# ML Characterization of the Multivariate Normal Distribution

# W. STADJE

University of Osnabrück, Osnabrück, Germany

It is a well-known result (which can be traced back to Gauss) that the only translation family of probability densities on  $\mathbb{R}$  for which the arithmetic mean is a maximum likelihood estimate of the translation parameter originates from the normal density. We generalize this characterization of the normal density to multivariate translation families. © 1993 Academic Press, Inc.

## 1. Introduction

The following characterization of the normal density  $\varphi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$ ,  $x \in \mathbb{R}$ , is well-known: Let f be a density on  $\mathbb{R}$ ; let  $X_1, ..., X_n$  be an independent sample from a distribution belonging to the translation family  $f(\cdot - \theta)$ ,  $\theta \in \mathbb{R}$ . If  $\overline{X} = n^{-1}(X_1 + \cdots + X_n)$  is a maximum likelihood (ML) estimate of  $\theta$  for n = 2, 3, i.e., if

$$\prod_{i=1}^{n} f\left(x_{i} - n^{-1} \sum_{j=1}^{n} x_{j}\right) \ge \prod_{i=1}^{n} f(x_{i} - \theta) \quad \text{for all} \quad x_{1}, ..., x_{n}, \theta \in \mathbb{R},$$
 (1.1)

then  $f(x) = \sigma^{-1}\varphi(x/\sigma)$ ,  $x \in \mathbb{R}$ , for some  $\sigma > 0$ . This property of  $\varphi$  can be traced back to Gauss [3], who derived it, in the context of least-squares, under the assumption that f is differentiable. The ML characterization apparently provided the first justification for the use of the normal density  $\varphi$ . Teicher [8] proved the result only assuming that f is lower semicontinuous at 0. Generalizing Teicher's theorem, Findeisen [2] showed that measurability of f is the only condition needed. Further extensions can be found in Stadje [6, 7]: The normal translation family on  $\mathbb R$  can be characterized even in the class of all probability measures (not only the absolutely continuous ones) by the property that the arithmetic mean is a ML estimate, using the ML principle of Scholz [5]. Further, altering f on a Lebesgue null set (i.e., assuming (1.1) only on the complement of such a

Received August 13, 1992; revised December 15, 1992.

AMS 1980 subject classifications: primary 62E10; secondary 62F04.

Key words and phrases: multivariate normal distribution, translation family, maximum likelihood, characterization.

null set) does not invalidate the conclusion that  $f(x) = \sigma^{-1} \varphi(x/\sigma)$  for some  $\sigma > 0$ .

The aim of this paper is to generalize the above characterization to the multivariate normal density. Thus let f now be a Borel-measurable nonnegative function on  $\mathbb{R}^d$  for some  $d \in \mathbb{N}$  and let  $\lambda^d(f>0)>0$ , where  $\lambda^d$  denotes the d-dimensional Lebesgue measure. We present a proof of the following statement.

THEOREM. Assume that for samples  $x^{(1)}, ..., x^{(n)} \in \mathbb{R}^d$  of sizes n = 2, 3, 4 the arithmetic mean  $\bar{x} = n^{-1}(x^{(1)} + \cdots + x^{(n)})$  is a ML estimate of the parameter  $\theta \in \mathbb{R}^d$  of the translation family  $(f(\cdot - \theta))_{\theta \in \mathbb{R}^d}$ , i.e.,

$$\prod_{i=1}^{n} f(x^{(i)} - \bar{x}) \geqslant \prod_{i=1}^{n} f(x^{(i)} - \theta) \quad \text{for all} \quad \theta \in \mathbb{R}^{d}.$$
 (1.2)

Then  $f(x) = c \exp(-x'Ax)$ ,  $x \in \mathbb{R}^d$ , for some c > 0 and some non-negative definite  $(d \times d)$ -matrix A.

We note that if f is assumed to be positive everywhere and twice differentiable, this assertion follows from the results of Campbell [1].

### 2. AUXILIARY RESULTS

We will have to consider the logarithm of f, and thus we have to make sure that f(x) > 0 for all  $x \in \mathbb{R}^d$ . This is verified in the following lemma. A similar result for d = 1 has been proved by Findeisen [2, Section 2]. The proof is simpler even in the one-dimensional case. We use the relation

$$f(x) f(-x) \ge f(\theta) f(\theta + 2x)$$
 for all  $x, \theta \in \mathbb{R}^d$  (2.1)

which follows from (1.2) by setting n = 2,  $x^{(1)} = -x^{(2)} = x$  and  $\theta = -x - \tilde{\theta}$ . In the sequel let 0 = (0, ..., 0) be the zero vector in  $\mathbb{R}^d$ .

LEMMA 1. Let  $f: \mathbb{R}^d \to \mathbb{R}_+$  satisfy (1.2) for n = 2, 3. Then f(x) = 0  $\lambda^d$ -almost everywhere or f(x) > 0 for all  $x \in \mathbb{R}^d$ .

*Proof.* By (1.2),  $f(\mathbf{0})^3 \ge f(\theta)^3$  for all  $\theta \in \mathbb{R}^d$ , so that  $f(\mathbf{0}) = \max\{f(\theta) | \theta \in \mathbb{R}^d\}$ . We may thus assume that  $f(\mathbf{0}) > 0$  and (after possibly changing from f to  $f/f(\mathbf{0})$ ) that  $0 \le f \le 1$ .

We proceed by induction on d. First let d=1. Suppose we can find a sequence  $x^{(k)} \in \mathbb{R}$  such that  $0 \neq x^{(k)} \to 0$  and

$$f(x^{(k)}) \ f(-x^{(k)}) = 0$$
 for all  $k \in \mathbb{N}$ . (2.2)

Without restriction of generality we can choose  $x^{(k)} > 0$ . From (2.1) it follows that

$$f(\theta) f(\theta + 2x^{(k)}) = 0$$
 for all  $\theta \in \mathbb{R}$  and  $k \in \mathbb{N}$ . (2.3)

Fix  $\theta_0 \in \mathbb{R}$  and consider the intervals  $I_k = [\theta_0, \theta_0 + 3x^{(k)}]$ . Then for every  $x \in [\theta_0, \theta_0 + x^{(k)}]$  we have  $x, x + 2x^{(k)} \in I_k$  and, by (2.3), f(x) = 0 or  $f(x + 2x^{(k)}) = 0$ . Thus, any  $I_k$  contains a Borel-measurable subset  $B_k$  of measure at least  $\lambda^1(I_k)/3$  satisfying  $f \mid B_k \equiv 0$ . Consequently, the set  $\{f > 0\}$  has a Lebesgue density of at most 2/3 at every point  $\theta_0 \in \mathbb{R}$ . By Lebesgue's density theorem,  $\{f > 0\}$  is a Lebesgue null set.

If no sequence  $x^{(k)}$  as above exists, there is an  $\varepsilon > 0$  such that f(x) > 0 for  $|x| < \varepsilon$ . Then note that  $0 \le f \le 1$  implies that, for any  $x^{(1)}$ ,  $x^{(2)}$ ,  $x^{(3)} \in \mathbb{R}$ ,

$$f\left(x^{(1)} - \frac{1}{3}\left(x^{(1)} + x^{(2)} + x^{(3)}\right)\right) \geqslant \prod_{i=1}^{3} f\left(x^{(i)} - \frac{1}{3}\left(x^{(1)} + x^{(2)} + x^{(3)}\right)\right)$$
$$\geqslant f(x^{(1)}) f(x^{(2)}) f(x^{(3)}). \tag{2.4}$$

Setting  $x^{(1)} = x$  and  $x^{(2)} = x^{(3)} = -x$  in (2.4) we obtain

$$f(4x/3) \ge f(x) f(-x)^2$$
. (2.5)

Thus, f(x) > 0 for all  $|x| < \varepsilon$  entails f(x) > 0 for all  $|x| < 4\varepsilon/3$ . Iterating this argument yields f(x) > 0 for all  $x \in \mathbb{R}$ .

Now let  $d \ge 2$  and assume the assertion holds for all d' < d. Obviously it is sufficient to show that  $f \equiv 0$   $\lambda^d$ -a.e. or f(x) > 0 for all x in some neighborhood of 0. Suppose that there is a sequence of points  $x^{(k)} \in \mathbb{R}^d$  such that  $x_i^{(k)} \ne 0$ , i = 1, ..., d, and  $f(x^{(k)})$   $f(-x^{(k)}) = 0$  for all  $k \in \mathbb{N}$ . As above we conclude from (2.1) that

$$f(\theta + 2x^{(k)}) = 0$$
 for all  $\theta \in \mathbb{R}^d$ ,  $k \in \mathbb{N}$ . (2.6)

Any d-dimensional rectrangle of the form

$$I = \prod_{i=1}^{d} \left[ \theta_i - 2 |x_i^{(k)}|, \ \theta_i + 3 |x_i^{(k)}| \right]$$

contains a Borel-measurable subset of measure at least  $(1/5)^d \lambda^d(I)$  on which f is positive, because for any  $x \in \prod_{i=1}^d [\theta_i, \theta_i + |x_i^{(k)}|]$  we have f(x) = 0 or  $f(x + 2x^{(k)}) = 0$  by (2.6). Therefore

$$\lambda^d(I \cap \{f > 0\})/\lambda^d(I) \le 1 - (1/5)^d < 1$$

and Lebesgue's density theorem yields  $\lambda^d(f > 0) = 0$ .

If no sequence  $x^{(k)}$  with the above properties exists, there is a neighborhood U of 0 such that f(x) > 0 for all  $x \in U$  having non-vanishing components. But if  $x \in U$  has some components equal to 0, we still have  $f(x) f(-x) \ge f(\theta) f(\theta + 2x)$  for all  $\theta \in \mathbb{R}^d$ , and it is easy to find a  $\theta \in U$  such that  $\theta + 2x$  is also in U and  $\theta$  and  $\theta + 2x$  have non-vanishing components. Then  $f(\theta) f(\theta + 2x) > 0$ , implying that f(x) > 0. It follows that  $U \subset \{f > 0\}$ . The Lemma is proved.

The proof of the next Lemma is straightforward and therefore omitted.

LEMMA 2. Any monotone function  $\alpha: \mathbb{Q} \setminus \{0\} \to \mathbb{R}$  satisfying

$$\alpha(u+v)-\alpha(u)=\alpha(u'+v)-\alpha(u')$$

for all  $u, u', v \in \mathbb{Q} \setminus \{0\}, u \neq -v \neq u'$ , is affine.

### 3. Proof of the Theorem

By Lemma 1 we can define a real-valued function g by setting  $g = -\ln f$ . Then (1.1) is clearly equivalent to the implication

$$\sum_{i=1}^{n} x^{(i)} = \mathbf{0} \Rightarrow \sum_{i=1}^{n} g(x^{(i)}) \leqslant \sum_{i=1}^{n} g(x^{(i)} - \theta) \quad \text{for all} \quad \theta \in \mathbb{R}^{d}, \quad (3.1)$$

where n = 2, 3, 4. The function h(x) = g(x) + g(-x) is even and satisfies also (3.1). Moreover, the function  $x_1 \mapsto h(x_1, ..., x_d)$  is midconvex, i.e.,

$$h((x_1 + x_1')/2, x_2, ..., x_d) \le \frac{1}{2} (h(x_1, x_2, ..., x_d) + h(x_1', x_2, ..., x_d))$$
 (3.2)

for all  $x_1, x_1', x_2, ..., x_d \in \mathbb{R}$ . To see (3.2), set n = 2,  $x^{(1)} = x = -x^{(2)}$  in (3.1) and add the inequalities

$$h(x) \le g(x-\theta) + g(-x-\theta), \ h(-x) \le g(-x+\theta) + g(x+\theta).$$

This yields  $2h(x) \le h(x+\theta) + h(x-\theta)$  for all  $x \in \mathbb{R}^d$ , which is tantamount to (3.2).

A Borel-measurable midconvex function is convex (Roberts and Varberg [4, Ch. VII]). It follows that for fixed  $x_2, ..., x_d$  the derivative  $D_1 h = \partial h/\partial x_1$  exists everywhere except at an at most countable set of points.  $D_1 h$  is non-decreasing and has positive jumps at the points where it is not defined. Let  $D(x_2^{(0)}, ..., x_d^{(0)})$  be the set of all rational multiples of the points  $x_1$  for which

 $D_1h$  does not exist at  $(x_1, x_2^{(0)}, ..., x_d^{(0)})$ . Note that  $0 \in D(x_2, ..., x_d) = D(-x_2, ..., -x_d)$ , because h is even, and that every set  $D(x_2, ..., x_d)$  is countable.

Now fix  $x_2$ , ...,  $x_d$ . We choose an  $u_0 \in (0, \infty) \setminus D(x_2, ..., x_d)$ . For rational numbers p, q, r,  $s \neq 0$  satisfying p + q + r + s = 0 we define

$$H(u) = h(pu_0 + u, x_2, ..., x_d) + h(-qu_0 - u, x_2, ..., x_d) + h(ru_0 + u, x_2, ..., x_d) + h(-su_0 - u, x_2, ..., x_d).$$

Since  $pu_0$ ,  $qu_0$ ,  $ru_0$ ,  $su_0 \in \mathbb{R} \setminus D(x_2, ..., x_d) = \mathbb{R} \setminus D(-x_2, ..., -x_d)$ , the function H is differentiable at u = 0. Furthermore, H has a minimum at u = 0, because h satisfies (3.1) for n = 4, is even and  $pu_0 + qu_0 + ru_0 + su_0 = 0$  (here we need the sample size 4). It follows that

$$0 = H'(0) = \frac{\partial}{\partial u} \left( h(pu_0 + u, x_2, ..., x_d) + h(-qu_0 - u, x_2, ..., x_d) + h(ru_0 + u, x_2, ..., x_d) + h(-su_0 - u, x_2, ..., x_d) \right) |_{u = 0}$$

$$= D_1 h(pu_0, x_2, ..., x_d) - D_1 h(-qu_0, x_2, ..., x_d)$$

$$+ D_1 h(ru_0, x_2, ..., x_d) - D_1 h(-su_0, x_2, ..., x_d). \tag{3.3}$$

By (3.3),

$$D_1 h((u+v)u_0, x_2, ..., x_d) - D_1 h(uu_0, x_2, ..., x_d)$$
  
=  $D_1 h((u'+v)u_0, x_2, ..., x_d) - D_1 h(u'u_0, x_2, ..., x_d)$ 

for all rational u, u',  $v \in \mathbb{Q}$  such that u,  $u' \neq 0$ ,  $u \neq -v \neq u'$ . Moreover,  $D_1 h$  is monotone non-decreasing on  $\mathbb{Q}u_0 \setminus \{0\}$ . By Lemma 2,  $D_1 h$  is linear on  $\mathbb{Q}u_0 \setminus \{0\}$ . But at any jump point u of  $D_1 h$  the left-hand and the right-hand derivative of h (which exist as  $h(\cdot, x_2, ..., x_d)$  is convex) lie between

$$\lim_{u' \in D(x_2, \dots, x_d)^c} D_1 h(u', x_2, \dots, x_d) \quad \text{and} \quad \lim_{u' \in D(x_2, \dots, x_d)^c} D_1 h(u', x_2, \dots, x_d),$$

and these limits coincide. Thus, h is everywhere partially differentiable with respect to  $x_1$ , the derivative being given by

$$D_1h(x) = [D_1h(1, x_2, ..., x_d) - D_1h(0, x_2, ..., x_d)] x_1 + D_1h(0, x_2, ..., x_d).$$

Next consider, for any given  $x \in \mathbb{R}^d$ , the three points  $x^{(1)} = x$ ,  $x^{(2)} = (0, -x_2, ..., -x_d)$ ,  $x^{(3)} = (-x_1, 0, ..., 0)$ . Then  $x^{(1)} + x^{(2)} + x^{(3)} = 0$ , so that

$$0 = D_1 h(x^{(1)}) + D_1 h(x^{(2)}) + D_1 h(x^{(3)})$$
  
=  $D_1 h(x) - D_1 h(0, x_2, ..., x_d) - D_1 h(x_1, 0, ..., 0),$  (3.4)

since  $D_1h(x) = -D_1h(-x)$ . The function  $x_1 \mapsto D_1h(x_1, 0, ..., 0)$  is linear so that  $h(x_1, 0, ..., 0) = \alpha^2x_1^2 + \beta x_1 + \gamma$ ; since  $x_1 = 0$  is a maximum of  $f(x_1, 0, ..., 0)$  and thus a minimum of  $h(x_1, 0, ..., 0)$ , it follows that  $\beta = 0$ . By assumption we have  $f(\mathbf{0}) = 1$ , so that also  $\gamma = 0$ . Hence we obtain  $\alpha^2 = h(1, 0, ..., 0)$  and, by (3.4),

$$D_1 h(x) = 2h(1, 0, ..., 0) x_1 + D_1 h(0, x_2, ..., x_d).$$
(3.5)

Since  $D_1h$  is convex in  $x_1$ , we also have

$$D_1 h(1, 0, ..., 0) \ge 0.$$
 (3.6)

By induction on d we can now prove the following assertion: For any even function  $h: \mathbb{R}^d \to \mathbb{R}$  satisfying (3.1) (with g replaced by h) the function h(x) - h(0) is a non-negative definite quadratic form. For d = 1 this follows immediately from (3.5) and (3.6).

Integrating (3.5) with respect to  $x_1$  yields

$$h(x) = h(1, 0, ..., 0) x_1^2 + D_1 h(0, x_2, ..., x_d) x_1 + h(0, x_2, ..., x_d).$$
(3.7)

Now assume the assertion is true for d-1, where  $d \ge 2$ . Obviously, the function  $\bar{h}(x_2, ..., x_d) = h(0, x_2, ..., x_d) - h(0)$  is even and satisfies (3.1) so that the induction hypothesis can be applied to  $\bar{h}$ . Thus,  $\bar{h}$  is a non-negative definite quadratic form in  $x_2, ..., x_d$ . By (3.7),

$$h(x_1, ..., x_d) - h(\mathbf{0})$$
=  $h(1, 0, ..., 0) x_1^2 + D_1 h(0, x_2, ..., x_d) x_1 + \tilde{h}(x_2, ..., x_d).$  (3.8)

Setting  $x_1 = x_2$  in (3.8) we obtain

$$D_1 h(0, x_2, ..., x_d) x_2 = h(x_2, x_2, x_3, ..., x_d) - h(\mathbf{0})$$
$$-h(x_2, ..., x_d) - h(1, 0, ..., 0) x_2^2.$$
(3.9)

Now note that we can also apply the induction hypothesis to the function  $\hat{h}(x_2, ..., x_d) = h(x_2, x_2, x_3, ..., x_d) - h(\mathbf{0})$  because  $\hat{h}$  is even and clearly satisfies (3.1) with d replaced by d-1. It follows that  $\hat{h}$  is a quadratic form of the d-1 variables  $x_2, ..., x_d$ . Thus (3.9) shows that  $D_1 h(0, x_2, ..., x_d) x_2$  is a quadratic form of  $x_2, ..., x_d$ , say  $\sum_{2 \le i \le j \le d} b_{ij} x_i x_j$ . Since  $D_1 h(0, x_2, ..., x_d)$  remains bounded as  $x_2 \to 0$  (for any fixed  $x_3, ..., x_d$ ), the function  $(1/x_2) \sum_{2 \le i \le j \le d} b_{ij} x_i x_j$  remains bounded as  $x_2 \to 0$ , so that  $b_{ij} = 0$  for i > 2 and j > 2. It follows that  $D_1 h(0, x_2, ..., x_d)$  is a linear form of  $x_2, ..., x_d$ . From (3.8) we can now conclude that  $h(x_1, ..., x_d) - h(\mathbf{0})$  is a

quadratic form of  $x_1, ..., x_d$ . Note that h has a minimum at  $\mathbf{0}$  so that  $h(x) - h(\mathbf{0}) \ge 0$ .

Finally we have to return to g. Clearly,

$$h(x) = g(x_1, ..., x_d) + g(-x_1, ..., -x_d)$$

$$\leq g(x_1 + \theta_1, x_2, ..., x_d) + g(-x_1 + \theta_1, -x_2, ..., -x_d)$$

$$= g(x_1 + \theta_1, x_2, ..., x_d) + h(x_1 - \theta_1, x_2, ..., x_d)$$

$$-g(x_1 - \theta_1, x_2, ..., x_d)$$
(3.10)

for all  $\theta_1 \in \mathbb{R}$ . Replacing  $\theta_1$  by  $-\theta_1$  in (3.10) we get

$$h(x) \leq g(x_1 - \theta_1, x_2, ..., x_d) + g(-x_1 - \theta_1, -x_2, ..., -x_d)$$

$$= g(x_1 - \theta_1, x_2, ..., x_d) + h(x_1 + \theta_1, x_2, ..., x_d)$$

$$- g(x_1 + \theta_1, x_2, ..., x_d). \tag{3.11}$$

By (3.10) and (3.11),

$$h(x_1, ..., x_d) - h(x_1 - \theta_1, x_2, ..., x_d)$$

$$\leq g(x_1 + \theta_1, x_2, ..., x_d) - g(x_1 - \theta_1, x_2, ..., x_d)$$

$$\leq h(x_1 + \theta_1, x_2, ..., x_d) - h(x_1, ..., x_d).$$
(3.12)

The inequalities (3.12) show that g is partially differentiable with respect to  $x_1$  and that  $\partial g/\partial x_1 = \frac{1}{2}(\partial h/\partial x_1)$ . The same argument applies to the variables  $x_2, ..., x_d$ , so that g has continuous partial derivatives given by

$$\partial g/\partial x_i = \frac{1}{2} (\partial h/\partial x_i), \qquad i = 1, ..., d.$$

Hence g = h/2. The proof is complete.

#### REFERENCES

- [1] CAMPBELL, L. L. (1970). Equivalence of Gauss's principle and minimum discrimination information estimation of probabilities. Ann. Math. Statist. 41 1011-1015.
- [2] FINDEISEN, P. (1982). Die Charakterisierung der Normalverteilung nach Gauß. Metrika 29 55-64.
- [3] GAUSS, C. F. Theoria motus corporum coelestium. In Werke, liber II, Sectio III, 240-244.
- [4] ROBERTS, A. W., AND VARBERG, D. E. (1973). Convex Functions. Academic Press, New York/London.

- [5] SCHOLZ, F. W. (1980). Towards a unified definition of maximum likelihood. Canad. J. Statist. 8 193-203.
- [6] STADJE, W. (1987). An extension theorem for convex functions and an application to Teicher's characterization of the normal distribution. *Mathematika* 34 155-159.
- [7] Stadje, W. (1988). A generalized maximum likelihood characterization of the normal distribution. *Metrika* 35 93-97.
- [8] Teicher, H. (1961). Maximum likelihood characterization of distributions. *Ann. Math. Statist.* 32 1214-1222.