

Available online at www.sciencedirect.com

Physics Procedia 11 (2011) 15-18

Physics Procedia

www.elsevier.com/locate/procedia

Proceedings of APAC-SILICIDE 2010

Magnetoresistance characteristics of Fe₃Si/CaF₂/Fe₃Si heterostructures grown on Si(111) by molecular beam epitaxy K. Harada^a, K. S. Makabe^a, H. Akinaga^b and T. Suemasu^a

^aInstitute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan ^bNanodevice Innovation Research Center, AIST, Tsukuba, Ibaraki 305-8569, Japan

Abstract

Fe₃Si/CaF₂/Fe₃Si magnetic tunnel junctions (MTJs) have been investigated to demonstrate the tunnel magnetoresistance effects. We fabricated Fe₃Si(20 nm)/CaF₂(2 nm)/Fe₃Si(15 nm) heterostructures epitaxially on a Si(111) substrate by molecular beam epitaxy. The current-voltage characteristics for the MTJs measured at room temperature (RT) were well fitted to Simmons' brought to you by T CORE

/iew metadata, citation and similar papers at core.ac.uk

(C) 2010 Published by Elsevier B.V. Open access under CC BY

Keywords: Fe₃Si; CaF₂; MBE; MTJ; Magnetoresistance

1. Introduction

The tunnel magnetoresistance (TMR) effects are a phenomenon that occurs when electrons tunnel through ferromagnet-insulator-ferromagnet magnetic tunnel junction (MTJ) structures, leading to change in resistance depending on the relative orientation of magnetization with applied magnetic fields. MTJs have shown a large TMR effect, and thus the application of MTJs has been a key issue in the development of spintronics [1, 2]. We have focused on ferromagnetic silicide Fe₃Si and insulating CaF₂ aiming to realize resonant-tunneling-type spin source, where resonant tunneling and TMR effect are essential to be demonstrated. The lattice parameters of Fe_3Si and CaF_2 are 0.566 nm and 0.546 nm, respectively. Thus both Fe₃Si and CaF₂ are nearly lattice-matched to Si (0.543 nm), and Fe₃Si/CaF₂ heterostructures are grown epitaxially on Si(111) substrates [3]. Furthermore, Fe₃Si has a relatively high Curie temperature of approximately 570 °C [4]. Very recently, spin injection and detection in a Si channel through the Fe₃Si/Si Schottky-tunnel contacts has been reported [5]. We have developed a technique for epitaxial growth of Fe₃Si/CaF₂ heterostructures on Si(111) substrates by molecular beam epitaxy (MBE) [6-8]. The current density versus voltage (J-V) characteristics of the Fe₃Si/CaF₂/Fe₃Si magnetic tunnel junctions (MTJs) measured at room temperature (RT) were well fitted to Simmons' equation, and the barrier height for electrons in the Fe₃Si to tunnel through the CaF_2 barrier was found to be approximately 2.5 eV [9]. Recently, we have realized clear negative differential resistance in $CaF_2/Fe_3Si/CaF_2$ ferromagnetic resonant tunnelling diodes at RT [10, 11]. In this paper, we report on the epitaxial growth of Fe₃Si(20 nm)/CaF₂(2 nm)/Fe₃Si(15 nm) MTJs on Si(111) substrates by MBE, and successfully demonstrated the TMR effect at RT.

1875-3892 (c) 2010 Published by Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.phpro.2011.01.027

2. Experiments

The epitaxial Fe₃Si(20 nm)/CaF₂(2 nm)/Fe₃Si(15 nm) MTJ structures were fabricated by MBE onto a CaF₂(3 nm)/Si(111) substrate. First, a Si buffer layer (10 nm) was deposited on the Si(111) and was annealed at 1000 °C for 15 min to enhance crystallization and flatten the surface of the Si(111) substrates. Next, a CaF₂ buffer layer (3 nm) was deposited at 280 °C and was annealed at 300 °C to prevent the formation of secondary phases like FeSi. Fe₃Si(20 nm)/CaF₂(2 nm)/Fe₃Si(15 nm) heterostructures were grown on a CaF₂(3 nm)/Si(111) substrate. The growth temperatures were 140 and 280 °C for Fe₃Si and CaF₂, respectively, and each layer was annealed at 300 °C for 20 min. Finally, an Fe capping layer (5 nm) was deposited on the heterostructures at around 150 °C to change a coercive field, H_c , between the top Fe/Fe₃Si and the bottom Fe₃Si layers. The grown layers were processed into $600 \times 20, 450 \times 15, 300 \times 10, 300 \times 15$ and $200 \times 10 \mu m^2$ -area MTJs using a conventional photolithography, selective wet chemical etching, and lift-off processes. Fe₃Si was etched using HF: HNO₃: H₂O = 1: 2: 400 at 0 °C and CaF₂ was etched using H₂SO₄: H₂O = 1: 20 at 0 °C [9]. Ohmic contacts were formed on top of the MTJs using Au/Cr. The crystalline quality of grown layers was investigated by reflection high-energy electron diffraction (RHEED). The *J-V* characteristics and magnetic-field dependence of the resistance for the MTJs were measured by a standard two-probe method at RT.

3. Results & Discussion

Figure 1 shows RHEED patterns taken after each growth stage along the [110] azimuth of Si. The RHEED patterns clearly display sharp and fine streaky patterns, implying that the films with good crystalline quality together with a smooth surface was obtained from the 10-nm-thick Si buffer layer through the 20-nm-thick-Fe₃Si upper layer and the Fe₃Si/CaF₂/Fe₃Si MTJ structures were epitaxially grown on the Si(111) substrate.

Fig. 1 RHEED patterns taken after each growth stage along $[1\overline{10}]$ azimuth of Si: (a) Si buffer layer, (b) CaF₂ buffer layer, (c) Fe₃Si bottom ferromagnetic layer, (d) CaF₂ barrier layer (e) Fe₃Si upper ferromagnetic layer, and (f) Fe capping layer.

Figure 2 shows schematic cross section of MTJs processed by photolithography, wet etching, and lift-off processes. Figure 3 shows a typical example of *J*-*V* characteristics measured at RT with voltages applied between the top and the bottom Fe₃Si layers in the Fe₃Si/CaF₂/Fe₃Si MTJ structures without external magnetic field. The positive bias voltage, V_+ , is defined as that applied to the top Fe₃Si (20 nm) layer with respect to the bottom Fe₃Si (15 nm) layer as shown in Fig. 2. The data were well fitted to Simmons' equation as shown by the solid line [12]. The fitting yields the barrier height $\varphi = 2.5$ eV for electrons in the Fe₃Si layers to tunnel the CaF₂ barrier layers, which is the same as that previously reported [9], and the barrier thickness d = 1.26 nm. This result shows that the thickness of the CaF₂ barrier layer became substantially thinner than that designed, probably due to rough interface between the CaF₂ barrier layer and both top and bottom Fe₃Si ferromagnetic layers. Figure 4 shows the magnetoresistance characteristics measured for the 300×15 μ m²-area MTJs at RT under a bias voltage of 20 mV. The magnetic field *H* was applied parallel to the sample surface along the long axis of the MTJs. Magnetoresistance

curve increases gradually at 0 Oe and reaches a maximum in the range of H = 100-200 Oe. The corresponding magnetoresistance ratio ($MR = (R_{AP} - R_P)/R_P$, P: parallel, AP: antiparallel) is approximately 0.28 % at RT. Dependence of TMR ratio on bias voltage is now under investigation.

Fig. 2 Schematic cross section of fabricated MTJs.

Fig. 4 Typical example of J-V characteristics for the fabricated MTJs at RT. The solid line shows the fitting.

Fig. 3 Magnetic-field dependence of the resistance for the MTJs measured at RT under a bias of 20 mV.

4. Conclusion

The Fe₃Si (20 nm)/CaF₂(2 nm)/Fe₃Si (15 nm) MTJ structure was fabricated epitaxially on Si(111) by MBE, and the electrical properties were measured. The *J*-V characteristics measured at RT were well fitted to the Simmons' equation, and the fitting yielded the barrier height $\varphi = 2.5$ eV and the barrier thickness d = 1.26 nm. We also obtained approximately 0.28 % TMR ratio at RT.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research in the Priority Area of "Creation and Control of Spin Current" (No. 19048029, MEXT). The authors also thank Prof. M. Isshiki and Dr. M. Uchikoshi of

the Tohoku University for supplying us high-purity 5N Fe sources and Prof. E. Kita and Prof. H. Yanagihara, the University of Tsukuba, for their help in *J*-*V* and magnetoresistance measurements.

Refference

- [1] T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139 (1995) L231.
- [2] J. S. Moodera, Lisa R. Kinder, Terrilyn M. Wong and R. Meservey, Phys.Rev. Lett. 74 (1995) 3273.
- [3] J. Kudrnovský, N. E. Christensen and O. K. Anderson, Phys. Rev.B 43 (1994) 5924.
- [4] J. Waliszewski, L. Dobrzyński, A. Malinowski, D. Satuła, K. Szymański, W. Prandl, Th. Brückel and O. Schärpf, J. Magn. Magn. Mater. 132 (1994) 349.
- [5] Y. Ando, K. Hamaya, K. Kasahara, Y. Kishi, K. Ueda, K. Sawano, T. Sadoh and Y. Miyao, Appl. Phys. Lett. 94 (2009) 182105.
- [6] T. Sunohara, C. Li, Y. Ozawa, T. Suemasu and F. Hasegawa, Jpn. J. Appl. Phys. 44 (2005) L715.
- [7] K. Kobayashi, T. Sunohara, M. Umada, H. Yanagihara, E. Kita and T. Suemasu, Thin Solid Films 508 (2006) 78.
- [8] T. Harianto, K. Kobayashi, T. Suemasu and H. Akinaga, Jpn. J. Appl.Phys. 46 (2007) L904.
- [9] T. Harianto, K. Sadakuni, H. Akinaga and T. Suemasu, Jpn. J. Appl. Phys. 47 (2008) 6310.
- [10] K. Sadakuni, T. Harianto, H. Ainaga and T. Suemasu, Appl. Phys. Express 2 (2009) 063006.
- [11] K. S. Makabe, M. Suzuno, K. Harada, H. Akinaga and T. Suemasu, Jpn. J. Appl. Phys. 49 (2010) 060212.
- [12] J. G. Simmons, J. Appl. Phys. **34** (1963) 1793.