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ML Characterization of the Multivariate
Normal Distribution

W. STADIE

University of Osnabriick, Osnabriick, Germany

It is a well-known result (which can be traced back to Gauss) that the only
translation family of probability densities on R for which the arithmetic mean is a
maximum likelihood estimate of the translation parameter originates from the
normal density. We generalize this characterization of the normal density to
multivariate translation families.  © 1993 Academic Press, Inc.

1. INTRODUCTION

The following characterization of the normal density ¢(x)=(2x)"'?
exp(—x?%/2), xe R, is well-known: Let f be a density on R; let X, .., X, be
an independent sample from a distribution belonging to the translation
family f(-—6), 6eR. If X=n"'(X,+ --- + X,) is a maximum likelihood
(ML) estimate of 8 for n=2, 3, ie., if

Hf(x,—n’l Y xj>>l—[f(x,-—9) forall x,,..x, 0eR, (1.1)
i=1 j=1 i=1

then f(x)=0"'¢(x/s), xeR, for some ¢ >0. This property of ¢ can be
traced back to Gauss [3], who derived it, in the context of least-squares,
under the assumption that f is differentiable. The ML characterization
apparently provided the first justification for the use of the normal density
¢. Teicher [8] proved the result only assuming that f is lower semi-
continuous at 0. Generalizing Teicher’s theorem, Findeisen [2] showed
that measurability of f is the only condition needed. Further extensions can
be found in Stadje [6, 7]: The normal translation family on R can be
characterized even in the class of all probability measures (not only the
absolutely continuous ones) by the property that the arithmetic mean is a
ML estimate, using the ML principle of Scholz [5]. Further, altering f on
a Lebesgue null set (ie., assuming (1.1) only on the complement of such a
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null set) does not invalidate the conclusion that f(x)=0¢"'¢(x/o) for some
g>0.

The aim of this paper is to generalize the above characterization to the
multivariate normal density. Thus let f now be a Borel-measurable non-
negative function on R¢ for some deN and let 14(f>0)>0, where i‘
denotes the d-dimensional Lebesgue measure. We present a proof of the
following statement.

THEOREM. Assume that for samples x'", ., x" e R? of sizes n=2,3,4
the arithmetic mean x=n""x"+ ... +x™) is a ML estimate of the
parameter 0 R? of the translation family (f(-—0))gegd, i€

n

[] Ff(x?—%)= ﬁ f(xP—=8)  forall 0eR< (1.2)

i=1 i=1

Then f(x)=c exp(—x'Ax), xeRY for some ¢ >0 and some non-negative
definite (d x d)-matrix A.

We note that if f is assumed to be positive everywhere and twice
differentiable, this assertion follows from the results of Campbell [1].

2. AUXILIARY RESULTS

We will have to consider the logarithm of f, and thus we have to make
sure that f(x)>0 for all xe R% This is verified in the following lemma.
A similar result for d=1 has been proved by Findeisen [2, Section 2]. The
proof is simpler even in the one-dimensional case. We use the relation

f(x) f(—x)=f(8) f(0+2x) for all x,0eR? (2.1)

which follows from (1.2) by setting n=2, x'V'= —x®=x and 6= —x—0.
In the sequel let 0= (0, .., 0) be the zero vector in R<.

LEMMA 1. Let f:RY—> R, satisfy (1.2) for n=2,3. Then f(x)=0
A-almost everywhere or f(x)>0 for all xe R

Proof. By (1.2), f(0) = f(8) for all 6 e R so that f(0) =
max{f(#)|6 e R*}. We may thus assume that f(0)>0 and (after possibly
changing from f to f/f(0)) that 0< f < 1.

We proceed by induction on d. First let d=1. Suppose we can find a
sequence x*’e R such that 0# x*’ - 0 and

f(x®) f(—x*)=0  forall keN. (2.2)
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Without restriction of generality we can choose x*)>0. From (2.1) it
follows that

f8) f(8+2x*)=0 forall feR and keN. (2.3)

Fix 0,€ R and consider the intervals I, = [, 6,4+ 3x*']. Then for every
x€ [0, 0o+ x"®] we have x, x+2x*®el, and, by (2.3), f(x)=0 or
f{x+2x*=0. Thus, any I, contains a Borel-measurable subset B, of
measure at least A'(/,)/3 satisfying /| B, =0. Consequently, the set {f >0}
has a Lebesgue density of at most 2/3 at every point §,€ R. By Lebesgue’s
density theorem, {f >0} is a Lebesgue null set.

If no sequence x'*! as above exists, there is an &> 0 such that f(x)>0
for |x| <& Then note that 0 < /< | implies that, for any x"), x'), x* e R,

1 3 L1
(n (1) (2) (3) (i) (1) (2) (3)
—= (xM P xO) ) > == (x4 x4
f<x 3 )> El f(x 3 i )>

= f(x') f(x®) f(xP). (24)
Setting x'!’=x and x'*=x'*= —x in (2.4) we obtain
f(4x/3)= f(x) f(—x)*. (2.5)

Thus, f(x)> 0 for all | x| <e entails f(x)> 0 for all | x| < 4¢/3. Iterating this
argument yields f(x)>0 for all xeR.

Now let 4> 2 and assume the assertion holds for all d’ <d. Obviously it
is sufficient to show that f=0 i%ae. or f(x)>0 for all x in some
neighborhood of 0. Suppose that there is a sequence of points x*’ e R? such
that x¥#£0, i=1, .., d, and f(x*) f(—x"®)=0 for all ke N. As above we
conclude from (2.1) that

FO+2x%)=0 forall 8eR? keN. (2.6)

Any d-dimensional rectrangle of the form

I=

i

—a

[6,—21x¥)], ,+3x¥[]

1

It

contains a Borel-measurable subset of measure at least (1/5)¢ A%(I) on
which f is positive, because for any xe[I%_, [0,,0,+ [x*’|] we have

i=1

f(x)=0or f(x+2x"))=0 by (2.6). Therefore
I Lf 0124 <1 —(1/5) <1,

and Lebesgue’s density theorem yields A%(f>0)=0.
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If no sequence x"*’ with the above properties exists, there is a
neighborhood U of 0 such that f(x)> 0 for all xe U having non-vanishing
components. But if xe U has some components equal to 0, we still have
f(x) f(—x)=f(0) f(0 +2x) for all #e R, and it is easy to find a e U
such that 0+ 2x is also in U and 6 and 0+ 2x have non-vanishing com-
ponents. Then f(8) f(0+ 2x) >0, implying that f(x)>0. It follows that
Uc {f>0}. The Lemma is proved.

The proof of the next Lemma is straightforward and therefore omitted.

LEMMA 2. Any monotone function o:Q\ {0} — R satisfying
a(u+v)—afu)=a(u +v)—au')

Jor all u, ', ve Q\{0}, u# —v+#u', is affine.

3. PROOF OF THE THEOREM

By Lemma 1 we can define a real-valued function g by setting g = —In f.
Then (1.1) is clearly equivalent to the implication

S x0-0> Y gx)< Y gx¥—0) forall BeRY (31)

i=1 i=1 i=1

where n=2, 3, 4. The function A(x)= g(x)+ g(—x) is even and satisfies
also (3.1). Moreover, the function x,— A(x, .., x,) is midconvex, i.e.,

(X1, Xgy e Xg) +R(XY, X5, oy X)) (3.2)

b —

A((xy + x1)/2, X505 vy X4) <

for all x,, x}, x5, .., x;€ R. To see (3.2), set n=2, x'V=x= —x?in (3.1)
and add the inequalities

Ax)<gx—0)+ g(—x—0), (—x)<g(—x+0)+ g(x+8).

This yields 2h(x) < h(x + 6) + h(x — 6) for all xe R, which is tantamount
to (3.2).

A Borel-measurable midconvex function is convex (Roberts and Varberg
[4, Ch. VII]). It follows that for fixed x,, ..., x, the derivative D, h = dh/0x,
exists everywhere except at an at most countable set of points. DA is non-
decreasing and has positive jumps at the points where it is not defined. Let
D(x, ..., x?) be the set of all rational multiples of the points x, for which
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D,h does not exist at (x,,x{, .., x?). Note that 0e D(x,, .., x,)=
D(—x,, .., —x,), because h is even, and that every set D(x,, .., x,) is
countable.

Now fix x,, .., x,. We choose an uye (0, o )\ D(x,, .., x,). For rational
numbers p, g, r, s# 0 satisfying p + g+ r + s =0 we define

H(u)=h(pug+u, X5, 0y Xg5)+h(—qug—u, X5, ..., Xz)
+ h(rug+u, X5, oy X0} + A —Sug—u, X5, .y X4).

Since puy, qug, rug, sug € R\D(x,, .., x;) = R\D(—x,, .., —x,), the
function H is differentiable at ©=0. Furthermore, H has a minimum at
u =0, because 4 satisfies (3.1) for n =4, is even and pu, + quy + rug + suy =0
(here we need the sample size 4). It follows that

0
0= H’(O)=E;(h(pu()+ua X250y xd)+h(_qu0_u5 X25 s xd)

+h(rug+u, X5y oy Xg) FH(—5Stg— 1, X5, oy X )| uco
=D, h(pug, X5, .., x;) — D h(—qug, x5, ..., X,)
+ D h{rug, x4, oy Xg) — D A(—5sug, X5, s X ). (3.3)
By (3.3),

D] h((ll + v)u07 Xy eens xd) - Dlh(qu, X235 s xd)

=D h((v' +v)ug, X4, o, X5) — D A1 ug, X5, .y X4)
for all rational u, u’, ve Q such that u, ' #0, u# —v#u'. Moreover, D h
is monotone non-decreasing on Quy\{0}. By Lemma 2, D,A is linear on

Quy\{0}. But at any jump point u of D,/ the left-hand and the right-hand
derivative of A (which exist as A(-, x,, ..., x,;) is convex) lie between

lim D, h(u', x4, ..., X4) and lim D h(v, x,, ..., x4),

u Tu u' lu
u' € D(x3, ..., Xg)° u'€ D{xy, ... xq)*

and these limits coincide. Thus, 4 is everywhere partially differentiable with
respect to x,, the derivative being given by

D h(x)=[D,A(1, x5, e, x5) — D A0, X5, ..., x5)] x; + D A0, x5, ..., X,).

Next consider, for any given xeR“ the three points x'"=x, x¥=
0, — x5, oy =Xg), XP=(—x,,0,..,0). Then x4+ x@ 4+ x* =0, so that

0=D, h(x")+ D h(x?) + D h(x®)
=D, h(x)—= D, A0, x,, .., x;)— D h(x,,0, .., 0), (3.4)
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since D, h(x)= —D,h(—x). The function x,— D h(x,,0, .., 0) is linear so
that h(x,0,..,0) = a’x? + Bx, + y; since x,=0 is a maximum of
f(x,,0,..,0)and thus a minimum of A(x,, 0, .., 0), it follows that f =0. By
assumption we have f(0)=1, so that also y=0. Hence we obtain
a?=Ah(1,0,..,0) and, by (3.4),

D h(x)=2h(1,0, ..,0) x, + D A0, x5, .., X,). (3.5)
Since D 4 is convex in x,, we also have
D, Ah(1,0,..,0)=0. (3.6)

By induction on 4 we can now prove the following assertion: For any
even function 4: RY — R satisfying (3.1) (with g replaced by 4) the function
A(x)— h(0) is a non-negative definite quadratic form. For d=1 this follows
immediately from (3.5) and (3.6).

Integrating (3.5) with respect to x, yields

h(x)=h(1,0,..,0) x]+ D, h(0, x5, ..., x;) x; + 40, x5, .., x ). (3.7)

Now assume the assertion is true for d— 1, where d>=2. Obviously, the
function A(x,, ..., x;) = h(0, x5, ..., x,) — h(0) is even and satisfies (3.1) so
that the induction hypothesis can be applied to 4. Thus, / is a non-negative
definite quadratic form in x,, ..., x,. By (3.7),

h(xy, .., x4) —h(0)
=h(1,0,..,0) x}+ D A0, x,, .., x,;) x, + Alx5, ... x;).  (3.8)
Setting x, = x, in (3.8) we obtain

D A0, x5, ., xg) X3 =h(X;5, X5, X3, .y X,;) — h(0)
—h(xy, ey x)—h(1,0, .., 0)x]. (3.9)

Now note that we can also apply the induction hypothesis to the func-
tion A(x,, ..., x;) = h(x,, X5, X3, .., x;) — h(0) because A is even and clearly
satisfies (3.1) with d replaced by d— 1. It follows that 4 is a quadratic form
of the d— 1 variables x., ..., x,. Thus (3.9) shows that D A(0, x,, ..., x,)x,
is a quadratic form of x,,..,x, say Y,<i<;<abyxix;. Since
D, h(0, x,, ..., x,;) remains bounded as x, —» 0 (for any fixed x,, ..., x,), the
function (1/x,) X5 << j<ab;x;X; remains bounded as x, - 0, so that b, =0
for i>2 and j>2. It follows that D A0, x,, .., x;) is a linear form of
X5, ., Xyg. From (3.8) we can now conclude that A(x,, .., x,)—h(0) is a
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quadratic form of x,,.., x,. Note that # has a minimum at @ so that
A(x)— h(0)=0.
Finally we have to return to g. Clearly,
h(x)=g(xy, s X )+ g(—x1, ., —X4)
<glx; 40, x5, s X))+ g(—x1+ 04, —x3, ..., —Xy)
=g(x,+ 0y, x5, s X))+ h(x, =0y, X3, ...y Xg)
—glx; =01, x5, ... Xy) (3.10)

for all 8, € R. Replacing 8, by —8, in (3.10) we get

hx)<g(x,—0,, X5, e, Xz) + 8(—x,— 0y, — X5, .. —X,)
=g(x;—0;, x5, ., X))+ h(x,+ 6, x5, ..., Xz)
—glx, +0,, x5, ..., X). (3.11)

By (3.10) and (3.11),

hx, ., xg)—hix,—8,, x5, ., X3)
<gx +04, x5, 0 xy) — glx1 =04, X3, 0y X)

Kh{x +0,, x5, w0, X)) — (X, ..., X4) (3.12)

The inequalities (3.12) show that g is partially differentiable with respect to
x, and that dg/dx, = 3(0h/dx ). The same argument applies to the variables
X3, .., X4, 50 that g has continuous partial derivatives given by

1
dg/ox; =3 (0hfox)),  i=1,..d

Hence g = A/2. The proof is complete.
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