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a b s t r a c t

Systems consisting of a hard layer resting on an elastic graded soft substrate are frequently encountered
both in nature and industry. In this paper, we study the surface wrinkling problem of such a composite
system subjected to in-plane compression. The Young’s modulus of the elastic substrate is assumed to
vary along its depth direction. In particular, we investigate two typical variations in the modulus,
described by a power function and an exponential function, respectively. Analytical solutions which per-
mit to determine the critical compressive strain for the onset of wrinkling and the wrinkling wavelength
are derived. A series of finite element simulations are performed to validate the theoretical solutions and
demonstrate the prominent features of the postbuckling evolution of the system. The results may not
only find applications in thin-film metrology and surface patterning but also provide insight into the
wrinkling phenomena of various living tissues.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Systems consisting of a hard layer resting on a soft substrate are
often encountered in various natural and artificial materials and
devices (Bowden et al., 1998; Ben Amar and Goriely, 2005; Li
et al., 2011a). When subjected to in-plane compression, such a
composite system may buckle and lose its original planar surface
morphology. On one hand, surface instability represents a typical
failure of materials or structures and should be avoided in most
engineering designs (Allen, 1969), and, on the other hand, it also
finds wide applications (Bowden et al., 1998; Ben Amar and
Goriely, 2005; Li et al., 2011a; Bowden et al., 1999; Stafford et al.,
2004; Efimenko et al., 2005; Lacour et al., 2005; Khang et al.,
2006; Schweikart and Fery, 2009) and has received considerable
interest from various disciplines in recent years. Micro-/nanosized
surface patterns can endow solid materials with some unusual
optical, electronic, and acoustic properties due to the effects of
wave interference (Bowden et al., 1998, 1999). As well, surface pat-
terns may significantly influence such properties as wetting, adhe-
sion, and friction of solid surfaces (Koch et al., 2009; Chan et al.,
2008; Feng et al., 2007; Wu-Bavouzet et al., 2010; Li et al., in press).
Therefore, novel techniques have been proposed to create surfaces
with controlled patterns on solid materials based on wrinkling
phenomena of a thin stiff sheet resting on a compliant substrate.

Determining the mechanical properties of thin films is critical
for their applications but still remains a challenging issue.
ll rights reserved.
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Recently, enlightened by the buckling phenomenon of a thin film
resting on a soft substrate (Bowden et al., 1998), Stafford et al.
(2004) presented a novel method to measure the elastic modulus
of a thin film. They showed that this methodology can be applied
to the mechanical characterization of thin films, even when the
film thickness reduces to nanometers.

In nature, many living soft tissues including skins, brains, ciliary
body and mucosa of esophagus and pulmonary airway can also be
modeled as a soft substrate covered by a thin and hard surface
layer (Li et al., 2011a). It is noted that the sub-surface layer
(substrate) usually has gradient mechanical properties because of
the spatial variation in the microstructure and/or composition.
Surface wrinkling/folding observed in these living tissues is, on
one hand, believed to play a significant physiological role in
healthy biological tissues. On the other hand, such diseases as
inflammation, edema, asthma and enterogastritis may induce the
variation of the surface morphology of soft tissues (Li et al.,
2011a). Therefore, the alteration of wrinkling patterns may be re-
garded as an important clinical sign and symptom of some
diseases.

Given the technical and scientific importance, much effort has
been devoted toward revealing the underlying physical mecha-
nisms behind the occurrence of surface instabilities of a hard
layer lying on a soft substrate (Groenewold, 2001; Cerda and
Mahadevan, 2003; Huang, 2005; Huang et al., 2005; Audoly and
Boudaoud, 2008a,b,c; Cai et al., 2011). Most previous studies as-
sume a homogeneous substrate. However, many practical systems
have an elastic graded substrate (Howarter and Stafford, 2010). For
example, the deposition of a hard film on a soft substrate may lead
to the variation in the mechanical property of the substrate along
the depth direction, especially in the vicinity of the substrate
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Fig. 2. Variations of the Young’s modulus of the substrate along the depth.
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surface (Howarter and Stafford, 2010). To date, nevertheless, there
is a shortage of theoretical investigation on the instability of a hard
layer resting on an elastic graded substrate. Recently, Lee et al.
(2008) performed a bifurcation analysis for the surface wrinkling
of an elastic half-space under in-plane compression, in which the
Young’s modulus varies arbitrarily along the depth. They devel-
oped a finite element method (Lee et al., 2008) to solve this
problem.

In the present paper, theoretical analysis is carried out for a
hard film wrinkling on an elastic graded substrate subjected to
in-plane compression. In particular, we explore two typical varia-
tions in the substrate modulus along the depth direction, which
can be expressed by a power function and an exponential function,
respectively. Closed-form expressions of the compressive force act-
ing on the hard layer are given, which allow a straightforward
determination of the critical compressive strain for the onset of
the surface buckling and the wrinkling wavelength. Finite element
simulations are performed to validate our theoretical solutions and
to examine the postbuckling behavior of the composite system.
2. Theoretical analysis

2.1. Models

Consider a composite system consisting of a stiff layer resting
on a soft and semi-infinite substrate, subjected to uniaxial in-plane
compression. Refer to a Cartesian coordinate system (O–xy⁄), as
shown in Fig. 1, where the origin O is located at the center of the
film, the x and y⁄ axes are along and normal to the surface layer,
respectively. Assume that the film is linear elastic, isotropic, and
homogeneous. The substrate has a constant Poisson’s ratio but its
Young’s modulus varies along the depth direction. We here
consider the following two representative variations in the
modulus (Fig. 2), which have been widely used to explore the
response of an elastic graded solid (Gibson, 1967; Plevako, 1971;
Giannakopoulos and Suresh, 1997; Giannakopoulos and Pallot,
2000; Muravskii, 2008; Chen et al., 2009).

Case I: Power-law grading modulus
Fig. 1.
compre
Es; I ¼ EIyb ð1Þ
where EI and b are material constants. Here and in Fig. 2, the coor-
dinate y = y⁄ � h/2 with h being the film thickness. b varies from 0 to
1. b = 1 corresponds to the so-called Gibson soil (Gibson, 1967). It is
noted that EI is not necessary to have the dimension of elastic mod-
ulus. In this model, the solid has zero modulus at the surface, which
A stiff layer resting on an elastic graded substrate under in-plane
ssion.
may not be realistic. But this simple model permits to obtain
closed-form solutions in many cases.

Case II: Exponential grading modulus
Es; II ¼ EII exp
y
a

� �
ð2Þ
where EII and a are material constants. Here a can be positive or
negative as shown in Fig. 2.

In the sequel, we will analyze the wrinkling of an elastic film
resting on a power-law graded substrate (Case I) and an exponential
graded substrate (Case II), respectively.

2.2. Wrinkling of a stiff film resting on a power-law graded soft
substrate

Linear perturbation analysis is performed to predict the critical
compressive strain at the onset of wrinkling and the corresponding
wrinkling wavelength by modeling the film as a plate. In many pre-
vious theoretical analyses on the wrinkling of a film resting on a
soft substrate (Volynskii et al., 2000; Huang et al., 2005; Jia et al.,
in press), shear stresses between the film and the substrate are as-
sumed to be zero. This may lead to significant errors when Pois-
son’s ratio of the substrate is small. In this analysis, the effects of
interfacial shear stresses are accounted for following a recent study
of Mei et al. (2011), who considered a homogeneous substrate.
When the deflection w and in-plane displacement u in the film
are small, the equilibrium condition of the film reads (Mei et al.,
2011)

rn ¼ �
E�f h3

12
d4w
dx4 þ eE�f h

d2w
dx2 ;

ss ¼ E�f h
d2u
dx2 ;

ð3Þ

where E�f ¼ Ef= 1� m2
f

� �
is the plane-strain elastic modulus of the

film, Ef and mf are the elastic modulus and Poisson’s ratio of the film,
respectively. rn and ss are the normal and shear stress at the film/
substrate interface. Here e is the nominal compressive strain.
Assume that the film is perfectly bonded to the substrate. In this
case, a key issue in the wrinkling analysis is to determine the
surface displacements of the substrate subjected to the following
surface tractions

rn ¼ rn;0 cosðxxÞ
ss ¼ ss;0 sinðxxÞ

ð4Þ
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where x is the wavenumber. Recently, Muravskii (2008) derived
the solution for the surface displacements of a power-law graded
half-space under a vertical line load F as

w1ðx; y ¼ 0Þ ¼
1� v2

s

� �
qCF

EIð1þ bÞb jxj
�b sin

pq
2
¼ B1Fjxj�b ð5aÞ

u1ðx; y ¼ 0Þ ¼
1� v2

s

� �
CF

EIb
x

jxj1þb
cos

pq
2
¼ B2F

x

jxj1þb
ð5bÞ

and those under a horizontal line load T as

w2ðx; y ¼ 0Þ ¼ �
1� v2

s

� �
CT

EIb
x

jxj1þb
cos

pq
2
¼ D1T

x

jxj1þb
ð6aÞ

u2ðx; y ¼ 0Þ ¼
1� v2

s

� �
ð1þ bÞCT

EIqb
jxj�b sin

pq
2
¼ D2Tjxj�b ð6bÞ

with

C ¼ 21þb

pCð2þ bÞC
3þ bþ q

2

� �
C

3þ b� q
2

� �
; ð7Þ

where C is the Gamma function,

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ bÞ½1� bvs=ð1� vsÞ�

p
ð8Þ

B1 ¼
b1

E�I
; B2 ¼

b2

E�I
; D1 ¼ �

d1

E�I
; D2 ¼

d2

E�I
ð9Þ

E�I ¼ EI= 1� m2
s

� �
; ms is the Poisson’s ratio of the substrate, and

b1 ¼
qC

ð1þ bÞb sin
pq
2
; b2 ¼ d1 ¼

C
b

cos
pq
2

� �
;

d2 ¼
ð1þ bÞC

qb
sin

pq
2

� �
:

ð10Þ

In this paper, we invoke Muravskii’s solution given above to
solve the surface displacements of the substrate under the surface
tractions in Eq. (4). Using Eqs. (5) and (6) and the superposition
principle, we obtain

w ¼ 2 rn;0B1

Z þ1

0

cos xt
tb dt þ ss;0D1

Z þ1

0

sinxt
tb dt

� �
cos xx

u ¼ 2 �rn;0B2

Z þ1

0

sin xt
tb dt þ ss;0D2

Z þ1

0

cos xt
tb dt

� �
sin xx

ð11Þ

whereZ þ1

0

sinxt
tb dt ¼ xb�1 cos

pb
2

Cð1� bÞ; ð12aÞZ þ1

0

cos xt
tb dt ¼ xb�1 sin

pb
2

Cð1� bÞ: ð12bÞ

Letting

c1 ¼ cos
pb
2

� �
Cð1� bÞ; c2 ¼ sin

pb
2

� �
Cð1� bÞ; ð13Þ

and inserting Eq. (11) into (3), we have

b1c2 þ
E�I x1�b

2E�f x
1

12
ðhxÞ3 þ ehx

� ��1
" #

rn;0 þ d1c1ss;0 ¼ 0; ð14aÞ

� b2c1rn;0 þ d2c2 þ
E�I x1�b

2E�f x
1

hx

	 

ss;0 ¼ 0: ð14bÞ

By setting the determinant of the coefficient matrix in Eq. (14) to
zero, the critical strain can be obtained as
ec ¼
ðhxÞ2

12
þ E�I x1�b

E�f x

� 1
2hx

b1c2 � b2d1c2
1 d2c2 þ

E�I x1�b

E�f x
1

2hx

� ��1
" #�1

: ð15Þ

For a stiff film resting on a soft substrate, E�I x
1�b

2E�f x
2h� d2c2, Eq. (15)

reduces to

ec ¼
ðhxÞ2

12
þ E�I x�1�b

E�f

1
2h

b1c2 � b2d1c2
1ðd2c2Þ�1

h i�1
: ð16Þ

Eq. (16) can be rewritten as

ec ¼
ðhxÞ2

12
þ E�I x�1�b

E�f

PI

h
1� 1

tan2ðpq=2Þ tan2ðpb=2Þ

	 
�1

; ð17Þ

where

PI ¼
ð1þ bÞb

2qCCð1� bÞ sin pb
2 sin pq

2

: ð18Þ

When b ? 0, the critical strain in Eq. (17) reduces to the following
solution for the homogeneous substrate case, which was derived
by Mei et al. (2011),

ec;h ¼
ðhxÞ2

12
þ E�I

2hE�f x
1� 1

4
1� 2ms

1� ms

� �2
" #�1

: ð19Þ

Denote

n ¼ 1� 1
tan2ðpq=2Þ tan2ðpb=2Þ

: ð20Þ

Then the minimization of ec in Eq. (17) with respect to x gives the
critical wrinkling wavelength as the following closed-form

kI;c ¼ 2ph
E�f h�bn

6ð1þ bÞE�I PI

" # 1
3þb

: ð21Þ

Correspondingly the minimum critical strain ec,I is

ec;I ¼
ðhxcÞ2

12
þ E�I x�1�b

c

E�f

PI

h
1� 1

tan2ðpq=2Þ tan2ðpb=2Þ

	 
�1

; ð22Þ

where xc = 2p/kI,c. When b ? 0, the critical wrinkling wavelength
kI,c and the minimum critical strain ec,I reduce to the solutions of
Mei et al. (2011) for a homogeneous substrate.

2.3. Wrinkling of a stiff film on an exponential graded soft substrate

For the substrate with grading modulus given by the exponen-
tial function (Eq. (2)), we first derive the surface displacements un-
der the surface tractions given by Eq. (4). Here we adopted the
following equilibrium equation proposed by Plevako (1971) for a
plane strain problem

D
1
G

DL
� �

� 1
1� ms

@2L
@x2

d2

dy2

1
G

� �
¼ 0; ð23Þ

where D = @2/@x2 + @2/@y2 represents the Laplace operator. The
shear modulus G is related to the elastic modulus of the substrate
by

G ¼ Es;II

2ð1þ msÞ
¼ EII

2ð1þ msÞ
e

y
a: ð24Þ

In Eq. (23), L is a function defined by Plevako (1971). It gives the
stresses and displacements in the substrate as
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rx ¼
@4L

@x2@y2 ; ry ¼
@4L
@x4 ; ð25aÞ

sxy ¼ �
@4L
@x3@y

; ð25bÞ

us ¼ �
1

2G
ms

@2

@x2 � ð1� msÞ
@2

@y2

" #
@L
@x
; ð25cÞ

ws ¼ �
1
G

@3L

@2x@y
þ @

@y
1

2G
ms
@2L
@x2 � ð1� msÞ

@2L
@y2

 !" #
; ð25dÞ

where us and ws represent the displacements in the x and y direc-
tions, respectively. We apply the method of separation of variables
and assume

L ¼ /ðyÞ cosðxxÞ: ð26Þ

Substituting (26) into (23) leads to the following fourth-order dif-
ferential equation

/ð4Þ � 2
a

/ð3Þ þ 1
a2 � 2x2
� �

/00 þ 2x2

a
/0 þ x4 þx2

a2

ms

1� ms

� �
/ ¼ 0:

ð27Þ

Its characteristic equation is

j
x

� �4
� 2

ax
j
x

� �3
þ 1

a2x2 � 2
� �

j
x

� �2
þ 2

ax
j
x

þ 1þ 1
a2x2

ms

1� ms

� �
¼ 0: ð28Þ

Set

j
x
¼ cþ 1

2ax
; ð29Þ

then, Eq. (28) is rewritten as

c4 � 1þ 4a2x2

2a2x2 c2 þ 1
16a4x4 þ

1
2a2x2

1þ ms

1� ms
þ 1

� �
¼ 0: ð30Þ

From Eqs. (29) and (30), we get the following two characteristic
roots

j
x
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4a2x2

4a2x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2x2

ms

1� ms

s
i

vuut þ 1
2ax

; ð31Þ

where i is the imaginary unit.
By setting

1þ 4a2x2

4a2x2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a2x2

ms

1� ms

s
i ¼ re�ih; ð32Þ

then Eq. (31) becomes

j
x
¼ �A0 þ 1

2ax
� iB; ð33Þ

where

A0 ¼
ffiffiffi
r
p

cos
1
2

h

� �
B ¼

ffiffiffi
r
p

sin
1
2

h

� �
: ð34Þ

Further, we let A ¼ �A0 þ 1
2ax, then the solution of L is obtained as:

L ¼
ðeAxyðC1 sinðBxyÞ þ C2 cosðBxyÞÞ
þeðA

0þ 1
2axÞxyðC3 sinðBxyÞ þ C4 cosðBxyÞÞ

 !
cosðxxÞ; ð35Þ

where the constants C1–C4 are yet to be determined from the
boundary conditions:
� ryðy ¼ 0Þ ¼ rn;0 cosðxxÞ;�sxyðy ¼ 0Þ ¼ ss;0 sinðxxÞ ð36aÞ
ryðy ¼ 1Þ ¼ 0; sxyðy ¼ 1Þ ¼ 0: ð36bÞ

Eq. (36b) requires that C4 = C3 = 0. The stresses based on (25a) and
(25b) can be expressed as

ry ¼
@4L
@x4 ¼ eAxyðC1 sinðBxyÞ þ C2 cosðBxyÞÞx4 cosðxxÞ; ð37aÞ

sxy ¼ �
@4L
@x3@y

¼ �eAwy½ðAC1 � BC2Þ sinðBxyÞ þ ðAC2 þ BC1Þ cosðBxyÞ�x4 sinðxxÞ:

ð37bÞ

Eqs. (37) and (36a) give

C2 ¼ �
rn;0

x4 C1 ¼
1

Bx4 ðsn;0 þ Arn;0Þ: ð38Þ

Using Eq. (25), the surface displacements are determined

w ¼ ðg1rn;0 þ g2sn;0Þ
1

E�IIx
cosðxxÞ; ð39aÞ

u ¼ ðg3rn;0 þ g4sn;0Þ
1

E�IIx
sinðxxÞ; ð39bÞ

where E�II ¼ EII= 1� m2
s

� �
, and

g1 ¼ �
ms

1� ms

1
ax
þ ðA2 þ B2Þ � 1

ax
þ 2A

� �	 

;

g2 ¼ 1þ 1
1� ms

þ 2A
ax
� ð3A2 � B2Þ

	 

;

ð40Þ

g3 ¼
ms

1� ms
� ðA2 þ B2Þ

	 

; g4 ¼ �2A: ð41Þ

Inserting Eqs. (39) and (4) into Eq. (3) leads to

g1 þ
E�II
E�f

1
12
ðhxÞ3 þ ehx

� ��1
" #

rn;0 þ g2sn;0 ¼ 0; ð42Þ

g3rn;0 þ g4 þ
E�II
E�f

1
hx

� �
sn;0 ¼ 0: ð43Þ

By setting the determinant of the coefficient matrix in Eq. (43)
to zero, the critical strain is obtained as

ec ¼
ðhxÞ2

12
þ E�II

E�f

1
hx

g1 � g2g3 g4 þ
E�II
E�f

1
hx

� ��1
" #�1

: ð44Þ

For a stiff film resting on a soft substrate, E�II
E�f hx� g4, Eq. (44) reduces to

ec ¼
ðhxÞ2

12
þ E�II

E�f

1
g1hx

1� g2g3

g1g4

	 
�1

: ð45Þ

When jaxj?1, Eq. (45) degenerates to Eq. (11) in Mei et al. (2011)
for a homogeneous substrate.

For given physical and geometric parameters of the system, the
critical wrinkling wavelength kII,c can be obtained by searching x
which minimizes the critical strain in (44) or (45). ec corresponding
to x = 2p/kII,c is the minimum critical compressive strain ec,II for
the onset of wrinkling.

3. Numerical validation

In the above theoretical analysis, the film is modeled as a plate. This
requires that the wrinkling wavelength is much greater than the film
thickness and hence the film modulus should be much greater than
that of the substrate. In this section, finite element simulations are car-
ried out to demonstrate that the theoretical solutions can predict both
the critical compressive strain and wrinkling wavelength correctly,
and to identify the ranges of material parameters in which the theoret-
ical solutions are applicable.



Fig. 3. Comparison between the theoretical and finite element results, where we
take Ef = 10 GPa, vf = 0.3, hf = 0.1 mm, and EI = 20 MPa 	mm1�b. (a) Critical wrinkling
wavelength, and (b) critical compressive strain.
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Eight-node plane-strain quadrilateral reduced integration ele-
ments (CPE8R) are used to mesh the system. Convergence of the
computational results is carefully examined. Very fine meshes
are adopted to discretize the film and the region of the substrate
near the interface. The maximum ratio of the wrinkling wave-
length to the element size is as large as 5000 in order to ensure
the high accuracy of the simulation results.

The linear perturbation analysis is accomplished by using the
BUCKLE function in ABAQUS to determine the critical compressive
strain and the wrinkling wavelength. For a typical case, Figs. 3
and 4 compare the theoretical and numerical results for the critical
compressive strain and the wrinkling wavelength. For all examples
the finite element results match very well with the theoretical
solution. To identify the material parameter range in which the
theoretical solutions can predict wrinkling feature with a high le-
vel of accuracy, a series of simulations have been performed. We
explore the parameter range with 0 6 b 6 1, a/h 6 �40 and a/
h > 5, Ef/(EIl

b) P 5 and Ef/EII P 5. Here l represents the unit length.
Our results indicate for both the power-law graded substrate and
the exponential graded substrate, when the ratios of Ef/(EIl

b) and
Ef/EII are larger than 20, the present theoretical solutions match
the finite element results very well. It should be pointed out that
this study focuses on the surface wrinkling behavior; but for
a < 0 and when the substrate is long enough, a buckling mode sim-
ilar to the Euler buckling may occur first, which is beyond the
scope of this work.

4. Postbuckling evolution

The above theoretical analysis focuses on the critical buckling of
the system. In this section, we perform nonlinear finite element
simulations to examine the postbuckling evolution of the system
using a pseudo dynamic solution method, which has been success-
fully applied in recent studies (Li et al., 2011a,b; Mueller et al.,
2008). In the post-buckling analysis, the incompressible neo-Hook-
ean constitutive model is applied to characterize the deformation
of film and the substrate, with the strain energy function given by

W ¼ l
2

a2
1 þ a2

2 þ a2
3 � 3

� �
; ð46Þ

where ai (i = 1, 2, 3) stand for the principal stretches along the xi

direction and l is the initial shear modulus. Eight-noded plane-
strain hybrid elements (CPE8RH) are used for both the film and
the substrate. A linear perturbation procedure is accomplished
using the ‘‘buckle’’ function in the software. The critical eigenmode
scaled by a small factor is introduced as a geometric imperfection
into the mesh. The ratio between the amplitude of the initial imper-
fection to the film thickness is taken as A0/h = 0.05, which triggers
smoothly the wrinkling. In the post-buckling analysis, displace-
ment-controlled loading is employed with the displacement in x
direction and zero shear traction specified on the vertical sides of
the model. The nominal compressive overall strain eT applied to
the system in the post-buckling process is defined as the total com-
pressive amount divided by the original length of the model with
the geometric imperfection introduced. On the bottom surface,
the displacement in y direction and the shear traction are taken
to be zero.

We first simulate the postbuckling evolution of a planar film
resting on a soft homogeneous substrate subjected to in-plane
compression. The ratio between the shear moduli of the film and
the substrate is taken as 500. When the compression strain reaches
a critical value, regular sinusoidal wrinkles may emerge (Fig. 5a).
Further compression will trigger a period-doubling buckling
morphology (Fig. 5b). The critical compressive strain at which
the buckling morphology transition occurs is around 20%. The
results agree well with the recent experiment of Brau et al.
(2011), in which a thin stiff PDMS film bonded to a thick soft PDMS
foundation is subjected to in-plane compression, as shown in
Fig. 5c and d.

We further simulate the postbuckling evolution of a stiff film
resting on a soft elastic graded substrate. Three representative
cases are investigated, in which the shear modulus of the incom-
pressible hyperelastic substrate varies with respect to the depth,
y, via the functions (i) ls = 20y0.5 MPa, (ii) ls = 20exp(�y/8) MPa,
and (iii) ls = 20exp(y/8) MPa, respectively. For all the examples,
the film’s shear modulus is taken as 10 GPa. Several snapshots
are given in Fig. 6(a–f). It is shown that for all cases, the film first
buckles into a wavy sinusoidal morphology. Here we examine
how the wrinkling wavelength evolves from the occurrence of
the sinusoidal wrinkling to the period-doubling wrinkling stage
with the increase in the compressive strain. We monitor a wave
in the center region, and Fig. 7 shows the variation in the wrinkling
wavelength with the increase of the compressive strain eT for expo-
nential graded substrates. Brau et al. (2011) have proposed a sim-
ple formula for homogeneous substrates to predict the variation in
the wrinkling wavelength by assuming that the film is inextensible
during the post-buckling stage. Our analysis finds that for elastic
graded substrates the prediction given by this simple relation (so-
lid line in Fig. 7) matches the finite element results (points in Fig. 7)
remarkably well till the occurrence of period-doubling mode. In
addition, our post-buckling simulations clearly demonstrate that
the modulus gradient of the substrate has a marked effect on the
postbuckling morphological evolution. In both cases (i) and (ii),



Fig. 4. Comparison of our theoretical results with finite element results. The variation in the elastic modulus is described by Eq. (2). (a) Critical wrinkling wavelength under
vs = 0.44, (b) critical compressive strain of buckling under vs = 0.44, (c) critical wrinkling wavelength under vs = 0.3, (d) critical compressive strain of buckling under vs = 0.3,
(e) critical wrinkling wavelength under vs = 0, and (f) critical compressive strain of buckling under vs = 0. e0 and k0 are the critical compressive strain and the wrinkling
wavelength for a homogeneous substrate (jaj?1), which are calculated using the theoretical solutions of Mei et al. (2011).
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the shear modulus of the substrate increases from its surface to
interior. For case (i), no surface pattern transformation is observed
when the compressive strain is up to 30%. In case (ii), surface pat-
tern transformation occurs but the critical compressive strains are
greater than those corresponding to the homogeneous substrate.
When the shear modulus decreases from the boundary to the inte-
rior (case (iii), the surface pattern may evolve into doubling-period
or multi-periodic topography at a smaller compressive strain. Not-
withstanding these interesting results are insightful and may be
useful in practice, the underlying physical mechanisms are not
well understood and deserve further theoretical and experimental
efforts.
5. Discussion

The above analysis has revealed some prominent features for
the wrinkling behavior of a hard layer resting on an elastic graded
soft substrate. First, the theoretical results permit to examine how
the variation of the Young’s modulus in the substrate influences



Fig. 5. Compression-induced postbuckling evolution of the planar film-homogeneous substrate system: (a) and (b) are finite element results for the compressive strain
eA = 11.7% and eA = 20.7%, respectively; (c) and (d) represent experimental results (Brau et al., 2011) for eA = 11% and eA = 19%, respectively.

Fig. 6. Evolution of postbuckling for the film resting on an elastic graded substrate under in-plane compression. (a) and (b) are the buckling morphology for case (i) at the
compressive strain of eA = 9.6% and eA = 30%, respectively; (c) and (d) represent the buckling morphology for case (ii) at the compressive strain of eA = 20% and eA = 23.5%,
respectively; (e) and (f) are the surface pattern for case (iii) at the compressive strain of eA = 9% and eA = 14.5%, respectively.
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the onset of the buckling and the surface wrinkling wavelength.
Taking the case where the modulus varies in a power function as
an example, Fig. 3 illustrates that for a substrate with a high Poisson
ratio, the value of b does not have a significant influence on the
wrinkling wavelength. Thus, the substrate may be simplified as a
homogeneous one for the critical buckling analysis provided that
the substrate is nearly incompressible. For a hard film resting on
a homogeneous substrate, Brau et al. (2011) showed that there ex-
ists a critical compressive strain beyond which the sinusoidal
buckling mode may evolve into the doubling-period buckling mor-
phology. Such a critical strain depends only on the Poisson’s ratio
of the substrate and is basically independent of the ratio of the film
modulus to that of the substrate (Brau et al., 2011). For a stiff film
resting on an elastic graded substrate, our post-buckling analysis
shows the gradient of the elastic modulus of the substrate has sig-
nificant effects on the buckling morphological evolution under a
given Poisson’s ratio. Besides the potential applications as dis-
cussed in the introduction part, the results may also help improve
anti-wrinkling techniques. Recently, Hendricks and Lee (2007) re-
ported that for a PEM film resting on a PDMS substrate, the incor-
poration of silica nanoparticles into the film may alleviate the
compressive stress and prevent buckling. The present theoretical
results indicate another possibility to prevent wrinkling. When
nanoparticles are incorporated into the film/substrate system, they
may diffusion into the surface layer of the substrate, rendering a
gradient variation of the Young’s modulus along the depth direc-
tion. As a consequence, the critical compressive strain can be sig-
nificantly increased in comparison with that without surface
treatment according to the present theoretical analysis and hence
wrinkling may be prevented.



Fig. 7. Evolution of the postbuckling wavelength kp from the occurrence of the sinusoidal wrinkling to the beginning of period-doubling as the compressive strain increases.
(a) a/h = �80; (b) a/h = 80. Points: finite element results; solid lines: theoretical prediction. kII,c in the figure is given by the ‘‘BUCKLE’’ analysis, which perfectly matches that
calculated using Eq. (45) by replacing E�II and E�f with the initial shear modulus at the surface of the substrate ls(0) and that of the film lf.
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Finally, the limitations in this study are emphasized as follows.
Firstly, there often exists a certain magnitude of residual stresses/
strains in practical systems, which may affect the critical compres-
sive strain though their influence on the wrinkling wavelength is
generally negligible (Huang et al., 2007). Secondly, we have as-
sumed that the film is perfectly bonded to the substrate. The prop-
erties of the interface may influence the wrinkling behavior of the
film, as discussed by Pan et al. (2009). Therefore, the theoretical re-
sults derived here may be invalid if delamination occurs.
6. Conclusions

In summary, we have investigated the surface wrinkling of a
film resting on a soft elastic graded substrate engendered by in-
plane compression. For the two typical situations in which the
variations in the Young’s modulus on the substrate are described
by a power function and an exponential function, both theoretical
analysis and finite element computations have been performed.
Our analysis correlates the critical condition and pattern character-
istics of surface wrinkling with the geometric and mechanical
parameters of the system. The results may not only find applica-
tions in thin-film metrology and surface patterning but also pro-
vide insight into the formation and evolution of the surface
morphology in various living tissues.
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