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We extend a result of Tarsi and show that the chromatic polynomial and flow
polynomial evaluated at 1+k are up to sign the same modulo k2 for any integer k
such that |k| \ 2. © 2002 Elsevier Science (USA)

Tarsi [1] proves that for a graph G the set of proper 3-colourings and
the set of nowhere zero 3-flows are of the same parity. In this note it is
shown that this is just a special case of a more general result.
As pointed out by Tarsi, the set C3(G) of proper 3-colourings has the
property that |C3(G)| is always divisible by 6 (permutations of the 3
colours), while flows come in pairs (obtained by reversing the entire orien-
tation). Thus, if NZF3(G) denotes the set of nowhere zero 3-flows on G,
what Tarsi actually shows (his Theorem 1.3) is that

|C3(G)| — |NZF3(G)| mod 4.(1)

We change notation to that of [2] and write P(G; l) for the chromatic
polynomial and F(G; l) for the flow polynomial. Thus (1) can be rewritten
as

P(G; 3) — F(G; 3) mod 4.(2)

To prove our results we use the following properties of a graph G=(V, E)
with k(G) components and rank r(E)=|V|−k(G),

P(G; l)=(−1)r(E) lk(G)T(G; 1−l, 0),(3)

F(G; l)=(−1) |E|−r(E) T(G; 0, 1−l),(4)
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where T is the Tutte polynomial of G, denoted by

T(G; x, y)=C ti, jx iy j.(5)

Two particular properties of the Tutte polynomial are noted: for |E| > 0 we
have t0, 0=0 and for |E| > 1 we have t1, 0=t0, 1.
From (3) and (4)

P(G; l)=(−1) r(E) lk(G) C
i \ 1
ti, 0(1−l) i(6)

and

F(G; l)=(−1) |E|−r(E) C
j \ 1
t0, j(1−l) j.(7)

Theorem. For graph G=(V, E), |E| \ 2, and integer l, |l| \ 2,

P(G; 1+l) — (−1) |E| F(G; 1+l) mod l2.

Proof. Using (6) and (7) we have

P(G; 1+l) — (−1) r(E) (1+l)k(G)(−l) t1, 0 mod l2,

and

F(G; 1+l) — (−1) |E|−r(E) (−l) t0, 1 mod l2.

The result follows since (1+l) F(G; 1+l) — F(G; 1+l)+lF(G; 1+l) —
F(G; 1+l) mod l2 and t1, 0=t0, 1. L

Putting l=2 gives as a corollary (2) above. Since P(G; 3) and F(G; 3)
are even and 2 — −2 mod 4 the sign (−1) |E| of the theorem is redundant in
this instance.
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