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Abstract

In this paper, we consider ehindependent dominating set polytope. We give a complete linear
description of that polytope when the graph is reduced to a cycle. This description uses a general
class of valid inequalities introduced in [T.M. Centza, Some results on the dominating set polytope,
PhD. Dissertation, University of Kentucky, 2000]. We devise a polynomial time separation algorithm
for these inequalities. A cnsequence, we obtain a polynomial éiautting plane algorithm for the
minimum (maximum) independent dominating set problem on a cycle. We also introduce a lifting
operation called twin operation, and discuss some polyhedral consequences. In particular, we show
that the above results can be extended tore geeral class of graphs.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Given a graphG = (V, E), anode subseD C V of G is called adominating setf
ewvery node ofV \ D is adjacent to at least one nodeDf An independent saif G is a
node sefl C V swh that there is no edge with both endnodeg itsivena weight system
w(]j), j € V, assaiated with the nodes @, theminimum veight independent dominating
set ppblem(MWIDSP for short) is to find an independent dominatingSet V of G such
that) ;g w(i) is minimum.
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The MWIDSP has applications in social network thedfiygdnd game theory1,17]. It
is NP-complete in generalf]. It has been shown to be polynomially solvable in some
special classes of graphs such as strongly chordal gradhsgdermutation graphslp,6],
intervalgraphs 1] and cocomparability graph4 ). Most algorithms developed for these
classes of graphs are linear time algorithms.

The complexity aspect of the cardinality version of the problem has been intensively
studied as well. Corneil and PerB] show tha the minimum cardinality independent
dominating set problem is NP-complete in the bipartite graphs and the comparability
graphs. Farberl[3] shows that this problem is polynomially solvable in chordal graphs.
In[13], it is surprisingly shown tat the MWIDSP is however NP-complete for this class of
graphs. It has also been shown that it is polynomial in cogratifjsahd spit graphs [L3].
Further complexity and combinatorial results on the MWIDSP can be four2i3l{,23].

In this paper, we study the MWIDSP from a polyhedral point of view. We give a
complete linear description of the associated polytope when the graph is reduced to a cycle.
This description uses a general classvalid inequalities introduced by Contenz8][

We also show that this class of inequalities can be separated in polynomial time. In
consequence, we obtain a polynomial timgtiog plane algorithm for the MWIDSP on

a g/cle. To the best of our knowledge, this is the first polynomial time algorithm for the
MWIDSP on these graphs. We also introduce a lifting operation called twin operation and
discuss some polyhedral consequences. In particular we show that the above results can be
extended to a more general class of graphs.

The closely related dominating set pretsi has been the subject of extensive research
in the past three decades. A complete sufehe algorithmic complexity of this problem
and the MWIDSP can be found i, 7].

If G = (V, E) is a graph an® € V anode set oG, then he 0-1 vectoxS € RY
with xS(u) = 1 if u € SandxS(u) = 0 otherwises called the inalence vector o8. The
convex hull of the incidence vectors of all independent dominating seB dénoted by
Pip (G), is cdled the ndependent dominating set polytope®fi.e.,

Pip(G) = cony{x® € RY | SC Vis an indgpendent dominating set &}.
Hence, the MWIDSP isquivalent to the linear programming problem
min{fwX | X € Pp(G)}.

Since the MWIDSP is NP-complete, we cannot expect to find a complete
characterization ofPp (G) for all graphs. It may however be that for certain classes
of graphsG, the polytope Pp(G) can be described by means of a few classes of
linear inequalities and that for these classkinequalities, polynomial time separation
algorithms can be designed so that the MWIDSP on these graphs can be solved in
polynomial time.

Let G = (V, E) be a graph. Ifu € V is anode ofG, the neighborhood ofi in G,
denoted byNg(u), is the node set consisting af together with the nodes which are
adjacent tau. If u € V, let Ng*(u) denote the selNg (u) \ {u}. If the context prevents
any ambiguity, we will omit the subscript and simply writgu) andN*(u). If S< V and
b:V — R, b(S) will denote) ", g b(u).
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If SC V is an indpendent dominating set, the, the incdence vector o8, sdisfies
the following inequalities:

x(u) +x@w) <1 forall (u,v) e E D
X(N(u) >1 forallu e V (2)
x(u) >0 forallu e V. 3)

Inequalities 1), cdled edge inequalitiesimply that S is an ind@pendent set. And
inequalities ), cdled neighborhood iequalities imply that S is a dominating set.
Inequalities B) are cdled trivial inequalities

In contrast to many NP-hard combinatorial optimization problems, such as the
independent set problen2d], the polyhedral aspect of the MWIDSP has not received
much attention. To the best of our knowledge, the polytBp&G) has been characterized
only in the class of strongly chordal grapid] within the framework of totally balanced
matrices. Actually, Farberlfl] showed that inequalities?) and @) together vith the so-
calledclique inequalitiewhich are valid inequalities and generalize inequalitisf¢r
the independent set polytope) suffice to desciffe(G) whenG is strongly chordal.

If Cy is a dhordless cycle on nodes, then the following inequalities are also valid for

Pip (Cn):
X(Cp) < EJ (4)
xcwz[3]. (5)

Inequality @) mug be stisfied by every independent set and inequaliyniust be
satisfied by every dominating set @,. Inequdities (4) and 6) will be called cycle
inequalities

In [8], Contenza shows thaPp(Cy) is full dimensional if n > 8. It is also
characterized when inequalitie$)( (2), (4) and 6) define facets forPp (Cp). Observe
that inequalities ) are redundant with respect to inequalitie and @) whenG is a
cycle.

Contenza @] also introduces a class of valid inequalities B (Cp) if n > 8. In
this paper, we show that these inequalities together with inequalifjie&], (4) and 6)
completely describe the polytofis (Cp).

Rdated work can also be found irlp,4,5]. In [19], Mahjoub gives a description of the
dominating set polytope?p (G), in the chss of threshold graphs. 14][ Bouchakour and
Mahjoub studyPp (G) in the gaphs that decompose by one-node cutsets. It is shown that
if G decomposes intG1 andG», then he dominating set polytope @& can be described
from two linear systems related 61 and G2. In [5], Bouchakour et al. discuss the
dominating set polytope in cactus graphs. A®asequence, they obtain a characterization
of the polytope when the graph is a cycle.

The paper is organized as follows. In the next section, we give a description of the
polytopePp (C,) and present some structural properties of its facetSelriion 3ve prove
our main reult. In Section 4we study the sepatian problem fa the system desagbing
Pip (Cp). In Section 5we study a lifting operation and discuss some consequences.
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In the rest of this section we give some definitions and notation. We consider finite,
undirected and loopless graphs. We denote a grap® by (V, E) whereV is thenode
setand E theedge setlf G = (V, E) is a graph an@ € E is an edge whose endnodes
areu andv, then we wiite e = (u, v). A path Pof G = (V, E) is a £quence of nodes
v0, V1, .. ., Uk, Such hat (vi, vit+1) is an edge fof = 0, ...,k — 1 and no node appears
more than once if?. The nodesy andwvy are the endnodes & and we say thaP links
vo andu. If (vg, vk) € E andk > 2, then the sequeneg, v1, ..., vk is also called aycle
Throughout the paper, we will denote By a cyde onn nodes and by .1 .., nits nodes.

Ifi, ] € Cy, we will denote byCy(i, j) the pathi,i +1,...,i +t = j of C, between
andj, where the integers are moduio

2. Thepolytope Pip(C,)
2.1. Description

In [8], Contenza introduces a general class of valid inequalitieP#dCy,) as follows.
LetCh=1{1,...,n}.Letse{1,...,n—2},i1 < --- <ig, benodes ofC, andlq, ..., Is
disjoint node subsets @, suchthatl; = {i, ..., i} + 3k + 1} for some integek, > 0,
andij;1 >0 +3(k +1) +1forl =1,...,s(the indices are taken modus). Let J be
the ®t of nodes oCp, betweenl| andl, 1 different fromi; + 3k; + 2 andij+1 — 1, and let
r=|J|forl =1,...,s. Condder the inequality

S
Y(rn+1)

ZZX(J)—ZZX(J)>Z(M+1) = (6)

=1jel =1jeJ

For exampe, forn = 12,ifs = 2,11 = {1,2,3,4,5} and |, = {8, 9}, we have the
following valid inequality forPp (C12):

X(1) + X(2) + x(3) + X(4) + X(5) + x(8) + x(9) — x(11)
> 24+1— Vlzﬂ _2

Theorem 2.1 ([8]). Inequality (6) is valid for Rp (Cp).

Proof. The following inequalities are valid fdPp (Cp).
x(N(@)) =1  fori =i +3q,ij +3q+1,
q=0,....k;l=1,...,5,
—X({)—x@{i+1)>-1 fori =i +3k+2,...,i141— 2,
l=1,...,s

By summing these inequalities we obtain

222x<1>—222x(1> > 22<k| +1) - Z(n +1).

=1jel =1ljej
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By dividing by 2 and rounding up the right hand side to the next highest integer we
obtain inequality 6). O

We can now state our main result.
Theorem 2.2. Pp(C,) is completely described by inequaliti€s), (2), (4)—(6).

The proof ofTheorem 2.2will be given inSection 3 In what follows, we are going to
discuss some structural properties of the facet®efCy) which will be usful for that
proof.

2.2. Structural properties

Consider a cycl€, with n > 8. Hence,Pp (Cp) is full dimensonal. Letax > ag be a
constraint that defines a facet®b (Cp) different from constraintsl) and @). Let £2(Cy)
be the set of independent dominating set€gfand let

S = {Se 2(Cy) | ax® = ag).

In what follows we vill also consider(i) as a weight om. Herce, any 0-1 solutioi$
of S will havea weghta(S) equal toag, and any O—Xkolution of 2(Cy,) a weight greater
than or gual toag. We have the fthowing lemmas; the first onis a direct consquence of
the fact thatax > ag is different from inequalitiesl) and @).

Lemma2.3. (i) Forevery node ic Cy, there is a node set § S suchthat|SNN(i)| >
2

(i) Foreveryie Cp, thereisanode set'S& S suchhat SN {i,i +1} = 4.

A consequence dfemma 2.3s that for everyi € C,, there is a sef € & suchthat
SANG)={i —1,i +1}.

Lemma?2.4. Foralli € C,, wehave

() a@i) = min@a@ +1),ad + 1) —a( + 2),

(i) ai) <maxal +1),ai+1 —ai+2,ai +1) —a( +2) +al +3),
(i) a@) = min(a@ —1),ad — 1) —a( — 2)),
(iv) a(i) <max@a@ —1,a —1) —a@ —2),ai —1) —a@ —2)+a@ —3)).

Proof. We shall show (i) and (ii), (iii) and (iv) follow by symmetry.

(i) By Lemma 2.8ii), there is a solutionS; € S suchthati — 1,i ¢ S. By
inequality @), it follows thati+1 € . Ifi +3 € S, asthe node se$; = (S;\ {i +1}) Ui}
is a solution off2(Cy), we have thaa(S)) > ap, and theeforea(i) > a(i +1). If not, then
i +4 € S and, hence(S \ {i +1}) U {i,i + 2} is a solution off2(Cp). This imdies that
a(i)+a( +2) > a( + 1), and in onsequence (i) holds.

(i) By Lemma 2.8i), there is a se& € S, that containg — 2,i. If i + 3 € S, then
(S \ {i}) U{i + 1} is a solution off2(C,,) and hence

a(i) <a@ +1). (7)
If this is not the case, thard-2 € S,.
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—Ifi+4¢ S, theni +5 e S. Consequenti(S \ {i,1 +2) U{i +1,i +3} € 2(Cp),
implying that

ai)+ai+2<a@i+1+a@+3). (8)
—Ifi+4e S, then(S\ {i,i +2}) U {i +1} € 2(Cy,) and we obtain that
aii)+ai +2 <a( +1). 9)

Combining {)—(9) yields (ii). O
The following lemmas are given without proof; for the proof s2€.[

Lemma25. Leti € C,. Suppose that@) = § > Ofor j =1i,...,i + p — 1 for
some integer p> 1 and§ € R. Suppose also that(a— 1),a( + p) < 4. Then
ICn( + p,i =1 =3

Lemma2.6. Leti € C,. Suppose that@) =46 > Ofor j =1i,...,i + p— 1for some
integer p> 1 ands§ € R. Suppose also thata— 1), a(i + p) < é. Then p= 3k + 2 for
some k> 0.

Lemma2.7. (i) Leti € C,. Suppose that@) =8 > Ofor j =1i,...,i +3k+ 1 for
some integer k= 0 andé§ € R. Suppose also that@— 1), a(i + 3k +2) < §. Then
there exists amdependent dominating set of Suichhati — 1,i +1,i + 3¢ S.

(i) Leti € C,. Suppose that@) =38 > 0for j =i — (3k+ 1), ...,i for someinteger
k > 0ands € R. Suppose also that(a— 3k — 2), a(i + 1) < 8. Then here ejsts an
independent dominating set of Suich hati — 3,i —1,i +1€ S.

Lemma2.8. (i) If forsomeie Vp, a(i) =a@ +1) < Oandai) < a@ — 1), then
a(i —2)>0,andai —2) > a( —1).

(i) Ifforsomeie Vph,a(i)=al +1) <O0andai +1) <a( +2),thenai + 3) > 0,
andai +3) > a(i + 2).

(i) If forsomeie Vy, a(i) =ad +1) andai) > a(i — 1),thengi —1) > 0and
a(i —2) < a(i —1). Moreover, there exists an integerk O such hata(j) = a(i) for
j=i,...,i+3k+21andali) > a( + 3k + 2).

(iv) If forsomeie Vy,a(i — 1) = a(i)and ai) > a(i +1),thendi +1) > 0and
a(i +2) < a( +1). Moreover, there exists an integerk 0 such hata(j) = a(i) for
j=i—@k+1),...,iandali) > a(i —3k—2).

(v) If forsomeie Vp,a(i) =a( +1) >0and ai) < a(i — D@l +1) < a(i +2)),
thenai —2)=a@ —1) =a( +2 =a( +3).

Lemma2.9. (i) Ifforsomeie Vy,a(i) =a@+1)andai) > a(i—1),thengi—1) = 0.
(i) Ifforsomeie Vy,a(i —1) =a()andali) > a( +1),thenai +1) =0.

Lemma210. (i) Ifa(i —1) < a() (resp. & — 1) > a(i)) for some i € V,, then
ai)y<a( +1) (resp.ai —2) > a(i —1)).

(i) fa@ — 1) <a() <a@ +121) (resp. & —1) > a(i) > a@ + 1)) forsomeie Vy,
then
(1) a@) =0,
2 ai —1) =-a(i +1).
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3. Proof of Theorem 2.2

Letax > ap be a facet defining inequality oPp (Cy,) different from (), (2), (4) and
(5). We will show thatax > ag is necessarily of type6). To this end, letM denote
maxa(j), j € Vn}.

Lemma 3.1. There exists i V, suchhata(i — 1) < a(i).

Proof. Suppose thaa(j) = M forall j € V. If M > 0 (resp.M < 0), thenax > ag is
of type ) (resp. @)) which contradicts the hypothesis. O

Now, let us @énote byl the £t of nodes € C,, suchthata(i) = M anda(i —1) < M.

Note that byLemma 3.1 I # @. Lets = |lg|, andly = {i1,...,is} suchthat
1<iy <--- <ig < n.Furthermore, as

a(iy — 1) < a(in, (10)
we have, byLemma 2.10), that

a(ip =a(; + 1), forl =1,...,s. (12)
Lemma3.2. (i) Foreachl=1,...,s,there gists anintegerk> Osuchhata(j) = M,

forj =i,...,i1 +3k +1,and M > a(| + 3k + 2).

(i) M > 0.

Proof. (i) is a direct consequence df@ and (L1) togethemwith Lemma 2.8iii).
(i) By (10) and (1) with respect to node;, Lemma 2.8iii) yields a(iy — 1) > 0. As
M = a(i1), by (10) it follows thatM > 0. O

Denote the se€Cn (i), i + 3k + 1 byl forl =1,...,s.
Lemma3.3. |Cn(ij +3k +2,ilz1— 1| >2,forl =1,...,s.

Proof. If s = 1, then the result is a direct consequencéemma 2.5 If not, by @0)
and (1) with respect to nodg.1, Lemma 2.8iii) yields a(ij+1 — 2) < a(ij+1 — 1), for
| =1,...,s (here the indices are modu#. Hence,jj;1 — 2 ¢ Cu(iy, i) + 3k + 1) and
the lemma follows. O

Lemma34. a(ij—1) =a(i; +3k +2)=0forl =1,...,s.

Proof. Letl € {1,...,s}. By (10) and 1) togetherwith Lemma 2.9i), we have that
a@ii —1) = 0. Asa(i; +3k) = a(i; + 3k + 1) anda(i; + 3k +2) < a(i; + 3k + 1),
by Lemma 2.9ii) we obtaina(i; + 3k +2) =0. O

LetJ =Cn(i) +3k +3,i141 — 2,1 = 1,...,s, thatisJ is the =t of hodes ofC,
betweenl| andl, 1, different fromi; 4+ 3k; + 2 andi|+1 — 1. Letr; = |J]|.

Lemma3b5. a(j)=—-Mforje J,I=1,...,s.

Proof. Letl € {1,...,s}. If J = @, then there is nothing to prove. Suppose now that
r>1Letj =i +3k +2.

Asa(j —2) = a(jj — 1) anda(jj — 1) > a(j), by Lemma 2.8iv) with respect
to nodej, — 1, we have thata(j + 1) < a(j;). Moreover, byLemma 3.4 a(j;) = 0.
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Hence, ifa(jj + 1) = a(j;), then byLemma 2.8v) with respect to nodg;, we obtain
thata(j) + 20 = a(jy — 1) = M. This imgdies thatjj + 2 = ij+1. So weobtain
ICn(j1,i1+1 — D] = 2, that isr; = 0, a contradiction. Thusa(j; + 1) < a(ji). Now,
by Lemma 2.10i), a(jj + 1) = —a(jj — 1) = —M.

So, the stateent holds ifr; = 1. Now, suppose that > 2.

Claml.lfa(j) = —M,j = jj+1...,j+t forsomel <t < r — 1, then
a(jj+t+1) =—-M.

Proof. Assume that(j) = —M, for j = ji +1,..., ji +t for someinteger k t <.
By Lemma 2.4iii), it follows that

a(ji+t+1) > min@(j +t),acj +t) —a(j+t—1)
=min(—M, —M —a(j| +t — 1)).

Furthemore, asa(jj)) = 0 anda(jj +1) = --- = a(jj +t) = —M, we hae that
a(ji +t — 1) < 0. Itthen fdlows thata(j; +t + 1) > —M.

Suppose thaa(jj +t+1) > —M = a(j, +t). Thus, byLemma 2.1Q), a(jj +t+2) >
a(ji+t+1).Ifa(j +t+2) = a(j +t + 1), then byLemma 2.8iii) with respect to node
ji+t+1, we obtain thaa(ji+t) = —M > 0, a contradiction. la(j+t+2) > a(jj+t+1),
thenLemma 2.10i) yieldsa(j+t+1) = 0 anda(ji+t+2) = —a(ji+t) = M. Therdore,
jl +t4+2=141. But, since < ry, this ontradicts the factthgi +t+2 < ji+rn + 1=
ij+1 — 1. Consequenthya(j +t + 1) = —M, and the claim is proved. ¢

Asa(j +1) = —M, the lanma follows. O

As M > 0, we can suppose without loss of generality that= 1. Thus, the facet
defining inequalityax > ap can be written as

S S

DY x(h =YY x(j)=a (12)
I=1jel I=1jej

with ag € Z. Let ap denote theright hand side of inequality §). Now to complete the

proof, it suffices to show the following.

Lemma 3.6. ag = «apg.

Proof. First, note that, as bfheorem 2.inequality g) is vdid for Pp (Cy,), we have that
ap > «p. In what follows, we are going to exhibit an independent dominatingsetCp,
suchthatax® = ag.

Without loss of generality, we may suppose that= {i1 = 1,i2,...,is}. LetCp =
{v1, v2, ..., vp} be the cycle deduced fro@, by contracting the edgeg+3q, i| +1+3q),
forg=0,...,k, | =1,...,s.Remarkthatanode; € Cp corresponds either to an edge
(i,i +1) orto anode of Cy. Asiy = 1, v1 corresponds to edg&, 2), vp—1 tonoden—1
andvp to noden. Also note also thap = n—Y"p_; (ki +1) andS = {v1, vs, . . ., v By-1}
is an ind@endent dominating set @p. Let A; be the set of nodels € C, suchthat
there existw; € Swherei = vj. And let A, be the set of nodes dE, of the form
il+1+30,0 < g <k and1< | < ssuwh that there exists a nodg < S which
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corresponds to edg@& + 3q,i + 1+ 3qg). LetS= A U ApU{1+3t,t =0,..., Kk}
We claim thatS is an indgpendent dominating set @,. In fact, first, note that aSis
an independent sef§ is so. Now, we shall show th& is a dominating set of,, that is
xS(N(@i)) > 1, foralli € Cy\ S. Asnode 1 belongs t&, xS(N(n)) > 1. Moreover, as
i1 =1,wehavethat—1,n & Cn(is, is+3ks+1). Thus, If pis even, themagkl =n-1,
and hencexS(N(n — 1)) = 1. If pis odd, thenn — 1 ¢ S. So, if vp—2 = n — 2, since
n — 2 belongs toA; and hence tc, it follows thatxS(N(n — 1)) = xS(n — 2) =

If this is not the case, themp_» corresponds tan — 3,n — 2). As by Lemma 2.5
n—3,n—-2¢ Cp(i1,i1 + 3k + 1), we hae thatn — 2 belongs toA, and hence to
S. This imgies thatxS(N(n — 1)) = xS(n — 2) = 1.

Now, leti € Cy \ (SU {n— 1, n}). Suppose first that = vj for somev; € Cy. If either
vj_1=i—-lorvj;1 =i+1,as{i—1,i+1NS# B, x5(N(i)) = xS —1)+x5(1+1) > 1.
If not, thenvj_, would correspond to the edge— 2,i — 1) andvj 1 to (i +1,i + 2).
Moreover, we haveyj_1, vjy1 € S. So, ifi € Cn(i1,i1+3ki+1), theni —2,i +1 bebng
to S, andhencexS(N(i)) = xS(i + 1) = 1. If not, theni e C(iy, i + 3k + 1), for some
1<| <s Thusi —1,i +2 € Azand hencaS(N(i)) = xS(i — 1) = 1.

Now, suppose that; = (i, i 4+ 1) andvj ¢ S (otherwie eitheii ori —1isinS). Then,
vji—1=1—-1 vjya=1i+2andvj_1,vj41 € S.So,i —1 andi +2 bebng toA; and hence
to S. Thus,xS(N(i)) = xS(i — 1) = 1 (XS(N(i + 1)) = xS(i +2) = 1). This implies that
Sis a dominating set o,,.

Now, it remains to show thatx® = ag. For ths, note first that, ifp is even (resp. odd),
then the incidence vector & xS, satisfies as an equation the inequalities

x5(N@) =1, i=i+3q,i+1+3q,
q=0,....,k,1=1...,5s

and the inequalities

XSH+xSG+D) <1, i=i+3kK+2....i1411—2
l=1,...,s
(respi =i +3k +2,...,014+1— 2,
l=1...,s—1 andi =ig+3ks+2,...,n—2).

By adding these inequalities, we obtain

2ZZXS<J) —2ZZXS<J> = 22(k| +1) - Z(n +1)

=1jel =1jej

(resp ZZZXS(j) - ZZZXS(J) = 2Z(k| +1) - (;(n +1) - 1)) :

=1jel =1jeJ

Asn=37 ;1 3(k+1)+> 7 _,(n+1), > 1 (rn+1) iseven (resp. odd). So, by dividing
by 2 theabove equality, we obtain thak®> = ay.
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In consequence, we have tlaat= «o which ends the proof of the claim. O

By (12) togethemwith Lemma 3.6 it follows that the inequalitax > ag is of type 6),
and the proof of our theorem is complete.

4. Separation and algorithmic consequences

The separation problem for a class of inequalities consists in deciding whether a given
vector X € R" satisfies the inequalities, and if not, in finding an inequality that is
violated byX. An algorithm that solves this problem is calledsegparation algorithm
A fundamental result in combinatorial optimization is the well known equivalence
between optimization and separation. That is, there exists a polynomial time algorithm
for optimizing over a class of inequalities if and only if the separation problem for
this class can be solved in polynomial time. Thus, if for a class of inequalities there
exists a polynomial time separation algorithm, then it can be used efficiently in the
framework of a cutting plane algorithm fadving the corresponding optimization
problem.

Clearly, the separation problem for inequalitié3, (2), (4) and &) can be solved in
polynomial time. In what follows we shall show that inequaliti6sgan also be separated
in polynomial time. As it will turn out, the sepation problem for these inequalities reduces
to a shortespath problem in an appropriate directed graph.

Theorem 4.1. Inequalities (6) can be separated in polynomial time oR.C

Proof. Let X € R". We may suppose that satisfies inequalitiesly, (2), (4) and 6).
Hence for the proof we can only consider inequalit@sxhere> "}, () + 1) is odd. The
inequalities withy_;_, (r; + 1) even are redundant with respect to inequalitiBsand Q).
An inequality of type 6) with 37, (r; + 1) oddcan then be written as

S
s i1+3k+1 i11—2 s El(rl +1) -1
Yoo X=X Xz Yy kit - (13)
=1 j=i j=i+3(k+1) =1
As
i+3k +1 ki
2 ) x(1) =) (X(NGir +3a) +x(N(i +3q + 1))
j=ii q=0
= X(ip — 1) — x(i1 + 3k +2),
and
i141—2 ily1—2
-2 Y x(h=- Y x(D+x(+D)
j=i+3k+1) j=i1+3k+2

+x() +3k +2) +x(@(141— 1)

forl =1,...,s, inequdity (13) can be written as
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s k
> (Z(x(Nm +39) + x(N(i1 + 30+ 1) -2

I=1 \g=0
i1+1—2
- > (x(j)+x(j+1)—1)>zl. (14)
j=i+3k+2
Now, consider the directed gragh= (U U V, E) suchthat

Uz{uls"'vun}v
VZ{UL»H,Un}:
E = E1U Ey,

where

E1 = {(uj,uj43), (vj,vj+a3); j = 1,...,n},
Ex={Wuj,vjr1): i =1....n}U{(j.ujz; j=2....,n—1}.

Here the indices are taken moduio

GraphG is constructd so that a arc of ype either(uj, uj3) or (vj, vj+3) corresponds
to the valid inequalit,K (N (j + 1)) + x(N(j +2)) —2 > 0, and an arc of typ&u;, vj+1)
or (vj, Uj41) to the inequality-x(j) — x(j +1)+1> 0.

With an arce € E; of typee = (uj, uj4+3) ore = (vj, vj+3) we associate the weight
w) = X(N(j + 1)) + X(N(j + 2)) — 2. And with an edgee € E; of type either
e = (Uj,vj4+1) ore = (vj, Uj+1) we associate the weight(e) = 1 — X(j) — X(j + 1).
Note that ax satisfies inequalitieslf and @), w(e) > O for alle € E.

As it will turn out, the separation problem for inequaliti€®y (edwces to a shortest
path problem inG. We aregoing to show thak satisfies all inequalities] if and only if
there does not exist a path between two nagdeandv; of length<1. Indeed consider an
inequality of type 6) induced bys pairwise disjoint subsets, ..., Is of Cy.

Forl =1,...,s, let B be the (unique) path & given by

(Ui —1, Uij 42, - - -, Uiy 43 +25 Vi +3k +35 Uij +3k +45 - - - » Vij 43K +3+1 — 15 Uij+3k +3+1)
(resp.(Uij—1, Uij42, - - -, Uij+3k 42, Vij+3k +3> Uij+3k +4+ - - - » Uiy +:3 +341 —1,
Vi 43k +3+1))
if r; is odd (resp. even). And denote Ky the pathobtained fromP by replacingu by v.
Note that patth (resp.Q)) is theunion of a path iJ (V) of lengthk; +1 and aralternative

path betweetJ andV of lengthr| + 1. Also note that; + 3kj + 341 =ij+1 — 1. Now
letLs, ..., Ls bethe paths defined in a recursive way as follows:

L1<—P]_,
forl=1,...,s—1do
if T(L;) € U then

Liy1=P41
else

Liy1= Q41
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whereT (L)) is the end node (tail) ofL,. Let

S
L:ULi.

As each patt? (Q) contains exactly, + 1 arcs letweerlJ andV, L containst:l rn+s
arcs betweetJ andV. Herce, L is a pah from uj, _1 to vj;_1. Moreover, its wéght is
equal to

s k
w(l) =) (Zx(Nm +30)) + X(N(i + 30 + 1)) — 2)

=1 q=0

S i141—2
+ ( Yo A=x() = X(] +1>)>.
I=1 \j=ij+3k +2

So ifinequality (L3) is violated, by (4), one should havey(L) < 1.

Conversely, iyen a mth L in G from a nodeuj to vj for j = 1,...,n, one can
associate an inequality of typ&(n such a way that the left hand side of the corresponding
inequality (L4) is equal to the weight of.. In fact, letL’, ..., L be the subpaths df that
are either contained id orin V. Lett; _1 be the initial node of.|, forl = 1,...,s. Here
t stends for eitheu or v. Note that each pathy is of lengthk; + 1 for somek; > 0. Now,
let

h={ir, i +1,...,01 + 3k + 1}, forl =1,...,s.

It is not hard to see that constrairit3] assocated with{l;,| =1, ..., s} has a left hand
side gual tow(L).

In consequence, to separate inequalit®s gne can compute the shortest pathGn
betweeru;j andvj, for j = 1, ..., n with respect to the weightgv(e), e € E}. And then
consider the shortest path among these paths. If the length of such a pdthtien no
constraint is violated. If not, then that path yields a violated inequality of tgpe (

As the dhortest path problem with non-negative weights can be solved in polynomial
time [10Q], the theoem follows. O

From [16], we then havehe following:

Coroallary 4.2. The MWIDSP is polynomially solvable on a cycle.

5. Twin operation

In this section, we introduce a lifting operation called twin operation and discuss some
polyhedral consequences. In particular, we shall show that i§ a graphobtained from
a graphG by the twin operation, then an inequality defines a nontrivial fac&fG) if
and only if the lifted one defines a nontrivial facet®f (G').

Let G = (V, E) be a graph (not necessarily a cycle) andnode ofV. We saythat a
graphG’ = (V’, E') is obtained fromG by thetwin operationwith respect ta if there is
anodev’ € V’ suchthat
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(i) V=V U}
(i) EE=EU{,v)}U{(,w); (v,w) € E}.

The nodes andv’ are called twins.

LetG = (V, E) be a graph an®’ = (V’, E’) a graphobtained fromG by the twin
operation with respect to a nodes V. Letv’ be the twin ofv. Suppose also tha®p (G)
is full dimensional. It ishennot hard to see th&p (G') is also full dimensional. We have
the following lemma; for theproof see 20].

Lemmab.1. If ax > « is an inequality that defines a nontrivial facet opPG’), then
a(v) = a®).

Lemma5.2. Let ax > « bea facet defining inequality of B (G), different from xv) > 0.
Set
a@u = a) ifueV \ [},
au = a() if u=1,
o = a.

Then dx > o defines a facet for | B(G’).

Suppose now thalPp (G) is given by a systen$ of inequalities of the form

aix >aj, fori el
X(u) >0, forallueV,

where | is an index set. Hence any 0-1 solution $fis the incidence vector of an
independent dominating set@f. Let S’ be the system given by

ax+a () x() > aj, fori el

x(u) > 0, forallu e V/,
and denote ba/x > o] inequalitygjx + aj (v)x(v') > «j fori € |. Note hata/x > o]
is the inequality obtained fromjx > «; by thelifting procedure ofLemma5.2 The
following lemmas are given without proof; for the proof se€][

Lemmab5.3. Let bx > B beaninequality valid for fb(G). Then bx+ b(v)x(v") > B is
redundantin &

Lemma 5.4. Every 0-1 solution of’Ss the incidence vector of dndependent dominating
set of G.

Let P be the polytope given b§. We can now state the main result of this section.
Theorem 5.5. Pp(G') = P.

Proof. By Lemma 5.2we have thatPp(G’) € P. In what follows we shall show that
P C Pp(G’). By Lemma 5.4it suffices to show that the extreme pointsfoare integral.

Suppose, on the contrary, thRthas a fractional extreme point, sgy Lety € RY be
the solution given by

_ YW ifueV\{v},
y(u) = {y/(v) + y/(v/) ifu=nu.
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Fig. 1.G andG.

As Yy’ is a solution ofS, it follows thaty is a solution ofS. Consequentlyy can be written
as a convex combination of 0—1 extreme points,\gay. ., yt, of Pp(G). We dstinguish
two cases.

Casel y'(v) +Y®) > 0.

Theny(v) > 0 and theefore there ido € {1, ..., t} suchthaty,(v) = 1. Lety’ € RY
given by

Yio(W) if ueV'\ {v, v},

o)1 if u=vandy'(v) >0,

y = 1 if u=1v" andy’(v) =0,
0 otherwise

We claim that every inequality o8 which is satisfied with equality by’ is also satisfied
with equality by y'. In fact, this is clear for the non-negativity inequalities. Consider
an inequalitya/x > of. If 8y’ = o], thenay = «j, andhenceay, = «j. As
Y +¥0@) =1a@ = a@) = a(@ ande] = «j, it follows thata)y’ = «f.
Thereforey’ satisfies the same equality systenyasdAs y’ # ¥/, this is impossible.

Case2. y' () +Yy®)=0.
Theny(v) =0, and hencgj(v) =0,forj =1,...,t. Lety € RY be given by

ooy ifue Vi {v,0v'},
yw = {o if u e v, ).

It is easy to see thal’ satisfies the same equality systemyasSincey # y’, we have
again a contradiction, which ends the proof of the theorent)

In order to illustrate the above constructions, consider the gr&h= (V, E)
of Fig.1(a). Let G = (V,E) be the graph ofFig. 1(b) obtained fromG by
recursive applications of the twin operation on the nodex 1 ., 8, respectively. From
constraints®) andTheorem 2.2it follows that the constraints ¢fp (G) different from ()
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and @) that may define facets are the following:

8

Y ox(j) =3,
i+6

x(i)+x(i+D— > x(j)=-1,  fori =1,...,8(modulo8)
j=i+3

From Theorem 5.5it follows that Pp (G) is given by inequalities2) and @) together
with the inequalities

X(A)+x(i +1) +x(i +8 +x(i+9 <1, fori=1,...,8(modulo16)

i+6
XM+ X0+ D +x( +8) +x( +9 — Y X())+x(j +8) = -1,
j=i+3
fori =1,...,8 (modulo 16)
16
Y ox(h=3
i=1
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