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Abstract

A right R-moduleM is non-singular ifxI �= 0 for all non-zerox ∈ M and all essential right idea
I of R. The moduleM is torsion-free if TorR1 (M,R/Rr) = 0 for all r ∈ R. This paper shows tha
for a ring R, the classes of torsion-free and non-singular rightR-modules coincide if and only i
R is a right Utumi-p.p.-ring with no infinite set of orthogonal idempotents. Several example
applications of this result are presented. Special emphasis is given to the case where the m
right ring of quotients ofR is a perfect left localization ofR.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

There are several ways to extend the concept of torsion-freeness from module
integral domains to arbitrary non-commutative rings. The most straightforward app
towards such a generalization is to call a right moduleM over a ringR torsion-free in the
classical senseif, for all non-zerox ∈ M and all regularc ∈ R, one hasxc �= 0. Herec ∈ R

is regular if it is neither a right nor a left zero-divisor. However, this approach has
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limited applicability since, for instance, the set of all elements of a module annihilat
regular elements need not be a submodule unlessR is a right Ore-ring [7, Problem 3.D.16
To overcome the inherent limitations of this generalization, Goodearl introduced the n
of non-singularity in [7]. For a rightR-moduleM , the singular submodule ofM is Z(M) =
{x ∈ M | xI = 0 for some essential right idealI of R}; this takes the place of the torsio
submodule in the general setting. The moduleM is callednon-singularif Z(M) = 0, and
singular if M = Z(M), while theright singular ideal ofR is Zr(R) = Z(RR). The ring
R is right non-singularif it is non-singular as a rightR-module. In caseR is right non-
singular, the singular and the non-singular modules are the elements of, respectiv
torsion and torsion-free classes of theGoldie torsion theoryof R.

A different approach to define torsion-freeness for modules over arbitrary rings i
tivated by homological properties of torsion-free modules over an integral domain
tori used this method in [8] when he defined a rightR-moduleM to be torsion-freeif
TorR1 (M,R/Rr) = 0 for all r ∈ R. While all flat modules are torsion-free, the conve
fails in general. Dauns and Fuchs continued Hattori’s work in [5], and developed a
ory for torsion-free modules. The ringR is a torsion-free ringif all its right ideals are
torsion-free asR-modules. This is the notion of torsion-freeness used in this paper
property thatR is a torsion-free ring is right–left-symmetric. However, torsion-freene
not Morita-invariant in contrast to flatness and non-singularity as is shown in [5, E
ple 5.4], and as we will see in Theorem 5.1. In our discussion as well as in [5] an
p.p.-rings play an important role: a ringR is a right p.p.-ringif every principal right ideal
of R is projective, or equivalently, the right annihilator of every element ofR is generated
by an idempotent. IfR is a ring without an infinite family of orthogonal idempotents, th
the property thatR is a p.p.-ring is right–left-symmetric by [3, Lemma 8.4].

The goal of this paper is to investigate the relationship between torsion-freene
non-singularity. We show that the classes of torsion-free and non-singular rightR-modules
coincide if and only ifR is a right Utumi-p.p.-ring that contains no infinite set of ortho
onal idempotents (Theorem 3.7). Here, a right non-singular ringR is a right Utumi-ring
if everyS-closed right ideal ofR is a right annihilator (see [11, Chapter XII, Section 4
Here, a submoduleU of an R-moduleM is S-closedif M/U is non-singular. By [11
Chapter XII, Proposition 4.7], a right non-singular ringR is a right Utumi-ring if and
only if every non-essential right ideal has a non-zero left annihilator. The right an
Utumi-rings are exactly the right and left non-singular rings for whichQr = Q� [7, Theo-
rem 2.38]. HereQr denotes the maximal right ring of quotients ofR; see Section 2 below

Several applications of Theorem 3.7 are discussed. Particular attention is given
case whenR is a non-singular ring for whichQr is a perfect left localization ofR (i.e.,
Qr is a flat rightR-module, and the multiplication mapQr ⊗R Qr → Qr is an isomor-
phism; see [7] and [11] for details on these rings). Goodearl showed in [7, Theorem
that the right non-singular ringsR whose maximal right ring of quotientsQr is a perfect
left localization ofR are the rings for which the finitely generated non-singular right m
ules are precisely the finitely generated submodules of free modules. We shall ca
a ring right strongly non-singular. For these rings, the property that the classes of n
singular and torsion-free rightR-modules coincide is preserved by Morita equivalenc
and only if R is a right semi-hereditary ring without an infinite set of orthogonal ide
potents (Theorem 5.1). Furthermore, the latter are exactly the right strongly non-si
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rings for which the classes of torsion-free, non-singular and flat modules coincide (
rem 5.2).

Finally, we would like to mention that the termdomaindenotes a ring without zero
divisors, whileintegral domainindicates a commutative domain.

2. When non-singular modules are torsion-free

Since a ringR is always torsion-free as anR-module, any ring for which the class
of torsion-free and non-singular modules coincide has to be right non-singular. The
imal right ring Qr of quotients of such anR is (von Neumann) regular and right se
injective [7]. We begin our discussion with a technical result.

Lemma 2.1. Let R be a left p.p.-ring. The following conditions are equivalent for a ri
R-moduleM :

(a) M is torsion-free.
(b) xR is torsion-free for allx ∈ M .
(c) If xr = 0 (x ∈ M, r ∈ R) ande ∈ R is the idempotent withann�(r) = Re, thenx = xe.

Proof. (a) ⇒ (b) holds since a left p.p.-ring is a torsion-free ring, and submodule
torsion-free modules over such a ring are torsion-free [5].

(b) ⇒ (c). Supposex ∈ M such thatxr = 0 for somer ∈ R. Let e be the idempoten
of R with ann�(r) = Re. SincexR is torsion-free, there are elementsb1, . . . , bm ∈ R and
s1, . . . , sm ∈ R such thatx = xb1s1e + · · · + xbmsme by [5, Lemma 1.1]. Thus,x = xe.

(c) ⇒ (a) is a direct consequence of [5, Lemma 1.1].�
Note that [5, Lemma 1.1] also shows that torsion-free right modules are torsion-f

the classical sense: ifc is a regular element of the ring, thenxc = 0 impliesx = 0.
The next result describes the right non-singular rings for which all non-singular

modules are torsion-free. It strongly resembles [7, Proposition 5.16] which charact
the rings for which all non-singular rightR-modules are flat:

Proposition 2.2. The following are equivalent for a right non-singular ringR:

(a) R is a left p.p.-ring such thatQr is a torsion-free rightR-module.
(b) All non-singular rightR-modules are torsion-free.

Proof. (a) ⇒ (b). Let M be a non-singular rightR-module, and considerx ∈ M . Since
R is right non-singular, there is a monomorphismxR → ⊕

n Qr for somen < ω by [11,
Chapter XII, Proposition 7.2]. As a left p.p.-ring,R is a torsion-free ring. Hence, submo
ules of torsion-free modules are torsion-free (see [5, Proposition 3.6]), and, therefoxR

is torsion-free. By Lemma 2.1,M is torsion-free.
(b) ⇒ (a). SinceR is right non-singular, every right ideal ofR is torsion-free by (b)

andR is a torsion-free ring. To see thatR is a left p.p.-ring, it suffices by [5, Theorem 4.
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to show that the left annihilator of eachr ∈ R is finitely generated. Let ann�(r) = {si |
i ∈ I }; then the elementx = (si)i∈I of RI satisfiesxr = (sir)i∈I = 0. SinceRI is non-
singular, and hence torsion-free by (b), for somem < ω one can findb1, . . . , bm ∈ RI

andu1, . . . , um ∈ ann�(r) such thatx = b1u1 + · · · + bmum. Write bj = (rij )i∈I for j =
1, . . . ,m to obtainsi = ri1u1 + · · · + rimum for all i ∈ I . Therefore, ann�(r) is generated
by u1, . . . , um. Finally,Qr is a non-singularR-module, and hence torsion-free.�

Turning to the commutative case, observe that a commutative ringR is non-singular if
and only if it is semi-prime [3, Lemma 1.3].

Corollary 2.3. The following are equivalent for a commutative ringR:

(a) R is a p.p.-ring.
(b) R is a semi-prime ring such that every non-singularR-module is torsion-free.

Proof. (a) ⇒ (b). In view of Proposition 2.2, it remains to show that the maximal ring
quotients,Q, of R is torsion-free as aR-module. Letq ∈ Q andr ∈ R be such thatqr = 0.
There exists an idempotente of R such that ann(r) = Re, and an essential idealI of R

such thatqI ⊆ R. For everyx ∈ I , one hasqxr = qrx = 0, whenceqx = qxe, sinceR is
a torsion-freeR-module. Hence,(q − qe)I = 0. SinceQ is a non-singularR-module, one
obtains thatq − qe = 0; andQ is a torsion-freeR-module.

(b) ⇒ (a) is a direct consequence of Proposition 2.2.�
Proposition 2.2 applies in particular in caseQr is flat as a rightR-module:

Corollary 2.4. The following conditions are equivalent for a right non-singular ringR for
whichQr is flat as a rightR-module:

(a) R is a left p.p.-ring.
(b) All non-singular rightR-modules are torsion-free.

However, even torsion-free modules over a right and left semi-hereditary, right an
strongly non-singular ring need not be non-singular as the following result shows.
proof, we use the fact that the class of torsion-free modules is closed with respect t
tients modulo relatively divisible submodules [5, Lemma 1.3]. Here, a submoduleU of
a rightR-moduleM is relatively divisibleor an RD-submoduleif U ∩ Mr = Ur for all
r ∈ R.

Proposition 2.5. Let {Ri | i ∈ I } be an infinite family of right non-singular rings. IfR is a
subring of

∏
i∈I Ri which contains

⊕
i∈I Ri , thenR is a right non-singular ring for which

there exists a torsion-free singularR-moduleM . Moreover, theRi ’s andR can be chosen
in such a way thatR is a right and left semi-hereditary, right and left strongly non-singu
ring.
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Proof. SinceR is a right essential product of theRi ’s, it is a right non-singular ring whos
maximal right ring of quotients is

∏
i∈I Qr

i whereQr
i is the maximal right ring of quotient

of Ri ; see [7, Proposition 4.15]. SinceU = ⊕
i∈I Ri is an essential right ideal ofR, the

moduleM = R/U is singular. On the other hand, the direct sum is always (pure and h
relatively divisible in the direct product. ThusU is a relatively divisible submodule ofR.
By [5, Lemma 1.3],M is a torsion-freeR-module.

If eachRi is chosen to be a regular right and left self-injective ring, thenQr
i = Ri = Q�

i .
Therefore,R = ∏

i∈I Ri is its own maximal right and left ring of quotients. Clearly,R is
a perfect right and left localization of itself, and therefore right and left strongly
singular. �

In the discussion of maximal rings of quotients, the multiplication mapQr ⊗R Qr → Qr

plays a central role. It is an isomorphism if and only if the embeddingR ⊆ Qr is an epi-
morphism of rings by [11, Chapter XI, Proposition 1.2]. Proposition 2.5 allows u
construct a right non-singular ringR for which all non-singular right modules are torsio
free, but the multiplication mapQr ⊗R Qr → Qr is not an isomorphism: for a fieldF ,
setRn = F for all n < ω, and consider the subringR = ⊕

n<ω Rn + F1 of
∏

n<ω Rn. By
[7, Example 3.11],R is non-singular, andQr is flat as a right and leftR-module, but the
multiplication mapQr ⊗R Qr → Qr is not an isomorphism. It is easy to see thatR is a
p.p.-ring. Therefore, all non-singularR-modules are torsion-free.

3. Semi-perfect left localizations

We begin the discussion of this section by considering ringsR for which all torsion-free
right modules are non-singular.

Lemma 3.1. Let R be a left p.p.-ring such that all torsion-free rightR-modules are non
singular. Then we have:

(a) Direct sums of torsion-free injective rightR-modules are injective.
(b) Every torsion-free injective rightR-module is the direct sum of indecomposable inj

tives.

Proof. (a) LetMi (i ∈ I ) be torsion-free injective right modules. SinceR is left p.p., their
Cartesian product

∏
i∈I Mi is again a torsion-free (by [5, Corollary 4.6]) injective rig

module. The same is true for the injective hullE(
⊕

i∈I Mi) as a summand of
∏

i∈I Mi .
As

⊕
i∈I Mi is an RD-submodule of

∏
i∈I Mi , the factor module[∏i∈I Mi]/[⊕i∈I Mi]

is torsion-free. NowE(
⊕

i∈I Mi)/[⊕i∈I ]Mi is both torsion-free and singular, so the h
pothesis implies that it must be 0. Thus

⊕
i∈I Mi is injective.

(b) From (a) it follows at once that the union of a continuous well-ordered asce
chain of torsion-free injective rightR-modules is again torsion-free injective. LetM be
any torsion-free injective rightR-module, and let 0�= a ∈ M . By Zorn’s lemma, there is
an injective submoduleN of M that is maximal with respect toa /∈ N . ThenM = N ⊕ A

for some injective submoduleA of M . By maximality,A is indecomposable. This show
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that any torsion-free injective rightR-module�= 0 contains indecomposable injective su
modules. It is now routine to verify thatM is a direct sum of indecomposable injecti
submodules. �
Proposition 3.2. LetR be a left p.p.-ring such thatQr is torsion-free as a rightR-module.
If all torsion-free rightR-modules are non-singular, then every set of orthogonal idem
tents inR is finite. In particular,R is a Baer-ring.

Proof. Observe thatR is a right non-singular ring, and hence an essential submo
of Qr . By Lemma 3.1,Qr is the direct sum of indecomposable injectives. This sum m
be finite since 1∈ R can have but a finite number of non-zero coordinates. Then,R can-
not contain infinitely many orthogonal idempotents. By [3, Lemma 8.4],R is a right and
left p.p.-ring which satisfies the ascending chain condition for right and left annihila
Because of [5, Theorem 4.9],R is a Baer-ring. �
Proposition 3.3. LetR be a p.p.-ring with no infinite set of orthogonal idempotents. Th
the annihilator of an element in a torsion-free rightR-module is a principal right idea
generated by an idempotent.

Proof. Let M be a torsion-free rightR-module, 0�= x ∈ M , andA = annx. If r0 ∈ R

satisfiesxr0 = 0, then, by Lemma 2.1(c), we havex(1 − e0) = 0 for the idempotente0
with Re0 = ann� r0. If there is anr1 ∈ A \ (1− e0)R, thene0r1 �= 0, butxe0r1 = 0, so the
idempotentf ∈ R with ann�(e0r1) = R(1−f ) satisfiesx = x(1−f ) and(1−f )e0r1 = 0.

Definee1 = (1−f )e0. Thuse1r1 = 0 and 1−e0 ∈ ann�(e0r1) = R(1−f ), which shows
that (1 − e0)f = 0, e0f = f . Hencee2

1 = (1 − f )e0(1 − f )e0 = (1 − f )(e0 − f )e0 =
(1 − f )e0 = e1, i.e., e1 is an idempotent. Furthermore,e1e0 = e1 implies (1 − e0)R ⊆
(1− e1)R. This inclusion must be proper, since 0�= e0r1 /∈ (1− e0)R, bute0r1 ∈ (1− e1)R

because ofe1(e0r1) = e1r1 = 0. If there is anr2 ∈ A \ (1 − e1)R, then we continue this
process and keep going to obtain a properly ascending chain(1 − e0)R ⊂ (1 − e1)R ⊂
(1 − e2)R ⊂ · · ·. This chain has to terminate, say, at(1 − e)R (wheree2 = e), sinceR

contains no infinite set of orthogonal idempotents. We conclude thatA = (1 − e)R, as
claimed. �
Corollary 3.4. Let R be a p.p.-ring with no infinite set of orthogonal idempotents.
cyclic submodules of a torsion-free rightR-module are projective. In particular, all torsion
free(left and right) R-modules are non-singular.

Proof. Because of the right–left symmetry of the hypothesis, it suffices to consider
modules only. By Proposition 3.3, the annihilator of an elementx in a torsion-free right
R-moduleM is of the formeR for some idempotente of R. This is an essential right ide
in R only if eR = R, soZ(M) = 0. �

Observe that the hypothesis thatR has no infinite set of orthogonal idempotents can
be omitted in Proposition 3.3. Indeed, in the notation of Proposition 2.5 and its p
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R/U is torsion-free, and the annihilator idealU of 1 + U ∈ R/U is not generated by a
idempotent. Note thatU is notS-closed inR.

The maximal right ringQr of quotients of a right non-singular ringR is asemi-perfect
left localization ofR if Qr is torsion-free as a rightR-module, and the multiplicatio
mapQr ⊗R Qr → Qr is an isomorphism. Furthermore, a ringR hasfinite right Goldie-
dimension(G-dimRR < ∞) if, in R, every direct sum of non-zero right ideals has onl
finite number of summands. A ring of finite right Goldie-dimension is aright Goldie-ring
if it satisfies the ascending chain condition (ACC) for right annihilators. The semi-p
right Goldie-rings are the rings which admit a semi-simple Artinian classical right rin
quotients. Finally, by aright extendingring we mean a ringR in which every right ideal is
contained in a summand ofRR as an essential submodule.

Lemma 3.5. The following are equivalent for a ringR in which every set of orthogona
idempotents is finite:

(a) R is a Baer-ring such thatQr is a torsion-free rightR-module.
(b) R is a right Utumi-ring that is also a Baer-ring.
(c) R is a right non-singular right extending ring.
(d) R is right non-singular, and everyS-closed right ideal is generated by an idempote

Proof. For (b)⇔ (c) ⇔ (d), see 12.1 and 12.2 in [6].
(a) ⇒ (b). Baer-rings are non-singular. LetI �= R be anS-closed right ideal ofR.

Then the right moduleM = R/I is non-singular, so by [11, Chapter XII, Proposition 7
M can be embedded in

⊕
n Qr for somen < ω. SinceQr is torsion-free by assumption

Proposition 3.3 implies thatI is generated by an idempotente of R.
(d) ⇒ (a). Letx ∈ Qr andA = annr x. By (d), R is right non-singular, and henceQr

is non-singular as a rightR-module. ThereforeA is anS-closed right ideal inR. Again
by (d),A is generated by an idempotent. This means thatxR is torsion-free, and hence th
torsion-freeness ofQr follows.

The same argument applied toR leads to the conclusion thatR is a p.p.-ring. Proposi
tion 3.2 implies thatR is a Baer-ring. �

Let us point out that condition (a) in the preceding lemma might be satisfied by
with infinite sets of orthogonal idempotents, as is shown by the following example.

Example 3.6. Let Fi (i < ω) be copies of the prime field of characteristic 2, and letR be
the ring of the eventually constant vectors inF = ∏

i<ω Fi . ThenF = E(R) = Qr . Now
R is a Baer-ring with identity 1= (11, . . . ,1i , . . .) and orthogonal idempotentsei = 1i ∈
Fi ⊂ R (i < ω). To see thatQr is torsion-free, letsr = 0 with s ∈ Qr , r ∈ R. Evidently,
u = 1− r ∈ R satisfiessu = s andur = 0.

Theorem 3.7. The following are equivalent for a ringR:

(a) R is a right Goldie- right p.p.-ring, andQr is a semi-perfect left localization ofR.
(b) R is a right Utumi-p.p.-ring without an infinite set of orthogonal idempotents.



U. Albrecht et al. / Journal of Algebra 285 (2005) 98–119 105

and

le

.
se

.p.-
n-
yields
5.

se
e

s to
this
f

d
e
t
ts is

which
r
hap-
d
ap-
r,
(c) R is a right non-singular ring without an infinite set of orthogonal idempotents,
all finitely generated non-singular rightR-modules are torsion-free.

(d) A right R-module is torsion-free if and only if it is non-singular.
(e) A submodule of a torsion-free module is relatively divisible if and only if it isS-closed.

Furthermore, each ringR satisfying condition(a) is a Baer-ring and has a semi-simp
Artinian maximal right ring of quotients.

Proof. (a) ⇒ (b). By Corollary 3.4, every torsion-free rightR-module is non-singular
SinceQr is a semi-perfect localization ofR, the ringR is Baer by Proposition 3.2. Becau
of Lemma 3.5,R is a right Utumi-ring.

(b)⇒ (d). SinceR has no infinite set of orthogonal idempotents, it is a right and left p
ring if it is right or left p.p.-ring by [3, Lemma 8.4]. In view of Corollary 3.4, every torsio
freeR-module is non-singular. To see the converse, observe that [5, Theorem 4.9]
thatR is a Baer-ring. Hence,Qr is a torsion-free rightR-module because of Lemma 3.
By Proposition 2.2, all non-singular rightR-modules are torsion-free.

(d) ⇒ (e). Let M be a torsion-freeR-module, andU a submodule ofM . By [5,
Lemma 1.3],U is a relatively divisible submodule ofM if and only if M/U is a torsion-
free R-module. Since the classes of torsion-free and non-singular rightR-modules coin-
cide, the latter occurs exactly ifM/U is non-singular, i.e., if and only ifU is S-closed
in M .

(e) ⇒ (c). R is torsion-free as a rightR-module and{0} is always a relatively divisible
submodule. Therefore, by (e),{0} is S-closed inR, which is equivalent toZr(R) = 0.

For a rightR-moduleM , consider an exact sequence 0→ U → F → M → 0 whereF
is free. By [5],F is a torsion-free module. Then,M is non-singular if and only ifU is an
S-closed submodule ofM . By (e), this occurs exactly if it is relatively divisible. Becau
of [5, Lemma 1.3],U is an RD-submodule ofF if and only if M is torsion-free. Hence th
classes of torsion-free and non-singular rightR-modules coincide.

To see thatR does not contain any infinite set of orthogonal idempotents it suffice
show thatR has finite right Goldie-dimension. By [11, Chapter XIII, Proposition 3.3],
holds exactly ifD = ⊕

i∈I Qr is injective as a rightR-module. This is true by virtue o
Lemma 3.1 and the preceding paragraph.

(c) ⇒ (a). LetM be a non-singular rightR-module. Since non-singularity is inherite
by submodules, every finitely generated submoduleM is torsion-free by (c), and the sam
holds forM itself. By Proposition 2.2,R is a left p.p.-ring, andQr is torsion-free as a righ
R-module. However, a left p.p.-ring without an infinite set of orthogonal idempoten
right p.p. by [3, Lemma 8.4]. Therefore,R satisfies (b).

By what has been shown so far, conditions (b) and (e) are equivalent, and any ring
satisfies condition (e) has finite right Goldie-dimension. The ringR also has the ACC fo
right annihilators by [3, Lemma 8.4], and therefore it is a right Goldie-ring. By [11, C
ter XII, Theorem 2.5], a right non-singular ringR has finite right Goldie-dimension if an
only if its maximal right ring of quotients is semi-simple Artinian. Moreover, [11, Ch
ter XII, Corollary 2.6] shows that in this caseQr is a perfect right localization. In particula
the mapQr ⊗R Qr → Qr is an isomorphism, andQr is a semi-perfect localization ofR.
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Finally, a right p.p.-ring which satisfies the ACC for right annihilators is a Baer-ring
[5, Theorem 4.9]. �

Since a left or right Goldie-ring does not contain an infinite set of orthogonal ide
tents, we see that the class of rings satisfying Theorem 3.7 are the right p.p.-, right G
right Utumi-rings. By [6, Proposition 12.3], these are the right p.p.-, right Goldie-, righ
tending rings. Moreover, the right non-singular rings without an infinite set of orthog
idempotents satisfying the conditions of the last theorem can also be described by
closure properties of the class of torsion-free rightR-modules:

Corollary 3.8. The following are equivalent for a right non-singular ringR without an
infinite set of orthogonal idempotents:

(a) All finitely generated non-singular rightR-modules are torsion-free.
(b) The class of torsion-free modules is the torsion-free class of a hereditary torsio

ory.
(c) Submodules and essential extensions of torsion-free rightR-modules are torsion-free
(d) Submodules and the injective hull of a torsion-free rightR-module are torsion-free.

Proof. (a) ⇒ (b). As before, all non-singular rightR-modules are torsion-free. By The
rem 3.7,R is a right p.p.-ring, and hence both a torsion-free and a right non-singular
Therefore, submodules of torsion-free modules are torsion-free. SinceR is also left p.p.,
the class of torsion-free modules is closed under products and extensions by [5].
quently, it is the torsion-free class of a torsion theory of rightR-modules. To establish tha
this torsion theory is hereditary, it suffices to show that the class of torsion-free mo
is closed under essential extensions [11, Chapter VI, Proposition 3.2]. LetM be a right
R-module containing an essential submoduleU which is torsion-free. By Theorem 3.
U is non-singular, and the same holds forM since the class of non-singular modules
closed with respect to essential extensions. Another appeal to Theorem 3.7 yieldsM

is torsion-free.
(b) ⇒ (c). Since the class of torsion-free modules is the torsion-free class of a to

theory, it is closed with respect to submodules. Furthermore, ifM is a torsion-free module
then the same holds for its injective hullE(M), since the torsion theory is heredita
However, any essential extension ofM is isomorphic to a submodule ofE(M), and hence
torsion-free.

(c) ⇒ (d) is obvious.
(d) ⇒ (a). LetM be a finitely generated non-singular rightR-module. By [11, Chap

ter XII, Proposition 7.2],M can be embedded into
⊕

n Qr for somen < ω. However,Qr

is the injective hull ofR as a rightR-module, and hence torsion-free by (d). Another
plication of (d) yields thatM is torsion-free as a submodule of a torsion-free module.�

In particular, the Goldie torsion theory is the only hereditary torsion theory over a
non-singular ring without an infinite family of orthogonal idempotents whose torsion
class is the class of torsion-free modules.
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An important class of rings arising in the discussion of non-singular rings is the cla
the reduced rings [11, Chapter XII, Section 5]. A ringR is reducedif it does not contain any
nilpotent elements. By [11, Lemma 5.1], every reduced ring is right and left non-sing

Corollary 3.9.

(a) The following are equivalent for a ringR:
(i) R is a reduced ring for which the classes of torsion-free and non-singular r

R-modules coincide.
(ii) R = R1×· · ·×Rn where eachRi is a domain which has right Goldie-dimension1.

(b) In caseR is a domain, the classes of torsion-free and non-singular rightR-modules
coincide if and only ifG-dimRR = 1.

Proof. (a) (i) ⇒ (ii). Since the classes of torsion-free and non-singular rightR-modules
coincide,R is a right p.p.-ring without an infinite family of orthogonal idempotents. Hen
there are primitive idempotentse1, . . . , en ∈ R such that 1R = e1 +· · ·+ en. By [11, Chap-
ter I, Lemma 12.2], every idempotent ofR is central, andR = R1 × · · · × Rn where
Ri = eiRei . Supposer, s ∈ Ri with rs = 0. There is a central idempotente ∈ R such that
annr (r) = eR. Sinceei is central,eie andei − eie are orthogonal idempotents ineiRei

with ei = eie + (ei − eie). Becauseei is primitive, eithereie = ei or eie = 0. In the first
case,ei ∈ annr (r) and r = eirei = 0. On the other hand, ifeie = 0, thens = es yields
s = eisei = eiesei = 0. Therefore,Ri is a domain. Since by Theorem 3.7R has finite right
Goldie-dimension, the same holds for each of theRi ’s. However, a domain with finite righ
Goldie-dimension has right Goldie-dimension 1.

(ii) ⇒ (i). Clearly, R cannot have any nilpotent elements. SinceRi is a domain with
finite right Goldie-dimension, it is a right Ore-domain, and its classical ring of quot
is a division algebraQi . Then,Qi is the maximal right ring of quotients ofRi , and is
torsion-free in the classical sense. By [5, Remark (2)],Qi is torsion-free, and the sam
holds forQ = Q1 ×· · ·×Qn. It is easy to see thatQ is the maximal right ring of quotient
of R. In particular,Q is a torsion-freeR-module. Furthermore,R obviously is a reduced
right and left p.p.-ring. By Theorem 3.7, the classes of torsion-free and non-singula
R-modules coincide.

(b) is a direct consequence of (a).�
In particular, every reduced ringR for which the classes of torsion-free and non-singu

right R-modules coincide is a right Utumi-ring. However,Qr need not be flat as a righ
R-module even in this case. For instance, letR be a domain which has right Goldie
dimension 1, but infinite left Goldie-dimension (see, e.g., [3]). Then,R has a classica
right ring of quotients,Qr , which is a division algebra, and the classes of torsion-free
non-singular rightR-modules coincide by Corollary 3.9. On the other hand,Qr is not equal
to the maximal left ringQ� of quotients ofR, which cannot consequently be torsion-fr
as a leftR-module by Theorem 3.7 (or [5, Theorem 7.1]). Furthermore,Qr is not flat as a
right R-module for this ringR. Indeed, if it were, thenR would be a right strongly non
singular ring. As we will see in Corollary 4.3, the classes of non-singular and torsion
left R-modules will also coincide in this setting, which results in a contradiction.
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In particular, a ring for which the classes of torsion-free and non-singular rightR-mo-
dules coincide need not be right strongly non-singular. However, such rings do not e
the commutative setting:

Corollary 3.10. The following are equivalent for a commutative ringR:

(a) The classes of torsion-free and non-singularR-modules coincide.
(b) R is a strongly non-singular p.p.-ring without an infinite set of orthogonal idempote
(c) R = R1 × · · · × Rn where eachRi is an integral domain.

Proof. (a)⇒ (c). SinceR is torsion-free as anR-module, it is non-singular. However, th
notions of being reduced, non-singular or semi-prime coincide for commutative ring
Corollary 3.9,R is the finite product of (integral) domains.

(c) ⇒ (b). It is easily checked thatR is a p.p.-ring of finite Goldie-dimension. Moreove
each finitely generated non-singularR-moduleM is of the formM = M1 ⊕ · · · ⊕ Mn

where eachMi is a non-singularRi -module. Thus, eachMi can be embedded into a fre
Ri -module. Consequently,M is isomorphic to a submodule of a freeR-module, andR is
a strongly non-singular ring.

(b)⇒ (a). In view of Theorem 3.7, it remains to show that the maximal ring of quotie
Q, of R is a torsion-freeR-module. However, this holds since, by Corollary 2.3, all n
singularR-modules are torsion-free.�

4. Perfect left localizations

We now consider the right strongly non-singular ringsR such that the classes of torsio
free and non-singular rightR-modules coincide. Our first result describes when the r
and left maximal ring of quotients coincide and are semi-simple Artinian. Rings with
property will be the central focus of this and the following section.

Proposition 4.1. The following are equivalent for a right and left non-singular ringR:

(a) Qr = Q�, andQr is a semi-simple Artinian ring.
(b) G-dimR R = G-dimRR < ∞ andG-dimR Qr = G-dimQr

R .

Proof. (a) ⇒ (b). Observe thatQr is always a rational, and hence an essential exten
of R, soG-dimQr

Qr = G-dimQr
R = G-dimRR . A similar result holds forQ�.

SinceQr is semi-simple Artinian andQr = Q� = Q, [11, Chapter XII, Theorem 2.5
yields thatQ = Matn1(D1) × · · · × Matnr (Dr) whereD1, . . . ,Dr are division algebras
Thenn1 + · · · + nr is both the right and left Goldie-dimension ofQ as aQ-module. The
remark in the preceding paragraph implies that all the four indicated Goldie-dimen
are equal.

(b) ⇒ (a). SinceR has finite right Goldie-dimension,Qr is a semi-simple Artinian ring
[11, Chapter XII, Theorem 2.5]. SettingQ = Qr , we will show thatQ� = Q as well. As
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RR is an essential submodule ofQr , their Goldie-dimensions are equal, and one has

G-dimR R = G-dimRR = G-dimQr
R = G-dimR Qr < ∞.

Consequently,R is an essential submodule ofQ also as a leftR-module. SinceR is
left non-singular,Q is a rational extension ofR on the left, so it is a left quotient rin
of R. SinceQ is semi-simple Artinian also as a leftQ-module, it has no proper essent
extensions. Hence, by [7, Theorem 2.30],Q is the maximal left ring of quotients ofR, and
Q = Q�. �
Theorem 4.2. The following are equivalent for a ringR:

(a) R is a right and left non-singular ring without an infinite set of orthogonal idempot
such that everyS-closed one-sided ideal is generated by an idempotent.

(b) R is a right or left p.p.-ring such thatQ� = Qr is semi-simple Artinian.
(c) R is a right strongly non-singular right p.p.-ring which does not contain an infinite

of orthogonal idempotents.
(d) R is a right strongly non-singular ring for which the classes of torsion-free and n

singular rightR-modules coincide.
(e) The following are equivalent for a rightR-moduleM :

(i) M is torsion-free.
(ii) M is non-singular.

(iii) The injective hullE(M) of M is flat.

Proof. (a) ⇒ (b). Let I be anS-closed right (left) ideal. SinceI is generated by a
idempotente, it is the right (left) annihilator of 1− e. Hence,R is a right and left Utumi-
p.p.-ring without an infinite set of orthogonal idempotents. Therefore,Qr = Q� by [7,
Theorem 2.38]. Moreover,Qr is torsion-free, and henceQr is semi-simple Artinian by
Theorem 3.7.

(b) ⇒ (c). Without loss of generality,R is a right p.p.-ring. By [11, Chapter XII
Theorem 2.5], the fact thatQr is semi-simple Artinian yields thatR has finite right Goldie-
dimension, and therefore has no infinite set of orthogonal idempotents. Because
Lemma 8.4],R is a left p.p.-ring.

In order to verify thatR is right strongly non-singular it remains to show thatQr is
a perfect left localization ofR. By [11, Chapter XII, Corollary 2.6],Qr is a perfect right
localization ofR since it is semi-simple Artinian. Therefore, the multiplication mapQr ⊗R

Qr → Qr is an isomorphism. Furthermore, sinceQr is semi-simple Artinian,Qr = Q�

yields thatQr is flat as a rightR-module; cf. [11, Chapter XI, Proposition 5.4]. Therefo
Qr is a perfect left localization ofR.

(c) ⇒ (d). SinceR is right strongly non-singular,Qr is a flat rightR-module, and henc
torsion-free. Now apply Theorem 3.7.

(d) ⇒ (e). It remains to show the equivalence of (ii) and (iii). Because the classes o
singular and torsion-free rightR-modules coincide, the ringQr is semi-simple Artinian by
Theorem 3.7. Therefore, the injective hull of a non-singular rightR-moduleM is a right
Qr -module; see [11, Chapter XII, Corollary 2.8]. Consequently,E(M) is isomorphic to
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I Qr for some index-setI sinceQr is semi-simple Artinian. As
R is strongly right non-singular, the latter module is flat, and the same holds forE(M).
Conversely, sinceR is a right p.p.-ring by Theorem 3.7, it is torsion-free. Thus, submod
of flat modules are torsion-free.

(e) ⇒ (a). Because of the equivalence of (i) and (ii), Theorem 3.7 yields thatR is
a right p.p.-ring without an infinite set of orthogonal idempotents such thatQr is semi-
simple Artinian. As the injective hull ofRR , Qr is flat by (d). Hence, [11, Chapter X
Proposition 5.4] yieldsQr = Q�. By [7, Theorem 2.38],R is a right and left Utumi-ring
Thus everyS-closed one-sided idealI of R is an annihilator, sinceR is also a left p.p.-ring
By Theorem 3.7,R is a Baer-ring, and thereforeI is generated by an idempotent.�

Since conditions (a) and (b) in Theorem 4.2 are right–left symmetric, it is of co
also equivalent to the left module version of conditions (c), (d), and (e). In particular
obtains

Corollary 4.3. The following are equivalent for a ringR:

(a) R is a right strongly non-singular ring for which the classes of torsion-free and n
singular rightR-modules coincide.

(b) R is a left strongly non-singular ring for which the classes of torsion-free and n
singular leftR-modules coincide.

(c) The classes of torsion-free and non-singular modules coincide for right and leftR-mo-
dules.

Proof. It remains to show that (c) implies (a). By Theorem 3.7,R is a right and left Utumi-
p.p.-ring such thatQr is semi-simple Artinian. Now apply Theorem 4.2.�

Furthermore, ifR is a right strongly non-singular p.p.-ringR which does not contain a
infinite set of orthogonal idempotents, then one obtains the following characterizat
finitely generated torsion-free modules which resembles the one for finitely generate
singular modules in [7, Theorem 5.17]: a finitely generated rightR-module is torsion-free
if and only if it is isomorphic to a submodule of a free module.

Let R be a semi-prime right and left Goldie-ring. By [7, Theorems 3.35 and 3.37],R is
a right and left non-singular ring, and there exists a semi-simple Artinian ringQ which
is the right and left classical rings of quotients ofR as well as the maximal right an
left ring of quotients ofR. By [11, Chapter XI, Proposition 5.4],Q is flat as a right and
left R-module. Because of [11, Chapter XII, Corollary 2.6],Q is a perfect right and lef
localization ofR, i.e.,R is a right and left strongly non-singular ring. Furthermore, ev
essential right (left) ideal ofR contains a regular elementc of R [3,7]. SincecR andRc

are essential inR [7], an R-module is non-singular if and only if it is torsion-free in th
classical sense. Furthermore, these rings are the only right Ore-rings for which the co
of non-singularity and classical torsion-freeness coincide (e.g., see [7, Problem 3.D

By virtue of the above, torsion-free singular modules do not exist over semi-p
Goldie-rings, because—as we have pointed out after Lemma 2.1—torsion-free rightR-mo-
dules are torsion-free in the classical sense.
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Theorem 4.4. The following are equivalent for a semi-prime ringR:

(a) R is a right and left Goldie-ring which is a p.p.-ring.
(b) The following are equivalent for a right or leftR-moduleM :

(i) M is non-singular.
(ii) M is torsion-free.

(c) R is a right p.p.-ring without an infinite set of orthogonal idempotents such that e
finitely generated submodule ofQr is contained in a cyclic free submodule.

(d) R is a right p.p.-ring without an infinite family of orthogonal idempotents such
Qr is flat as a rightR-module.

Proof. (a) ⇒ (c). Let U be a finitely generated submodule ofQr . Without loss of gen-
erality, it suffices to consider the case whereU is generated by two elements,a andb.
BecauseR is a left Ore-domain, there arer, s ∈ R as well as regular elementsc andd

of R such thata = c−1r andb = d−1s. Select regular elementsc1 andd1 in R such that
d1c = c1d . Then,a = c−1d−1

1 d1r = (d1c)
−1d1r andb = d−1c−1

1 c1s = (c1d)−1c1s. There-
fore,aR + bR ⊆ (c1d)−1R, and the latter module is free.

(c) ⇒ (b). SinceR has no infinite set of orthogonal idempotents,R is a left p.p.-ring.
Moreover,R is a torsion-free ring, and submodules of torsion-free modules are tor
free. Therefore, all finitely generated submodules ofQr are torsion-free. By Lemma 2.1
Qr is a torsion-free rightR-module. Because of Theorem 3.7, the classes of non-sin
and torsion-free rightR-modules coincide. Another application of Theorem 3.7 yields
R is a right Goldie-ring. SinceR is semi-prime, it has classical right ring of quotients,Q,
which is also the maximal right ring of quotients ofR. The ringQ is semi-simple Artinian
so it is flat as a leftR-module; see [11, Corollary 2.6]. Once we have established thatQ is
also the classical left ring of quotients, (b) follows by symmetry. Since classical righ
left rings of quotients coincide if they exist, it remains to show thatR is a left Ore-ring.

To see this, letr, c ∈ R with c regular, and consider the submodule ofQr generated by
rc−1 andc−1. There existq ∈ Qr ands1, s2 ∈ R such thatr = qs1 andc−1 = qs2. Then
1= cqs2 yields thats2 is a right regular element ofR. SinceR is a semi-prime right Goldie
ring, right regular elements are regular. Hence,s2 is invertible inQ, andq = c−1s−1

2 =
(s2c)

−1. Therefore,rc−1 = qs1 = (s2c)
−1s1, andR satisfies the left Ore-condition.

To verify (b) ⇒ (a), observe thatR is a right and left Goldie-ring by Theorem 3.7 a
its analogue for left modules.

Because of Theorem 4.2,R is a right strongly non-singular ring, and (b)⇒ (d)
holds. To prove that (d) implies (b), by Corollary 4.3 it remains to show thatQr is a
perfect left localization ofR. For this, it suffices to check that the multiplication m
λ :Qr ⊗R Qr → Qr is a monomorphism. Letq1j , q2j ∈ Qr for j = 1, . . . , n such that∑n

j=1 q1j q2j = 0. Observe that a right p.p.-ring without an infinite family of orthogo
idempotents such thatQr is flat as rightR-module is a right Goldie-ring by Theorem 3.
Therefore,Qr is the classical right ring of quotients ofR. Hence, there arerij ∈ R for
i = 1,2 andj = 1, . . . , n and a regulart ∈ R with qij = rij t

−1. Chooses2j ∈ R and a
regulart1 ∈ R such thatr2j t1 = ts2j . Thus

∑n
j=1 q1j ⊗ q2j = ∑n

j=1 r1j t
−1 ⊗ r2j t

−1 =
∑n

j=1 r1j t
−1 ⊗ t t−1r2j t

−1 = ∑n
j=1 r1j ⊗ s2j t

−1t−1 = ∑n
j=1 1 ⊗ r1j s2j t

−1t−1 = 1 ⊗ q
1 1
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whereq = ∑n
j=1 r1j s2j t

−1
1 t−1 ∈ Qr . Then 0= λ(

∑n
j=1 q1j ⊗ q2j ) = λ(1⊗ q) = q, andλ

is one-to-one. �
For reduced rings, we obtain the following result:

Corollary 4.5.

(a) The following are equivalent for a ringR:
(i) R is a reduced right strongly non-singular ring for which the classes of tors

free and non-singular rightR-modules coincide.
(ii) R = R1 × · · · × Rn where each ringRi has right and left Goldie-dimension1.

(b) Let R be a domain. Then,R is strongly non-singular, and the classes of torsio
free and non-singular rightR-modules coincide if and only ifG-dimRR = 1 and
G-dimR R = 1.

Proof. Combine Theorems 4.2 and 4.4 with Corollary 3.9.�

5. Torsion-freeness and Morita-equivalence

Let S = Z[x] be the ring of polynomials overZ, andF its field of quotients. Then
R = Mat2(S) is a semi-prime right and left Goldie-ring. However,R is not a right or
left p.p.-ring, becauseZ[x] contains a non-projective ideal generated by two element
Theorem 8.17]. Therefore, all torsion-freeR-modules are non-singular, but in view of Th
orem 3.7 there exists a non-singularR-module which is not torsion-free. This example a
shows that the equality of the classes of non-singular and torsion-free rightR-modules is
not preserved under Morita-equivalence even ifR is a right strongly non-singular ring.

Theorem 5.1. The following are equivalent for a ringR:

(a) R is a right strongly non-singular right semi-hereditary ring without an infinite se
orthogonal idempotents.

(b) Every ring S Morita-equivalent toR is strongly non-singular, and the classes
torsion-free and non-singular rightS-modules coincide.

Proof. (a) ⇒ (b). Let F :MR → MS andG :MS → MR be an equivalence. By Theo
rem 3.7,R is a right Goldie-ring, andQr(R) is a semi-simple Artinian ring. Becaus
of [11, Chapter X, Proposition 3.2], the ringsQr(S) andQr(R) are Morita-equivalent
Hence,Qr(S) is semi-simple Artinian too. Observe thatS is non-singular if and only if
Qr(S) is a regular ring (cf. [11, Chapter XII, Proposition 2.2]), and the latter holds
Qr(S). Moreover,S has finite right Goldie-dimension, since it is a right non-singular r
with a semi-simple Artinian right ring of quotients. It remains to show thatS is strongly
right non-singular. Once this has been established, Theorem 4.2 will guarantee t
classes of non-singular and torsion-free rightS-modules coincide.

Let M be a finitely generated non-singularS-module. SinceS is a right non-singula
ring, M is isomorphic to a submodule of

⊕
n Qr(S) for somen < ω, and G(M) is
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isomorphic to a submodule ofG(
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n Qr(S)). ButQr(S) being the injective hull ofS as an
S-module yields thatG(Qr(S)) is the injective hull ofG(S) by [2, Proposition 21.6]. Sinc
G(S) is a projectiveR-module, it is non-singular, and the same holds forG(Qr(S)). Conse-
quently,G(M) is a non-singularR-module which is in view of [2, Proposition 21.6] finite
generated. SinceR is right strongly non-singular, there is a projective rightR-moduleP

such thatG(M) is isomorphic to a submodule ofP . ThenM ∼= FG(M) is isomorphic to a
submodule ofF(P ) which is a projectiveS-module.

(b) ⇒ (a). Obviously,R is a strongly non-singular ring for which the classes of torsi
free and non-singular rightR-modules coincide. ThusR has finite right Goldie-dimension
and contains no infinite set of orthogonal idempotents. It remains to show thatR is right
semi-hereditary. Observe that Matn(R) is Morita-equivalent toR for all 0 < n < ω. Since
the classes of non-singular and torsion-free right Matn(R)-modules coincide, Matn(R) is
a right p.p.-ring for alln < ω by Theorem 3.7. Hence, for each suchn, every right ideal of
R which is generated by at mostn elements is projective by [3, Theorem 8.17], i.e.,R is
right semi-hereditary. �

In [4], Chatters and Khuri investigated right non-singular right Goldie-rings for w
every finitely generated non-singular right module is projective. In view of the prev
results of this paper, these are exactly the rings discussed in previous theorem.

We now turn to additional characterizations of the rings discussed in Theorem 5
particular, we show that they are the rings for which the classes of (torsion-free,)
singular and flat modules coincide, thus completing the discussion in [7, Proposition
and [1, Theorem 1].

Theorem 5.2. The following are equivalent for a ringR:

(a) R is right and left semi-hereditary such thatQr = Q� is semi-simple Artinian.
(b) R is a right strongly non-singular right semi-hereditary ring without an infinite se

orthogonal idempotents.
(c) R is a left semi-hereditary ring without an infinite set of orthogonal idempotents

thatQr is flat as a rightR-module.
(d) The following are equivalent for a rightR-moduleM :

(i) M is torsion-free.
(ii) M is non-singular.

(iii) M is flat.
(e) The following are equivalent for a submoduleU of a torsion-free rightR-moduleM :

(i) U is relatively divisible inM .
(ii) U is S-closed inM .

(iii) The sequence0→ U → M → M/U → 0 is pure-exact.
(f) The classes of flat and non-singular rightR-modules coincide.

Proof. (a)⇒ (b). By Theorem 4.2,R is right strongly non-singular and has no infinite
of orthogonal idempotents.

(b) ⇒ (c). Clearly,R is right non-singular. SinceQr is a left perfect localization ofR,
the rightR-moduleQr is flat. In view of [11, Chapter XII, Corollary 7.4],R is left semi-
hereditary.
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(c) ⇒ (d). SinceR has no infinite set of orthogonal idempotents, it is a right p.p.-ring
[3, Lemma 8.4]. Because of Theorem 3.7, the classes of torsion-free and non-singula
ules coincide. Since every flat module is torsion-free, it remains to show that non-sin
modules are flat. However, sinceR is right non-singular, this is a direct consequence of
Proposition 5.16].

(d) ⇒ (e). LetM be a torsion-free rightR-module, andU a submodule ofM . To see
(i) ⇒ (ii), assume thatU is relatively divisible inM . By [5], M/U is torsion-free, and
hence non-singular by (d), i.e.,U is S-closed inM .

(ii) ⇒ (iii). If U is S-closed inM , thenM/U is non-singular. By (d), it is flat, and th
sequence 0→ U → M → M/U → 0 is pure.

(iii) ⇒ (i). If the given sequence is pure, then observe thatM is flat because of (d)
Therefore,M/U is flat. But flat modules are torsion-free, and henceU is a relatively
divisible submodule ofM .

(e) ⇒ (a). Since a submodule of a torsion-free module isS-closed if and only if it is
relatively divisible, Theorem 3.7 implies thatR is a right p.p.-ring with no infinite set o
orthogonal idempotents. Moreover,R is right and left non-singular, andQr is semi-simple
Artinian. By [11, Chapter XII, Corollary 2.6],Qr is a perfect right localization ofR. In
particular, the multiplication mapQr ⊗R Qr → Qr is an isomorphism.

Let M be a non-singular rightR-module, and consider an exact sequence 0→ U →
F → M → 0 whereF is free. SinceU is anS-closed submodule ofM , andF is flat,
the sequence is pure-exact by (e), andM is flat. [7, Proposition 5.16] yields thatR is a
left semi-hereditary ring andQr is flat as a rightR-module. Hence from [11, Chapter X
Proposition 5.4] we conclude thatQr = Q�, sinceQr is semi-simple Artinian. Thus,Q� is
a perfect right localization ofR. However, by [11, Chapter XII, Corollary 7.4], a left sem
hereditary ringR for whichQ� is a right perfect localization ofR is right semi-hereditary

Since (d)⇒ (f) is obvious, it remains to show (f)⇒ (c). SinceRR is flat, R is a right
non-singular ring. By [7, Proposition 5.16],R is left semi-hereditary, andQr is flat as a
right R-module. We need only to show thatR has no infinite set of orthogonal idempoten
For this, letI be an infinite set, and consider the rightR-moduleM = ⊕

i∈I Qr . Denote
its injective hull byE. Clearly,M is pure inE, since the direct sum of theQr is pure in
their direct product in whichE is a submodule. Next observe thatE is non-singular, since
Qr is a non-singular module. ThenE is flat by (f), and the same holds forE/M . Using (f)
once more yields thatE/M is non-singular. SinceM is essential inE, this is possible only
if E = M . By [11, Chapter XIII, Proposition 3.3],R has finite right Goldie-dimension, an
therefore contains no infinite set of orthogonal idempotents.�

Of course the right–left symmetry observed in Section 4 exists in this setting
Furthermore, using Corollary 3.10, one obtains that the commutative rings satisfying
orem 5.2 are the finite products of Prüfer-domains.

Corollary 5.3. The following are equivalent for a right non-singular ringR without an
infinite set of idempotents:

(a) R is a right strongly non-singular right semi-hereditary ring.
(b) The class of flat rightR-modules is the torsion-free class of a hereditary torsion the
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Proof. (a) ⇒ (b). By Theorem 5.2, the class of flat rightR-modules coincides with th
class of non-singular modules which is the torsion-free class of the hereditary Gold
sion theory.

(b) ⇒ (a). Since the class of flat modules is closed with respect to submodules,
right ideal ofR is flat, andR is a torsion-free ring. IfM is a non-singular rightR-module,
then every finitely generated submoduleU of M is isomorphic to a submodule of

⊕
n Qr

for somen < ω by [11, Chapter XII, Proposition 7.2]. AsQr is the injective hull of the
flat moduleR, it is also flat since the class of flat modules forms the torsion-free cla
a hereditary torsion theory [11, Chapter VI, Proposition 3.2]. Thus,U is flat. However,
a module is flat whenever all its finitely generated submodules are flat. Hence, al
singular rightR-modules are flat. By [7, Proposition 5.16],R is left semi-hereditary, an
Qr is flat as a rightR-module. Because of Theorem 5.2,R is also right semi-hereditar
and right strongly non-singular.�

Theorem 5.2 applies in particular ifR is a semi-prime right and left Goldie-ring. Sem
prime semi-hereditary Goldie-rings were discussed [9].

Corollary 5.4. The following are equivalent for a semi-prime ringR:

(a) R is a right and left semi-hereditary right and left Goldie-ring.
(b) The following are equivalent for every right or leftR-moduleM :

(i) M is torsion-free.
(ii) M is non-singular.

(iii) M is flat.
(c) R is a right semi-hereditary ring without an infinite set of orthogonal idempotents

that every finitely generated submodule ofQr is contained in a cyclic free submodu

Proof. Combine Theorems 5.2 and 4.4.�
This section concludes with an example of a right and left strongly non-singular h

itary ringR without an infinite set of orthogonal idempotents which is not semi-prime

Theorem 5.5. The following are equivalent for a right and left Noetherian ringR:

(a) R = R1 × · · · × Rn where eachRi is either a prime right and left hereditary ring, o
is Morita-equivalent to a lower triangular matrix ring over a division algebra.

(b) The following are equivalent for each rightR-moduleM :
(i) M is torsion-free.
(ii) M is non-singular.

(iii) M is flat.

Proof. (a) ⇒ (b). If Ri is a prime ring, then (b) holds forRi because of Corollary 5.4
On the other hand, ifRi is Morita-equivalent to a lower triangular matrix ring over a
vision algebra, thenRi is right non-singular ring, and all non-singular rightR-modules
are projective by [7, Proposition 5.22]. In particular,Qr(Ri) is flat as a rightRi -module.
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Furthermore, [7, Theorem 5.21] implies thatRi is right and left semi-hereditary. SinceRi

has no infinite set of orthogonal idempotents, Theorem 5.2 yields that (b) holds foRi .
ThusR is the product of rings satisfying (b), and therefore it also satisfies (b).

(b) ⇒ (a). By Theorem 5.2,R is a right semi-hereditary ring. SinceR is right and left
Noetherian, it is right hereditary, and left hereditary by [3, Corollary 8.18]. Consequ
R = R1 × · · ·×Rn where eachRi is prime or right and left Artinian by [3, Theorem 8.22
Without loss of generality, we may assume that eachRi is indecomposable as a ring. AsRi

also satisfies (b), it remains to show that a right and left Artinian indecomposable ringR for
which the classes of torsion-free, flat, and non-singular right modules coincide is M
equivalent to a lower triangular matrix ring over a division algebra. By Theorem 5.2
maximal right and left rings of quotients ofR are equal. Hence, [7, Theorem 5.23] yie
thatR is a right non-singular ring for which all non-singular modules are projective. S
R is indecomposable, it is Morita-equivalent to a lower triangular matrix ring over a
sion algebra because of [7, Theorem 5.27].�

In particular, every lower triangular matrix ring over a division algebra is an exa
of a ring which is not semi-prime, but for which the classes of torsion-free, flat, and
singular modules coincide.

6. Applications

In this section, we show that modules over rings satisfying the equivalent conditio
Theorem 3.7 behave in many ways similar to those over integral domains (e.g., se
Chapter 8]).

Hattori [8] calls a rightR-moduleM divisible if Ext1R(R/rR,M) = 0 for everyr ∈ R.
Injective modules are obviously divisible.

Proposition 6.1. Let R be a right Utumi-p.p.-ring without an infinite set of orthogon
idempotents.

(a) Every torsion-free divisible rightR-module is injective.
(b) A right R-module is torsion-free if and only if it is an essential extension of a projec

module.

Proof. (a) Let M be a divisible torsion-free module. Its injective hullE(M) is torsion-
free by Corollary 3.8. SinceM is divisible, it is a relatively divisible submodule ofE(M).
Therefore,E(M)/M is torsion-free. Theorem 3.7 yields thatE(M)/M is non-singular.
SinceM is essential inE(M), this is possible only ifM = E(M).

(b) Let M be an essential extension of a projective moduleP . SinceP is torsion-free,
the same holds forM by Theorem 3.7. Conversely, letM be a torsion-free module. B
Theorem 3.7,M is non-singular. Consider the set� = {S ⊆ M | ∑x∈S xR is a direct sum}.
Since forming a direct sum is of finite character, there is a maximal subsetS0 ∈ �. LetV be
theS-closure of

⊕
S xR in the non-singular moduleM . It remains to show thatM = V .
0
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If M �= V , then letx ∈ M \ V , and considerI = {r ∈ R | xr ∈ V }. SinceM/V is non-
singular,I is not an essential right ideal ofR, and there is a non-zero right idealJ of R

with I ∩ J = 0. Then,xJ ∩ V = 0, butxJ �= 0. If y is a non-zero element ofxJ , then
S0 ∪ {y} ∈ �, a contradiction. The conclusion is that injective hulls of torsion-free mod
are torsion-free. �

Both R andQr areR-R-bimodules, and the embeddingR → Qr is a bimodule map
Therefore,Qr/R carries a natural bimodule structure that makes both− ⊗R Qr and
TorR1 (−,Qr/R) right R-modules.

If R is a right Utumi-p.p-ring without an infinite set of orthogonal idempotents, then
torsion-free modules form the torsion-free class of a hereditary torsion theory by C
lary 3.8. The associated class oftorsion moduleshas to be the class of singular modu
since the torsion-free class of this torsion-theory coincides with the class of non-sin
modules by Theorem 3.7.

Lemma 6.2. LetR be a right Utumi-p.p-ring without an infinite set of orthogonal idem
tents. A rightR-moduleM is torsion if and only ifM ⊗R Qr = 0.

Proof. Let M be a singular rightR-module, and consider an element of the formx ⊗ q

for somex ∈ M andq ∈ Qr . There is an essential right idealI of R such thatxI = 0.
From [7, Proposition 2.32] it follows thatIQr is an essential right ideal ofQr . However,
Theorem 3.7 shows thatQr is semi-simple Artinian. This is possible only ifIQr = Qr .
Hence, there arei1, . . . , ik ∈ I andq1, . . . , qk ∈ Qr satisfyingq = i1q1 + · · · + ikqk . Con-
sequently,x ⊗ q = x ⊗ (i1q1 + · · · + ikqk) = xi1 ⊗ q1 + · · · + xik ⊗ qk = 0.

Conversely, letM be a rightR-module withM ⊗R Qr = 0. We obtain the exact se
quence 0= M ⊗R Qr → (M/Z(M)) ⊗R Qr → 0 from which M/Z(M) ⊗R Qr = 0
follows. Let E be the injective hull ofM = M/Z(M). We obtain the exact sequen
0= M ⊗R Qr → E ⊗R Qr → E/M ⊗R Qr = 0 where the last term vanishes by what h
been shown in the first paragraph. Hence,E ⊗R Qr = 0. There is a natural epimorphis
E ⊗R Qr → E defined byx ⊗ q = xq sinceE is a rightQr -module by [11, Chapter XII
Corollary 2.8]. Hence,E = 0, and the same holds forM . Consequently,M is singular. �

We now turn to the functor TorR
1 .

Theorem 6.3. Let R be a right Utumi-p.p-ring without an infinite set of orthogonal ide
potents. ThenTorR1 (M,Qr/R) ∼= Z(M) for all right R-modulesM .

Proof. By Theorem 3.7,R has finite Goldie-dimension. From [11, Chapter XII, The
rem 2.5] we derive thatQr is a semi-simple Artinian ring. By [11, Chapter XII, Coro
lary 2.6],Qr is a perfect right localization ofR, and hence flat as a leftR-module.

Let M be a non-singular rightR-module, and let consider the exact sequence=
TorR(M,Qr) → TorR(M,Qr/R) → M ⊗R R → M ⊗R Qr in which the first term
1 1
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vanishes, sinceQr is a flat leftR-module. IfE(M) denotes the injective hull ofM , then
the last map in the sequence fits into the top-row of the commutative diagram

M ⊗R R M ⊗R Qr

E(M) ⊗R R
σ

E(M) ⊗R Qr

where the vertical maps are the monomorphisms induced by the inclusionM ⊆ E(M). If
α :E(M)⊗R R → E(M) andβ :E(M)⊗R Qr → E(M) are the multiplication maps, the
α = βσ . Sinceα is an isomorphism,σ is one-to-one. But then, the top map in the diagr
has to be a monomorphism too. In particular, TorR

1 (M,Qr/R) = 0.
Now letM be an arbitrary rightR-module. SinceQr/R has flat dimension at most 1 a

a leftR-module, we obtain the exact sequence

0= TorR2
(
M/Z(M),Qr/R

) → TorR1
(
Z(M),Qr/R

)

→ TorR1
(
M,Qr/R

) → TorR1
(
M/Z(M),Qr/R

) = 0

in which the last term vanishes by what has been shown in the first paragraph of this
Therefore, TorR1 (M,Qr/R) ∼= TorR1 (Z(M),Qr/R). On the other hand, there is an exact
quence 0= TorR1 (Z(M),Qr) → TorR1 (Z(M),Qr/R) → Z(M) ⊗R R → Z(M) ⊗R Qr =
0 where the last term vanishes by Lemma 6.2, and the first term by the flatness ofQr as a
left R-module. Hence,

TorR1
(
M,Qr/R

) ∼= TorR1
(
Z(M),Qr/R

) ∼= Z(M) ⊗R R ∼= Z(M). �
Corollary 6.4. LetR be a right Utumi-p.p.-ring with no infinite set of orthogonal idemp
tents. A rightR-moduleM is non-singular if and only ifTorR1 (M,Qr/R) = 0.

We conclude with an example showing that Theorem 6.3 may fail over arbitrary
semi-hereditary rings. LetR be a regular ring which is not semi-simple Artinian. SinceR

is regular, all rightR-modules are flat, but there exists a proper essential right idealI of R.
Then,R/I is a non-zero singular module, but TorR

1 (R/I,Qr/R) = 0.
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