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Abstract

In this note, the generalized restricted Lie algebra, which was introduced by Shu Bin in [J. A
194 (1997) 157–177], is studied. By generalizing the concept of restricted subalgebras a
concept of restricted homomorphism, we show that the second generalized restricted coho
H2

ϕL
(L,M) is isomorphic to the equivalence classes of those generalized restricted extensioM

by L. For any generalized restricted Lie algebra(L,BL,ϕL) and any generalized restrictedL-modu-
le M , we show that the sequence

0 → H1
ϕL

(L,M) → H1(L,M) → homF

(
L,ML

)
→ H2

ϕL
(L,M) → H2(L,M) → homF

(
L,H1(L,M)

)
is exact.
 2004 Published by Elsevier Inc.

1. Introduction

As is well known, the restricted Lie algebras have played an important role in
theory of modular Lie algebras and their representations. However, many kinds
algebras are not restricted. For instance, the graded Lie algebras of Cartan typeX(n,m)
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Cartan
(X = W,S,H,K) may be a restricted Lie algebras only ifm = (1, . . . ,1). So the concep
of generalized restricted Lie algebras is introduced in [5].

Definition 1.1 [5, Definition 1.1]. A Lie algebraL is called a generalized restricted L
algebra if there are an ordered basisBL = {x1, . . . , xn} of L, ann-tuples natural number
s = (s1, . . . , sn), and a mapϕs :BL → L such that adϕs(xi) = (adxi)

psi
. We will denote it

by (L,BL,ϕs).

It is easily seen that the concept of generalized restricted Lie algebra generalizes
concept of restricted Lie algebra and it is easily shown that the graded Lie algeb
Cartan type are generalizedrestricted Lie algebras.

Let x, y ∈ L andt an indeterminate overU(L) (the universal enveloping algebra ofL).
Then

(xt + y)p
r = xpr

tp
r + ypr +

∑
bi(x, y)ti.

If r = 1, then bi(x, y) ∈ L. However, if r > 1, we cannot obtainbi(x, y) ∈ L. This
means that unlike the definition of a restricted Lie algebra, that of a genera
restricted Lie algebra relies on a fixed basisBL. Therefore, it will meet difficulties
to study some important concepts, for instance, the concept of generalized restric
subalgebra of a generalized restricted Lie algebra and the concept of generalized restric
homomorphism.

In this note, we try to refine the theory of generalized restricted Lie algebras. B
introducing an equivalence relation on the set consisting of all structures of gener
restricted Lie algebras for a Lie algebraL, we define equality of two structures
generalized restricted Lie algebras for a Lie algebraL. This makes the concept o
generalized restricted Lie algebra not rely on a fixed basis. As a result of doing th
introduce the concept of a generalized restricted subalgebra of a generalized restric
algebra and the concept of a generalized restricted homomorphism. As an applicat
study the generalized restricted extensionM by L and the cohomology of a generaliz
restricted Lie algebra. An explanation of the second generalized restricted cohomo
given, and it is shown that the second generalized restricted cohomologyH 2

ϕL
(L,M) is

isomorphic to the equivalence classes of generalized restricted extensions ofM by L. The
relation between generalized restricted cohomology and ordinary cohomology is rev
and it is shown that the sequence

0 → H 1
ϕL

(L,M) → H 1(L,M) → homF

(
L,ML

)
→ H 2

ϕL
(L,M) → H 2(L,M) → homF

(
L,H 1(L,M)

)
is exact for any generalized restricted Lie algebra(L,BL,ϕL) and any generalize
restrictedL-moduleM.

Since the graded Lie algebras of Cartan typeare generalized restricted Lie algebr
this sequence gives us a way to study the cohomology of the graded Lie algebras of
type.
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2. Generalized restricted Lie algebra

Let F be an algebraically closed field of characteristicp > 0, L a Lie algebra overF,

U(L) the universal enveloping algebra ofL, C(U(L)) the center ofU(L), and{U(i) | i =
0,1,2, . . .} the canonical filtration ofU(L). Then

Lemma 2.1 [6, Lemma 1.9.7].Let{xi}i∈I be an ordered basis ofL. Assume that there exi
a functionk : I → N and families{vi}i∈I and{zi}i∈I such that for everyi ∈ I,

x
k(i)
i = vi + zi, vi ∈ U(k(i)−1), zi ∈ C

(
U(L)

)
.

ThenB = {zrxs | r, s ∈ N(I), s(i) < k(i), ∀i ∈ I } is a basis ofU(L).

Let (L,BL,ϕs) be a generalized restricted Lie algebra andBL = {x1, . . . , xn} an ordered
basis ofL. Denote byI (BL,ϕs) the ideal ofU(L) generated by the elements

ϕs(xi) − x
psi

i (xi ∈ BL).

The associative algebrauϕs (L) := U(L)/I (BL,ϕs) is called a generalized restricte
universal enveloping algebra. Lemma 2.1 implies that{xr | 0 � r � τs} is a basis of
uϕs(L) and dimuϕs(L) = p|s| (whereτs = (ps1 − 1, . . . , psn − 1), |s| = ∑n

j=1 sj , and

xs = ∏n
j=1 x

sj
j ). An L-moduleM is called a generalized restrictedL-module ifxpsi

i m =
ϕs(xi)m for ∀m ∈ M, ∀xi ∈ BL. It is obvious that a generalized restrictedL-module can
be identified withuϕs(L)-module.

Definition 2.1. Let (L,BL,ϕs) and(L,B ′
L,ϕt) be two generalized restricted Lie algeb

structures forL. Say that(L,BL,ϕs) and(L,B ′
L,ϕt) are equal ifI (BL,ϕs) = I (B ′

L,ϕt).

Denote this by(L,BL,ϕs) = (L,B ′
L,ϕt).

Let a := (a1, . . . , an) ben-tuples of natural numbers. Then we denoteâ :=(ai1, . . . , ain )

such thatai1 � ai2 � · · · � ain .

Lemma 2.2. Let (L,BL,ϕs) and (L,B ′
L,ϕt) be two generalized restricted Lie algeb

structures forL. If (L,BL,ϕs) = (L,B ′
L,ϕt), then

(1) ŝ = t̂,
(2) ϕs|BL∩B ′

L
= ϕt|BL∩B ′

L
.

Proof. SupposeBL = {x1, . . . , xn} andB ′
L = {y1, . . . , yn}. By rearranging the order ofBL

and the order ofB ′
L, we can assume thatŝ = (s1, . . . , sn) and t̂ = (t1, . . . , tn), i.e., s1 �

s2 � · · · � sn andt1 � t2 � · · · � tn.

(1) If ŝ �= t̂, then there exists a natural numberr such thatsr �= tr andsi = ti for i < r.

If sr < tr , then sinceB ′
L is a basis ofL, there areakj ∈ F (k = 1, . . . , r; j = 1, . . . , n)

such thatxk = ∑n
j=1 akjyj . Since{x1, . . . , xr} is linearly independent, there existj � r
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andk � r such thatakj �= 0. This implies thatB ′′
L = {y1, . . . , yj−1, xk, yj+1, . . . , yn} is a

basis ofL. Sett′ = (t1, . . . , tj−1, sk, tj+1, . . . , tn). Define a mapϕt′ onB ′′
L via

ϕt′(yi) := ϕt(yi) for i �= j,

ϕt′(xk) := ϕs(xk).

It is easily seen that(L,B ′′
L,ϕt′) is a structure of generalized restricted Lie algebra

L and it is obvious thatI (B ′′
L,ϕt′) ⊂ I (B ′

L,ϕt) ∪ I (BL,ϕs) = I (B ′
L,ϕt). This implies

psk+|t|−tj = p|t′| = dimuϕt′ (L) � dimuϕt(L) = p|t|, hencesk � tj . This is a contradiction
sincesk � sr < tr � tj . Similarly, we can show thatsr > tr is impossible. Hencês = t̂.

(2) Let xi = yk ∈ BL ∩ B ′
L. If si > tk, then letI be an ideal ofU(L) generated by

elements

ϕs(xj ) − x
p

sj

j (j = 1, . . . , i − 1, i + 1, . . . , n) and ϕt(yk) − y
ptk

k .

Lemma 2.1 implies dimU(L)/I = p|s|−si+tk < p|s| = dimU(L)/I (BL,ϕs). This is a
contradiction sinceI ⊂ I (BL,ϕs) ∪ I (B ′

L,ϕt) = I (BL,ϕs). Similarly, we can show tha
si < tk is impossible. Hencesi = tk. Now we have

ϕs(xi) − ϕt(yk) = ϕs(xi) − x
psi

i + y
ptk

k − ϕt(yk) ∈ I (BL,ϕs) ∩ L = 0,

i.e.,ϕs(xi) = ϕt(yk). �
Part (2) of Lemma 2.2 means we can take the union of allϕt for which (L,B ′

L,ϕt) is
equal to(L,BL,ϕs) a fixed structure of generalized restricted Lie algebra forL, we denote
it by ϕL, i.e., ϕL is defined on

⋃
B ′

L∈J B ′
L (whereJ := {B ′

L | (L,B ′
L,ϕt) = (L,BL,ϕs)})

and

ϕL|B ′
L

:= ϕt. (1)

Lemma 2.3. Let (L,B ′
L,ϕw) and (L,BL,ϕs) be two generalized restricted Lie algeb

structures forL. If I (B ′
L,ϕw) ⊂ I (BL,ϕs) and |s| = |w|, then(L,BL,ϕs) = (L,B ′

L,ϕw).

Proof. If I (B ′
L,ϕw) �= I (BL,ϕs), then I := I (BL,ϕs)/I (B ′

L,ϕw) �= 0 is an ideal of
uϕw(L) anduϕw(L)/I ∼= uϕs(L). This is a contradiction since dimuϕw(L) = p|w| = p|s| =
dimuϕs(L). �
Definition 2.2. K, a subalgebra ofL, is called a generalized restricted subalgebra
(L,BL,ϕL) if there is a generalized restricted Lie algebra(L,B ′

L,ϕL) which is equal to
(L,BL,ϕL) such thatB ′

L contains a basisBK of K andϕL(BK) ⊂ K.

φ, a homomorphism ofL to L′, is called a generalized restricted homomorphism
(L,BL,ϕL) to (L′,BL′ , ϕL′) if φ̃(I (BL,ϕL)) ⊂ I (BL′ , ϕL′), where φ̃ is the homomor-
phism ofU(L) to U(L′) which is uniquely extended byφ.
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In the special case wheres = 1 (in this case, a generalized restricted Lie algebr
a restricted Lie algebra), it is easy to verify thatϕL is identified with ap-mapping, the
concept of generalized restricted subalgebra is identified with the concept of a restrict
subalgebra and the concept of generalized restricted homomorphism is identified with th
concept of restricted homomorphism. Consequently, Definition 2.2 generalizes the c
of a restricted subalgebra and the concept of restricted homomorphism.

If unlike Definition 2.2, we simply define a generalized restricted homomorphis
follows: a homomorphismφ of L to L′ is called a generalized restricted homomorph
of (L,BL,ϕs) to (L′,BL′ , ϕt) if ϕsφ = φϕt, thenφ must be a map ofBL to BL′ . Since the
concept of restricted homomorphism does not rely on a fixed basis, this definition do
generalize the concept of a restricted homomorphism.

The advantage of Definition 2.2 will be seen in studying the equivalence class
generalized restricted extensions ofM by L.

Example 2.1. Let (L,BL,ϕL) be a generalized restricted Lie algebra andBL = {x1, . . . ,

xn}. If I is an ideal of L, then there is a subset{xi1, . . . , xim} of BL such that
BL/I = {x̄i1, . . . , x̄im} is a basis ofL/I, where x̄ij is the canonical image ofxij

(j = 1, . . . ,m). Define a mapϕL/I :BL/I → L/I, via x̄ij → ϕL(xij ). It is easy to
verify that (L/I,BL/I , ϕL/I ) is a generalized restricted Lie algebra and the canon
homomorphismπ :L → L/I is a generalized restricted homomorphism of(L,BL,ϕL)

to (L/I,BL/I , ϕL/I ).

This simple example will be used in the sequel.

3. Basic notions of cohomology of Lie algebras

Let L be a Lie algebra,M anL-module. Define the cochain complex(C(L,M), ∂) as
follows:

Cn(L,M) := {f :L × · · · × L → M | f n-linear, alternating}.

The coboundary operator∂n :Cn(L,M) → Cn+1(L,M) is defined by

(
∂nf

)
(x0, . . . , xn) :=

n∑
i=0

(−1)ixif
(
x0, . . . , x̂i . . . , xn

)
+

∑
i<j

(−1)i+j f
([xi, xj ], x0, . . . , x̂i , . . . , x̂j , . . . , xn

)
.

Let U(L)+ be the ideal ofU(L) generated byL. Define the cochain comple
(C(U(L)+, M), ∂) as follows:

Cn
(
U(L)+,M

) := {
f : U(L)+ × · · · × U(L)+ → M | f n-linear

}
.
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The coboundary operator∂n :Cn(U(L)+,M) → Cn+1(U(L)+,M) is defined by

∂ng(u0, . . . , un) := u0g(u1, . . . , un) +
n∑

i=1

(−1)ig(u0, . . . , ui−1ui, . . . , un).

The complexes(C(U(L)+,M), ∂) and(C(L,M), ∂) are called associative type and L
type respectively. According to [3, p. 556], we have that

Hn(L,M) := ExtnU(L)(F,M) ∼= Hn
(
C(L,M)

) ᾱ∼= Hn
(
C

(
U(L)+,M

))
and ᾱ is induced by α :C(U(L)+,M) → C(L,M), which is defined as follows
αn :Cn(U(L)+,M) → Cn(L,M), via

(αng)(x1, . . . , xn) =
∑
σ

sgn(σ )g(xσ(1), . . . , xσ(n))

where the summation is over all permutationsσ of the set(1, . . . , n) and sgn(σ ) is equal
to ±1 according to whetherσ is even or odd.

Let (L,BL,ϕL) be a generalized restricted algebra overF and M be a generalize
restrictedL-module. Define

Hn
ϕL

(L,M) := ExtnuϕL
(L)(F,M),

and call it thenth generalized restricted cohomology group forL with coefficients inM. As
above, letuϕL(L)+ be the ideal ofuϕL(L) generated byL and define the cochain comple
(C(uϕL(L)+,M), ∂) as follows:

Cn
(
uϕL(L)+,M

) := {
f :uϕL(L)+ × · · · × uϕL(L)+ → M | f n-linear

}
The coboundary operator∂n :Cn(uϕL(L)+,M) → Cn+1(uϕL(L)+,M) is defined by

∂ng(u0, . . . , un) := u0g(u1, . . . , un) +
n∑

i=1

(−1)ig(u0, . . . , ui−1ui, . . . , un).

We can similarly show

Hn
ϕL

(L,M) ∼= Hn
(
C

(
uϕL(L)+,M

))
.

Define a mapping:Cn(uϕL(L)+,M) → Cn(U(L)+,M) via g → g̃ whereg̃(u1, . . . , un) =
g(ū1, . . . , ūn) with ui ∈ U(L)+ andūi its canonical image inuϕL(L)+. Let C̃(U(L)+, M)

:= {g̃ | g ∈ C(uϕL(L)+,M)} be the subcomplex ofC(U(L)+,M). Then we have the exac
sequence of complexes

0 → C̃
(
U(L)+,M

) → C
(
U(L)+,M

) → C
(
U(L)+,M

)
/C̃

(
U(L)+,M

) → 0
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which gives rise to the usual exact sequence connecting their cohomology groups
our mapg → g̃ is injective, we may identifyHn(C̃(U(L)+,M)) with Hn

ϕL
(L,M), whence

we have the exact sequence

· · · → Hn
ϕL

(L,M) → Hn(L,M) → Hn
(
C

(
U(L)+,M

)
/C̃

(
U(L)+,M

))
→ Hn+1

ϕL
(L,M) → ·· · .

It is evident thatH 0(C(U(L)+,M)/C̃(U(L)+,M)) = 0, whence we conclude that th
canonical homomorphismH 1

ϕL
(L,M) → H 1(L,M) is injective.

Proposition 3.1. LetM be a generalized restrictedL-module. Then canonical homomo
phism ofH 1

ϕL
(L,M) into H 1(L,M) mapsH 1

ϕL
(L,M) isomorphically onto that subspac

of H 1(L,M) whose elements are represented by the Lie1-cocyclesf which satisfy the
relation

x
psi −1
i f (xi) = f

(
ϕL(xi)

)
for anyxi ∈ BL.

Proof. Let f be a Lie 1-cocycle whose cohomology class belongs toH 1
ϕL

(L,M). Then
there is an associative 1-cocycleg, defined onuϕL(L)+, such that the cohomology cla
of g̃ coincides with that off. This means that there is an elementm ∈ M such that
f (x) = xm + g(x). Hence, forxi ∈ BL,

x
psi −1
i f (xi) = x

psi

i m + x
psi −1
i g(xi) = ϕL(xi)m + g

(
ϕL(xi)

) = f
(
ϕL(xi)

)
.

Conversely, suppose thatf satisfies the relation of the proposition. By the equivale
of the associative cochain complex with the Lie cochain complex it follows thatf is the
restriction toL of an associative cocycleh defined onU(L)+. We have then foru ∈ U(L)

andxi ∈ BL,

h
(
u
(
x

psi

i − ϕL(xi)
)) = ux

psi −1
i h(xi) − uh

(
ϕL(xi)

) = u
(
x

psi −1
i f (xi) − f

(
ϕL(xi)

)) = 0.

Thus,h vanishes onI (BL,ϕL), and is therefore the natural imageg̃ of an associative
cocycleg defined onuϕL(L)+. Clearly, the cohomology class ofg is mapped into that o
f by the canonical map ofH 1

ϕL
(L,M) into H 1(L,M). �

4. Generalized restricted extensions

Let M be an abelian Lie algebra,L an arbitrary Lie algebra. An extension ofM by L is
a pair(E,φ), whereE is a Lie algebra containingM as an ideal, andφ is a homomorphism
of E ontoL with kernelM. This situation defines onM the structure of anL-module, with
L operating onM via E, in the natural fashion. An automorphism of such an exten
is an isomorphismα of E ontoE which leaves the elements ofM fixed and satisfies th
relationφα = φ. According to [3, p. 564], we have
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Lemma 4.1. α is an automorphism of(E,φ) if and only ifα(e) = e + f (φ(e)), wheref

is a Lie1-cocycle forL in M.

Suppose that(L,BL,ϕs) is a generalized restricted Lie algebra, andM is a generalized
restrictedL-module together with ap-semilinear map ofM into ML. ThenM has the
structure of a restricted abelian Lie algebra,(M, [p]).

Definition 4.1. (E,φ), an extension ofM by L, is called a generalized restricted extens
if there are an ordered basisBE of E,(n + l)-tuples of natural numbersw = (s,1) =
(s1, . . . , sn,1, . . . ,1), and a mapϕw :BE → E such that

(1) (E,BE,ϕw) is a generalized restricted Lie algebra;
(2) (M, [p]) is a generalized restricted subalgebra of(E,BE,ϕw);
(3) φ is a generalized restricted homomorphism andφ(BE) ⊂ BL ∪ {0}.

We denote it by(E,BE,ϕw, φ).

Lemma 4.2. Let (E,BE,ϕw, φ) be a generalized restricted extension ofM by L.

SupposeBL = {x1, . . . , xn}. Then by rearranging the order ofBE, we can assumeBE =
{e1, . . . , en+l} such thatφ(ei) = xi andφϕE(ei) = ϕLφ(ei) for i = 1, . . . , n.

Proof. It is obvious that we can harmlessly assumes = (s1, . . . , sn) ands1 � s2 � · · · � sn.
For xn ∈ BL, the fact thatφ(BE) ⊂ BL ∪ {0} andφ is a surjective implies that there

ej ∈ BE such thatxn = φ(ej ). The fact thatφ is a generalized restricted homomorphi
implies that

x
p

sj

n − φϕE(ej ) = φ̃
(
e
p

sj

j − ϕE(ej )
) ∈ I (BL,ϕL).

Lemma 2.1 impliessj � sn, hence sj = sn. By rearranging the order ofBE (i.e.,
exchanging the position ofej in BE with the position ofen in BE ), we can assumeej = en,
i.e.,φ(en) = xn,

φϕE(en) − ϕLφ(en) = φϕE(en) − x
psn

n + x
psn

n − ϕLφ(en) ∈ I (BL,ϕL) ∩ L = 0,

henceφϕE(en) = ϕLφ(en).

If we replacen with i (= n−1, n−2, . . . ,1 in this order) in the above discussion, the
similarly, we can obtainφ(ei) = xi andφϕE(ei) = ϕLφ(ei). �

Let A be an associative algebra. Forx ∈ A, let Lx and Rx denote respectively the le
and right multiplication byx; adx = Lx − Rx. According to [3, p. 567, formula (1)], w
have

m−1∑
(−1)m−j−1

(
m

j

)
Lj

xRm−j−1
x =

m−1∑
Li

x(adx)m−i−1.
j=0 i=0
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Settingm = pr in this formula, we obtain

pr−1∑
i=0

xi(adx)p
r−1−i (c) = cxpr−1 for c, x ∈ A. (2)

Let x, y ∈ A andt an indeterminate overA. Then

(xt + x)p = xptp + yp +
p−1∑
i=1

bi(x, y)ti.

According to [6, p. 63], we have

(
ad(xt + y)

)p−1
(x) =

p−1∑
i=1

ibi(x, y)ti−1. (3)

Lemma 4.3. Let (E,φ) be an extension ofM byL. Then inU(E), we have the formula

(e + m)p
k = epk +

k∑
j=0

(
(ade)p

j−1 · m)pk−j

for m ∈ M, e ∈ E.

Proof. In formula (3), replacingx andy with m andepr
respectively, we have

(
ad

(
mt + epr ))p−1 · m =

p−1∑
i=1

ibi

(
m,epr )

t i−1. (4)

Suppose that
∑p−1

i=0 t ici(adm,adepr
) is the expansion of(t adm + adepr

)p−1. Then

(
ad

(
mt + epr ))p−1 · m = (

t adm + adepr )p−1 · m

=
p−1∑
i=0

t ici

(
adm,adepr ) · m. (5)

The fact that adepr = (ade)p
r

andM is an abelian ideal ofE implies

ci

(
adm,adepr ) · m =

{
0 i �= 0,
(adepr

)p−1 i = 0.

By means of a comparison of coefficients oft i of formulas (4) and (5), we have

ibi

(
m,epr ) =

{
0 i �= 1,
(adepr

)p−1 i = 1.
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Consequently, we obtain

(
epr + m

)p = (
epr )p + mp + (

adepr )p−1 · m. (6)

Now we show the lemma by induction onk. Settingr = 0 in formula (6), we obtain
(e + m)p = (e)p + mp + (ade)p−1 · m, hence the lemma is valid fork = 1. According to
the induction hypothesis, we have

(e + m)p
k+1 =

(
epk +

k∑
j=0

(
(ade)p

j−1 · m)pk−j

)p

. (7)

The fact that[mpi
, epj ] = −(ade)p

j−1(adm)p
i · e = 0 (for ∀m ∈ M, e ∈ E, i, j ∈ N)

implies

(
epk +

k∑
j=0

(
(ade)p

j −1 · m)pk−j

)p

= (
epk + (

(ade)p
k−1 · m))p

+
k−1∑
j=0

(
(ade)p

j−1 · m)pk−j+1
. (8)

Formula (6) ensures

(
epk + (

(ade)p
k−1 · m))p = epk+1 + (

(ade)p
k−1 · m)p

+ (
adepk)p−1 · ((ade)p

k−1 · m)
. (9)

Formulas (7), (8), and (9) provide

(e + m)p
k+1 = epk+1 +

k+1∑
j=0

(
(ade)p

j−1 · m)pk+1−j

. �

Let (E,BE,ϕE,φ) be a generalized restricted extension ofM by L and BE =
{e1, . . . , en+l}. Suppose thatB ′

E = {e1+m1, . . . , en+l +mn+l} is another basis ofE (where
m1, . . . ,mn+l ∈ M). Define

ϕ′(ei + mi) :=
{

ϕE(ei) + ∑si
j=0((adei)

pj−1 · m)[p]si−j
i � n,

ϕE(ei) + ∑1
j=0((adei)

pj−1 · m)[p]1−j
i > n.

(10)

Then
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adϕ′(ei + mi) = ad

(
ϕE(ei) +

si∑
j=0

(
ade

pj−1
i · mi

)[p]si−j

)

= ad

(
e
psi

i +
si∑

i=0

(
(adei)

pj −1 · mi

)psi−j

)

= ad(ei + mi)
psi for i � n.

Similarly, we have

adϕ′(ei + mi) = ad(ei + mi)
p for i > n.

This means that(E,B ′
E,ϕ′) is a generalized restricted Lie algebra.

Since(M, [p]) is a generalized restricted subalgebra of(E,BE,ϕE), we have

mpk − m[p]k =
k−1∑
i=0

((
m[p]i )p − (

m[p]i )[p])pk−i−1 ∈ I (BE,ϕE), for ∀m ∈ M,k ∈ N.

(11)

Formula (11) and Lemma 4.3 imply thatI (B ′
E,ϕ′) ⊂ I (BE,ϕE), Lemma 2.3 ensure

(E,BE,ϕE) = (E,B ′
E,ϕ′

E). Hence by formula (1) we haveϕE |B ′
E

= ϕ′.

In order to avoid a few narrative complications, in the sequel we assume thas =
(r, . . . , r) in the definition of generalized restricted Lie algebra, but the assump
concernings is not necessary.

Definition 4.2. Let (E,BE,ϕE,φ) and (E′,BE′ , ϕE′ , φ′) be two generalized restricte
extensions ofM by L. (E,BE,ϕE,φ) and (E′,BE′ , ϕE′ , φ′) are called similar if there
exists an ordinary Lie algebra isomorphismγ of E to E′ which leaves the elements
M fixed and for whichφ = φ′γ. Then (E,BE,ϕE,φ) and (E′,BE′ , ϕE′ , φ′) are called
equivalent if such a mapγ is a generalized restricted homomorphism.

Let γ be a similarity isomorphism of(E,BE,ϕE,φ) to (E′,BE′ , ϕE′ , φ′). For e ∈ BE

andm ∈ M, the relationφ′γ (e + m) = φ(e + m) implies that there existsm′ ∈ M and
e′ ∈ BE′ such thatγ (e +m) = e′ +m′. According to formula (10),ϕE′γ (e +m) is defined.

Lemma 4.4. Let γ be a similarity isomorphism of(E,BE,ϕE,φ) to (E′,BE′ , ϕE′ , φ′).
Then following statements are equivalent:

(1) γ is an equivalence isomorphism of(E,BE,ϕE,φ) to (E′,BE′ , ϕE′ , φ′).
(2) γ ϕE(e + m) = ϕE′γ (e + m), for ∀m ∈ M and∀e ∈ BE.

(3) γ ϕE(e) = ϕE′γ (e), for anye ∈ BE.

Proof. It is clear that (2)⇒ (3).
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(3)⇒ (1). Letγ (e) = e′ + m′ (wheree ∈ BE ande′ ∈ BE′ ) andγ̃ be a homomorphism
of U(E) to U(E′) which is extended byγ. According to Lemma 4.3 and formula (10), w
have

γ̃
(
epr − ϕE(e)

) = γ (e)p
r − γ ϕE(e) = γ (e)p

r − ϕE′γ (e)

= (
e′)pr +

r∑
j=0

((
ade′)pj −1 · m′)pr−j − ϕE′

(
e′)

−
r∑

j=0

((
ade′)pj −1 · m′)[p]r−j

.

Formula (11) impliesγ̃ (epr − ϕE(e)) ∈ I (BE′ , ϕE′). SinceI (BE,ϕE) is generated by
elementsepr − ϕE(e) (e ∈ BE), we haveγ̃ (I (BE,ϕE)) ⊂ I (BE′ , ϕE′), i.e.,γ is an equi-
valence isomorphism of(E,BE,ϕE,φ) to (E′,BE′ , ϕE′ , φ′).

(1)⇒ (2). Letγ (e +m) = e′ +m′ for e ∈ BE andm ∈ M. According to Lemma 4.3 an
formula (10), we have

(
γ (e + m)

)pr − ϕE′γ (e + m) = (
e′)pr +

r∑
j=0

((
ade′)pj −1 · m′)pr−j − ϕE′

(
e′)

−
r∑

j=0

((
ade′)pj −1 · m′)[p]r−j ∈ I (BE′ , ϕE′).

The fact thatγ is an equivalence isomorphism of(E,BE,ϕE,φ) to (E′,BE′ , ϕE′ , φ′)
meansγ̃ ((e + m)p

r − ϕE(e + m)) ∈ I (BE′ , ϕE′). Hence

ϕE′γ (e + m) − γ ϕE(e + m) = γ̃
(
(e + m)p

r − ϕE(e + m)
)

− ((
γ (e + m)

)pr − ϕE′γ (e + m)
) ∈ I (BE′ , ϕE′) ∩ E′ = (0),

i.e.,γ ϕE(e + m) = ϕE′γ (e + m). �
Lemma 4.5. Every generalized restricted extension ofM by L is similar to one in which
M is strongly abelian(i.e., [M,M] = 0 andM [p] = 0).

Proof. Let (E,BE,ϕE,φ) be a generalized restricted extension ofM by L. According
to Lemma 4.2, there areei ∈ BE and xi ∈ BL (i = 1, . . . , n) such thatφ(ei) = xi and
φϕE(ei) = ϕL(xi). Let B ′

E = {e1, . . . , en,m1, . . . ,ml} where{m1, . . . ,ml} is a basis ofM.

Define ψE(ei) := ϕE(ei) and ψE(mi) := m
[p]
i . It is easy to verify that(E,B ′

E,ψE)

is a generalized restricted Lie algebra andI (B ′
E,ψE) ⊂ I (BE,ϕE). According to

Lemma 2.3, we have(E,BE,ϕE) = (E,B ′
E,ψE). This means that we can assumeBE =

{e1, . . . , en,m1, . . . ,ml}. Defineϕ′ :BE → E by ϕ′ (ei) := ϕE(ei) andϕ′ (mi) := 0. It is
E E E
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easily to verify that(E,BE,ϕ′
E,φ) is a generalized restricted extension ofM by L which

is similar to(E,BE,ϕE,φ) by the identity map ofE ontoE. �
Let M be an L-module and ext(M,L) the set of the similarity classes of tho

extensions ofM by L. If L is a generalized restricted Lie algebra andM is a generalized
restrictedL-module, we can consider the subset exts(M,L) of ext(M,L) which consists
of the similarity classes of the generalized restricted extensions.

We recall the definition of the vector space structure in ext(M,L). The subtraction in
ext(M,L) is the map which is induced by the following composition of extensions(E,φ)

and(E′, φ′). Let D denote the subalgebra of the direct sum ofE andE′ which consists
of all the elements(e, e′) in which φ(e) = φ′(e′). Let J be the ideal ofD consisting of
the elements(m,m), with m ∈ M. In D/J , we identify (M,M)/J with M by means
of the homomorphism(m,m′) → m − m′ whose kernel is exactlyJ . The homomorphism
(e, e′) → φ(e) induces a homomorphismψ of D/J ontoL, and(D/J,ψ) is the extension
of M by L, which represents the difference of the similarity classes of(E,φ) and(E′, φ′).

Suppose that(E,BE,ϕE,φ) and (E′,BE′ , ϕE′ , φ′) are generalized restricted exte
sions of M by L. According to the proof of Lemma 4.5, we can assumeBE =
{e1, . . . , en,m1, . . . , ml} andB ′

E = {e′
1, . . . , e

′
n,m1, . . . ,ml} where{m1, . . . ,ml} is a ba-

sis ofM andφ(ei) = φ′(e′
i ). Let BD = {(ei, e

′
i ) | i = 1, . . . , n} ∪ {(mi,0) | i = 1, . . . , l} ∪

{(0,mj) | j = 1, . . . , l}. It is easy to verify thatBD is a basis ofD. Define mapϕD onBD

by settingϕD((ei, e
′
i )) := (ϕE(ei), ϕE′(e′

i )), ϕD((mi,0)) := (m
[p]
i ,0), andϕD((0,mj )) :=

(0,m
[p]
j ). It is easily seen that(D,BD,ϕD) is a generalized restricted Lie algebra. Exa

ple 2.1 shows that(D/J, BD/J ,ϕD/J ,ψ) constitutes a generalized restricted extensio
M by L. Hence exts (M,L) is a subgroup of ext(M,L).

The scalar multiple of the similarity class of(E,φ) by an elementα ∈ F is the similarity
class of the extension defined as follows. First, construct a Lie algebra(E,M) whose space
is the direct sum ofE andM, and where the commutation is defined by the formula[

(e,m),
(
e′,m′)] = ([

e, e′], e · m′ − e′ · m)
.

Let J be the ideal of(E,M) which consists of the elements of the form(m,−αm), with
m ∈ M. In (E,M)/J, identify (M,M)/J with M by the homomorphism(m,m′) →
αm + m′ whose kernel isJ . Let ψ be the homomorphism(e,m) → φ(e). Then the
similarity class of((E,M)/J,ψ) is the desiredα-multiple of the similarity class of(E,φ).

According to Lemma 4.5, every element of exts (M,L) is represented by a genera
ized extension(E,BE,ϕE,φ) in which M is strongly abelian. According to the proof
Lemma 4.5, we can assumeBE = {e1, . . . , en,m1, . . . ,ml}. Let B(E,M) = {(e1,0), . . . ,

(en,0), (m1,0), . . . , (ml,0)} ∪ {(0,mj) | j = 1, . . . , l}. It is easily seen thatB(E,M)

is a basis of(E,M). Define a mapϕ(E,M) on B(E,M) by settingϕ(E,M)((ei,0)) :=
(ϕE(ei),0), ϕ(E,M)((mi,0)) := (0,0), andϕ(E,M)((0,mj )) := (0,0). It is easy to verify
that (ad(ei,0))p

r = ad(ϕE(ei),0), (ad(mi,0))p = adϕ(E,M)((mi,0)), and (ad(0,mj ))
p =

adϕ(E,M)((0,mj )). Hence((E,M),B(E,M),ϕ(E,M)) is a generalized restricted Lie a
gebra. Example 2.1 ensures that((E,M)/J,B(E,M)/J , ϕ(E,M)/J ,ψ) is a generalized re
stricted extension ofM by L. Hence we have proved the following proposition:
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Proposition 4.6. exts (M,L) is a subspace ofext(M,L).

Let extϕL(M,L) be the equivalence classes of those generalized restricted exte
of M by L. If we assign to each such equivalence class the similarity class to wh
belongs, we obtain what we shall call the canonical map of extϕL(M,L) into exts (M,L).

It is clear that, no matter what the givenp-mapping inM actually is, the canonical ma
is a group homomorphism of extϕL(M,L) onto exts(M,L). Furthermore, ifM is strongly
abelian, then the canonical map is anF -linear map.

5. Cohomology of generalized restricted Lie algebras

As we know, there is a canonical isomorphism of ext(M,L) onto H 2(L,M). Let f

be any Lie 2-cocycle forL in M. The extension ofM by L, which corresponds to th
cohomology classc of f by the canonical isomorphism, is the following. The underly
space of the extended algebra is the direct sum ofL andM, and [(x,m), (x1,m1)] :=
([x, x1], x · m1 − x1 · m + f (x, x1)) for x, x1 ∈ L, m1,m ∈ M. The homomorphism ont
L is the map(x,m) → x.

Setkx(x1) := ∑pr−1
i=0 xi · f (x,adxpr−1−i (x1)) for x ∈ BL and writefy(x) = f (x, y).

By directly computing, we have

(
ad(x,0)

)pr

(x1,0) = ([
ϕL(x), x1

]
, kx(x1)

)
. (12)

Applying (ad(x,0)p
r
) to [(x1,0), (x2,0)] and considering the fact that (ad(x,0))p

r
is a

derivation andf is a Lie 2-cocycle forL in M, we can obtain thatkx + fϕL(x) is a Lie
1-cocycle forL in M for each fixedx ∈ BL.

If f is a coboundary,∂g, then

kx(x1) = ϕL(x) · g(x1) − g
([

ϕL(x), x1
]) −

pr−1∑
i=0

xi adxpr−1−i (x1) · g(x).

Applying formula (2), we obtain

kx(x1) = ϕL(x) · g(x1) − g
([

ϕL(x), x1
]) − x1x

pr−1 · g(x)

whence

kx(x1) + f
(
x1, ϕL(x)

) = x1 · (g(
ϕL(x)

) − xpr−1 · g(x)
)
.

It follows that the cohomology class ofkx + fϕL(x) depends only on the cohomology cla
c of f. We shall denote it byc(x). Let H 2

s (L,M) be the image of exts(M,L) in H 2(L,M)

by the canonical isomorphism of ext(M,L) ontoH 2(L,M). Then
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Lemma 5.1. c ∈ H 2
s (L,M) if and only ifc(x) = 0 for all x ∈ BL.

Proof. Let c ∈ H 2
s (L,M) and let (E,BE,ϕE,φ) be a generalized restricted extens

whose similarity class corresponds toc. It can be easily seen from the proof of Lemma
that we can assumeBE = {(x,0) | x ∈ BL} ∪ {(0,m1), . . . , (0,ml)} (where{m1, . . . ,ml} is
a basis ofM). Lemma 4.2 means that we can writeϕE((x,0)) = (ϕL(x), ρ(x)) for x ∈ BL.

Moreover, (ad(x,0))p
r · (x1,0) = adϕE(x,0) · (x1,0) meanskx(x1) = f (ϕL(x), x1) −

x1 · ρ(x), i.e.,kx + fϕL(x) = ∂(−ρ(x)), so thatc(x) = 0.
Conversely, letg be an associative 2-cocycle forU(L)+ in M which represents th

given cohomology classc ∈ H 2(L,M). If f (x, y) = g(x, y) − g(y, x). Thenf is a Lie
2-cocycle belonging toc. If we expresskx(x1) in terms of valuesg, we have

kx(x1) = g
(
xpr

, x1
) −

pr−1∑
i=0

g
(
xi adxpr−1−i · x1, x

)
.

By formula (2), this becomes

kx(x1) = g
(
xpr

, x1
) − g

(
x1x

pr−1, x
)

= g
(
xpr

, x1
) − g

(
x1, x

pr ) − x1 · g(
xpr−1, x

)
. (13)

Hencec(x) has the representative 1-cocycleg′
x, where

g′
x(x1) = g

(
xpr − ϕL(x), x1

) − g
(
x1, x

pr − ϕL(x)
)
.

If c(x) = 0 for all x ∈ BL, we can find a mapσ of BL into M such thatg′
x(x1) =

x1 · σ(x). Let BE = {(x,0) | x ∈ BL} ∪ {(0,m1), . . . , (0,ml)} and defineϕE((x,0)) =
(ϕL(x), g(xpr−1, x) − σ(x)) for all x ∈ BL, ϕE((0,mi)) = (0,0). It is clear that
(ad(0,mi))

p = adϕE((0,mi)). Now we verify the identity(ad(x,0))p
r = adϕE((x,0)):(

ad(x,0)
)pr

(x1,m1) = ([
ϕL(x), x1

]
, ϕL(x) · m1 + kx(x1)

)
= ([

ϕL(x), x1
]
, ϕL(x) · m1 − x1 · g(

xpr−1, x
)

+ g
(
xpr

, x1
) − g

(
x1, x

pr ))
while

adϕE

(
(x,0)

)
(x1,m1) = ([

ϕL(x), x1
]
, ϕL(x) · m1 − x1 · g(

xpr−1, x
)

+ x1σ(x) + g
(
ϕL(x), x1

) − g
(
x1, ϕL(x)

))
= ([

ϕL(x), x1
]
, ϕL(x) · m1 − x1 · g(

xpr−1, x
)

+ g′
x(x1) + g

(
ϕL(x), x1

) − g
(
x1, ϕL(x)

))
= ([

ϕL(x), x1
]
, ϕL(x) · m1 − x1 · g(

xpr−1, x
)

+ g
(
xpr

, x1
) − g

(
x1, x

pr ))
.
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Thus (ad(x,0))p
r = adϕE((x,0)). Hence (E,BE,ϕE,φ) is a generalized restricte

extension ofM by L, i.e.,c ∈ H 2
s (L,M). �

Let Map(BL,H 1(L,M)) be the space of all maps ofBL into H 1(L,M). Then we have
proved

Proposition 5.2. LetL be a generalized restricted Lie algebra andM be a generalized re
strictedL-module. For an associative2-cocycleg, defineg′

x(x1) := g(xpr − ϕL(x), x1) −
g(x1, x

pr − ϕL(x)). Then mapg → g′ induces anF -linear map of H 2(L,M) into
Map(BL,H 1(L,M)) whose kernel is precisely the subspaceH 2

s (L,M).

Let γ be a similarity isomorphism of a generalized restricted extension(E,BE,ϕE,φ)

onto a generalized restricted extension(E′,BE′ , ϕE′ , φ′). Let e ∈ BE. Then there exis
e′ ∈ BE′ such thatγ (e) = e′ + m (m ∈ M). According to formula (10), we have

ϕE′
(
γ (e)

) = ϕE′
(
e′) +

r∑
i=0

((
ade′)pi−1

m
)[p]r−i

.

Defineg(x) := γ (ϕE(e)) − ϕE′(γ (e)) (whereφ(e) = x ∈ BL). Then

φ′(g(x)
) = φ′(γ (

ϕE(e)
) − ϕE′

(
γ (e)

)) = φ
(
ϕE(e)

) − φ′ϕE′
(
e′)

= ϕL(x) − ϕL(x) = 0,

henceg(x) ∈ M. Fory ∈ L, there existsz ∈ E such thaty = φ′γ (z), thus

y · g(
φ(e)

) = [
γ (z),

(
γ
(
ϕE(e)

) − ϕE′
(
γ (e)

))]
= γ

([
z,ϕE(e)

]) + adγ (e)p
r (

γ (z)
)

= γ
([

z,ϕE(e)
]) + γ

(
adepr

(z)
) = 0,

i.e., g ∈ Map(BL,ML) (the set of all maps ofBL into ML). DefineϕEg (e) := ϕE(e) −
g(φ(e)) for e ∈ BE. It is obvious that(E,BE,ϕEg ,φ) is a generalized restricted extensi
of M by L. Lemma 4.4 ensures thatγ is an equivalence isomorphism of(E,BE,ϕEg ,φ)

onto(E′,BE′ , ϕE′ , φ′).
Conversely, ifg ∈ Map(BL,ML), then (E,BE,ϕEg ,φ) is obviously a generalize

restricted extension ofM by L which is similar to(E,BE,ϕE,φ).
With everyg ∈ Map(B,ML), we associate the transformationg∗ on extϕL(M,L) which

is induced by the map(E,BE,ϕE,φ) → (E,BE,ϕEg ,φ). Let π be the canonical map o
extϕL(M,L) onto exts (M,L) andSc = π−1(c) wherec ∈ exts(M,L).

Lemma 5.3. The following statements hold:

(1) g∗(Sc) ⊂ Sc, andMap(BL,ML) operates transitively on eachSc.
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(2) Let s0 denote the0-element ofextϕL(M,L) and s ∈ extϕL(M, L). Theng∗(s) =
g∗(s0) + s.

(3) The mapsg → g∗ andg → g∗(s0) are group homomorphisms.
(4) The kernel of the mapg → g∗ is {g | g(x) = ∑r

i=0(x
pi−1f (x))[p]r−i − f (ϕL(x)), x ∈

BL,f ∈ Z1(L,M)}, whereZ1(L,M) = ker(∂1 :C1(L,M) → C2(L,M)).

Proof. (1) has been shown by the above discussion.
(2) Let (E0,BE0, ϕE0, φ

′) be a representation ofs0 and (E,BE,ϕE,φ) a rep-
resentation ofs. According the proof of Lemma 4.5, we can assume thatBE0 =
{m1, . . . ,ml, e

′
1, . . . , e

′
n} andBE = {m1, . . . ,ml, e1, . . . , en} (whereφ(ei) = φ(e′

i ) = xi ∈
BL). Let D = {(e, e′): φ(e) = φ′(e′)}, J = {(m,−m): m ∈ M}, BD = {(ei, e

′
i ) | i =

1, . . . , n} ∪ {(mi,0) | i = 1, . . . , l} ∪ {(0,mj ) | j = 1, . . . , l}, andψ(e, e′) = φ(e).

Then g∗(s) = g∗(s) + s0 has a representation(D/J,BD/J,ϕD/J , ψ̄) and ϕD/J is
induced byϕD :BD → D, where

ϕD

((
ei , e

′
i

)) := (
ϕEg (ei), ϕE0

(
e′
i

)) = (
ϕE(ei) − g(xi), ϕE0

(
e′
i

))
,

ϕD

(
(mi,0)

) := (
m

[p]
i ,0

)
, and ϕD

(
(0,mj)

) := (
0,m

[p]
j

)
.

Similarly, s + g∗(s0) has a representation(D/J,BD/J ,ϕ′
D/J ,ψ) andϕD/J is induced

by ϕD :BD → D, where

ϕD

((
ei, e

′
i

)) := (
ϕE(ei), ϕ(E0)g

(
e′
i

)) = (
ϕE(ei), ϕE0

(
e′
i

) − g(xi)
)
,

ϕD

(
(mi,0)

):= (
m

[p]
i ,0

)
, and ϕD

(
(0,mj )

) := (
0,m

[p]
j

)
.

Thus we haveg∗(s) = s + g∗(s0).

(3) g∗
1(g∗

2((E,BE,ϕE,φ))) = g∗
1((E,BE,ϕEg2

, φ)) = (E,BE,ϕ(Eg2)g1
, φ), by the

definition ofϕEg to obtainϕ(Eg2)g1
= ϕE(g1+g2)

, hence(g1 + g2)
∗ = g∗

1g∗
2.

(4) Suppose thatζ is an equivalence isomorphism of(E,BE,ϕEg1
, φ) onto (E,BE,

ϕEg2
, φ). Lemma 4.1 ensuresζ(e) = e + h(φ(e)) where h is a Lie 1-cocycle forL

in M. By Lemma 4.4, we haveϕEg2
(ζ(e)) = ζ(ϕEg1

(e)), e ∈ BE. Writing out the relation
ζ(ϕEg1

(e)) = ϕEg2
(ζ(e)), we have

g2(x) − g1(x) = xpr−1 · h(x) − h
(
ϕL(x)

) +
r−1∑
i=0

(
xpi−1 · h(x)

)[p]r−i

, x ∈ BL.

Conversely, letf be any Lie 1-cocycle forL in M. Thenf is the restriction toL of an
associative cocyclẽf defined onU(L)+. Forx ∈ BL, set

g(x) := xpr−1f (x) − f
(
ϕL(x)

) +
r−1∑(

xpi−1f (x)
)[p]r−i
i=0
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l

l

= f̃
(
xpr ) − f

(
ϕL(x)

) +
r−1∑
i=0

(
xpi−1f (x)

)[p]r−i

= f̃
(
xpr − ϕL(x)

) +
r−1∑
i=0

(
xpi−1f (x)

)[p]r−i

.

Fory ∈ L, we have

yg(x) = yf̃
(
xpr − ϕL(x)

) = f̃
(
y
(
xpr − ϕL(x)

))
= f̃

((
xpr − ϕL(x)

)
y
) = (

xpr − ϕL(x)
)
f (y) = 0,

whenceg is a map fromBL into ML. Now we verify that the mape → ζ(e) = e+f (φ(e))

is an equivalence isomorphism of(E,BE,ϕE,φ) onto (E,BE,ϕEg ,φ). Lemma 4.1
ensures thatζ is a similarity isomorphism,

ϕEg

(
ζ(e)

) = ϕEg (e) +
r∑

i=0

(
(ade)p

i−1f
(
φ(e)

))[p]r−i

= ϕE(e) − g
(
φ(e)

) +
r∑

i=0

(
(ade)p

i−1f
(
φ(e)

))[p]r−i

= ϕE(e) + f
(
φ
(
ϕE(e)

)) = ζ
(
ϕE(e)

)
.

Lemma 4.4 ensures thatζ is an equivalence isomorphism.�
For f ∈ Z1(L,M), define f̂ (x) := ∑r

i=0(x
pi−1f (x))[p]r−i − f (ϕL(x)) for x ∈ BL.

Then we have

Proposition 5.4. Let M be an abelian restricted Lie algebra on which the generali
restricted Lie algebraL operates. Then the mapf → f̂ of Z1(L,M) into Map(BL,ML),

the homomorphismg → g∗(s0) of Map(BL,ML) into extϕL(M,L), and the canonica
homomorphism ofextϕL(M,L) ontoexts(M,L) constitute an exact sequence

Z1(L,M) → Map
(
BL,ML

) → extϕL(M,L) → exts (M,L) → 0.

Proof. Part (2) of Lemma 5.3 implies that ker(g → g∗(s0)) = ker(g → g∗), and (4) of
Lemma 5.3 implies that ker(g → g∗) = im(f → f̂ ), i.e., ker(g → g∗(s0)) = im(f → f̂ ).

Part (1) of Lemma 5.3 indicates that im(g → g∗(s0)) is the kernel of the canonica
homomorphism of extϕL(M,L) onto exts(M,L). �

Suppose thatM is strongly abelian and an associative 2-cocycleg for uϕL(L)+ in M

is given. We can construct a corresponding generalized restricted extension ofM by L as
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follows. The underlying vector space of the extended Lie algebra,Eg , is the direct sum o
L andM. The commutation is defined by the formula[

(x1,m1), (x2,m2)
] = ([x1, x2], x1m2 − x2m1 + g(x1, x2) − g(x2, x1)

)
.

The homomorphismφg of Eg onto L is defined byφg((x,m)) = x. Defineϕg(x,0) :=
(ϕL(x), g(xpr−1, x)) for x ∈ BL andϕg(0,m) := (0,0) for m ∈ M. Then

adϕg(x,0) · (x1,m) = [(
ϕL(x), g

(
xpr−1, x

))
, (x1,m)

]
= ([

ϕL(x), x1
]
, ϕL(x)m − x1g

(
xpr−1, x

)
+ g

(
ϕL(x), x1

) − g
(
x1, ϕL(x)

))
.

According to formulas (12) and (13), we have(
ad(x,0)

)pr · (x1,m) = ([
ϕL(x), x1

]
, ϕL(x)m − x1g

(
xpr−1, x

)
+ g

(
xpr

, x1
)−g

(
x1, x

pr ))
.

The fact thatg is an associative 2-cocycle foruϕL(L)+ in M implies thatg(ϕL(x), x1) =
g(xpr

, x1) andg(x1, ϕL(x)) = g(x1, x
pr

), hence adϕg(x,0) = ad(x,0)p
r
. This means tha

(Eg,BE,ϕg,φg) is a generalized restricted extension ofM by L.

Lemma 5.5. Leth be any1-cochain foruϕL(L)+ in M. For (x,m) ∈ Eg+∂h, setα(x,m) :=
(x,m+h(x)) ∈ Eg. Thenα is an equivalence isomorphism of(Eg+∂h,BE, ϕg+∂h, φg+∂h)

onto(Eg,BE,ϕg,φg).

Proof. Let (x1,m1), (x2,m2) ∈ Eg+∂h. Then[
(x1,m1), (x2,m2)

] = ([x1, x2], x1m2 − x2m1 + g(x1, x2) − g(x2, x1)

+ ∂h(x1, x2) − ∂h(x2, x1)
)

= ([x1, x2], x1m2 − x2m1 + g(x1, x2) − g(x2, x1)

+ x1h(x2) − x2h(x1) − h
([x1, x2]

))
,

whence

α
([

(x1,m1), (x2,m2)
]) = ([x1, x2], x1m2 − x2m1 + g(x1, x2) − g(x2, x1)

+ x1h(x2) − x2h(x1)
)
.

While for (x1,m1 + h(x1)), (x2,m2 + h(x2)) ∈ Eg, we have[(
x1,m1 + h(x1)

)
,
(
x2,m2 + h(x2)

)] = ([x1, x2], x1
(
m2 + h(x2)

) − x2
(
m1 + h(x1)

)
+ g(x1, x2) − g(x2, x1)

)
,
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quiv-
i.e., α is Lie algebra homomorphism ofEg+∂h to Eg. It is easy to verify thatα is an
isomorphism andφg+∂hα = φg andα(0,m) = (0,m). Henceα is a similarity isomorphism
of (Eg+∂h,BE,ϕg+∂h,φg+∂h) onto(Eg,BE,ϕg,φg).

Forx ∈ BL, we have

α
(
ϕg+∂h(x,0)

) = α
(
ϕL(x), g

(
xpr−1, x

) + ∂h
(
xpr−1, x

))
= (

ϕL(x), g
(
xpr−1, x

) + xpr−1h(x) − h
(
xpr ) + h

(
ϕL(x)

))
= (

ϕL(x), g
(
xpr−1, x

) + xpr−1h(x)
)
,

while

ϕg

(
α(x,0)

) = ϕg

(
x,h(x)

) = (
ϕL(x), g

(
xpr−1, x

) + xpr−1h(x)
)

whenceα(ϕg+∂h(x,0)) = ϕg(α(x,0)). Lemma 4.4 ensures thatα is an equivalence
isomorphism. �

Lemma 5.5 ensures that the correspondenceg → (Eg,BE,ϕg,φg) induces a map
H 2

ϕL
(L,M) into extϕL(M,L). We denote it byρ.

Lemma 5.6. The mapρ is aF -linear homomorphism ofH 2
ϕL

(L,M) into extϕL(M,L).

Proof. According to the discussion before Proposition 4.6, the difference of the e
alence class of(Eg1,BE,ϕg1, φg1) and the equivalence class of(Eg2,BE,ϕg2, φg2) has
a representation(D/J,BD/J ,ϕD/J , φ̄), where D = {((x,m), (x,m′)) | x ∈ L,m,m′ ∈
M}, J = {((0,m), (0,m)) | m ∈ M}, BD = {((xi,0), (xi,0)) | xi ∈ BL, i = 1, . . . , n} ∪
{((mi,0), (0,0)) | i = 1, . . . , l} ∪ {((0,0), (0,mj)) | j = 1, . . . , l}, φ̄ is induced by
φ((x,m), (x,m′)) = x, andϕD/J is induced by

ϕD

(
(xi,m),

(
xi,m

′)) = ((
ϕL(xi), x

pr−1
i m + g1

(
x

pr−1
i , xi

))
,(

ϕL(xi), x
pr−1
i m′ + g2

(
x

pr−1
i , xi

)))
.

Defineγ :D → Eg1−g2, via γ ((x,m), (x,m′)) := (x,m − m′). For x, y ∈ L andm1,m
′
1,

m2,m
′
2 ∈ M, we have

γ
([(

(x,m1),
(
x,m′

1

))
,
(
(y,m2),

(
y,m′

2

))])
= γ

([
(x,m1), (y,m2)

]
,
[(

x,m′
1

)
,
(
y,m′

2

)])
= (

γ
([x, y], xm2 − ym1 + g1(x, y) − g1(x, y)

)
,([x, y], xm′

2 − ym′
1 + g2(x, y) − g2(y, x)

))
= ([x, y], x(

m2 − m′
2

) − y
(
m1 − m′

1

)
+ g1(x, y) − g2(x, y) − g1(y, x) + g2(y, x)

)
= [

γ
(
(x,m1),

(
x,m′

1

))
, γ

(
(y,m2),

(
y,m′

2

))]
.
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Henceγ is a Lie algebra homomorphism ofD ontoEg1−g2. It is clear that ker(γ ) = J ,
thusγ induces an isomorphism̄γ :D/J → Eg1−g2. Forxi ∈ BL andm,m′ ∈ M, we have

γ
(
ϕD

(
(xi,m),

(
xi,m

′)))
= γ

((
ϕL(xi), x

pr−1
i m + g1

(
x

pr−1
i , xi

))
,
(
ϕL(xi), x

pr−1
i m′ + g2

(
x

pr−1
i , xi

)))
= (

ϕL(xi), x
pr−1
i m − x

pr−1
i m′ + g1

(
x

pr−1
i , xi

) − g2
(
x

pr−1
i , xi

))
= ϕg1−g2γ

(
(xi,m),

(
xi,m

′)).
This means that̄γ is an equivalence isomorphism of(D/J,BD/J ,ϕD/J , φ̄) onto(Eg1−g2,

BE,ϕg1−g2, φg1−g2).

According to the discussion before Proposition 4.6, the scalar multiple by an elemen
α ∈ F of the equivalence class of(Eg,BE,ϕg,φg) has a representation(D/J,BD/J ,ϕD/J ,

φ̄) whereD = {((x,m),m′) | x ∈ L, m,m′ ∈ M}, J = {((0,−αm),m) | m ∈ M}, BD =
{((xi,0),0) | xi ∈ BL, j = 1, . . . , l} ∪ {((0,mi),0) | i = 1, . . . , l} ∪ {((0,0),mj) | j =
1, . . . , l}, ϕD/J is induced by

ϕD

(
(xi,m),m′) = ((

ϕL(xi), x
pr−1
i m + g

(
x

pr−1
i , xi

))
, x

pr−1
i m′),

and φ̄ is induced byφ((x,m),m′) = x. Define γ :D → Eαg by γ ((x,m1),m2) =
(x,αm1 + m2). For ((x,m1),m

′
1), ((y,m2), m′

2) ∈ D, we have

γ
([(

(x,m1),m
′
1

)
,
(
(y,m2),m

′
2

)])
= γ

([x, y], xm2 − ym1 + g(x, y)
)
,
(
xm′

2 − ym′
1

)
= ([x, y], αxm2 − αym1 + αg(x, y) + xm′

2 − ym′
1

)
,

while

[
γ
(
(x,m1),m

′
1

)
, γ

(
(y,m2),m

′
2

)]
= [(

x,αm1 + m′
1

)
,
(
y,αm2 + m′

2

)]
= ([x, y], αxm2 + xm′

2 − αym1 − ym′
1 + αg(x, y)

)
.

Henceγ is a Lie algebra homomorphism ofD ontoEαg . It is clear that ker(γ ) = J ; thus,
γ induces an isomorphism̄γ :D/J → Eαg. Forxi ∈ BL andm,m′ ∈ M, we have

γ ϕD

(
(xi,m),m′) = γ

((
ϕL(xi), x

pr−1
i m + g

(
x

pr−1
i , xi

))
, x

pr−1
i m′)

= (
ϕL(xi), αg

(
x

pr−1
i , xi

) + αx
pr−1
i m + x

pr−1
i m′),

while
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e

ϕαgγ
(
(xi,m),m′) = ϕαg

(
xi, αm + m′)

= (
ϕL(xi), x

pr−1
i

(
αm + m′) + αg

(
x

pr−1
i , xi

))
.

Hence γψ((xi ,m),m′) = ϕαgγ ((xi,m),m′). This means thatγ̄ is an equivalence
isomorphism of(D/J,BD/J ,ϕD/J , φ̄) onto(Eαg,BE, ϕαg, φαg). Henceρ is anF -linear
homomorphism. �
Lemma 5.7. ρ is an isomorphism.

Proof. Let (E,BE,ϕE,φ) be a generalized restricted extension ofM by L; φ̃ the
homomorphism ofuϕE (E) ontouϕL(L), which is extended byφ; and{m1, . . . ,ml} a basis
of M. Define a mapγ of uϕE (E)M ontoM byγ (

∑
i uimi) = ∑

i φ̃(ui)mi. Let ψ be linear
map ofL into E which is inverse toφ. Extendψ to a linear mapψ̃ of uϕL(L) into uϕE (E)

such thatφ̃ψ̃ is the identity map onuϕL(L). Defineg(x, y) := γ (ψ̃(x)ψ̃(y)− ψ̃(xy)) and
a mapα :Eg → E by settingα(x,m) := ψ(x) + m. As done in [3, p. 573], we can verif
the following facts:

(1) γ is auϕE (E)-homomorphism.
(2) γ (uϕE (E)MuϕE (E)+) = 0.

(3) g is an associative 2-cocycle foruϕL(L)+ in M.

(4) α is a similarity isomorphism.

Now we prove thatα is generalized restricted equivalence isomorphism. Forx ∈ BL,

φψ(x) = x implies that there ise ∈ BE andm′ ∈ M such thatψ(x) = e + m′. According
to formula (10),ϕE(ψ(x)) is well defined and we have

ϕE

(
α(x,m)

) = ϕE

(
ψ(x)

) + xpr−1m,

while

αϕg(x,m) = α
(
ϕL(x), g

(
xpr−1, x

) + xpr−1m
)

= ψ
(
ϕL(x)

) + g
(
xpr−1, x

) + xpr−1m.

Since(ψ̃(xpr−1)−ψ(x)p
r−1)ψ(x) ∈ uϕE (E)MuϕE(E)+ andϕE(ψ(x))−ψ(ϕL(x)) ∈ M,

we have

g
(
xpr−1, x

) = γ
(
ψ̃

(
xpr−1)ψ(x) − ψ̃

(
xpr ))

= γ
((

ψ
(
xpr−1) − ψ(x)p

r−1)ψ(x)) + γ
(
ψ(x)p

r − ψ̃
(
xpr ))

= γ
(
ϕE

(
ψ(x)

) − ψ
(
ϕL(x)

)) = ϕE

(
ψ(x)

) − ψ
(
ϕL(x)

)
,

whenceϕEα(x,m) = αϕg(x,m). According to Lemma 4.4,α is an equivalence isomo
phism of(E,BE,ϕE,φ) to (Eg,BE,ϕg,φg), i.e.,ρ is a surjective map. Similarly as don
in [3, p. 573], we can show thatρ is an injective map. �
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Hence we have

Theorem 5.8. Let M be a strongly abelian restricted Lie algebra on which t
generalized restricted Lie algebraL operates. Then there is a canonical isomorphism
extϕL(M,L) ontoH 2

ϕL
(L,M) such that the following diagram of canonicalF -linear maps

is commutative:

extϕL
(M,L) H 2

ϕL
(L,M)

exts (M,L) H 2
s (L,M).

In the case thatM is strongly abelian, we can replaceZ1(L,M) by H 1(L,M) in the
exact sequence of Proposition 5.4. Takingaccount of Propositions 5.2 and 3.1, we obt
that the sequence

0 → H 1
ϕL

(L,M) → H 1(L,M) → Map
(
BL,ML

)
→ H 2

ϕL
(L,M) → H 2(L,M) → Map

(
BL,H 1(L,M)

)
is exact.

Since Map(BL,ML) ∼= homF (L,ML), Map(BL,H 1(L,M)) ∼= homF (L,H 1(L,M)),
we have

Theorem 5.9. For every generalized restrictedL-moduleM, the following sequence i
exact:

0→ H 1
ϕL

(L,M) → H 1(L,M) → homF

(
L,ML

)
→ H 2

ϕL
(L,M) → H 2(L,M) → homF

(
L,H 1(L,M)

)
. (14)

In [2, p. 2876], Professor Jörg Feldvoss has proved

Proposition 5.10. LetL be a restricted Lie algebra andM a restrictedL-module. Then

Ĥ n
p (L,M) ∼= Ĥ n−r

p

(
L,M(r)

)
and Ĥ 0

p(L,M) ∼= ML/(s · M),

wheres is a left integral ofup(L).

In [4], the author has shown that the result of Proposition 5.10 holds ifL is a generalized
restricted Lie algebra andM is a generalized restrictedL-module.

Let L = X(n,m) (X = W,S,H,K) and M be an irreducibleL-module. ThenL is
a generalized restricted Lie algebra. IfM is not a generalized restrictedL-module, then
according to [1, Theorem 1, p. 128], we can easily obtain thatH 1(L,M) = 0. If M
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ed Lie

r their

7–

)

is a trivial irreducibleL-module, then[L,L] = L implies H 1(L,M) = 0. If M is a
generalized restrictedL-module, then sequence (14) impliesH 1(L,M) ∼= H 1

ϕL
(L,M).

Proposition 5.10 provides that

H 1
ϕL

(L,M) ∼= Ĥ 0
p

(
L,M(1)

) ∼= (
uϕL(L)+ ⊗ M

)L
/sL · ((uϕL(L)+ ⊗ M)

)
.

So we haveH 1(L,M) ∼= (uϕL(L)+ ⊗ M)L/sL · ((uϕL(L)+ ⊗ M)).

If M = F , then sequence (14) andH 1(L,F ) = 0 ensure that the sequence

0 → homF (L,F ) → H 2
ϕL

(L,F ) → H 2(L,F ) → 0 (15)

is exact. Proposition 5.10 provides that

H 2
ϕL

(L,F ) ∼= Ĥ 0
ϕL

(
L,F (2)

) ∼= (
uϕL(L)+ ⊗ uϕL(L)+

)L
/sL · ((uϕL(L)+ ⊗ uϕL(L)+

))
.

So the sequence (15) gives us a way to study the center extensions of the grad
algebras of Cartan type.
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