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Abstract

The number of topologically different plane real algebraic curves of a given degree d has the

form expðCd2 þ oðd2ÞÞ: We determine the best available upper bound for the constant C: This
bound follows from Arnold inequalities on the number of empty ovals. To evaluate its rate we

show its equivalence with the rate of growth of the number of trees half of whose vertices are

leaves and evaluate the latter rate.
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0. Introduction

0.1. Plane projective curves and rooted trees

Recall that a rooted tree is a tree with a distinguished vertex. The distinguished
vertex is called the root. The multiplicity or the valence of a vertex is the number of
edges which are incident to it. A vertex of multiplicity one is called a leaf. By
convention, we assume that the root is a leaf if the tree has no other vertices.
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Otherwise, the root is not considered as a leaf even if its multiplicity is one. The
vertices of multiplicity 41 are called internal.

In this paper we work exclusively with unlabeled finite trees and use them to
encode the topology of nonsingular curves in the real projective plane.

By a nonsingular curve we mean a closed one-dimensional, not necessarily
connected, compact sub-manifold. Each connected component of such a curve is a

topological circle smoothly embedded in RP2: There are two species of embedded

circles: one-sided circles, which, similar to a projective line, do not decompose RP2;

and two-sided circles, which, similar to a standard circle, decompose RP2 in a disc
and a Moebius band. Following the real algebraic geometry tradition, the two-sided
components are called ovals even though they may be nonconvex. The number of
one-sided components is at most one. By analogy with the algebraic case (see Section
0.2), if all the curve components are ovals, we say that the curve is of even degree, and
otherwise, that it is of odd degree.

To encode the topology of a curve we prefer to use the connected components of
the complement of the curve. If the degree is even, one of the components of the
complement is nonorientable and the other components are orientable as well as
their closures. If the degree is odd, all the components of the complement are
orientable but the closure of one and only one of them is nonorientable (this is the
complement component adjacent to the one-sided component of the curve).

Finally, our encoding will look as follows. We associate the vertices with the
connected components of the complement of the curve. The root will correspond to
the component with nonoriented closure and the tree will represent the adjacency
relations between the components (see Fig. 1). The fact that this graph is a tree
follows from the Jordan curve theorem. It is finite since our curves are compact. The
number of edges is equal to the number of ovals, so that the number of vertices is the
same as the number of components of the curve if the degree is odd, and it is greater
by 1 if the degree is even.

Two curves have the same encoding and the same degree parity if and only if there
is an ambient isotopy transforming one into another, so that these two invariants,
the tree and the degree parity, describe completely the isotopy class of a curve. In
classical terminology, the isotopy classes are called arrangements. (If one likes, he can
speak of ambient homeomorphisms and ambient homeomorphism classes instead of

isotopies and isotopy classes; in the case of curves in RP2 it is an equivalent setting.)
Let us notice that the ovals corresponding to leaves are called empty ovals.
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Fig. 1. Rooted tree and the corresponding plane curves.

V.M. Kharlamov, S.Yu. Orevkov / Journal of Combinatorial Theory, Series A 105 (2004) 127–142128



0.2. Statement of results

In this paper we are interested in algebraic nonsingular curves. More precisely, a
nonsingular algebraic (real plane) curve of degree d is a curve given, in homogeneous
coordinates, by a polynomial equation pðx; y; zÞ ¼ 0; where p is a real homogeneous
polynomial in 3 variables such that its partial derivatives have no common zeros in

R3
\0: It is worth noticing that d is even if and only if all the curve components are

two-sided, so that in the case of algebraic curves the degree parity introduced above
and the parity of the algebraic degree d coincide.

Even if the curves are algebraic, there is no any restriction on the encoding tree as
long as no condition on the curve is imposed. The situation is changing as soon as we
fix the degree d of the curve. Then, already the number of connected components,
and thus the number of the vertices in the encoding tree, is not arbitrary. As is

known, the number of components of the curve is pðd�1Þðd�2Þ
2

þ 1: Introduce, thus,

the following notation which provides the sharp upper bound for the number of the
vertices:

Nd ¼
ðd � 1Þðd � 2Þ=2þ 1 if d is odd;

ðd � 1Þðd � 2Þ=2þ 2 if d is even:

�

Starting from d ¼ 4; not any tree with pNd vertices can be realized by a curve of
degree d: Let Id be the number of the trees which can be realized by curves of degree
d: No direct formula or functional equation for these numbers is known; moreover,
their exact values are available only for dp7: Very few is known even on the rate of
growth of Id :

As is shown in [5],

Id ^
e

expðd2Þ;

where an ^
e

bn means that log an ¼ Oðlog bnÞ and log bn ¼ Oðlog anÞ: On the other

hand, due to Otter [6] (see also [3, Section 9.5]), one has the following exponential
equivalence for the number Tn of rooted unlabeled trees with n vertices

Tn B
e

Cn; C ¼ 2:95576y; ð1Þ

where the latter means that log TnBn log C: This implies that

T1 þ?þ Tn B
e

Cn;

hence,

IdpC
d2

2
þoðd2Þ: ð2Þ

The aim of the present note is to correct one erroneous remark from [5] and to
show that the so-called Arnold inequalities [1] allow to reduce the constant C in
estimate (2). Namely, we prove that according to these inequalities

IdpC
d2

2
þoðd2Þ

1 ; C1 ¼ 2:9193800y : ð3Þ
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More precisely, ðlog C1Þd2=2 is asymptotically equivalent to log Ad where Ad is the

number of unlabeled trees with npNd vertices not excluded by the Arnold inequalities.
According to [5], it implies that the Arnold inequalities exclude more arrangements
of pNd closed simple circuits than any other known property of plane algebraic
curves, including the consequences of the Bezout theorem.

Let us recall that the principal Arnold inequalities concern the curves of even
degree d ¼ 2k exclusively. They state that

even�p
ðk � 1Þðk � 2Þ

2
þ 1; odd�p

ðk � 1Þðk � 2Þ
2

; ð4Þ

where even� is the number of internal vertices of odd distance from the root, and
odd� is the number of internal vertices of even nonzero distance from the root. These
inequalities imply the following lower bounds on the number l of leaves whatever is
the parity of d:

lXn � 1� d � 1

2

� �
d � 1

2

� �
� 1

� �
; ð5Þ

where n is the total number of vertices. If d is even it is a straightforward
consequence of (4) and if d is odd it follows from (5) for d þ 1: In particular, for the
maximal value n ¼ Nd of n; the right-hand side is approximately the half of n:

Nd � 1� d � 1

2

� �
d � 1

2

� �
� 1

� �
B

1

2
Nd : ð6Þ

According to results of this note, it is the trees with n ¼ Nd and lB1
2

Nd which

determine the asymptotical impact of Arnold bounds: Ad has the same ^
e
-rate of

growth as the number of the trees with Nd vertices half of which are leaves. In
particular, the upper bound for I2k deduced from the sole inequality (5) has the same
^

e
-rate of growth as the upper bound which can be deduced from (4).

In fact, what is important in the coefficient 1
2
in (6) is that 1

2
40:438156y . If the

Arnold inequalities were not known but someone proved only that l40:43Nd ; this
fact would not reduce the constant C in (2) because the most of trees have about
43:8% leaves (see the Appendix for details and references).

The note is organized as follows. The asymptotic growth of the number of the
trees half of whose vertices are leaves is established in Section 1 in Theorem 7.
The asymptotic impact of the Arnold inequalities is deduced from this theorem
in Section 2: Theorem 9 takes into account only the bound (5) and Theorem 13
shows that (4) does not improve the rate. In the Appendix we compare the
result with the limiting distribution and show that the central limit theorem is not
sufficient for our purpose: the range of values we treat is outside the range of a
suitably good convergence.
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1. On trees half of whose vertices are leaves

1.1. Functional equation

Let us denote the number of rooted unlabeled trees with n vertices and m leaves by
an;m and consider the associated bi-variant generating function (a formal power

series)

Tðx; zÞ ¼
X
n;m

an;mxnzm ¼
XN
n¼1

anðzÞxn: ð7Þ

We get (see Fig. 2)

Tðx; zÞ ¼ zx þ zx2 þ ðz þ z2Þx3 þ ðz þ 2z2 þ z3Þx4 þ ðz þ 4z2 þ 3z3 þ z4Þx5

þ ðz þ 6z2 þ 8z3 þ 4z4 þ z5Þx6

þ ðz þ 9z2 þ 18z3 þ 14z4 þ 5z5 þ z6Þx7 þ? :
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Fig. 2. Trees with np7 vertices.
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For technical reasons, we introduce also

T̃ðx; zÞ ¼ Tðx; zÞ � zx þ x ¼
XN
n¼1

ãnðzÞxn; ãnðzÞ ¼
1; n ¼ 1;

anðzÞ; n41;

�

which is the generating function under the convention that the vertex of the one-
vertex tree is not considered as a leaf.

Using Pólya enumeration theorem as it is done in [8] one can prove that Tðx; zÞ
satisfies the (formal) functional equation

T̃ðx; zÞ ¼ Tðx; zÞ � zx þ x ¼ x exp
XN
k¼1

Tðxk; zkÞ
k

 !
: ð8Þ

The specialization TðxÞ ¼ Tðx; 1Þ is the classical generating function for the number
of rooted unlabeled trees and substituting of z ¼ 1 into (8) turns it into the classical
Pólya equation, see [7].

It may be worth noticing that to prove (8), one can use as well the following bi-
variant analog of the Cayley product formula for TðxÞ; cf. [4, formula 2.3.4.4-(3)],

T̃ðx; zÞ ¼ xQ
ð1� xnzmÞan;m

:

1.2. Recurrent relation

Taking the logarithmic derivatives of the both sides of (8), we get

T̃xðx; zÞ
T̃ðx; zÞ

¼ @

@x
log x þ

XN
k¼1

Tðxk; zkÞ
k

 !
¼ 1

x
þ
XN
k¼1

xk�1Txðxk; zkÞ:

Multiplying the both sides by x T̃ðx; zÞ and subtracting T̃ðx; zÞ; this gives

xT̃xðx; zÞ � T̃ðx; zÞ ¼ T̃ðx; zÞ
XN
k¼1

xkTxðxk; zkÞ:

Hence,

XN
n¼1

nãnþ1x
nþ1 ¼

XN
p¼1

ãpxp
XN
k¼1

XN
j¼1

jajðzkÞxjk ¼
XN
n¼1

xnþ1
X

pþjk¼nþ1

jajðzkÞãpðzÞ:

Thus, we obtain the recurrence relation (cf. [6,8])

nanþ1ðzÞ ¼ nãnþ1ðzÞ ¼
Xn

j¼1

j
X½n=j�

k¼1

ajðzkÞãnþ1�jkðzÞ: ð9Þ

Together with the initial conditions a1ðzÞ ¼ z; ã1ðzÞ ¼ 1; relation (9) gives a rather
fast way to compute anðzÞ:
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1.3. Analytic properties of Tðx; zÞ

If before we treated the generating functions as formal series, now we need to
study their analytic behavior.

Let a be the radius of convergence of the power series TðxÞ: Using Polya’s

approach, see [7], i.e., resolving the equation x exp 1þ
P

N

k¼2
TðxkÞ

k

� �
¼ 1 (for

instance, by Newton’s method), one can compute a with any given precision.
Indeed, any finite number of coefficients of the involved series can be computed
using (9) and the number of terms to be summated, can be found from some rough
estimate of a: Performing this computation, one gets

a ¼ 0:33832185689920769519611262571701705318y :

This constant is sometimes called Otter constant because the first seven digits were
computed in [6] (using the above approach from [7]).

Let us denote by D the domain of convergence of series (7). Here, we follow the
classical tradition and mean by the domain of convergence the interior of the set
where the series is convergent. As is known, it coincides with the interior of the set of

points ðx; zÞAC2 such that supn;m jan;mxnzmjoN: An important, also well known,

consequence is that the logarithmic image

logjDj ¼ fðlogjxj; logjzjÞ : ðx; zÞADgCR2

of any convergence domain is convex (in other words, the convergence domains are
logarithmically convex).

Lemma 1. There exists a continuous function z/rðzÞ;R40 ¼ fz40g-R40; such that

D ¼ fðx; zÞ : jxjorðjzjÞg: Moreover, a=zprðzÞpa for zX1 and rðzÞominf1; 1
jzjg for

any z:
The series Tðx; zÞ converges at each point x ¼ rðzÞ; z40; of @D-R2

40:

Proof. The existence statement and the nonsharp bounds follow from the
logarithmic convexity of D combined with the cited above convergency properties
of TðxÞ ¼ Tðx; 1Þ and with the fact that DCfjxzjp1g; in its turn, this inclusion

follows from an;mX1 for any n4m: The strict inequality rðzÞo 1
jzj is a consequence of

the convergence of Tðx; zÞ at the boundary points. To prove this convergence it
sufficient to notice that

Tðx; zÞ ¼ xz � x þ xeTðx;zÞþ?4xz � x þ xeTðx;zÞ

for 0oxorðzÞ; z40; it implies the boundedness of T on the interval xA½0; rðzÞ½ and,
by Abel theorem, its convergence at x ¼ rðzÞ: &
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Lemma 2. The transformations ðx; zÞ/ðxk; zkÞ; kX2; map D into itself. For any

point ðx; zÞ; za0; in the closure of D the series

hðx; zÞ ¼
XN
k¼2

Tðxk; zkÞ
k

is absolutely convergent and defines a function holomorphic at such a point.

Proof. The invariance property follows from the logarithmic convexity and the
bounds on rðzÞ given by Lemma 1. In addition, due to this lemma, for all ðx; zÞ
in a small neighborhood of any point in the closure of D we have bounds

jxkjpak; jzkjpbk with ao1; abo1 whatever is kX1: These bounds provide a
bounded convergence of the series:

X
kX2

X
n;m

jan;mxnkzmkj
k

p
X
n;m

X
kX2

an;mankbmk

k

pl
X
n;m

an;ma2nb2m ¼ lTða2; b2Þ: &

In what follows, we study the boundary values aðzÞ ¼ TðrðzÞ; zÞ; z40 of T and use
an auxiliary function

Fðx; y; zÞ ¼ z � 1þ eyþhðx;zÞ � y

x
:

By (8), we have Fðx;Tðx; zÞ; zÞ ¼ 0 at any point of the closure of D with xa0; za0:
In particular, the real curve x ¼ rðzÞ; z40; satisfies the equation

Fðx; aðzÞ; zÞ ¼ 0:

Lemma 3. The function rðzÞ is analytic. The function Fðx; y; zÞ is analytic near the real

curve x ¼ rðzÞ; z40: We have

FyðrðzÞ; aðzÞ; zÞ ¼ 0; ð10Þ

aðzÞ ¼ 1þ rðzÞðz � 1Þ: ð11Þ

Proof. The analyticity of F follows from Lemma 2, and then all the other
statements, except relation (11), follow from the implicit function theorem.

Let us show that aðzÞ ¼ 1þ rðzÞðz � 1Þ: By the definition of F ; we have Fy ¼
eyþhðx;zÞ � 1

x
: Hence, for x ¼ rðzÞ and y ¼ aðzÞ we have

0 ¼ Fy ¼ eyþhðx;zÞ � 1

x
and 0 ¼ F ¼ z � 1þ eyþhðx;zÞ � y

x
:

Thus, y
x
¼ 1

x
þ z � 1 and y ¼ 1þ xðz � 1Þ: &
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Due to Lemma 3, the function x ¼ rðzÞ can be found by resolving the
equation

x expð1þ ðz � 1Þx þ hðx; zÞÞ ¼ 1:

This allows one to compute rðzÞ with any given precision.
Let us define

aþ
n ðzÞ ¼

X
m4n=2

an;mzm; a�
n ðzÞ ¼

X
mpn=2

an;mzm; T7ðx; zÞ ¼
XN
n¼1

a7
n ðzÞxn;

T̂ðx; zÞ ¼ T̂ðxz�1=2; zÞ; T̂7ðx; zÞ ¼ T̂7ðxz�1=2; zÞ; r̂ðzÞ ¼ rðzÞ
ffiffiffi
z

p
and denote by D̂ and D̂7 the domain of convergence of T̂ and T̂7; respectively. It is

clear that D̂ ¼ fðx; zÞ : jxjor̂ðjzjÞg:

Lemma 4. The function r̂ðzÞ has a single critical point, this point is a point of

maximum.

Proof. The logarithmic map ðx; zÞ/ðlogjxj; logjzjÞ transforms xz�
1
2 in a

linear function. Therefore, due to the convexity of logjDj; the critical
points of r̂ðzÞ form a convex set. If it is not reduced to a single point, then,

since r is real analytic, rðzÞ ¼ cz�
1
2; c40; which contradicts to the bounds from

Lemma 1.
It is a point of maximum, since the domains of convergence are

Reinhardt domains, i.e., ðx; zÞAD as soon as there exists ðx0; z0ÞAD with
jxjojx0j; jzjojz0j: &

Denote by z0ARþ the point where the maximum of r̂ðzÞ is attained and set
x0 ¼ r̂ðz0Þ:

Proposition 5. D̂7 ¼ fðx; zÞ : jxjor̂7ðjzjÞg; where

r̂�ðzÞ ¼ max
opz

r̂ðoÞ ¼
r̂ðzÞ; zpz0

x0; zXz0

�
and r̂þðzÞ ¼ max

oXz
r̂ðoÞ ¼

r̂ðzÞ; zXz0;

x0; zpz0:

�

Proof. For a point p ¼ ðu0; v0ÞAR2; let us denote R2
þ�ðpÞ ¼ fðu; vÞ j upu0; vXv0g

and R2
þþðpÞ ¼ fðu; vÞ j upu0; vpv0g: The result follows from the following

properties:

(a) logjD̂j and logjD̂7j are convex,
(b) If pAlogjD̂7j then R2

þ7ðpÞClogjD̂7j;
(c) logjD̂j ¼ logjD̂þj-logjD̂�j: &
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1.4. Rate of growth

Theorem 6.X
m4n=2

an;m B
e

Cn
1 ;

where

C1 ¼
1

x0
¼ 2:919380017448416911265032583985y :

Proof. The coefficients aþ
n ð1Þ ¼

P
m4n=2 an;m of the power series T̂þðx; 1Þ satisfy the

following relation:

log aþ
nþmþ2ð1ÞXlog aþ

n ð1Þ þ log aþ
mð1Þ � log 2

(to prove this relation it is sufficient to plant two trees over a new root and to add a

leaf growing from the root). Hence, the sequence n�1 log aþ
n ð1Þ has a limit and, by the

Cauchy rule,X
m4n=2

an;m ¼ aþ
n ð1ÞBe

r̂þð1Þ�n: ð12Þ

To compute r̂þð1Þ; we must find z0: We compute it as the root of the equation
r̂ 0ðzÞ ¼ 0 (the root is unique by the convexity of log D). To find it by Newton’s
method, we need r̂ 0ðzÞ and r̂ 00ðzÞ: They can be found as follows. Derivating the
identity FðrðzÞ; aðzÞ; zÞ ¼ 0 and using (10), we get

FxðrðzÞ; aðzÞ; zÞr0 þ FzðrðzÞ; aðzÞ; zÞ ¼ 0: ð13Þ
Derivating again, we see that at points ðrðzÞ; aðzÞ; zÞ one has

Fxxr02 þ Fxyr0a0 þ 2Fxzx0 þ Fyza
0 þ Fzz þ Fxr00 ¼ 0: ð14Þ

Note that a0 can be found from (11).
The partial derivatives of F at a point ðrðzÞ; aðzÞ; zÞ are

Fx ¼ ðhx=rÞ þ ða=r2Þ; Fy ¼ 0; Fz ¼ 1þ ðhz=rÞ;

Fxx ¼ ðhxx þ h2
xÞ=r � 2ða=r3Þ; Fxy ¼ ðhx=rÞ þ ð1=r2Þ; Fxz ¼ ðhxz þ hxhzÞ=r;

Fyz ¼ hz=r; Fzz ¼ ðhzz þ h2
zÞ=r:

Solving the equation r̂ 0ðzÞ ¼ 0 by Newton’s method, we find

z0 ¼ 1:48491739577413809587489y

and

x0 ¼ r̂ðz0Þ ¼ 0:3425384821514313844959919944869y :
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Since z041; we have r̂þð1Þ ¼ r̂ðz0Þ ¼ x0: Now, the desired asymptotic relation
follows from (12) and

C1 ¼ 1=x0 ¼ 2:919380017448416911265032583985y : &

Theorem 7. There is a continuous function l/CðlÞ; RX0-RX0; such thatX
m4ln

an;m B
e

CðlÞn
for any lX0:

For each l41
2

one has CðlÞoCð1
2
Þ ¼ C1:

Proof. Let z0;l be the critical point of rðzÞzl: By the same arguments as in the proof

of Proposition 5 and Theorem 6,X
m4ln

an;m B
e

r̂þ;lð1Þ�n;

where r̂þ;lð1Þ is equal to rðz0;lÞzl0;l if 1oz0;l and to rð1Þ otherwise. Due to the

logarithmic convexity of D;

z0;l4z0 and rðz0;lÞzl0;l4rðz0Þzl04rðz0Þz
1
2
0

if l41
2
: &

2. On the impact of Arnold inequalities

2.1. Impact of the bound on the number of nonempty ovals

Consider first the case of curves of degree d with ðd � 1Þðd � 2Þ=2þ 1 connected
components and denote by Ld the number of the trees which satisfy the Arnold
bound (5). Namely, Ld is the number of rooted unlabeled trees with n ¼ Nd

vertices and XMd leaves where Md ¼ Nd � 1� ½d�1
2
�ð½d�1

2
� � 1Þ: Recall that NdBd2

2

(see also (6)).

Proposition 8.

Ld B
e

C
d2

2
1 :

Proof. We apply Theorem 7. Since CðlÞ is continuous at l ¼ 1
2
; we find for any e40

such d40 that for any sufficiently big n it holds

ðC1 þ eÞð1þeÞn
X

X
m4ð1

2
�dÞn

an;m and
X

m4ð1
2
þdÞn

an;mXðC1 � eÞð1�eÞn:
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It remains to put n ¼ NdBd2

2
and to note that for any sufficiently big d

X
m4ð1

2
�dÞn

an;mXLdX

X
m4ð1

2
þdÞn

an;m: &

Now, consider the general case and denote, in accordance with the Arnold bound
on the number of empty ovals, by L0

d the number of rooted unlabeled trees with

npNd vertices and Xn � ½d�1
2
�ð½d�1

2
� � 1Þ leaves.

Theorem 9.

L0
d Be

C
d2

2
1 :

Proof. In view of (1) and Proposition 8, it is sufficient to prove that L0
dpðk̂2 �

k̂ÞT
k̂2� k̂

þ k2Ld where k̂ ¼ ½d�1
2
� and k ¼ ½d

2
�: Clearly, the first term bounds from

above the total number of trees with npk̂2 � k̂ vertices. In the range k̂2 � k̂onpNd

the number of the trees excluded by the Arnold bound (5) is increasing, from 0 to Ld ;
when n grows, since an;mpanþ1;mþ1 (to prove such an inequality it is sufficient to add

a leaf to a branch with a maximal number of leaves). The coefficient k2 before Ld is
due to

Nd � 1� d � 1

2

� �
d � 1

2

� �
� 1

� �
¼ k2: &

2.2. Auxiliary lemmas

Let v be a vertex of a tree t: A branch of t at v is a connected component of the
graph obtained from t by removing v and the (open) edges adjacent to v:

Lemma 10. Let t be a tree with N vertices. Then there exists a vertex v such that any

branch of t at v has at most N=2 vertices.

Proof. Suppose that any vertex has a branch with more than N=2 vertices. Choose
any vertex v1 and define the sequence of vertices v1; v2;y as follows. Assume that vi

is already defined. Let ti be the branch of t at vi which has more than N=2 vertices.
Then viþ1 is defined as the vertex of ti which is nearest to vi: Moving from v1 to v2;
then from v2 to v3 and so on, we can never turn back. Indeed, if viþ1 coincides with
vi�1 then removing from t the (open) edge connecting vi with viþ1 we would obtain
two subtrees of t each having more than N=2 vertices. Since t has no loops, this
means that our sequence has no repeatings. Contradiction. &

Lemma 11. Let c1X?XcrX0 and jcjpc1 þ?þ cr: Then there exist e1;y; erAf71g
such that jðe2c2 þ?þ ercrÞ � cjpc1:
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Proof. Set ekþ1 ¼ signþðc � ðe2c2 þ?þ ekckÞÞ where signþðxÞ ¼ 1 for xX0 and

signþðxÞ ¼ �1 for xo0: This means that we walk along the real axis starting from

the origin so that the absolute values of the steps are successively c2; c3;y and each
step is directed towards the point c: Then c0 ¼ e2c2 þ?þ ercr is the final point of
our walk. It is easy to see that jc0 � cjpc1: &

In accordance with the terminology coming from the geometry of plane curves, let
us say that a vertex of a rooted tree t is even (resp. odd) if the minimal path relating it
to the root consists of an odd (resp. even) number of edges. Let us denote by pðtÞ
(resp. nðtÞ) the number of even (resp. odd) vertices, including the root, of t and put
wðtÞ ¼ pðtÞ � nðtÞ:

For example, the root is an odd vertex, the vertices connected to the root by an
edge are even etc. Note, that when we change the root, jwðtÞj does not change.

We say that a rooted tree t0 is obtained from a rooted tree t by contracting an edge

if t0 is obtained from t by replacing some edge with a single vertex v (see Fig. 3). If
one of the ends of the edge which we contracted was the root of t; then v is declared
the root of t0: This operation reduces the number of vertices and the edges by one.
The operation of inserting an edge at v is to be thought of as an inverse operation.
When one of the ends of the inserted edge is a leaf, this is called the attachment of

an edge.

Lemma 12. Let t0 be a rooted tree with N vertices and let c be any integer such that

jcjpjwðt0Þj: Then there exists a sequence of rooted trees t1;y; tk such that

(1) wðtkÞ ¼ c;
(2) ti�1; i ¼ 1;y; k; is obtained from ti by contracting an edge,
(3) kp3þ 3 log2 N:

Proof. Apply the induction by N: The case N ¼ 1 is trivial. Assume that the
statement is true for any tree which has less than N41 vertices. By Lemma 10, there
exists a vertex v such that any branch of t0 has at most N=2 vertices. Let us denote
the branches of t0 at v by b1;y; br: We choose the root of each branch at the vertex
nearest to v: Let ci ¼ jwðbiÞj and di ¼ sign wðbiÞ: Let us number the branches so that
c1Xc2X?Xcr: By Lemma 11, there exist e2;y; erAf71g such that jc0 � cjpc1
where c0 ¼ e2c2 þ?þ ercr: By the induction hypothesis, we can insert p3þ
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3 log2ðN=2Þ ¼ 3 log2 N edges to b1 so that c�1 ¼ wðb�
1Þ ¼ c � c0 for the resulting tree

b�
1: Let t�0 be the tree obtained from t0 by replacing b1 with b�

1:
Let t�1 be obtained from t�0 by inserting an edge e at v so that b�

1 and the branches

bi; iX1; with eidi ¼ signðc � c0Þ are on one side of e and the branches bi with eidi ¼
�signðc � c0Þ are on the other side. Then we have jwðt�1Þj ¼ jc�1 þ c0j ¼ jcj: Now, we

may return to counting jwj with respect to the initial root of t0 and respective roots of
ti; iX1: If wðt�1Þ ¼ �c; we attach an edge to the root, choose the obtained leaf as the

new root and then attach an edge to the new root. &

2.3. Impact of the bounds on the number of even and odd nonempty ovals

Let us recall that Ad denotes the number of rooted unlabeled trees with npNd

vertices which satisfy the Arnold bounds (4).

Theorem 13.

Ad B
e

C
d2

2
1 :

Proof. If a tree with npNd vertices satisfies the weak Arnold bound (5), we apply to
it, removing its leaves, Lemma 12 with c ¼ 0; and then put the leaves back, getting
thus a tree with n þ 3½log2 n� þ 3pNd þ 3½log2 Nd � þ 3pNdþ6 vertices which satisfies
the stronger Arnold bounds (4). Therefore,

L0
d

Adþ6
p
XNd

n¼1

n þ 3½log2 n� þ 3

3½log2 n� þ 3

� �
pNd

Nd þ 3½log2 Nd � þ 3

3½log2 Nd � þ 3

� �
¼ eoðNd Þ

and the theorem follows now from Theorem 9 and AdpL0
d : &

Appendix. Limit distribution

Let us consider an;m=anð1Þ as a probability distribution of a random variable Xn;
i.e. PðXn ¼ mÞ ¼ an;m=anð1Þ: As is known, see for example [2], the following central

limit theorem holds: this random sequence Xn; once normalized, tends to a normal
distribution:

P ao
Xn � mn

s
ffiffiffi
n

p ob

� �
-

1

2p

Z b

a

e�
x2

2 dx;

where

m ¼ �r0ð1Þ=a ¼ 0:4381562356643746639684921638628797837055y

and

s2 ¼ r0ð1Þ2

a2
� r0ð1Þ þ r00ð1Þ

a
¼ 0:150044811672846981980699640444640111071y :
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In particular, this means that approximately 43:8% of vertices of a big random tree
are leaves. The fact that the mean value of the number of leaves is Bmn; m ¼
0:438156235664y was established by Robinson and Schwenk [8] by the Polya-Otter
method, and its extension to the other moments was given by Schwenk [9].

In view of the above limit theorem, it is natural to replace an;m by its

approximation by the normal distribution

a�
n;m ¼ anð1Þ

s
ffiffiffiffiffiffi
2p

p exp �ðm � mnÞ2

2s2n

 !
:

Then, we get

X
m4n=2

a�
n;m B

e
a�n exp �ð1=2� mÞ2n

2s2

 !
¼ Cn

2 ;

where

C2 ¼ a�1 exp �ð1=2� mÞ2

2s2

 !
¼ 2:91833301345955740149786987821329181193y :

We see that C2 differs from C1 in the fourth digit. This is not a contradiction with
the central limit theorem because this just means that the convergence to the normal
distribution is not good far from the center. It shows that the central limit theorem is
not sufficient for a search of the rate of growth of

P
m4n=2 an;m:

To conclude, let us notice that the constants r0ð1Þ and r00ð1Þ (needed to find m and

s2) can be computed much faster than the constants z0 and x0 from Section 2
because the double summation over n;m may be replaced with the single summation
by use of the following recurrent formulas for the coefficients of the series Tzðx; 1Þ
and Tzzðx; 1Þ: Similarly to (9), one can obtain

a0
nþ1ð1Þ ¼

Xn

j¼1

a0
jð1Þ

X½n=j�

k¼1

anþ1�kjð1Þ;

a00
nþ1ð1Þ ¼

Xn

j¼1

a0
jð1Þ

X½ðn�1Þ=j�

k¼1

a0
nþ1�kjð1Þ

 !(

þa0
jð1Þ

X½n=j�

k¼1

ðk � 1Þanþ1�kjð1Þ
 !

þ a00
j ð1Þ

X½n=k�

k¼1

kanþ1�kjð1Þ
 !)

:
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