex of five K-Ras proteins anchored to

the membrane by polybasic domains and a Gal3 pentamer

remodels the nanoscale lipid environment of the cluster.

By analogy with myristoylated alanine-rich C kinase sub-

strate binding to the plasma membrane (36), remodeling

would involve an increase in the local concentration of acidic

phospholipids including PS and PIP2, allowing further

recruitment of positively charged K-Ras proteins, but with

a lower affinity than that realized by direct Gal3 protein-

protein interaction.

Whatever the precise mechanism, the model we have

formulated faithfully delivers the important result of concen-

tration-independent K-Ras.GTP nanocluster formation with

the previously observed K-Ras stoichiometry and nanoclus-

ter lifetime (8–10). The model also recapitulates our recently

published experimental results showing that the availability

of Gal3 in the cytosol is the critical determinant of the

K-Ras.GTP clustered fraction (13). Thus, altering the expres-

sion of Gal3 directly modulates signal transmission via

K-Ras (14,37). These findings are significant because Gal3

expression and its subcellular localization are altered in

a number of tumor types (38). Given that the clustered frac-

tion is a critical determinant of the sensitivity of a cell to

EGF-dependent activation of the MAPK cascade (5), the

new data implicate the cytosolic pool of Gal3 as a modulator

of MAPK activation by EGF as well as signal output

from oncogenic mutant K-RasG12V. Taken together, these

data implicate altered Gal3 expression in K-Ras-mediated

tumorigenesis.

For an ordinary differential equation system having

steady-state solutions, the kinetic rates in the model should

be constrained by the equilibrium conditions of the system.

However, our simulations suggest that this system may not

be fully balanced; for example, when we changed the values

of pairs of parameters, such as a1 and d1, simultaneously and

proportionally, the equilibrium properties of the system were

altered. In addition, the simulated distributions of nanoclus-

ter size neither became exponential nor had a large aggregate

whose size scaled with the total number of molecules. These

observations suggest that nanocluster formation is regulated

by certain key nonquilibrium processes. Indeed, the system
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includes a number of unidirectional reactions, such as the

disassembly of nanoclusters and the separation of Ras-Gal3

complexes within nanoclusters. In addition the fast forma-

tion of Gal3 pentamers results in very different binding

rates for Ras-Gal3 pentamer assembly versus nanocluster

growth as a result of additional Ras and Ras-Gal3 collisions.

A more detailed analysis of the interaction between balanced

and unbalanced reactions via the steady-state solutions

would be interesting to pursue. However, this is not a trivial

exercise, because our modeled system includes 27 equations

and the equations involving K-Ras.GTP, Gal3, and Ras-

Gal3 species are complex. In the future, other theoretical

approaches, such as the master equation method, could be

used to analyze nanocluster kinetics and give deeper insights

into the underlying physics of nanocluster formation.

A number of lipid-anchored proteins have been shown to

operate in distinct nanoclusters on the inner and outer leaflets

of the plasma membrane, including other Ras isoforms and

GPI-anchored proteins (7–9,39,40). All of these proteins

show a concentration-independent clustered fraction and an

excess of monomer over clustered protein, albeit with

different numbers of protein in each nanocluster. Although

the model we have developed is specific to K-Ras nanoclus-

tering, at the core of the model is a mechanism that rapidly

promotes cooperative interaction between monomers and

dimers. For K-Ras, this cooperativity is provided by protein-

protein binding. In attempting to generalize the model, we

speculate that a similar core mechanism might operate for

other nanoclustered proteins, perhaps driven by protein-

protein or protein-lipid interactions. Such a hypothesis is

readily tractable by simulation and experiment and may

allow the definition of a common biophysical principle for

the nonrandom organization of lipid-anchored proteins on

the plasma membrane.
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