

Contents lists available at ScienceDirect

Journal of Algebra

ALCEBRA

www.elsevier.com/locate/jalgebra

Projective modules over overrings of polynomial rings

Alpesh M. Dhorajia, Manoj K. Keshari*

Department of Mathematics, IIT Mumbai, Mumbai - 400076, India

ARTICLE INFO

Article history: Received 29 June 2009 Available online 1 October 2009 Communicated by Steven Dale Cutkosky

Keywords: Projective module Unimodular element Cancellation problem

ABSTRACT

Let *A* be a commutative Noetherian ring of dimension *d* and let *P* be a projective $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$ -module of rank $r \ge \max\{2, \dim A + 1\}$, where $f_i \in A[Y_i]$. Then

- (i) The natural map $\Phi_r : \operatorname{GL}_r(R)/\operatorname{EL}_r^1(R) \to K_1(R)$ is surjective (3.8).
- (ii) Assume f_i is a monic polynomial. Then Φ_{r+1} is an isomorphism (3.8).
- (iii) $\text{EL}^1(R \oplus P)$ acts transitively on $\text{Um}(R \oplus P)$. In particular, *P* is cancellative (3.12).
- (iv) If A is an affine algebra over a field, then P has a unimodular element (3.13).

In the case of Laurent polynomial ring (i.e. $f_i = Y_i$), (i), (ii) are due to Suslin (1977) [12], (iii) is due to Lindel (1995) [4] and (iv) is due to Bhatwadekar, Lindel and Rao (1985) [2].

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated. Let *A* be a ring of dimension *d* and let *P* be a projective *A*-module of rank *n*. We say that *P* is *cancellative* if $P \oplus A^m \xrightarrow{\sim} Q \oplus A^m$ for some projective *A*-module *Q* implies $P \xrightarrow{\sim} Q$. We say that *P* has a *unimodular element* if $P \xrightarrow{\sim} P' \oplus A$ for some projective *A*-module *P'*.

Assume rank $P > \dim A$. Then (i) Bass [1] proved that $EL^1(A \oplus P)$ acts transitively on $Um(A \oplus P)$. In particular, P is cancellative and (ii) Serre [11] proved that P has a unimodular element.

Later, Plumstead [7] generalized above results by proving that if *P* is a projective A[T]-module of rank > dim $A = \dim A[T] - 1$, then (i) *P* is cancellative and (ii) *P* has a unimodular element.

* Corresponding author.

0021-8693/\$ – see front matter $\,\,\odot\,$ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2009.09.018

E-mail addresses: alpesh@math.iitb.ac.in (A.M. Dhorajia), keshari@math.iitb.ac.in (M.K. Keshari).

Let *P* be a projective $A[X_1, ..., X_l]$ -module of rank > dim *A*. Then (i) Ravi Rao [9] proved that *P* is cancellative and (ii) Bhatwadekar and Roy [3] proved that *P* has a unimodular element, thus generalizing Plumstead's results.

Let *P* be a projective $R = A[X_1, ..., X_l, Y_1^{\pm 1}, ..., Y_m^{\pm 1}]$ -module of rank $\ge \max(2, 1 + \dim A)$. Then (i) Lindel [4] proved that $EL^1(R \oplus P)$ acts transitively on $Um(R \oplus P)$. In particular, *P* is cancellative and (ii) Bhatwadekar, Lindel and Rao [2] proved that *P* has a unimodular element.

In another direction, Ravi Rao [10] generalized Plumstead's result by proving that if R = A[T, 1/g(T)] or $R = A[T, \frac{f_1(T)}{g(T)}, \dots, \frac{f_r(T)}{g(T)}]$, where $g(T) \in A[T]$ is a non-zerodivisor and if P is a projective R-module of rank $> \dim A$, then P is cancellative. We will generalize Rao's result by proving that $\text{EL}^1(R \oplus P)$ acts transitively on $\text{Um}(R \oplus P)$ (3.14).

Let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$ and let P be a projective R-module of rank $\geq \max\{2, \dim A + 1\}$ Then we show that (i) $\text{EL}^1(R \oplus P)$ acts transitively on $\text{Um}(R \oplus P)$ and (ii) if A is an affine algebra over a field, then P has a unimodular element (3.12), (3.13), thus generalizing results of [4,2] where it is proved for $f_i = Y_i$.

As an application, we prove the following result (3.16): Let \bar{k} be an algebraically closed field with $1/d! \in \bar{k}$ and let A be an affine \bar{k} -algebra of dimension d. Let R = A[T, 1/f(T)] or $R = A[T, \frac{f_1(T)}{f(T)}, \ldots, \frac{f_r(T)}{f(T)}]$, where f(T) is a monic polynomial and $f(T), f_1(T), \ldots, f_r(T)$ is A[T]-regular sequence. Then every projective R-module of rank $\geq d$ is cancellative. (See [5] for motivation.)

2. Preliminaries

Let *A* be a ring and let *M* be an *A*-module. For $m \in M$, we define $O_M(m) = \{\varphi(m) \mid \varphi \in \text{Hom}_A(M, A)\}$. We say that *m* is *unimodular* if $O_M(m) = A$. The set of all unimodular elements of *M* will be denoted by Um(*M*). We denote by Aut_A(*M*), the group of all *A*-automorphism of *M*. For an ideal *J* of *A*, we denote by Aut_A(*M*, *J*), the kernel of the natural homomorphism Aut_A(*M*) \rightarrow Aut_A(*M*/*JM*).

We denote by $\text{EL}^1(A \oplus M, J)$, the subgroup of $\text{Aut}_A(A \oplus M)$ generated by all the automorphisms $\Delta_{a\varphi} = \begin{pmatrix} 1 & a\varphi \\ 0 & id_M \end{pmatrix}$ and $\Gamma_m = \begin{pmatrix} 1 & 0 \\ m & id_M \end{pmatrix}$ with $a \in J$, $\varphi \in \text{Hom}_A(M, A)$ and $m \in M$.

We denote by $\text{Um}^1(A \oplus M, J)$, the set of all $(a, m) \in \text{Um}(A \oplus M)$ such that $a \in 1 + J$ and by $\text{Um}(A \oplus M, J)$, the set of all $(a, m) \in \text{Um}^1(A \oplus M, J)$ with $m \in JM$. We will write $\text{Um}_r^1(A, J)$ for $\text{Um}^1(A \oplus A^{r-1}, J)$ and $\text{Um}_r(A, J)$ for $\text{Um}(A \oplus A^{r-1}, J)$.

We will write $EL_r^1(A, J)$ for $EL^1(A \oplus A^{r-1}, J)$, $EL_r^1(A)$ for $EL_r^1(A, A)$ and $EL^1(A \oplus M)$ for $EL^1(A \oplus M, A)$.

Remark 2.1. (i) Let $I \subset J$ be ideals of a ring A and let P be a projective A-module. Then, it is easy to see that the natural map $\text{EL}^1(A \oplus P, J) \rightarrow \text{EL}^1(\frac{A}{I} \oplus \frac{P}{IP}, \frac{J}{I})$ is surjective.

(ii) Let $E_r(A)$ be the group generated by elementary matrices $E_{i_0j_0}(a) = (a_{ij})$, where $i_0 \neq j_0$, $a_{ii} = 1$, $a_{i_0j_0} = a \in A$ and remaining $a_{ij} = 0$ for $1 \leq i, j \leq r$. Then using [13, Lemma 2.1], it is easy to see that $E_r(A) = EL_r^1(A)$.

The following result is a consequence of a theorem of Eisenbud-Evans as stated in [7, p. 1420].

Theorem 2.2. Let *R* be a ring and let *P* be a projective *R*-module of rank *r*. Let $(a, \alpha) \in (R \oplus P^*)$. Then there exists $\beta \in P^*$ such that ht $I_a \ge r$, where $I = (\alpha + a\beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\ge r$, then ht $I \ge r$. Further, if $(\alpha(P), a)$ is an ideal of height $\ge r$ and *I* is a proper ideal of *R*, then ht I = r.

The following two results are due to Wiemers [13, Proposition 2.5 and Theorem 3.2].

Proposition 2.3. Let A be a ring and let $R = A[X_1, ..., X_n, Y_1^{\pm 1}, ..., Y_m^{\pm 1}]$. Let c be the element 1, X_n or $Y_m - 1$. If $s \in A$ and $r \ge \max\{3, \dim A + 2\}$, then $\operatorname{EL}^1_r(R, sc)$ acts transitively on $\operatorname{Um}^1_r(R, sc)$.

Theorem 2.4. Let A be a ring and let $R = A[X_1, ..., X_n, Y_1^{\pm 1}, ..., Y_m^{\pm 1}]$. Let P be a projective R-module of rank $r \ge \max\{2, \dim A + 1\}$. If J denotes the ideal R, $X_n R$ or $(Y_m - 1)R$, then $\text{EL}^1(R \oplus P, J)$ acts transitively on $\text{Um}^1(R \oplus P, J)$.

The following result is due to Ravi Rao [10, Lemma 2.1].

Lemma 2.5. Let $B \subset C$ be rings of dimension d and $x \in B$ such that $B_x = C_x$. Then

(i) B/(1+xb)B = C/(1+xb)C for all $b \in B$.

(ii) If I is an ideal of C such that $ht I \ge d$ and I + xC = C, then there exists $b \in B$ such that $1 + xb \in I$.

(iii) If $c \in C$, then $c = 1 + x + x^2h \mod (1 + xb)$ for some $h \in B$ and for all $b \in B$.

Definition 2.6. Let *A* be a ring and let *M*, *N* be *A*-modules. Suppose $f, g : M \xrightarrow{\sim} N$ be two isomorphisms. We say that "*f* is *isotopic* to g" if there exists an isomorphism $\phi(X) : M[X] \xrightarrow{\sim} N[X]$ such that $\phi(0) = f$ and $\phi(1) = g$.

Note that if $\sigma \in EL^1(A \oplus M)$, then σ is isotopic to identity.

The following lemma follows from the well-known Quillen splitting lemma [8, Lemma 1] and its proof is essentially contained in [8, Theorem 1].

Lemma 2.7. Let A be a ring and let P be a projective A-module. Let $s, t \in A$ be two comaximal elements. Let $\sigma \in \operatorname{Aut}_{A_{st}}(P_{st})$ which is isotopic to identity. Then $\sigma = \tau_s \theta_t$, where $\tau \in \operatorname{Aut}_{A_t}(P_t)$ such that $\tau = id$ modulo sA and $\theta \in \operatorname{Aut}_{A_s}(P_s)$ such that $\theta = id$ modulo tA.

The following two results are due to Suslin [12, Corollary 5.7 and Theorem 6.3].

Theorem 2.8. Let A be a ring and let $f \in A[X]$ be a monic polynomial. Let $\alpha \in GL_r(A[X])$ be such that $\alpha_f \in EL_r^1(A[X]_f)$. Then $\alpha \in EL_r^1(A[X])$.

Theorem 2.9. Let A be a ring and $B = A[X_1, ..., X_l]$. Then the canonical map $GL_r(B)/EL_r^1(B) \rightarrow K_1(B)$ is an isomorphism for $r \ge \max\{3, \dim A+2\}$. In particular, if $\alpha \in GL_r(B)$ is stably elementary, then α is elementary.

3. Main theorem

We begin this section with the following result which is easy to prove. We give the proof for the sake of completeness.

Lemma 3.1. Let A be a ring and let P be a projective A-module. Let "bar" denote reduction modulo the nil radical of A. For an ideal J of A, if $\text{EL}^1(\overline{A} \oplus \overline{P}, \overline{J})$ acts transitively on $\text{Um}^1(\overline{A} \oplus \overline{P}, \overline{J})$, then $\text{EL}^1(A \oplus P, J)$ acts transitively on $\text{Um}^1(A \oplus P, J)$.

Proof. Let $(a, p) \in \text{Um}^1(A \oplus P, J)$. By hypothesis, there exists a $\sigma \in \text{EL}^1(\overline{A} \oplus \overline{P}, \overline{J})$ such that $\sigma(\overline{a}, \overline{p}) = (1, 0)$. Using (2.1), let $\varphi \in \text{EL}^1(A \oplus P, J)$ be a lift of σ such that $\varphi(a, p) = (1 + b, q)$, where $b \in N = nil(A)$ and $q \in NP$. Note that $b \in N \cap J$. Since 1 + b is a unit, we get $\Gamma_1 = \Gamma_{\frac{-q}{1+b}} \in \text{EL}^1(A \oplus P, J)$ such that $\Gamma_1(1 + b, q) = (1 + b, 0)$. It is easy to see that there exist $p_1, \ldots, p_n \in P$ and $\alpha_1, \ldots, \alpha_n \in P^*$ such that $\alpha_1(p_1) + \cdots + \alpha_n(p_n) = 1$. Write $h = \sum_{\substack{n \\ 2 \\ n}}^n \alpha_i(p_i)$. Note that $(1 + b, 0) = (1 + \sum_{\substack{n \\ 1+b}}^n b\alpha_i(p_i), 0)$, $\Gamma_{\frac{P_1}{1+b}}(1 + b, 0) = (1 + b, p_1)$ and $\Delta_{-b\alpha_1}(1 + b, p_1) = (1 + bh, p_1)$, where $\Delta_{-b\alpha_1} \in \text{EL}^1(A \oplus P, J)$. Since 1 + bh is a unit, $\Gamma_{-\frac{P_1}{1+bh}}(1 + bh, p_1) = (1 + bh, 0) = (1 + \sum_{\substack{n \\ 2 \\ n+bh}}^n b\alpha_i(p_i), 0)$. Applying further transformations as above, we can take $(1 + \sum_{\substack{n \\ 2 \\ n}}^n b\alpha_i(p_i), 0)$ to (1, 0) by elements of EL¹($A \oplus P, J$). \Box

The following lemma is similar to the Quillen's splitting lemma (2.7). We will sketch the proof. Recall that for a ring *B* and an element $s \in B$, $SL_n^1(B, s)$ denotes the subgroup of $SL_n(B)$ consisting of those elements whose first row is (1, 0, ..., 0) modulo the ideal (s).

Lemma 3.2. Let A be a ring and let u, v be two comaximal elements of A. For any $s \in A$, every $\alpha \in EL_n^1(A_{uv}, s)$ has a splitting $(\alpha_1)_v \circ (\alpha_2)_u$, where $\alpha_1 \in SL_n^1(A_u, s)$ and $\alpha_2 \in EL_n^1(A_v, s)$.

Proof. If $\alpha \in \text{EL}^1_n(A_{uv}, s)$, then $\alpha = \prod_{i=1}^r \alpha_i$, where α_i is of the form $\begin{pmatrix} 1 & \underline{sv} \\ 0 & \underline{ld_M} \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ \underline{w^t} & \underline{ld_M} \end{pmatrix}$, where $M = A_{uv}^{n-1}, \underline{v}, \underline{w} \in M$.

Define $\alpha(X) \in \text{EL}_n^1(A[X]_{uv}, s)$ by $\alpha(X) = \prod_{i=1}^r \alpha_i(X)$, where $\alpha_i(X)$ is of the form $\begin{pmatrix} 1 & sX\underline{v} \\ 0 & Id_{M[X]} \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ X \underline{w}^t & Id_{M[X]} \end{pmatrix}$ as may by the case above.

Since $\alpha(0) = id$ and $\alpha(1) = \alpha$, α is isotopic to identity. Using proof of (2.7) [6, Lemma 2.19], we get that $\alpha(X) = (\psi_1(X))_v \circ (\psi_2(X))_u$, where $\psi_1(X) = \alpha(X) \circ \alpha(\lambda u^k X)^{-1} \in SL_n^1(A_u[X], s)$ and $\psi_2(X) = \alpha(\lambda u^k X) \in EL_n^1(A_v[X], s)$ with $\lambda \in A$, $k \gg 0$. Write $\psi_1(1) = \alpha_1 \in SL_n^1(A_u, s)$ and $\psi_2(1) = \alpha_2 \in EL_n^1(A_v, s)$, we get that $\alpha(1) = \alpha = (\alpha_1)_v \circ (\alpha_2)_u$. \Box

Remark 3.3. We do not know whether $\alpha_1 \in EL_n^1(A_u, s)$ in the above result. In particular, we can ask the following question: Let A be a ring and let u, v be two comaximal elements of A. Let $\alpha \in EL_n^1(A_{uv})$. Does α have a splitting $(\alpha_1)_v \circ (\alpha_2)_u$, where $\alpha_1 \in EL_n^1(A_u)$ and $\alpha_2 \in EL_n^1(A_v)$?

Definition 3.4. Let *A* be a ring of dimension *d* and let $l, m, n \in \mathbb{N} \cup \{0\}$. We say that a ring *R* is of the type $A\{d, l, m, n\}$, if *R* is an *A*-algebra generated by $X_1, \ldots, X_l, Y_1, \ldots, Y_m, T_1, \ldots, T_n, \frac{1}{f_1 \ldots f_m}, \frac{g_{11}}{h_1}, \ldots, \frac{g_{11}}{h_1}, \ldots, \frac{g_{n1}}{h_n}, \ldots, \frac{g_{nt_n}}{h_n}$, where X_i 's, Y_i 's and T_i 's are variables over *A*, $f_i \in A[Y_i], g_{ij} \in A[T_i], h_i \in A[T_i]$ and h_i 's are non-zerodivisors.

For Laurent polynomial ring (i.e. $f_i = Y_i$), the following result is due to Wiemers (2.3).

Proposition 3.5. Let A be a ring of dimension d and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$ (i.e. R is of the type $A\{d, l, m, 0\}$). If $s \in A$ and $r \ge \max\{3, d+2\}$, then $EL_r^1(R, s)$ acts transitively on $Um_r^1(R, s)$.

Proof. Without loss of generality, we may assume that *A* is reduced. The case m = 0 is due to Wiemers (2.3). Assume $m \ge 1$ and apply induction on *m*.

Let $(a_1, \ldots, a_r) \in \text{Um}_r^1(R, s)$. Consider a multiplicative closed subset $S = 1 + f_m A[Y_m]$ of $A[Y_m]$. Then $R_S = B[X_1, \ldots, X_l, Y_1, \ldots, Y_{m-1}, \frac{1}{f_1 \ldots f_{m-1}}]$, where $B = A[Y_m]_{f_m S}$ and dim B = dim A. Since R_S is of the type $B\{d, l, m - 1, 0\}$, by induction hypothesis on m, there exists $\sigma \in \text{EL}_r^1(R_S, s)$ such that $\sigma(a_1, \ldots, a_r) = (1, 0, \ldots, 0)$. We can find $g \in S$ and $\sigma' \in \text{EL}_r^1(R_g, s)$ such that $\sigma'(a_1, \ldots, a_r) = (1, 0, \ldots, 0)$.

Write $C = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1,..., f_{m-1}}]$. Consider the following fiber product diagram

Since $\sigma' \in EL_r^1(C_{gf_m}, s)$, by (3.2), $\sigma' = (\sigma_2)_{f_m} \circ (\sigma_1)_g$, where $\sigma_2 \in SL_r^1(C_g, s)$ and $\sigma_1 \in EL_r^1(R, s)$. Since $(\sigma_1)_g(a_1, ..., a_r) = (\sigma_2)_{f_m}^{-1}(1, 0, ..., 0)$, patching $\sigma_1(a_1, ..., a_r) \in Um_r^1(C_{f_m}, s)$ and $(\sigma_2)^{-1}(1, 0, ..., 0) \in Um_r^{-1}(C_{f_m}, s)$

Um_r¹(C_g , s), we get a unimodular row $(c_1, \ldots, c_r) \in \text{Um}_r^1(C, s)$. Since C is of the type $A\{d, l + 1, m - 1, 0\}$, by induction hypothesis on m, there exists $\phi \in \text{EL}_r^1(C, s)$ such that $\phi(c_1, \ldots, c_r) = (1, 0, \ldots, 0)$. Taking projection, we get $\Phi \in \text{EL}_r^1(R, s)$ such that $\Phi\sigma_1(a_1, \ldots, a_r) = (1, 0, \ldots, 0)$. This completes the proof. \Box

Corollary 3.6. Let A be a ring of dimension d and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$. Let c be 1 or X_l . If $s \in A$ and $r \ge \max\{3, d+2\}$, then $EL_r^1(R, sc)$ acts transitively on $Um_r^1(R, sc)$.

Proof. Let $(a_1, \ldots, a_r) \in \text{Um}_r^1(R, sc)$. The case c = 1 is done by (3.5). Assume $c = X_l$. We can assume, after an $\text{EL}_r^1(R, sX_l)$ -transformation, that $a_2, \ldots, a_r \in sX_lR$. Then we can find $(b_1, \ldots, b_r) \in \text{Um}_r(R, sX_l)$ such that the following equation holds:

$$a_1b_1 + \dots + a_rb_r = 1. \tag{i}$$

Now consider the A-automorphism $\mu : R \rightarrow R$ defined as follows

 $X_i \mapsto X_i$ for i = 1, ..., l - 1, $X_l \mapsto X_l (f_1 ... f_m)^N$ for some large positive integer *N*.

Applying μ , we can read the image of Eq. (i) in the subring $S = A[X_1, ..., X_l, Y_1, ..., Y_m]$. By (2.3), we obtain $\psi \in EL_r^1(R, sX_l)$ such that $\psi(\mu(a_1), ..., \mu(a_r)) = (1, 0, ..., 0)$. Since $\mu^{-1}(X_l)$ and X_l generate the same ideal in R, applying μ^{-1} , the proof follows. \Box

Corollary 3.7. Let A be a ring of dimension d and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$. Then $\text{EL}_r^1(R)$ acts transitively on $\text{Um}_r(R)$ for $r \ge \max\{3, d+2\}$.

The following result is similar to [10, Theorem 5.1]. The Laurent polynomial case (i.e. $f_i = Y_i$) is due to Suslin [12].

Theorem 3.8. Let A be a ring of dimension d and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$ (i.e. R is of the type $A\{d, l, m, 0\}$). Then

- (i) The canonical map $\Phi_r : \operatorname{GL}_r(R) / \operatorname{EL}_r^1(R) \to K_1(R)$ is surjective for $r \ge \max\{2, d+1\}$.
- (ii) Assume $f_i \in A[Y_i]$ is a monic polynomial for all *i*. Then for $r \ge \max\{3, d+2\}$, any stably elementary matrix in $GL_r(R)$ is in $EL_r^1(R)$. In particular, Φ_{d+2} is an isomorphism.

Proof. (i) Let $[M] \in K_1(R)$. We have to show that [M] = [N] in $K_1(R)$ for some $N \in GL_{d+1}(R)$. Without loss of generality, we may assume that $M \in GL_{d+2}(R)$. By (3.5), there exists an elementary matrix $\sigma \in EL_{d+2}^1(R)$ such that $M\sigma = \binom{M' \ a}{0 \ 1}$. Applying further $\sigma' \in EL_{d+2}^1(R)$, we get $\sigma'M\sigma = \binom{N \ 0}{0 \ 1}$, where $M', N \in GL_{d+1}(R)$. Hence [M] = [N] in $K_1(R)$. This completes the proof of (i).

(ii) Let $M \in GL_r(R)$ be a stably elementary matrix. For m = 0, we are done by (2.9). Assume $m \ge 1$. Let $S = 1 + f_m A[Y_m]$. Then $R_S = B[X_1, ..., X_l, Y_1, ..., Y_{m-1}, \frac{1}{f_1...f_{m-1}}]$, where $B = A[Y_m]_{f_mS}$ and dim $B = \dim A$. Since R_S is of the type $B\{d, l, m - 1, 0\}$, by induction hypothesis on $m, M \in EL_r^1(R_S)$. Hence there exists $g \in S$ such that $M \in EL_r^1(R_g)$. Let $\sigma \in EL_r^1(R_g)$ be such that $\sigma M = Id$. Write $C = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1 ... f_{m-1}}]$. Consider the following fiber product diagram

By (3.2), $\sigma = (\sigma_2)_{f_m} \circ (\sigma_1)_g$, where $\sigma_2 \in SL_r(C_g)$ and $\sigma_1 \in EL_r^1(C_{f_m})$. Since $(\sigma_1 M)_g = (\sigma_2)_{f_m}^{-1}$, patching $\sigma_1 M$ and $(\sigma_2)^{-1}$, we get $N \in GL_r(C)$ such that $N_{f_m} = \sigma_1 M$.

Write $D = A[X_1, ..., X_n, Y_1, ..., Y_{m-1}, \frac{1}{f_1...f_{m-1}}]$. Then $D[Y_m] = C$ and $D[Y_m]_{f_m} = R$. Since $N \in GL_r(D[Y_m])$, $f_m \in D[Y_m]$ is a monic polynomial and $N_{f_m} = \sigma_1 M$ is stably elementary, by (2.8), N is stably elementary. Since C is of the type $A\{d, l+1, m-1, 0\}$, by induction hypothesis on $m, N \in EL_r^1(C)$. Since σ_1 is elementary, we get that $M \in EL_r^1(R)$. This completes the proof of (ii). \Box

Lemma 3.9. Let *R* be a ring of the type $A\{d, l, m, n\}$. Let *P* be a projective *R*-module of rank $r \ge \max\{2, 1+d\}$. Then there exist an $s \in A$, $p_1, \ldots, p_r \in P$ and $\varphi_1, \ldots, \varphi_r \in \text{Hom}(P, R)$ such that the following properties holds.

(i) P_s is free. (ii) $(\varphi_i(p_j)) = diagonal(s, s, ..., s)$. (iii) $sP \subset p_1A + \cdots + p_rA$. (iv) The image of s in A_{red} is a non-zerodivisor. (v) $(0:sA) = (0:s^2A)$.

Proof. Without loss of generality, we may assume that *A* is reduced. Let *S* be the set of all nonzerodivisors in *A*. Since dim $A_S = 0$ and projective R_S -module P_S has constant rank, we may assume that A_S is a field. Then it is easy to see that $A_S[T_i, \frac{g_{ij}}{h_i}] = A_S[T_i, \frac{1}{h_i}]$ (assuming $gcd(g_{ij}, h_i) = 1$). Therefore $R_S = A_S[X_1, ..., X_l, Y_1, ..., Y_m, T_1, ..., T_n, \frac{1}{f_1...f_mh_1...h_n}]$ is a localization of a polynomial ring over a field. Hence projective modules over R_S are stably free. Since P_S is stably free of rank \ge max{2, 1 + d}, by (3.5), P_S is a free R_S -module of rank *r*. We can find an $s \in S$ such that P_s is a free R_s -module. The remaining properties can be checked by taking a basis $p_1, ..., p_r \in P$ of P_s , a basis $\varphi_1, ..., \varphi_r \in \text{Hom}(P, R)$ of P_s^* and replacing *s* by some power of *s*, if needed. This completes the proof. \Box

Lemma 3.10. Let *R* be a ring of the type $A\{d, l, m, n\}$. Let *P* be a projective *R*-module of rank *r*. Choose $s \in A$, $p_1, \ldots, p_r \in P$ and $\varphi_1, \ldots, \varphi_r \in \text{Hom}(P, R)$ satisfying the properties of (3.9). Let $(a, p) \in \text{Um}(R \oplus P, sA)$ with $p = c_1p_1 + \cdots + c_rp_r$, where $c_i \in sR$ for i = 1 to *r*. Assume there exists $\phi \in \text{EL}_{r+1}^1(R, s)$ such that $\phi(a, c_1, \ldots, c_r) = (1, 0, \ldots, 0)$. Then there exists $\phi \in \text{EL}^1(R \oplus P)$ such that $\phi(a, p) = (1, 0)$.

Proof. Since $\phi \in \text{EL}_{r+1}^1(R, s)$, $\phi = \prod_{j=1}^n \phi_j$, where $\phi_j = \Delta_{s\psi_j}$ or Γ_{v^t} with $\psi_j = (b_{1j}, \dots, b_{rj}) \in R^{r*}$ and $v = (f_1, \dots, f_r) \in R^r$. Define a map $\Theta : \text{EL}_{r+1}^1(R, s) \to \text{EL}^1(R \oplus P)$ as follows

$$\Theta(\Delta_{s\psi_j}) = \begin{pmatrix} 1 & \sum_{i=1}^r b_{ij}\varphi_i \\ 0 & id_P \end{pmatrix} \text{ and } \Theta(\Gamma_{v^t}) = \begin{pmatrix} 1 & 0 \\ \sum_{i=1}^r f_i p_i & id_P \end{pmatrix}.$$

Let $\Phi = \prod_{j=1}^{n} \Theta(\phi_j) \in EL^1(R \oplus P)$. Then it is easy to see that $\Phi(a, p) = (1, 0)$. This completes the proof. \Box

Remark 3.11. From the proof of above lemma, it is clear that if $\phi \in \text{EL}_{r+1}^1(R, sX_l)$ such that $\phi(a, c_1, \dots, c_r) = (1, 0, \dots, 0)$, then $\phi \in \text{EL}^1(R \oplus P, X_l)$ such that $\phi(a, p) = (1, 0)$.

For Laurent polynomial ring (i.e. $f_i = Y_i$ and J = R), the following result is due to Lindel [4].

Theorem 3.12. Let A be a ring of dimension d and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$ (i.e. R is of the type $A\{d, l, m, 0\}$). Let P be a projective R-module of rank $r \ge \max\{2, d + 1\}$. If J denotes the ideal R or X_lR , then $\text{EL}^1(R \oplus P, J)$ acts transitively on $\text{Um}^1(R \oplus P, J)$.

Proof. Without loss of generality, we may assume that *A* is reduced. We will use induction on *d*. When d = 0, we may assume that *A* is a field. Hence projective modules over *R* are stably free (proof of Lemma 3.9). Using (3.6), we are done.

Assume d > 0. By (3.9), there exist a non-zerodivisor $s \in A$, $p_1, \ldots, p_r \in P$ and $\phi_1, \ldots, \phi_r \in P^* = \text{Hom}_R(P, R)$ satisfying the properties of (3.9). If $s \in A$ is a unit, then P is a free and the result follows from (3.6). Assume s is not a unit.

Let $(a, p) \in \text{Um}^1(R \oplus P, J)$. Let "bar" denote reduction modulo the ideal s^2R . Since dim $\overline{A} < \dim A$, by induction hypothesis, there exists $\varphi \in \text{EL}^1(\overline{R} \oplus \overline{P}, \overline{J})$ such that $\varphi(\overline{a}, \overline{p}) = (1, 0)$. Using (2.1), let $\varphi \in \text{EL}^1(R \oplus P, J)$ be a lift of φ and $\varphi(a, p) = (b, q)$, where $b \equiv 1 \mod s^2 JR$ and $q \in s^2 JP$.

By (3.9), there exist $a_1, \ldots, a_r \in sJR$ such that $q = a_1p_1 + \cdots + a_rp_r$. It follows that $(b, a_1, \ldots, a_r) \in Um_{r+1}(R, sJ)$. By (3.6), there exists $\phi \in EL_{r+1}^1(R, sJ)$ such that $\phi(b, a_1, \ldots, a_r) = (1, 0, \ldots, 0)$. Applying (3.11), we get $\Psi \in EL^1(R \oplus P, J)$ such that $\Psi(b, q) = (1, 0)$. Therefore $\Psi \Phi(a, p) = (1, 0)$. This completes the proof. \Box

For Laurent polynomial ring (i.e. $f_i = Y_i$), the following result is due to Bhatwadekar, Lindel and Rao [2].

Theorem 3.13. Let *k* be a field and let *A* be an affine *k*-algebra of dimension *d*. Let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$ (i.e. *R* is of the type $A\{d, l, m, 0\}$). Then every projective *R*-module *P* of rank $\ge d + 1$ has a unimodular element.

Proof. We assume that *A* is reduced and use induction on dim *A*. If dim A = 0, then every projective module of constant rank is free (3.5), (3.9). Assume dim A > 0.

By (3.9), there exists a non-zerodivisor $s \in A$ such that P_s is free R_s -module. Let "bar" denote reduction modulo the ideal sR. By induction hypothesis, \overline{P} has a unimodular element, say \overline{p} . Clearly $(p, s) \in \text{Um}(P \oplus R)$, where $p \in P$ is a lift of \overline{p} . By (2.2), we may assume that $\text{ht } I \ge d + 1$, where $I = O_P(p)$. We claim that $I_{(1+sA)} = R_{(1+sA)}$ (i.e. $p \in \text{Um}(P_{1+sA})$).

Since *R* is a Jacobson ring, $\sqrt{I} = \bigcap m$ is the intersection of all maximal ideals of *R* containing *I*. Since I + sR = R, $s \notin (I \cap A)$. Let *m* be any maximal ideal of *R* which contains *I*. Since *A* and *R* are affine *k*-algebras, $m \cap A$ is a maximal ideal of *A*. Hence $m \cap A$ contains an element of the form 1 + sa for some $a \in A$ (as $s \notin m \cap A$). Hence $mR_{(1+sA)} = R_{(1+sA)} = R_{(1+sA)}$. This proves the claim.

Let S = 1 + sA. Let $t \in S$ be such that $p \in Um(P_t)$. Choose $p_1 \in Um(P_s)$. Since R_{sS} is of the type $A_{sS}\{d-1, l, m, 0\}$, by (3.12), there exists $\varphi \in EL^1(P_{sS})$ such that $\varphi(p_1) = p$. We can choose $t_1 = tt_2 \in S$ such that $\varphi \in EL^1(P_{st_1})$. By (2.7), $\varphi = (\varphi_1)_s \circ (\varphi_2)_{t_1}$, where $\varphi_2 \in Aut(P_s)$ and $\varphi_1 \in Aut(P_{t_1})$. Consider the following fiber product diagram

Since $(\varphi_2)_{t_1}(p_1) = (\varphi_1)_s^{-1}(p)$, patching $\varphi_2(p_1) \in \text{Um}(P_s)$ and $\varphi_1^{-1}(p) \in \text{Um}(P_t)$, we get a unimodular element in *P*. This proves the result. \Box

The following result generalizes a result of Ravi Rao [10] where it is proved that P is cancellative.

Theorem 3.14. Let A be a ring of dimension d and let $R = A[X, \frac{f_1}{g}, ..., \frac{f_n}{g}]$, where g, $f_i \in A[X]$ with g a non-zerodivisor. Let P be a projective R-module of rank $r \ge \max\{2, d+1\}$. Then $\text{EL}^1(R \oplus P)$ acts transitively on $\text{Um}(R \oplus P)$.

Proof. We will assume that *A* is reduced and apply induction on dim *A*. If dim A = 0, then we may assume that *A* is a field. Hence *R* is a PID and *P* is free. By (2.3), we are done.

Assume dim A = d > 0. By (3.9), we can choose a non-zerodivisor $s \in A$, $p_1, \ldots, p_r \in P$ and $\phi_1, \ldots, \phi_r \in P^*$ satisfying the properties of (3.9).

Let $(a, p) \in \text{Um}(R \oplus P)$. Let "bar" denote reduction modulo sgR. Then $\dim \overline{R} < \dim R$ and $r \ge \dim \overline{R} + 1$. By Serre's result [11], \overline{P} has a unimodular element, say \overline{q} . Then $(0, \overline{q}) \in \text{Um}(\overline{R} \oplus \overline{P})$. By Bass result [1], there exists $\phi \in \text{EL}^1(\overline{R} \oplus \overline{P})$ such that $\phi(\overline{a}, \overline{p}) = (0, \overline{q})$. Using (2.1), let $\phi \in \text{EL}^1(R \oplus P)$ be a lift of ϕ and $\phi(a, p) = (b, q)$, where $b \in sgR$. By (2.2), we may assume that $\text{th } O_P(q) \ge d + 1$.

Write B = A[X], x = sg, $I = O_P(q)$ and C = R. Then dim $B = \dim C$ and $B_{sg} = C_{sg}$. By (2.5(ii)), there exists $h \in A[X]$ such that $1 + sgh \in O_P(q)$. Hence there exists $\varphi \in P^*$ such that $\varphi(q) = 1 + sgh$.

By (2.5(iii)), there exists $b' \in R$ such that $b - b'(1 + sgh) = 1 + sg + s^2g^2h'$ for some $h' \in A[X]$. Since $\Delta_{-b'\varphi}(b, q) = (b - b'\varphi(q), q) = (1 + sg + s^2g^2h', q) = (b_0, q)$ and $\Gamma_{-q}(b_0, q) = (b_0, q - b_0q) = (b_0, sgq_1)$ for some $q_1 \in P$ and $b_0 \in A[X]$ with $b_0 = 1 \mod sgA[X]$.

Write $sgq_1 = c_1p_1 + \cdots + c_rp_r$ for some $c_i \in R$. Then $(b_0, c_1, \ldots, c_r) \in \text{Um}_{r+1}^1(R, sg)$. It is easy to see that by adding some multiples of b_0 to c_1, \ldots, c_r , we may assume that $(b_0, c_1, \ldots, c_r) \in \text{Um}^1(A[X], sgA[X])$. By (2.3), there exists $\Theta \in \text{EL}_{r+1}^1(A[X], s)$ such that $\Theta(b_0, c_1, \ldots, c_r) = (1, 0, \ldots, 0)$. Applying (3.10), there exists $\Psi \in \text{EL}^1(R \oplus P)$ such that $\Psi(b_0, sgq_1) = (1, 0)$. This proves the result. \Box

Question 3.15. Let *R* be a ring of type $A\{d, l, m, n\}$ and let *P* be a projective *R*-module of rank $\ge \max\{2, d+1\}$.

- (i) Does $EL^1(R \oplus P)$ act transitively on $Um(R \oplus P)$? In particular, is P cancellative?
- (ii) Does P have a unimodular element?

Assume n = 0. Then (i) is (3.12) and for affine algebras over a field, (ii) is (3.13). When either *P* is free or $\overline{k} = \overline{\mathbb{F}}_p$, then the following result is proved in [5].

Theorem 3.16. Let \bar{k} be an algebraically closed field with $1/d! \in \bar{k}$ and let A be an affine \bar{k} -algebra of dimension d. Let $f(T) \in A[T]$ be a monic polynomial and assume that either

(i) $R = A[T, \frac{1}{f(T)}]$ or (ii) $R = A[T, \frac{f_1}{f}, \dots, \frac{f_n}{f}]$, where f, f_1, \dots, f_n is A[T]-regular sequence.

Then every projective R-module P of rank d is cancellative.

Proof. By (3.9), there exists a non-zerodivisor $s \in A$ satisfying the properties of (3.9). Let $(a, p) \in Um(R \oplus P)$.

Let "bar" denote reduction modulo ideal s^3A . Since dim $\overline{A} < \dim A$, by (3.12), (3.14), there exists $\phi \in \text{EL}^1(\overline{R} \oplus \overline{P})$ such that $\phi(\overline{a}, \overline{p}) = (1, 0)$. Let $\Phi \in \text{EL}^1(R \oplus P)$ be a lift of ϕ . Then $\Phi(a, p) = (b, q)$, where $(b, q) \in \text{Um}^1(R \oplus P, s^2A)$. Now the proof follows by [5, Theorem 4.4]. \Box

The proof of the following result is same as of (3.16) using [5, Theorem 5.5].

Theorem 3.17. Let *k* be a real closed field and let *A* be an affine *k*-algebra of dimension d - 2. Let $f \in A[X, T]$ be a monic polynomial in *T* which does not belong to any real maximal ideal of A[X, T]. Assume that either

(i) R = A[X, T, 1/f] or (ii) $R = A[X, T, f_1/f, ..., f_n/f]$, where $f, f_1, ..., f_n$ is A[X, T]-regular sequence.

Then every projective *R*-module of rank d - 1 is cancellative.

4. An analogue of Wiemers result

We begin this section with the following result which can be proved by the same arguments as in [13, Corollary 3.4] and using (3.12).

Theorem 4.1. Let A be a ring of dimension d and $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$, where $f_i \in A[Y_i]$. Let P be a projective R-module of rank $\ge d + 1$. Then the natural map $\operatorname{Aut}_R(P) \to \operatorname{Aut}_{\overline{R}}(P/X_lP)$ with $\overline{R} = R/X_lR$ is surjective.

Using the automorphism μ defined in (3.6), the following result can be proved by the same arguments as in [13, Proposition 4.1].

Proposition 4.2. Let A be a ring of dimension d, $1/d! \in A$ and $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$ with $l \ge 1$, $f_i \in A[Y_i]$. Then $GL_{d+1}(R, X_l J R)$ acts transitively on $Um_{d+1}(R, X_l J R)$, where J is an ideal of A.

When $f_i = Y_i$, the following result is due to Wiemers [13, Theorem 4.3]. The proof of this result is same as of [13, Theorem 4.3] using (4.1), (4.2).

Theorem 4.3. Let A be a ring of dimension d with $1/d! \in A$ and let $R = A[X_1, ..., X_l, Y_1, ..., Y_m, \frac{1}{f_1...f_m}]$ with $f_i \in A[Y_i]$ for i = 1 to m. Let P be a projective R-module of rank $\geq d$. If Q is another projective R-module such that $R \oplus P \cong R \oplus Q$ and $\overline{P} \cong \overline{Q}$, then $P \cong Q$, where "bar" denotes reduction modulo the ideal $(X_1, ..., X_l)R$.

Using (3.16), (4.3), we get the following result.

Corollary 4.4. Let \bar{k} be an algebraically closed field with $1/d! \in \bar{k}$ and let A be an affine \bar{k} -algebra of dimension d. Let $f(T) \in A[T]$ be a monic polynomial and let $R = A[X_1, \ldots, X_l, T, \frac{1}{f(T)}]$. Then every projective R-module of rank $\geq d$ is cancellative.

References

- [1] H. Bass, K-theory and stable algebra, Publ. Math. Inst. Hautes Études Sci. 22 (1964) 5-60.
- [2] S.M. Bhatwadekar, H. Lindel, R.A. Rao, The Bass Murthy question: Serre dimension of Laurent polynomial extensions, Invent. Math. 81 (1985) 189–203.
- [3] S.M. Bhatwadekar, A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984) 150–158.
- [4] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995) 301-319.
- [5] M.K. Keshari, Cancellation problem for projective modules over affine algebras, J. K-Theory 3 (2009) 561-581.
- [6] M.K. Keshari, Euler class group of a Noetherian ring, PhM thesis, 2001, http://www.math.iitb.ac.in/~keshari.
- [7] B. Plumstead, The conjectures of Eisenbud and Evans, Amer. J. Math. 105 (1983) 1417-1433.
- [8] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167-171.
- [9] Ravi A. Rao, A question of H. Bass on the cancellative nature of large projective modules over polynomial rings, Amer. J. Math. 110 (1988) 641–657.
- [10] Ravi A. Rao, Stability theorems for overrings of polynomial rings, II, J. Algebra 78 (1982) 437-444.
- [11] J.P. Serre, Modules projectifs et espaces fibres a fibre vectorielle, Sem. Dubreil-Pisot, vol. 23, 1957/1958.
- [12] A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR lzv. 11 (1977) 221-238.
- [13] A. Wiemers, Cancellation properties of projective modules over Laurent polynomial rings, J. Algebra 156 (1993) 108-124.