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INTRODUCTION 

In [2] Harrison’s Witt ring of a commutative ring R was defined, and the 
prime ideal structure for this ring was given in terms of the orderings of 
integral domain factor rings of R. Also in [2] some results were given which 
for special cases relate Harrison’s Witt ring, which we here denote by H(R), 
with the more standard Witt ring W(R) b ase d on inner product spaces over R. 
Note that we have changed notation from that used in [2] where we denoted 
Harrison’s Witt ring as W(R) and the inner product space Witt ring as 
Witt(R). 

Recall that for R a commutative ring, H(R) is the ring given by generators 
(a>, a E R, and relations (0) = 0, (abj = (a)(6), and (a> + (bj = 
<a + b) + <(a + b)ab>. It is shown in [4] that for F a field with characteristic 
not 2, N(F) is the classical Witt ring of F. 

In the first section of this paper a proof is given that if R is any integral 
domain with quotient field K, then the map 

H(R)+ H(K) x n H(R,'n2R) 
a+0 

is one-to-one. This result is due to D. K. Harrison and his students 
K. J. Hertz and D. A. Schoenfeld. The proof involves two results which are of 
independent interest. This result answers affirmatively the conjecture we 
made in [2, p. 5601. 

In the second section we consider H*(R), the subring of H(R) generated 
by elements (a), where a is a unit of R, and W*(R), the subring of W(R) 
composed of Witt classes of diagonal inner product spaces. We note that 
for any field F, H(F) = P(F) z W*(F) = W(F). The main result is that 
TV*(R) s H*(R) for any Dedekind domain R. From this we get that 
W(R) g H*(R) for any semilocal principal ideal domain in which 2 is a 
unit. Such a result gives a set of generators for W(R) along with relations 
that involve elements from the larger ring H(R). 
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1 

It was conjectured in [2] that for x E H(Z), x = 0 if and only if 

H(Z c-+ Q)(x) = 0, H(Z --j Z~pZ)(x> = 0 

for all odd primes p, and H(Z + 2/4Z)(x) = 0 (Z denotes the integers). 
Harrison, Hertz and Schoenfeld developed methods which show that the 
conjecture is true, and that the theorem of this section holds in case 2 is a 
unit. The proof depends on two results of independent interest. The first 
is that H preserves localizations at multiplicative sets. The second is that pir 
preserves direct limits of directed families of rings. Since these do not appear 
in print we give proofs for them here. We assume that these proofs are much 
like those given by Harrison, Hertz and Schoenfeld. 

An H-map is a mapping t: R + S of commutative rings satisfying t(0) = 0, 
t(ab) = t(n) t(b) and t(u) + t(b) = t(a + b) + t((a + b)cab). Thus ( >: R + 
H(R) is a universaX H-map. 

LEMMA 1.1 (Schoenfeld). If S is a ~~u~~~pl~&~~~~~ subset of a ~Q~~~~~~~~~v~ 
r&g R, then (S) is a multiplicative subset of H(R), and H(SIR) is isomorpkic 
to (S)-lH(R) wader an ~omoypkis?n takhzg (r/s> i--t (r>//s> JOY Y E R, s E S. 

Proo$ For convenience assume that 1 E S. Clearly (S) is a mukiplicative 
subset of H(R). We will use < > to denote the canonical H-map for both 
H(R) and H(S-IR). 

Note that t: R -+ H(S1.R) g iven by t(r) = <r/l> is an H-map, so there is 
a ring homomorphism ,u: H(R) -+ H(S1.R) with ,~((r>) = (r/l>. If s E S, 
then I.) is a unit in H(SIR), so there is a homomorphism 6: (S)-lH(R) -F 
~(~-lR) such that B((r j/(s)) = (r/s?. 

To construct an inverse for 0 we need to note that for any s E S, (.+ is an 
idem~otent in H(R) [2, (2.111 so that I/(?> is an idempotent unit in 
(S)-lH(R), hence I/(.?> = 1. 

Define 32: S-tR + <S>-W(R) by &Y/S) = (r>/(sj. One checks easiiy that 
h is well-defined, h(0) = 0, and that 12 preserves muitiplication. For any 
rjs, Y’IS’ in S’R I 

Hence R is an H-map and induces a ring homomorphism 91: H(S-rR) + 
(S)-lH(R) which is the inverse of 8. 



298 COLEMAN AND CUNNINGHAM 

LEMMA 1.2 (Hertz). If D is a directed set and {A,),,, is a directed family 
of rings over D, then 

under an isomorphism such that ([a]> t+ [(a)]. 

Proof. We have a partially ordered set (D, <) such that for any d, e E D, 
there is f E D with d < f and e < f; and we have connecting homomorphisms 

:A d -+ A, for d < e, with p 
T?follows that (H&4,): d E D> . 

dd = 1Ad and vfo~yeci = yfd for d < e <cf. 
IS a directed family with connecting homo- 

morphisms {H(ved): d < e}. So l&r,,, H&4,) makes sense. For d E D, a E A,, 
x E H(d,), we denote by [a] the element of lick Arl corresponding to a and by 
[x] the element of lim H(A,) corresponding to x. 

Define t: bAd + l& I&4,) by t([a]) = [(a),./J for a E A, . One 
easily checks that t is an Is-map, so it induces a ring homomorphism 
8:H (l&r Ad) + h H(A,) with 6(([a])) = [(a>]. Now for d E D let yd : 
A, -+ l&r A, be the map a tt [a]. Then for any d <e, U(yJ 0 H(~JJ = H(yd). 
So by the universality of I& H(A,) there is a ring homomorphism 
p: I& H(&4J ---f H(~~IJI Ad) such that for each d E D, II = CJI 0 yd’, where 
yd’: E&4,) -+ l& H(A,) takes x w [xl. Hence v([(a)&j) = {[a]) so that 9) is 
the inverse of 8. I 

PROPOSITION 1.3. Let R be a commutative ring and let a E R, a # 0. Let 
~~2: R -+ RIa”R be the natural map, and let yaz : R + S-lR be the canonical 
map, where S = {azn: n 3 01. Then (1) Ker(H(vaz)) = (a2) H(R) and (2) 
Ker(W(y,a)) = (1 - <a2>) H(R). 

Proof. (1) follows from (3.1) of [2]. Note that if 0: H(SFR) --j (S)-lH(R) 
is the isomorphism of Lemma (1.1) and q is the canonical map 

H(R) + (Q-l H(R), 

then q = 0 0 H(yap). So Ker(H(y,n)) = Ker(T) = (x E H(R): (s)x = 0 for 
some s E S] = {x E H(R): <a2)x = 0) = (1 - (a2>) H(R). This last equality 
is because (a”\ is idempotent. This proves (2). I 

Note 1.4. Let A be an integral domain with quotient field K and let 9 
be the collection of all finitely generated multiplicative subsets of -4 that 
contain 1; i.e., all subsets S = {syl ... szn: mi > O>, for fixed nonzero 
elements s, , . . . , s, from A. Then (9, C) is a directed set and {S-lA}sEY is a 



COMPARING WITT RINGS 299 

directed family of rings with connecting maps the inclusions. Since 1y = 

1al!SE‘Y S-14, we have by Lemmas (1.2) and (1.3) that 

H(K) N lim H(S-‘A) r l& (S)-lH(A) 

via (a\~) i-2 [(ajs)] t+ [(u>/(s)]. 

~~0~~1 1.5. Let A be a du~zai~ its ~~~t~e~t field fi= Thm N(A) -+ 
H(K) x na+Q H(A/a2A) is one-to-one. 

Proof. Let i: a + X be inclusion and vLls : 9 -* Al$A. We wish to show 
that the kernel of H(i) X nIa+a H(vnz) is zero. Let x be in this kernel. Then 
Hti~(~~ =_T 0; so since 

commutes, there is T E 9 such that H(2 -+ T-lA)fx) = 0. If such a T is 
generated by a, ,..., a, , then letting a = a, ..* a, and S = ($I:: k 2 01, we 
see that T%4 -= S-l&. Hence x E Ker(H(A -+ S-IA)) = (1 - (a”>) H(A), 
this last equality by (1.3). But also x E Ker(v,n) = (a”> U(9). So since (a2}is 
idempotent, x = 0. 

COROLYARI 1.6. If D is a Dedekhzd domain with patient ,C;eEd 237, then 
H(D) + N(K) x ‘j-J ~~D~~2) is one-to-one, zohere P ranges over all nonzero 
prime ideals of D. 

Proof. Let 0 # a E D. Then there are prime ideals PI ,..., & and positive 
integers eL ,..., e, such that a2D = Pie1 .** P?. NOW it is easy to see from 
12, (3.5)] that HtD~P~) -+ ~~DlP~) is an isomorphism. Hence since 
D/n2D z ni D/P?<, me have by [2, (3.7)] an isomorphism H(Dja2D) --“r 
n ,H(D/P,L?). FT7e are done by Theorem (1.5) and the commutative diagram 

It follows from [2, (3.6)] that if p is an odd rational prime, then 
H(Z,lpZZ) -+ H(ZjpZ) is an isomorphism. Thus the conjecmre mentioned 
in the beginning of this section follows. 
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2 

For any commutative ring R, W(R) will denote the Witt ring based on 
inner product spaces over R. We will recall briefly how W(R) is formed. 
For more detail, see [3, 5, 6, 71. Let X = (X, ,8) be an inner product space 
over R; i.e., X is a finitely generated projective R-module and ,8: X x X--f R 
is a symmetric bilinear form such that x -+ p(x, ) is an isomorphism between 
X and Hom,(X, R). We let [X] denote the Witt class determined by X. 
Recall that [X] = [X’] if and only if there are metabolic (or split) spaces Y 
and Y’ such that the orthogonal sums X L Y and x’ 1 Y’ are isometric. 
An inner product space is metabolic if it has an R-module direct summand 
that is its own or$ogonal complement. The ring W(R) consists of Witt 
classes of inner product spaces with addition induced by orthogonal direct 
sum and multiplication by tensor product. 

In [2, Sect. 61 it was noted that if R is a local ring in which 2 is a unit, and 
with nil maximal ideal, then H(R) and W(R) are isomorphic, but for any 
Prefer domain R not a field, the rings H(R) and W(R) are not isomorphic. 
We will see, however, that for a Dedekind domain R, the subring W*(R) 
of W(R) consisting of Witt classes of diagonalizable spaces is isomorphic 
with a similar subring of H(R). 

For a unit a in the ring R, let [a] denote the Witt class of the one-dimen- 
sional form h, : R x R + R, where h,(x, y) = axy. Thus JV*(R) is the 
subring generated by the elements [u]. 

Let H*(R) denote the subring of H(R) generated by elements (a>, where 
a is a unit in R. It is natural to ask whether there is an isomorphism 
JV*(R) -+ H*(R) that takes [a] ++ (ai for units a. 

Using (6.1) and (6.2) from [2], it is easy to see that if R is a local ring in 
which 2 is a unit, and such that for any unit a and non-unit x, as + x is a 
square in R, then we have the isomorphism W*(R) -+ H*(R). Note, however, 
that IY*(2/42) C$ H*(Z/42). 

We now proceed with the Dedekind case. 

LEMMA 2.1. If K is any jield, there is an isomorphism cp: W(K) -+ H(K) 
such that q2([u]) = {a) fey all nonxero a E K. 

Proof. If K has characteristic f2, this is Harrison’s characterization of 

VW [41* 
Assume K has characteristic 2. It is known that if H is the hyperbolic 

plane with form h, J- h-, , then for any inner product space X over K, 
X J- H is diagonalizable [I, p. 901. Thus Iv*(K) = bY(K). So to show that 
[a] +-+ (a> induces a homomorphism v: l(K) --t H(K) it suffices to show 
that if a, ,..., a, , b, ,..., 6, are nonzero members of K with h.,l 1 .*. J- haa g 
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bl -L ..’ l. hbn 3 then (al> + ... + (a,$ = (b,j + ... f (b,) in H(K). But 
the 2 >: 2 theorem (see for example [6]) says that the given isometry is the 
composition of isometries hG1 I *.* 1 Iz,, s hGl, i ... 1 h,*n ) where ci = cii 
for all but at most two values of i. Harrrson proved in [4] that if hfll .L haQ g 
lzbl 1. hbz , then (al) + (a,) = (b,j -+ (b,). (There he is at characteristic 22, 
but the argument carries over without change). Thus the mapping v is well- 
defined, and is clearly a ring surjection. 

The elements [a], with a E K, satisfy the defining relations of H(Q9 
defining [0] = 0. Thus there is a homomorphism N(K) ---f W(K) that is the 
inverse of 9. I 

THEOREM 2.2. If R is a Dedekind domain, then W’*(R) z H*(R) under a11 
ison~orphism taking [a] ++ (a> for units a E R. 

Proof. Suppose that a, ,..., a, are units in R such that <al> + .‘. + <a,) = 
0 in N(R). Letting K denote the quotient field of R: <ai) + ... $ (a,) == 0 
in H(K). By (2.1), we have [a,] + ... + [aJ = 0 in R’(K). But for Dedekind 
domains, TV(R) -+ W(K) is injective [5, p. 471. Thus there is a ring surjection 
#: H*(R) + W*(R) such that $((a)) = [a] if a is a unit. We show that $ is 
injective. Suppose a, ,..., a, are units such that [a,] + .j. + [a,] = 0 in 
W(R). To show that (al) + ... + (a,n> = 0 in H(R) it suffices by (1.6) to 
show that (al) + ... + (a,j = 0 in H(K) and in H(R/P?) for each prime 
ideal P of R, The isomorphism between H(K) and W(K) takes care of H(K). 
For the primes ideals we consider two cases. 

Case 1. R/P has more than two elements. In this case there are units a 
and b in R/P” such that a + b is also a unit. Hence the natural mapping 
H(R/P’) + H(R/P) is an isomorphism [2, (3.511. Since [a,] + ..I + [a,] in 
R’(R) maps to(a, j + ... + <la,> in H(R/P) under W(R)+ W(R/P) sH(R/P), 
we have ~/al> + -.- + (a,> = 0 in H(R/P), hence in H(R/P2). 

Case 2. R/P s Z, = Z/22. In this case H(R/P’) z Z,(C,), the group 
ring of the group C, = (1, g> of order 2 over Z, . The isomorphism 
is induced by (x‘;, w 1 + g, where PIP2 is generated by x, and (a} w 1 
if a is a unit in R/P2. Thus IF(R/P”) s Z, . Hence for units 

a, I..., a, in R, (al) + ... + (a,) = 0 in H(R/P’) if and only if n is even. 
Our assumption that [uJ + . . . + [a,] = 0 in W(R), hence in W(K), insures 
that 1z is even. Hence (ai) + ... + (a,) = 0 in H(R/P”). 

The following result is probably known to specialists but we have not seen 
it in this form. However cf. [7, (1, 3.4)] and [5, (5.4.1)]. 

PROPOSITION 2.3. If R is a semilocal &g in which 2 is a unit, and over 
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which every Jinitely generated projective module is free, then W(R) = LB*(R). 
In fact every inner product space over R has an orthogonal basis. 

Proof. Let X be an inner product space over R. It is well-known that 
there are units a, ,..., a, in R such that Xg [ail 1 ... I [a,] 1 Y, where 
Y = (Y, ,8) is an inner product space with p( y, y) a nonunit for all y E Y. 
(See [7, (1, 3.3)]). So it suffices to show that Y = 0. Just suppose Y i: 0. By 
hypothesis, Y is free, say with basis e, ,..., e6 , k > 0. Let e,s ,..., ek+ be a 
dual basis for e, ,..., ek ; i.e., another basis for Y such that /3(ei, ej+) = Sij 
bee [7, (1, 2.611). 

Let P1 ,..., P, be the maximal ideals of R. For each i, there is q E Y such 
that ,8(q) xi) q? Pi . Because otherwise 

2 = 2p(e, , els) = p(el + e,+, e, + e,*) - /l(el , e,) - /3(e1*, el#) 

is in Pi , contradicting the hypothesis that 2 is a unit. Write 

xi = ailel + ..- + aikek , afj E R. 

By the Chinese Remainder Theorem, there is for each j = l,..., K, some bj E R 
such that bj = aij(mod Pi) for all i. Let y = b,e, + ..* + b,e, . Then for 
each i, 

,L?( y, y) = /3(xi , xi) + 0 (mod Pi). 

Hence ,8( y, y) is a unit, a contradiction. I 

Every semilocal Dedekind domain is a PID. Since every finitely generated 
projective over a PID is free, (2.2) and (2.3) give the following. 

COROLLARY 2.4. If R is a semilocal principal ideal domain in which 2 is a 
unit, then W(R) = W*(R) G H*(R). I 

Note, however, that if R is the semilocal ring Za, , then II*(R) g JV*(R) 
and W(R) s H(R), but II*(R) $ II(R). In fact II(R) E 2, x 2, and W*(R) 
has eight elements. In general one can check, using [3, (6.5)] and [2, (3.7)], 
that if R is any finite product of fields, then W*(R) E H*(R). Note also 
that Z,, E 2, x 2, illustrates that neither H* nor JV* preserves finite 
products. 
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