NOTE

On the Parity of Colourings and Flows

Andrew J. Goodall and Dominic J. A. Welsh ${ }^{1}$
Mathematical Institute, Oxford, United Kingdom

Received July 6, 2001

Abstract

We extend a result of Tarsi and show that the chromatic polynomial and flow polynomial evaluated at $1+k$ are up to sign the same modulo k^{2} for any integer k such that $|k| \geqslant 2$. © 2002 Elsevier Science (USA)

CORE

Provided by Elsevier - Publisher Connector
the set of nowhere zero 3-flows are of the same parity. In this note it is shown that this is just a special case of a more general result.

As pointed out by Tarsi, the set $C_{3}(G)$ of proper 3-colourings has the property that $\left|C_{3}(G)\right|$ is always divisible by 6 (permutations of the 3 colours), while flows come in pairs (obtained by reversing the entire orientation). Thus, if $N Z F_{3}(G)$ denotes the set of nowhere zero 3-flows on G, what Tarsi actually shows (his Theorem 1.3) is that

$$
\begin{equation*}
\left|C_{3}(G)\right| \equiv\left|N Z F_{3}(G)\right| \bmod 4 . \tag{1}
\end{equation*}
$$

We change notation to that of [2] and write $P(G ; \lambda)$ for the chromatic polynomial and $F(G ; \lambda)$ for the flow polynomial. Thus (1) can be rewritten as

$$
\begin{equation*}
P(G ; 3) \equiv F(G ; 3) \bmod 4 . \tag{2}
\end{equation*}
$$

To prove our results we use the following properties of a graph $G=(V, E)$ with $k(G)$ components and $\operatorname{rank} r(E)=|V|-k(G)$,

$$
\begin{align*}
& P(G ; \lambda)=(-1)^{r(E)} \lambda^{k(G)} T(G ; 1-\lambda, 0), \tag{3}\\
& F(G ; \lambda)=(-1)^{|E|-r(E)} T(G ; 0,1-\lambda), \tag{4}
\end{align*}
$$

[^0]where T is the Tutte polynomial of G, denoted by
\[

$$
\begin{equation*}
T(G ; x, y)=\sum t_{i, j} x^{i} y^{j} . \tag{5}
\end{equation*}
$$

\]

Two particular properties of the Tutte polynomial are noted: for $|E|>0$ we have $t_{0,0}=0$ and for $|E|>1$ we have $t_{1,0}=t_{0,1}$.

From (3) and (4)

$$
\begin{equation*}
P(G ; \lambda)=(-1)^{r(E)} \lambda^{k(G)} \sum_{i \geqslant 1} t_{i, 0}(1-\lambda)^{i} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
F(G ; \lambda)=(-1)^{|E|-r(E)} \sum_{j \geqslant 1} t_{0, j}(1-\lambda)^{j} . \tag{7}
\end{equation*}
$$

Theorem. For graph $G=(V, E),|E| \geqslant 2$, and integer $\lambda,|\lambda| \geqslant 2$,

$$
P(G ; 1+\lambda) \equiv(-1)^{|E|} F(G ; 1+\lambda) \bmod \lambda^{2} .
$$

Proof. Using (6) and (7) we have

$$
P(G ; 1+\lambda) \equiv(-1)^{r(E)}(1+\lambda)^{k(G)}(-\lambda) t_{1,0} \bmod \lambda^{2},
$$

and

$$
F(G ; 1+\lambda) \equiv(-1)^{|E|-r(E)}(-\lambda) t_{0,1} \bmod \lambda^{2} .
$$

The result follows since $(1+\lambda) F(G ; 1+\lambda) \equiv F(G ; 1+\lambda)+\lambda F(G ; 1+\lambda) \equiv$ $F(G ; 1+\lambda) \bmod \lambda^{2}$ and $t_{1,0}=t_{0,1}$.

Putting $\lambda=2$ gives as a corollary (2) above. Since $P(G ; 3)$ and $F(G ; 3)$ are even and $2 \equiv-2 \bmod 4$ the sign $(-1)^{|E|}$ of the theorem is redundant in this instance.

REFERENCES

1. M. Tarsi, The graph polynomial and the number of proper vertex colourings, Ann. Inst. Fourier, Grenoble 49 (1999), 1089-1093.
2. D. J. A. Welsh, "Complexity: Knots, Colourings and Counting," London Mathematical Society Lecture Notes Series, Vol. 186, Cambridge Univ. Press, Cambridge, UK, 1993.

[^0]: ${ }^{1}$ The authors were partially supported by the ESPRIT Project RAND-APX.

