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The δN formalism is considered to calculate the evolution of the curvature perturbation in generalized
multi-field inflation models. The result is consistent with the usual calculation of the standard kinetic
term. For the calculation of the generalized kinetic term, we improved the definition of the adiabatic field.
Our calculation improves the usual calculation of Ṙ based on the field equations and the perturbations,
giving a very simple and intuitive argument for the evolution equations in terms of the perturbations
of the inflaton velocity. Significance of non-equilibrium corrections are also discussed, which is caused
by the small-scale (decaying) inhomogeneities. This formalism based on the modulated inflation scenario
(i.e., calculation based on the perturbations related to the inflaton velocity) provides a powerful tool for
investigating the signature of moduli that may appear in string theory.

© 2009 Published by Elsevier B.V. Open access under CC BY license. 
1. Introduction

Inflation has become a major paradigm for explaining the very
early Universe that is consistent with the observations, and cur-
rent observations of the temperature anisotropy of the Cosmic Mi-
crowave Background (CMB) support the scale-invariant and Gaus-
sian spectrum that is expected from the standard inflation sce-
nario. However, there are some anomalies in the spectrum, such as
a small departure from the exact scale-invariance or a certain non-
Gaussian character [1], which are expected to reveal the dynamics
of the fields that are responsible for the inflation. An obvious ex-
ample is the observation of a small shift in the spectrum index
n − 1 �= 0, which suggests that there is a small departure from the
scale-invariant evolution and which has been used to constrain the
inflation potential [2]. More recently, it has been claimed that ob-
servations may support a significant non-Gaussian character in the
spectrum [3]. For example, with regard to the generation of the
anomaly that captures the inflation dynamics, there are models for
inflation in which the spectrum is generated (1) during inflation
[4–8], (2) at the end of inflation [9–11], (3) after inflation by pre-
heating and reheating [12–16] or (4) by the curvatons [17–20].
In addition to these scenarios, an inhomogeneous phase transi-
tion [21] may play crucial role in generating cosmological pertur-
bations. In this Letter, the first possibility is considered; the correc-
tion during inflation causes a significant anomaly in the spectrum.
We have a special interest in the effects of massless excitations
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during inflation, which may capture the extra-dimensional struc-
ture of the Universe [22].

Consider multi-field inflation with kinetic terms described by a
metric G I J (φK ) in field space and n scalar fields. The action of the
model can basically be described by

S =
∫

d4x
√−g

[
R

16πG
+ P

(
X, φ I)], (1.1)

where X is given by

X ≡ −1

2
G I J ∂μφ I∂μφ J . (1.2)

For simplicity two-field inflation is considered in this Letter, in
which the adiabatic field σ and the entropy field s appear. Here
the adiabatic and entropy fields are defined by σ̇ 2 ≡ ∑

I (φ̇
I )2 = 2X

and s (ṡ ≡ 0). Using the kinetic part K and the potential V ,
P (X, φ I ) is expressed as P (X, φ I ) = K (X, φ I ) − V (φ I ).

Before discussing the details of the calculational method, which
is based on the modulated inflaton velocity (“modulated infla-
tion” in Ref. [6]), it would be useful to show why in the δN
formalism the modulated inflaton velocity can be used for the
evolution equation of the curvature perturbation, instead of using
the conventional non-adiabatic pressure perturbation or the time-
derivative of the comoving curvature perturbation.

Following the traditional calculation [2], the spectrum of the
curvature perturbation P R(k) for the (adiabatic) inflaton field σ is
given by

P R(k) =
(

H

˙
)2( H

)2

, (1.3)

σ 2π
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where H is the Hubble parameter of the Universe and the right-
hand side is evaluated at the epoch of the horizon exit k = aH .
Here a is the cosmic-scale factor. In the above equation, the co-
moving curvature perturbation R is considered, which can be
identified with the curvature perturbation on uniform-density hy-
persurfaces ζ (R � −ζ ) by studying the evolution of ζ at large
scales. The gauge-invariant combinations for the curvature pertur-
bation can be constructed as follows:

ζ = −ψ − H
δρ

ρ̇
,

R = ψ − H
δq

ρ + p
, (1.4)

where δq = −σ̇ δσ is the momentum perturbation satisfying

εm = δρ − 3Hδq, (1.5)

where εm is the perturbation of the comoving density. Linear scalar
perturbations of a Friedman–Robertson–Walker (FRW) background
were considered:

ds2 = −(1 + 2A)dt2 + 2a2(t)∇i B dxi dt

+ a2(t)
[
(1 − 2ψ)γi j + 2∇i∇ j E

]
dxi dx j . (1.6)

Here ρ and p denote the energy density and the pressure during
inflation.

Note that in the traditional argument the evolution of the cur-
vature perturbation at large scales is calculated to be given by the
non-adiabatic pressure perturbation δpnad;

ζ̇ � −H
δpnad

ρ + p
, (1.7)

where ζ and R coincide (ζ � −R) at large scales and δpnad ≡
[δp − ṗ

ρ̇ δρ] is a gauge-invariant perturbation.
In fact, from Eq. (1.4), it is found that

ζ̇ = −ψ̇ − d

dt

[
H

δρ

ρ̇

]
, (1.8)

and the equations for the local conservation of the energy–mo-
mentum lead to [23]

˙δρ = −3H(δρ + δp) + (ρ + p)
[
3ψ̇ − ∇2(σ + v + B)

]
, (1.9)

where the scalar describing the shear is

σ = Ė − B (1.10)

and ∇ i v is the perturbed 3-velocity of the fluid. Eq. (1.9) gives the
equation for ψ̇ , which can be used to derive

ζ̇ � − ˙δρ + 3H(δρ + δp)

3(ρ + p)
+ d

dt

[
H

δρ

3H(ρ + p)

]

= − H

ρ + p

[
δp − ṗ

ρ̇
δρ

]

= − H

ρ + p
δpnad, (1.11)

where ∇2(σ + v + B) is neglected.
Besides ζ̇ defined above, it is useful to define the perturbed

expansion rate with respect to the coordinate time1

δθ̃ ≡ −3ψ̇ + ∇2σ , (1.12)

1 See Refs. [23,24] for more details on the definitions.
which leads to2

d

dt
δN ≡ 1

3
δθ̃

� −ψ̇

= ζ̇ + d

dt

(
H

δρ

ρ̇

)

= − H

ρ + p
δpnad + d

dt

(
H

δρ

ρ̇

)
. (1.13)

Following the conventional definition of the δN formalism, we
choose the gauge whose slicing is flat at tini and uniform density at t .
Using ζ = −ψ on the specific choice of slice at t , the δN formula
is given by

ζ = 1

3

t∫
tini

δθ̃ dt = δN, (1.14)

which shows that Eqs. (1.11) and (1.13) are consistent, since the
equation is for the curvature perturbation ζ on uniform density
slice at t . Here the equation for the perturbed expansion rate δθ̃

for the δN formula is practically valid in any gauge and slicing, but
the relation between the curvature perturbation and δN is defined
for the specific choice of slice at t .

We also define ζ̇N in terms of the δN formalism defined for the
uniform density hypersurfaces. From Eqs. (1.13) and (1.9)

ζ̇N ≡ d

dt
δN = −ψ̇

� −H
δ(ρ + p)

(ρ + p)
− H

˙δρ
3(ρ + p)

� −H
δ(ρ + p)

(ρ + p)

= −H
δ(σ̇ 2)

σ̇ 2
, (1.15)

where the adiabatic field σ is defined so that the action has the
standard kinetic term.3 Here ˙δρ has been disregarded in the uni-
form density gauge. The basic formula of the evolution of δN is
valid for any gauge and slicing, but the relation between ζ̇ and
˙δN is defined in the specific slicing. As a result, in terms of the

δN formalism, the evolution of the curvature perturbation can be
explained using the perturbations related to the inflaton velocity
(δ(σ̇ 2)) [6]. In this Letter, using the δN formalism defined for the
uniform density hypersurfaces at t , a very simple method for cal-
culating the evolution of the curvature perturbation is discussed.

2. Standard kinetic term

The model
In order to explain the validity of the calculational method

based on the modulated inflation scenario, and to explain how the
method makes calculation very easy and clear, first the simplest
model of multi-field inflation is considered, which is characterized
by

2 d
dt [H δρ

ρ̇ ] can be identified with the shear when the perturbation δρ is defined
on spatially flat slicing and it satisfies the adiabatic condition [23]. The shear at
large scales is neglected in the above equation, but terms related to non-adiabatic
perturbations are not disregarded.

3 Due to the approximations that have been considered in deriving the equation,
the result is not exact with regard to the shear perturbations that accompany k2/a2

factor.
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P = X − V , (2.1)

where the metric G I J in the definition of X is equivalent to the
unit matrix (i.e. consider G I J = δI J ) and V (φ1, . . . , φn) represents
the scalar potential. The field equation derived from Eq. (1.1) with
the condition (2.1) is

φ̈ I + 3Hφ̇ I + V I = 0, (2.2)

where V I ≡ ∂V
∂φ I , and the Hubble rate H is determined by the Fried-

man equation:

H2 ≡ 1

3M2
p

[
1

2

∑
I

(
φ̇ I)2 + V

]
, (2.3)

where M p is the reduced Planck mass. In a spatially flat FLRW
space–time with metric given by

ds2 = −dt2 + a2(t)d�x2, (2.4)

the scalar fields are homogeneous. In order to study cosmological
fluctuations, the scalar perturbations of the metric are:

ds2 = −(1 + 2A)dt2 + 2aBi dxi dt

+ a2[(1 − 2ψ)δi j + 2Eij
]

dxi dx j, (2.5)

which leads to energy and momentum perturbations given in
terms of the scalar field perturbations;

δρ = δX + δV , (2.6)

3Hδq = −3H
∑

I

φ̇ Iδφ I

=
∑

I

[
φ̈ I + V I

]
δφ I , (2.7)

where the last equation is obtained by using the field equation.
Combining these equations, the comoving density perturbation is
found to be given by

εm ≡ δρ − 3Hδq

= δX +
(

δV −
∑

I

V Iδφ
I
)

−
∑

I

φ̈ Iδφ I

≡ δX + δ(2)V −
∑

I

φ̈ Iδφ I , (2.8)

which is a gauge-invariant quantity. Here δ(2)V denotes higher
order corrections with respect to the field perturbations. The co-
moving density perturbation satisfies the evolution equation

εm = − 1

4πG

k2

a2
Ψ, (2.9)

where Ψ is related to the shear perturbation.

Calculation
The adiabatic and entropy fields are defined by σ̇ 2 ≡ ∑

I (φ̇
I )2 =

2X and s (ṡ ≡ 0). In terms of the adiabatic field, the momentum
perturbation is given by

δq = −σ̇ δσ . (2.10)

The comoving density perturbation in terms of the adiabatic and
entropy fields is [25,26]:

εm = δX − σ̈ δσ + [δV − Vσ δσ ]
� δX − σ̈ δσ + V sδs, (2.11)
where the term related to the change of the basis of the adiabatic
field has been included in the definition of δX [27]. At large scales
the equation leads to

δX

X
= εm

X
+ σ̈

X
δσ − V sδs

X

� σ̈

X
δσ − V sδs

X
, (2.12)

where the term proportional to k2

a2 Ψ has been disregarded. Consid-

ering the perturbation of the inflaton velocity δ(σ̇ )2

σ̇ 2 = δX
X and the

modulated inflation scenario, ζ̇N is found to be

ζ̇N � −H
δX

X

� 2
V sδs

σ̇ 2
, (2.13)

where σ̈ δσ /X has been neglected. For R = −δN , it is found that

Ṙ � −2
V sδs

σ̇ 2
. (2.14)

Introducing a bend parameter θ̇ ≡ −V s/σ̇ , reveals [25]

Ṙ � 2H
θ̇

σ̇
δs. (2.15)

In the above calculation the modulated inflaton velocity δ(σ̇ ) =
2δX has been obtained directly from the comoving energy den-
sity εm . The calculation in terms of the modulated inflation sce-
nario is thus very simple and straightforward compared with other
calculations, which are based on the non-adiabatic pressure pertur-
bation or the time-derivative of the comoving curvature perturba-
tion on spatially flat slice.

The reason for Ṙ �= 0 is very clear in this scenario. The con-
stancy of the curvature perturbation is violated due to the inho-
mogeneities of the inflaton velocity δ(σ̇ 2) �= 0, which is caused by
the entropy field. Then the inhomogeneities of the inflaton velocity
δ(σ̇ 2) �= 0 causes inhomogeneities of the time spent during infla-
tion, equivalently the inhomogeneities of the e-foldings δNmod �= 0
before the end of inflation. The result is also useful for estimat-
ing the second order corrections from the potential. Introducing
the quadratic potential δ(2)V = 1

2 mss2, it is found that the second-
order perturbation of the potential with respect to the field s leads
to

R(2) � −H
ms(δs)2

σ̇ 2
. (2.16)

2.1. Non-equilibrium correction 1

The bend of the trajectory is important since the velocity per-
turbation δ(σ̇ )2 can become non-zero near the bend, even if it
arises late after the horizon exit. At the bend of the trajectory, the
velocity perturbation is given by

lim
k→0

δ
(
σ̇ 2) � θ̇ σ̇ δs. (2.17)

In addition to the inhomogeneities that may appear at large scales,
there are small-scale (i.e., decaying) inhomogeneities of the in-
flaton velocity that can be related to the inhomogeneities in the
slow-rolling velocity

δ(σ̇slow) ≡ δ

(
− Vσ

3H

)
� − Vσ ,s

3H
δs, (2.18)

which decays at large scales as ∝ k2/a2 [6]. The correction from
such small-scale inhomogeneities can be dubbed non-equilibrium
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corrections, which may become additional source of the curva-
ture perturbation. More specifically, Eq. (2.17) suggests that δ(σ̇ )2

soon decays to reach δ(σ̇ 2) � θ̇ σ̇ δs after the horizon exit, and that
at large scales the inflation velocity perturbations do not lead to
significant evolution Ṙ �= 0 except for the place where the in-
flation trajectory is curved. The velocity perturbation may have
a decaying component accompanied by a significant decay factor
k2/a2 ∼ e−2Ht [6]. In what follows we show why the corrections
added by the decaying perturbations cannot be disregarded.

First, the small-scale inhomogeneities may affect the curvature
perturbations at least just after horizon crossing. Then, we know
that the perturbations added at small scales will be frozen at large
scales. Therefore, if the small-scale corrections are significant, they
can be observed in the present Universe. Note that the factor e−2Ht

in the integral with respect to the time coordinate does not always
lead to strong suppression in the result. For the simplest example,
the following integral is considered

te∫
0

δC He−2Ht dt � 1

2
δC, (2.19)

which is such that no exponential suppression remains after inte-
gration.

To show explicitly the significant effect from the decaying com-
ponent in the modulated inflation velocity, here a very simple
mechanism is considered to add a large non-Gaussian effect to
the conventional inflationary perturbation. Consider the standard
hybrid-type inflation with a non-standard interaction with addi-
tion scalar fields χi ;

V int ∼ g2 v0|φ − φESP|χ2
i , (2.20)

where v0 denotes an intermediate mass scale. The inflaton poten-
tial during inflation is given by

V (φ) = m2
φφ2 + V 0. (2.21)

In this model the adiabatic inflaton field is φ. Enhanced symmet-
ric point (ESP) at φ = φESP is defined as the point where the scalar
fields χi become (temporarily) massless during inflation. The in-
homogeneities in V int caused by the light fields χi lead to the
small-scale velocity perturbation

δφ̇ � ng2 v0(δχ)2

3H
, (2.22)

where n is the number of massless fields at the ESP. Note that
there is no bend in the classical (unperturbed) trajectory in this
model. The small-scale inhomogeneities of the inflaton velocity
thus lead to the correction given by

�R ≡
∫

Ṙ dt � 2
∫

H
δφ̇

φ̇
e−2H(t−tESP) dt, (2.23)

which can be very large when the inflaton passes through the ESP
at t = tESP . Considering the standard curvature perturbations R0 ∼
Hδφ/φ̇, we find

�R ∼ δφ̇

φ̇

∼ ng2 v0(δχ)2

3H2δφ
R0. (2.24)

It is useful to specify the level of non-Gaussianity by the non-linear
parameter fNL ,4 which is usually defined by the Bardeen poten-
tial Φ ,

4 See Ref. [1] for more details.
Fig. 1. In a brane inflation model one may find an enhanced symmetric point on the
inflation trajectory, where massless excitations (open string modes) may arise [29].
If the massless excitations are coupled to the inflaton, the fluctuations of the mass-
less mode may cause fluctuations of the inflaton velocity, which adds a significant
non-Gaussian character to the spectrum.

Φ = ΦGaussian + fNLΦ
2
Gaussian. (2.25)

Using the Bardeen potential, the curvature perturbation ζ is given
by

Φ = 3

5
ζ. (2.26)

When we consider “additional” non-Gaussianity created at the ESP,
the first-order perturbation is generated dominantly by the usual
inflaton perturbation δφ. Therefore, the second-order perturbation
is not correlated to the first-order perturbation. In this case, ζ can
be expanded by the δN formalism as

ζ � Nφδφ + Nχδχ + 1

2
Nφφδφ2 + 1

2
Nχχδχ2 + · · · , (2.27)

and we assume that the perturbation can be separated as

ζ = ζ (φ) + ζ (σ ). (2.28)

The calculation of the non-linear parameter fNL for the uncorre-
lated perturbations δχ and δφ is discussed in Ref. [28], where a
useful simplification for is

fNL �
(

1

1300

Nσσ

N2
φ

)3

, (2.29)

where δχ ∼ δφ is assumed for simplicity. Therefore, the non-linear
parameter for the present model is estimated as

fNL ∼
(

�R

1300R2
0

)3

∼
(

ng2 v0

103 R0 H

)3

. (2.30)

The important suggestion from the model is that a significant scale-
dependence may arise for the non-linear parameter fNL(k) at a scale
corresponding to φ = φESP [29], where the χi fields become mass-
less at the horizon exit. We show a typical situation in Fig. 1. Since
ESPs may typically appear in a brane Universe, there is a hope that
we may scan the moduli or even find the signature of extra di-
mensions from the consideration of the scale-dependence in the
cosmological perturbations [22,29,30].

Again, what is important in this argument is that decaying-
components of the velocity perturbation may cause significant
anomalies in the spectrum, which may be seen in some non-linear
parameter or in some other cosmological parameters as a signature
of massless excitations during inflation.

Before closing this section, it would be useful to compare our
model with a model with a step (or a spike) in the potential [31].
A step in the potential leads to time-dependent slow-roll parame-
ters, which cause fNL �= 0 for a single-field inflation model. In this
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case the higher order perturbations originate from terms propor-
tional to ε̇ or η̇, which are not important in the smooth potential
but can cause significant non-Gaussianity at the step. The obvious
discrepancy between the model with step and our model with ESP
is that in the former model the origin of the non-Gaussianity is
ε̇ �= 0 or η̇ �= 0, while in the latter model the origin is the second-
order perturbation in the velocity. Therefore, these two effects ap-
pear separately in the calculation and give independent results for
non-linear parameters. In fact, in the present model ε̇ and η̇ at the
0-th order are very small at the ESP.

2.2. Non-equilibrium correction 2

In addition to the non-equilibrium correction from the mod-
ulated inflaton velocity, there can be significant correction from
σ̈ when deviation from slow-roll is significant [32,33]. σ̈ in the
equation of Ṙ is essential in explaining the evolution of R when
the deviation is significant. Allowing a short period of deviation
from the slow-roll, the most significant effect may occur when the
inflaton temporarily stops. Expressing the conventional curvature
perturbation for slow-roll inflation as R � − H

σ̇ δσ , the divergence
is brought about by σ̇ � 0 in the denominator. To understand the
correction from σ̈ when the inflaton stops, we split the inflaton
velocity as

σ̇ = σ̇s + σ̇d, (2.31)

where σ̇s satisfies the slow-roll condition σ̇s = −Vσ /3H . Consider-
ing the equation

σ̈ + 3H[σ̇s + σ̇d] + Vσ = 0, (2.32)

the decaying velocity σ̇d follows σ̈ = −3Hσ̇d . Replacing σ̈ in
Eq. (2.11) by −3Hσ̇d , it is found for θ̇ = 0;

Ṙ � −6H

(
σ̇d

σ̇

)(
H

δσ

σ̇

)

= −6Hε−1
d R. (2.33)

Here a parameter εd ≡ σ̇
σ̇d

is introduced, which leads to ε−1
d → ∞

when the inflaton stops temporarily during inflation. It is found
from the equation that the curvature perturbation, which may be-
come anomalously large when the inflaton stops, will decay rapidly
as ∝ exp[−3Hε−1

d t]. See also Ref. [32] for discussions in terms of
the usual perturbation theory, and Ref. [33] for another discussion
in terms of the δN formalism.

3. Simple extension

The model
Our second example is characterized by an extension of the in-

flation kinetic term with a metric for the field space:

Gφφ = ωA(φ,χ), Gχχ = ωB(φ,χ), (3.1)

where ωA and ωB are functions determined by the scalar fields.
For simplicity, the case with the diagonal metric is considered. The
explicit form of the action is given by

S =
∫

d4x
√−g

[
1

2
M2

p R − ωA

2
(∂μφ)

(
∂μφ

)

− ωB

2
(∂μχ)

(
∂μχ

) − V (φ,χ)

]
. (3.2)

The field equations are
ωA φ̈ + ω̇A φ̇ + 3ωA Hφ̇ + Vφ − 1

2
ωB

φ χ̇2 = 0, (3.3)

ωB χ̈ + ω̇B χ̇ + 3ωB Hχ̇ + Vχ − 1

2
ωA

χ (φ̇)2 = 0. (3.4)

The comoving density perturbation is found to be

εm ≡ δρ + 3HG I J φ̇
J δφ I

= δX − (
ωA φ̈δφ + ωB χ̈δχ

) + [δV − Vχδχ − Vφδφ]

+
(

ωB
φ

2
δφ(χ̇)2 + ωA

χ

2
δχ(φ̇)2

)
− ω̇A φ̇δφ − ω̇B χ̇δχ

� δX +
(

ωB
φ

2
δφ(χ̇)2 + ωA

χ

2
δχ(φ̇)2

)

− ω̇A φ̇δφ − ω̇B χ̇δχ. (3.5)

The adiabatic field in this model is defined by σ̇ 2/2 ≡ X .

Calculation
The velocity perturbation for the adiabatic field σ̇ 2 = ωA φ̇2 +

ωB χ̇2 is given by

δX

X
� εm − (ωB

φ

2 δφ(χ̇)2 + ωA
χ

2 δχ(φ̇)2
) + ω̇A φ̇δφ + ω̇B χ̇δχ

X
.

(3.6)

Using the modulated inflation scenario, the form of Ṙ in terms of
the original fields φ and χ is found to be

Ṙ � H

(
ωB

φ

2X
δφ(χ̇)2 + ωA

χ

2X
δχ(φ̇)2

)
− H

ω̇A φ̇δφ + ω̇B χ̇δχ

X
,

(3.7)

which gives the evolution of the curvature perturbation in the slice
defined for ζ̇N .

In terms of the adiabatic field σ and the entropy field s, the
action is precisely the same as the model discussed in Section 2.
Therefore, the evolution equation for the curvature perturbation is
given by

Ṙ � −2H
V s

σ̇ 2
δs, (3.8)

which is precisely the same as the two-field inflation model with
the standard kinetic term.

4. Modulated inflation for a generalized multi-field inflation

The model
We consider multi-field inflation with kinetic terms with a met-

ric G I J (φL) in field space. The original action described by φ I is;

S =
∫

d4x
√−g

[
R

16πG
+ P

(
X, φ I)], (4.1)

where X is given by

X ≡ −1

2
G I J ∂μφ I∂μφ J . (4.2)

In this section, a separation is considered

P
(

X, φ I) = K (X, φI ) − V
(
φ I) (4.3)

and set 8πG = 1 for simplicity. In what follows we use the basic
equations given in Ref. [34]. The field equation is given by

φ̈ J +
(

3H + Ġ I J

G
+ K̇ X

K

)
φ̇ J − K[I] − V I

K G
= 0. (4.4)
I J X X I J
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The definition of the derivative K[I] may be somewhat confusing.
We introduce two different definitions for the derivatives

K (X, φI )[I] ≡ K X XI − K I ,

K (X, φI )I ≡ ∂ K

∂φ I
. (4.5)

The energy density for this action is given by

ρ = 2X K X − K + V , (4.6)

which leads to the Friedman equation

H2 = 1

3
(2X K X − K + V ) (4.7)

and the time-derivative of the Hubble parameter

Ḣ = −X K X . (4.8)

Combining the above equation with the continuity equation ρ̇ =
−3H(ρ + p), it is found that

ρ + p = −2Ḣ . (4.9)

Calculation
For generalized multi-field inflation, the natural definition of the adi-

abatic field σ̃ is

˙̃σ 2 ≡ ρ + p = 2X K X , (4.10)

which recovers the basic equation (1.15) in terms of σ̃ . The definition is
very natural and consistent with the intrinsic property of the adiabatic
field. However, in past studies a more simple definition σ̇ ≡ √

2X has
been considered. The discrepancy caused by the definition of the adia-
batic field may lead to an error in the result.

In the followings, in addition to the natural definition of the
adiabatic field σ̃ , the familiar definition σ̇ ≡ √

2X is also consid-
ered so that these results from different definitions of the adiabatic
field can be compared.

The velocity perturbation for the adiabatic field ˙̃σ 2 ≡ 2X K X is
given by

δ( ˙̃σ 2)

˙̃σ = δX

X
+ δK X

K X
, (4.11)

whereas for the usual definition σ̇ 2 ≡ 2X , it is found that

δ(σ̇ 2)

σ̇ 2
= δX

X
. (4.12)

The definition of the adiabatic field is important. Using the adia-
batic field and the δN formalism, Ṙ is calculated from Eq. (1.15)
for the adiabatic field defined by σ̃ , not by σ . Obviously, the dis-
crepancy between Eqs. (4.11) and (4.12) is crucial for the calcu-
lation. In order to calculate Ṙ in terms of the δN formalism, the
explicit form of δX at large scales needs to be found. As in the for-
mer arguments for simpler models in Sections 2 and 3, the explicit
form of the velocity perturbation is obtained from the perturbation
of the comoving energy density. The perturbation of the comoving
energy density for the generalized multi-field inflation model is

εm ≡ δρ + 3H K X G I J φ̇
J δφ I , (4.13)

where the energy density perturbation is given by

δρ = δX(K X + 2X K X X ) + δφ I (2X K X I − K I + V I )

+ 2Xδ(2)K X − δ(2) P

� K X
2

δX + δφ I (2X K X I − K I + V I ), (4.14)

cs
where the higher order perturbations δ(2)K X and δ(2) P has been
disregarded in the last equation. Here the effective sound speed
defined by c2

s ≡ K X/(K X + 2X K X X ) is introduced. Considering the
expansion of the time-derivative, we find

K̇ X = K X X Ẋ + K X L φ̇
L

= K X X

(
Ġ I J

G I J
X + 1

2
G I J φ̈

I φ̇ J + 1

2
G J I φ̈

J φ̇ I
)

+ K X L φ̇
L, (4.15)

which is used to rewrite the field equation as

1

c2
s
φ̈ I +

[
3H +

(
1 + X K X X

K X

)
Ġ I J

G I J
+ K X L φ̇

L

K X

]
φ̇ I

− G I J

K X
(K[ J ] − V J ) = 0. (4.16)

Using the field equation, the perturbation of the comoving energy
density is found to be given by

εm � K X

c2
s

δX + δφ I (2X K X I − K I + V I ) + 3H K X G I J φ̇
J δφ I

� K X

c2
s

δX + δφ I(−K I + K[I] − Ġ I J φ̇
J [K X + X K X X ]). (4.17)

We basically followed the calculation in Sections 2 and 3. In order
to calculate the time-derivative of the metric for the field space,
the following expansion is considered5

Ġ I J φ̇
J = [

∂L G I J φ̇
L]φ̇ J = ∂L G I J

G J L
2X, (4.18)

which leads to εm given by

εm � K X

c2
s

δX + δφ I
(

−K I + K[I] − (K X + X K X X )2X
∂L G I J

G J L

)
.

(4.19)

Here the difference between K[I] and K I is crucial for the model
discussed in Section 3.

It would be useful to calculate Ṙ from the usual definition of
the adiabatic field σ using the modulated inflaton velocity. Ex-
pressing the action in terms of the adiabatic and entropy fields,
Gσ s and Gss in the above equation must vanish. The comoving
density perturbation is thus given by [34]

εm � K X

c2
s

δX + δs(2X K Xs − P s) + δσ (2X K Xσ − Pσ )

+ 3H K X Gσσ σ̇ δσ � K X

c2
s

δX + δs(2X K Xs − P s)

+ δσ

[
−Pσ + P [σ ] − (K X + X K X X )2X

∂σ Gσσ

Gσσ

]

− (K X + 2X K X X )Gσσ σ̈ δσ

� K X

c2
s

δX + δs(2X K Xs − P s), (4.20)

where terms proportional to δσ disappeared using Gσσ = 1 and
σ̈ � 0. To find the velocity perturbation, we need to find δX from
the comoving energy density. The perturbation δX caused by the
entropy perturbation δs is given by

δX

X
� − c2

s

X K X

[
(2X K Xs − P s)δs

]
, (4.21)

5 The simplification is not valid when G J L = 0. The original equation must be
used for G J L = 0.
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where the adiabatic field is defined by σ̇ ≡ √
2X .6

Here the useful expression for Ṙ is written in terms of the orig-
inal fields φ I or the adiabatic field defined by σ . The calculation
based on σ is useful when X has important meaning in the string
theory. Our result is

Ṙ � H
δ( ˙̃σ 2)

˙̃σ 2

=
[

δX

X
+ δK X

K X

]

= H

[
δX

X
+ δX K X X + δφ I K X I

K X

]

= H

[
δX

X

(
K X + X K X X

K X

)
+ δφ I K X I

K X

]

� −H
c̃2

s (2X K Xs − P s)δs

X K X
+ H

K Xs

K X
δs, (4.22)

where c̃2
s is defined by

c̃2
s ≡ c2

s
K X + X K X X

K X
= K X + X K X X

K X + 2X K X X
. (4.23)

This result is useful in practical situations where Ṙ would be cal-
culated in terms of σ . For the original fields φ I , it can be found
that

Ṙσ̃ ≡ H
1

X K X

[
(K X + X K X X )δX + X K X Iδφ

I]

� c̃2
s H

X K X

[
(K I − K[I])δφ I + (K X + X K X X )2X

∂L G I J

G J L
δφ I

]

+ H
K X I

K X
δφ I . (4.24)

5. Conclusions and discussions

In this Letter the time-dependence of the curvature perturba-
tion is considered in terms of the δN formalism. What is new in
this study is (1) the δN calculation in terms of the modulated
inflation velocity (2) the explicit form of Ṙ calculated with re-
spect to the adiabatic field σ̃ . Our method is new and very simple,
which can be used to understand more exciting topics including
the evolution during warm inflation [35] and the evolution for the
generalized gravity theory [36].

Our last comment is for the importance of the non-equilibrium
corrections. As we have discussed in this Letter, there are many
kinds of decaying inhomogeneities that may not be disregarded.
For example, the inhomogeneities caused by the inflaton velocity
δ(σ̇slow) ≡ δ(− Vσ

3H ) is not significant at large scales, however after
time integration the small-scale inhomogeneities may leave signif-
icant correction to the curvature perturbation, and the correction
will be fixed at large scales due to the constancy of the curvature
perturbation.

In addition to the correction induced by the decaying inhomo-
geneities, σ̈ δσ may lead to significant variation of R. Namely, one

6 With regard to our definition of δX , the change of the basis of the adiabatic field
is already included in the definition. However, if one redefines the evolution of the

curvature perturbation by ˙̂
ζ N ≡ −H δσ̇

σ̇ ≡ −H[ δX
2X + ė I

σ δφ I

σ̇ ], where ė I
σ = PseI

s/P X σ̇ is
the rate of change of the adiabatic basis vector eI

σ in terms of the entropy basis vec-

tor eI
s , it leads to ˆ̇R � H

2X P X
[(1 + c2

s )Psδs − 2Xc2
s K Xsδs]. Compared with the result

and the calculation presented in the previous study, Ṙ in Ref. [34] is reproduced

by ˆ̇R redefined above.
can find a significant result when the inflaton stops temporarily
during inflation, where the curvature perturbation can be sepa-
rated into (initially very large) decaying component and (standard)
non-decaying components [32]. It is possible to extract the non-
decaying component of the curvature perturbation by using the
δN formalism [33]; however the evolution with deviation is not
clearly understood in more general situations.

The above two corrections may be dubbed non-equilibrium cor-
rections, and may be important in string cosmological models. It is
important to understand the evolution of the curvature perturba-
tion in terms of the non-equilibrium corrections.

Our hope is to understand the effect of massless excitations and
non-equilibrium dynamics during inflation, so that we can find sig-
natures of inflaton potential and extra-dimensional structure in the
sky.
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