Projective modules over overrings of polynomial rings

Alpesh M. Dhorajia, Manoj K. Keshari*
Department of Mathematics, IIT Mumbai, Mumbai - 400076, India

A R T I C L E I N F O

Article history:

Received 29 June 2009
Available online 1 October 2009
Communicated by Steven Dale Cutkosky

Keywords:

Projective module
Unimodular element
Cancellation problem

Abstract

Let A be a commutative Noetherian ring of dimension d and let P be a projective $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$-module of

 rank $r \geqslant \max \{2, \operatorname{dim} A+1\}$, where $f_{i} \in A\left[Y_{i}\right]$. Then(i) The natural map $\Phi_{r}: \mathrm{GL}_{r}(R) / \mathrm{EL}_{r}^{1}(R) \rightarrow K_{1}(R)$ is surjective (3.8).
(ii) Assume f_{i} is a monic polynomial. Then Φ_{r+1} is an isomorphism (3.8).
(iii) $\mathrm{EL}^{1}(R \oplus P)$ acts transitively on $\operatorname{Um}(R \oplus P)$. In particular, P is cancellative (3.12).
(iv) If A is an affine algebra over a field, then P has a unimodular element (3.13).

In the case of Laurent polynomial ring (i.e. $f_{i}=Y_{i}$), (i), (ii) are due to Suslin (1977) [12], (iii) is due to Lindel (1995) [4] and (iv) is due to Bhatwadekar, Lindel and Rao (1985) [2].
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

All the rings are assumed to be commutative Noetherian and all the modules are finitely generated.
Let A be a ring of dimension d and let P be a projective A-module of rank n. We say that P is cancellative if $P \oplus A^{m} \xrightarrow{\sim} Q \oplus A^{m}$ for some projective A-module Q implies $P \xrightarrow{\sim} Q$. We say that P has a unimodular element if $P \xrightarrow{\sim} P^{\prime} \oplus A$ for some projective A-module P^{\prime}.

Assume rank $P>\operatorname{dim} A$. Then (i) Bass [1] proved that $\operatorname{EL}^{1}(A \oplus P)$ acts transitively on $\operatorname{Um}(A \oplus P)$. In particular, P is cancellative and (ii) Serre [11] proved that P has a unimodular element.

Later, Plumstead [7] generalized above results by proving that if P is a projective $A[T]$-module of rank $>\operatorname{dim} A=\operatorname{dim} A[T]-1$, then (i) P is cancellative and (ii) P has a unimodular element.

[^0]Let P be a projective $A\left[X_{1}, \ldots, X_{l}\right]$-module of rank $>\operatorname{dim} A$. Then (i) Ravi Rao [9] proved that P is cancellative and (ii) Bhatwadekar and Roy [3] proved that P has a unimodular element, thus generalizing Plumstead's results.

Let P be a projective $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}\right]$-module of rank $\geqslant \max (2,1+\operatorname{dim} A)$. Then (i) Lindel [4] proved that $\mathrm{EL}^{1}(R \oplus P)$ acts transitively on $\operatorname{Um}(R \oplus P)$. In particular, P is cancellative and (ii) Bhatwadekar, Lindel and Rao [2] proved that P has a unimodular element.

In another direction, Ravi Rao [10] generalized Plumstead's result by proving that if $R=$ $A[T, 1 / g(T)]$ or $R=A\left[T, \frac{f_{1}(T)}{g(T)}, \ldots, \frac{f_{r}(T)}{g(T)}\right]$, where $g(T) \in A[T]$ is a non-zerodivisor and if P is a projective R-module of rank $>\operatorname{dim} A$, then P is cancellative. We will generalize Rao's result by proving that $\mathrm{EL}^{1}(R \oplus P)$ acts transitively on $\operatorname{Um}(R \oplus P)$ (3.14).

Let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$ and let P be a projective R-module of rank $\geqslant \max \{2, \operatorname{dim} A+1\}$ Then we show that (i) $\mathrm{EL}^{1}(R \oplus P)$ acts transitively on $\operatorname{Um}(R \oplus P)$ and (ii) if A is an affine algebra over a field, then P has a unimodular element (3.12), (3.13), thus generalizing results of [4,2] where it is proved for $f_{i}=Y_{i}$.

As an application, we prove the following result (3.16): Let \bar{k} be an algebraically closed field with $1 / d!\in \bar{k}$ and let A be an affine \bar{k}-algebra of dimension d. Let $R=A[T, 1 / f(T)]$ or $R=$ $A\left[T, \frac{f_{1}(T)}{f(T)}, \ldots, \frac{f_{r}(T)}{f(T)}\right]$, where $f(T)$ is a monic polynomial and $f(T), f_{1}(T), \ldots, f_{r}(T)$ is $A[T]$-regular sequence. Then every projective R-module of rank $\geqslant d$ is cancellative. (See [5] for motivation.)

2. Preliminaries

Let A be a ring and let M be an A-module. For $m \in M$, we define $O_{M}(m)=\{\varphi(m) \mid \varphi \in$ $\left.\operatorname{Hom}_{A}(M, A)\right\}$. We say that m is unimodular if $O_{M}(m)=A$. The set of all unimodular elements of M will be denoted by $\operatorname{Um}(M)$. We denote by $\operatorname{Aut}_{A}(M)$, the group of all A-automorphism of M. For an ideal J of A, we denote by $\operatorname{Aut}_{A}(M, J)$, the kernel of the natural homomorphism $\operatorname{Aut}_{A}(M) \rightarrow$ $\operatorname{Aut}_{A}(M / J M)$.

We denote by $\mathrm{EL}^{1}(A \oplus M, J)$, the subgroup of $\operatorname{Aut}_{A}(A \oplus M)$ generated by all the automorphisms $\Delta_{a \varphi}=\left(\begin{array}{cc}1 & a \varphi \\ 0 & i d_{M}\end{array}\right)$ and $\Gamma_{m}=\left(\begin{array}{cc}1 & 0 \\ m & i_{M}\end{array}\right)$ with $a \in J, \varphi \in \operatorname{Hom}_{A}(M, A)$ and $m \in M$.

We denote by $\operatorname{Um}^{1}(A \oplus M, J)$, the set of all $(a, m) \in \operatorname{Um}(A \oplus M)$ such that $a \in 1+J$ and by $\operatorname{Um}(A \oplus M, J)$, the set of all $(a, m) \in \operatorname{Um}^{1}(A \oplus M, J)$ with $m \in J M$. We will write $\operatorname{Um}_{r}^{1}(A, J)$ for $\operatorname{Um}^{1}\left(A \oplus A^{r-1}, J\right)$ and $\operatorname{Um}_{r}(A, J)$ for $\operatorname{Um}\left(A \oplus A^{r-1}, J\right)$.

We will write $\operatorname{EL}_{r}^{1}(A, J)$ for $\operatorname{EL}^{1}\left(A \oplus A^{r-1}, J\right)$, $\operatorname{EL}_{r}^{1}(A)$ for $\operatorname{EL}_{r}^{1}(A, A)$ and $\operatorname{EL}^{1}(A \oplus M)$ for $\mathrm{EL}^{1}(A \oplus M, A)$.

Remark 2.1. (i) Let $I \subset J$ be ideals of a ring A and let P be a projective A-module. Then, it is easy to see that the natural map $\mathrm{EL}^{1}(A \oplus P, J) \rightarrow \mathrm{EL}^{1}\left(\frac{A}{I} \oplus \frac{P}{I P}, \frac{J}{I}\right)$ is surjective.
(ii) Let $E_{r}(A)$ be the group generated by elementary matrices $E_{i_{0} j_{0}}(a)=\left(a_{i j}\right)$, where $i_{0} \neq j_{0}$, $a_{i i}=1, a_{i_{0} j_{0}}=a \in A$ and remaining $a_{i j}=0$ for $1 \leqslant i, j \leqslant r$. Then using [13, Lemma 2.1], it is easy to see that $E_{r}(A)=\mathrm{EL}_{r}^{1}(A)$.

The following result is a consequence of a theorem of Eisenbud-Evans as stated in [7, p. 1420].
Theorem 2.2. Let R be a ring and let P be a projective R-module of rank r. Let $(a, \alpha) \in\left(R \oplus P^{*}\right)$. Then there exists $\beta \in P^{*}$ such that ht $I_{a} \geqslant r$, where $I=(\alpha+a \beta)(P)$. In particular, if the ideal $(\alpha(P), a)$ has height $\geqslant r$, then ht $I \geqslant r$. Further, if $(\alpha(P), a)$ is an ideal of height $\geqslant r$ and I is a proper ideal of R, then ht $I=r$.

The following two results are due to Wiemers [13, Proposition 2.5 and Theorem 3.2].
Proposition 2.3. Let A be a ring and let $R=A\left[X_{1}, \ldots, X_{n}, Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}\right]$. Let c be the element $1, X_{n}$ or $Y_{m}-1$. If $s \in A$ and $r \geqq \max \{3, \operatorname{dim} A+2\}$, then $\mathrm{EL}_{r}^{1}(R, s c)$ acts transitively on $\operatorname{Um}_{r}^{1}(R, s c)$.

Theorem 2.4. Let A be a ring and let $R=A\left[X_{1}, \ldots, X_{n}, Y_{1}^{ \pm 1}, \ldots, Y_{m}^{ \pm 1}\right]$. Let P be a projective R-module of rank $r \geqq \max \{2, \operatorname{dim} A+1\}$. If J denotes the ideal $R, X_{n} R$ or $\left(Y_{m}-1\right) R$, then $\mathrm{EL}^{1}(R \oplus P, J)$ acts transitively on $\mathrm{Um}^{1}(R \oplus P, J)$.

The following result is due to Ravi Rao [10, Lemma 2.1].
Lemma 2.5. Let $B \subset C$ be rings of dimension d and $x \in B$ such that $B_{x}=C_{x}$. Then
(i) $B /(1+x b) B=C /(1+x b) C$ for all $b \in B$.
(ii) If I is an ideal of C such that ht $I \geqslant d$ and $I+x C=C$, then there exists $b \in B$ such that $1+x b \in I$.
(iii) If $c \in C$, then $c=1+x+x^{2} h \bmod (1+x b)$ for some $h \in B$ and for all $b \in B$.

Definition 2.6. Let A be a ring and let M, N be A-modules. Suppose $f, g: M \xrightarrow{\sim} N$ be two isomorphisms. We say that " f is isotopic to g " if there exists an isomorphism $\phi(X): M[X] \xrightarrow{\sim} N[X]$ such that $\phi(0)=f$ and $\phi(1)=g$.

Note that if $\sigma \in \mathrm{EL}^{1}(A \oplus M)$, then σ is isotopic to identity.
The following lemma follows from the well-known Quillen splitting lemma [8, Lemma 1] and its proof is essentially contained in [8, Theorem 1].

Lemma 2.7. Let A be a ring and let P be a projective A-module. Let $s, t \in A$ be two comaximal elements. Let $\sigma \in \operatorname{Aut}_{A_{s t}}\left(P_{s t}\right)$ which is isotopic to identity. Then $\sigma=\tau_{s} \theta_{t}$, where $\tau \in \operatorname{Aut}_{A_{t}}\left(P_{t}\right)$ such that $\tau=$ id modulo sA and $\theta \in \operatorname{Aut}_{A_{s}}\left(P_{s}\right)$ such that $\theta=$ id modulo $t A$.

The following two results are due to Suslin [12, Corollary 5.7 and Theorem 6.3].
Theorem 2.8. Let A be a ring and let $f \in A[X]$ be a monic polynomial. Let $\alpha \in \mathrm{GL}_{r}(A[X])$ be such that $\alpha_{f} \in \mathrm{EL}_{r}^{1}\left(A[X]_{f}\right)$. Then $\alpha \in \mathrm{EL}_{r}^{1}(A[X])$.

Theorem 2.9. Let A be a ring and $B=A\left[X_{1}, \ldots, X_{I}\right]$. Then the canonical map $\mathrm{GL}_{r}(B) / \mathrm{EL}_{r}^{1}(B) \rightarrow K_{1}(B)$ is an isomorphism for $r \geqslant \max \{3, \operatorname{dim} A+2\}$. In particular, if $\alpha \in \mathrm{GL}_{r}(B)$ is stably elementary, then α is elementary.

3. Main theorem

We begin this section with the following result which is easy to prove. We give the proof for the sake of completeness.

Lemma 3.1. Let A be a ring and let P be a projective A-module. Let "bar" denote reduction modulo the nil radical of A. For an ideal J of A, if $\mathrm{EL}^{1}(\bar{A} \oplus \bar{P}, \bar{J})$ acts transitively on $\operatorname{Um}^{1}(\bar{A} \oplus \bar{P}, \bar{J})$, then $\operatorname{EL}^{1}(A \oplus P, J)$ acts transitively on $\mathrm{Um}^{1}(A \oplus P, J)$.

Proof. Let $(a, p) \in \operatorname{Um}^{1}(A \oplus P, J)$. By hypothesis, there exists a $\sigma \in \operatorname{EL}^{1}(\bar{A} \oplus \bar{P}, \bar{J})$ such that $\sigma(\bar{a}, \bar{p})=$ $(1,0)$. Using (2.1), let $\varphi \in \operatorname{EL}^{1}(A \oplus P, J)$ be a lift of σ such that $\varphi(a, p)=(1+b, q)$, where $b \in N=$ $\operatorname{nil}(A)$ and $q \in N P$. Note that $b \in N \cap J$. Since $1+b$ is a unit, we get $\Gamma_{1}=\Gamma_{-q}^{1+b} \in \operatorname{EL}^{1}(A \oplus P, J)$ such that $\Gamma_{1}(1+b, q)=(1+b, 0)$. It is easy to see that there exist $p_{1}, \ldots, p_{n} \in P$ and $\alpha_{1}, \ldots, \alpha_{n} \in P^{*}$ such that $\alpha_{1}\left(p_{1}\right)+\cdots+\alpha_{n}\left(p_{n}\right)=1$. Write $h=\sum_{2}^{n} \alpha_{i}\left(p_{i}\right)$. Note that $(1+b, 0)=\left(1+\sum_{1}^{n} b \alpha_{i}\left(p_{i}\right), 0\right)$, $\Gamma \frac{p_{1}}{1+b}(1+b, 0)=\left(1+b, p_{1}\right)$ and $\Delta_{-b \alpha_{1}}\left(1+b, p_{1}\right)=\left(1+b h, p_{1}\right)$, where $\Delta_{-b \alpha_{1}} \in \operatorname{EL}^{1}(A \oplus P, J)$. Since $1+b h$ is a unit, $\Gamma_{\frac{-p_{1}}{1+b h}}\left(1+b h, p_{1}\right)=(1+b h, 0)=\left(1+\sum_{2}^{n} b \alpha_{i}\left(p_{i}\right), 0\right)$. Applying further transformations as above, we can take $\left(1+\sum_{2}^{n} b \alpha_{i}\left(p_{i}\right), 0\right)$ to $(1,0)$ by elements of $\mathrm{EL}^{1}(A \oplus P, J)$.

The following lemma is similar to the Quillen's splitting lemma (2.7). We will sketch the proof. Recall that for a ring B and an element $s \in B, \mathrm{SL}_{n}^{1}(B, s)$ denotes the subgroup of $\mathrm{SL}_{n}(B)$ consisting of those elements whose first row is $(1,0, \ldots, 0)$ modulo the ideal (s).

Lemma 3.2. Let A be a ring and let u, v be two comaximal elements of A. For any $s \in A$, every $\alpha \in \operatorname{EL}_{n}^{1}\left(A_{u v}, s\right)$ has a splitting $\left(\alpha_{1}\right)_{v} \circ\left(\alpha_{2}\right)_{u}$, where $\alpha_{1} \in \operatorname{SL}_{n}^{1}\left(A_{u}, s\right)$ and $\alpha_{2} \in \mathrm{EL}_{n}^{1}\left(A_{v}, s\right)$.

Proof. If $\alpha \in \mathrm{EL}_{n}^{1}\left(A_{u v}, s\right)$, then $\alpha=\prod_{i=1}^{r} \alpha_{i}$, where α_{i} is of the form $\left(\begin{array}{cc}1 & s \underline{v} \\ 0 & I d_{M}\end{array}\right)$ or $\left(\begin{array}{cc}1 & 0 \\ \underline{w^{t}} I d_{M}\end{array}\right)$, where $M=A_{u v}^{n-1}, \underline{v}, \underline{w} \in M$.

Define $\alpha(X) \in \mathrm{EL}_{n}^{1}\left(A[X]_{u v}, s\right)$ by $\alpha(X)=\prod_{i=1}^{r} \alpha_{i}(X)$, where $\alpha_{i}(X)$ is of the form $\left(\begin{array}{cc}1 & s X \underline{v} \\ 0 I_{M[X]}\end{array}\right)$ or $\left(\begin{array}{cc}1 & 0 \\ X \underline{w}^{t} I d_{M[X]}\end{array}\right)$ as may by the case above.

Since $\alpha(0)=$ id and $\alpha(1)=\alpha, \alpha$ is isotopic to identity. Using proof of (2.7) [6, Lemma 2.19], we get that $\alpha(X)=\left(\psi_{1}(X)\right)_{v} \circ\left(\psi_{2}(X)\right)_{u}$, where $\psi_{1}(X)=\alpha(X) \circ \alpha\left(\lambda u^{k} X\right)^{-1} \in \operatorname{SL}_{n}^{1}\left(A_{u}[X]\right.$, s) and $\psi_{2}(X)=\alpha\left(\lambda u^{k} X\right) \in \operatorname{EL}_{n}^{1}\left(A_{v}[X], s\right)$ with $\lambda \in A, k \gg 0$. Write $\psi_{1}(1)=\alpha_{1} \in \operatorname{SL}_{n}^{1}\left(A_{u}, s\right)$ and $\psi_{2}(1)=\alpha_{2} \in$ $\operatorname{EL}_{n}^{1}\left(A_{v}, s\right)$, we get that $\alpha(1)=\alpha=\left(\alpha_{1}\right)_{v} \circ\left(\alpha_{2}\right)_{u}$.

Remark 3.3. We do not know whether $\alpha_{1} \in \operatorname{EL}_{n}^{1}\left(A_{u}, s\right)$ in the above result. In particular, we can ask the following question: Let A be a ring and let u, v be two comaximal elements of A. Let $\alpha \in E L_{n}^{1}\left(A_{u v}\right)$. Does α have a splitting $\left(\alpha_{1}\right)_{v} \circ\left(\alpha_{2}\right)_{u}$, where $\alpha_{1} \in E L_{n}^{1}\left(A_{u}\right)$ and $\alpha_{2} \in E L_{n}^{1}\left(A_{v}\right)$?

Definition 3.4. Let A be a ring of dimension d and let $l, m, n \in \mathbb{N} \cup\{0\}$. We say that a ring R is of the type $A\{d, l, m, n\}$, if R is an A-algebra generated by $X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, T_{1}, \ldots, T_{n}, \frac{1}{f_{1} \ldots f_{m}}$, $\frac{g_{11}}{h_{1}}, \ldots, \frac{g_{1 t_{1}}}{h_{1}}, \ldots, \frac{g_{n 1}}{h_{n}}, \ldots, \frac{g_{n t_{n}}}{h_{n}}$, where X_{i} 's, Y_{i} 's and T_{i} 's are variables over $A, f_{i} \in A\left[Y_{i}\right], g_{i j} \in A\left[T_{i}\right]$, $h_{i} \in A\left[T_{i}\right]$ and h_{i} 's are non-zerodivisors.

For Laurent polynomial ring (i.e. $f_{i}=Y_{i}$), the following result is due to Wiemers (2.3).
Proposition 3.5. Let A be a ring of dimension d and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$ (i.e. R is of the type $A\{d, l, m, 0\}$). If $s \in A$ and $r \geqslant \max \{3, d+2\}$, then $\mathrm{EL}_{r}^{1}(R, s)$ acts transitively on $\operatorname{Um}_{r}^{1}(R, s)$.

Proof. Without loss of generality, we may assume that A is reduced. The case $m=0$ is due to Wiemers (2.3). Assume $m \geqslant 1$ and apply induction on m.

Let $\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r}^{1}(R, s)$. Consider a multiplicative closed subset $S=1+f_{m} A\left[Y_{m}\right]$ of $A\left[Y_{m}\right]$. Then $R_{S}=B\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m-1}, \frac{1}{f_{1} \ldots f_{m-1}}\right]$, where $B=A\left[Y_{m}\right]_{f_{m} S}$ and $\operatorname{dim} B=\operatorname{dim} A$. Since R_{S} is of the type $B\{d, l, m-1,0\}$, by induction hypothesis on m, there exists $\sigma \in \operatorname{EL}_{r}^{1}\left(R_{S}, s\right)$ such that $\sigma\left(a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. We can find $g \in S$ and $\sigma^{\prime} \in \operatorname{EL}_{r}^{1}\left(R_{g}, s\right)$ such that $\sigma^{\prime}\left(a_{1}, \ldots, a_{r}\right)=$ $(1,0, \ldots, 0)$.

Write $C=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1}, \ldots, f_{m-1}}\right]$. Consider the following fiber product diagram

Since $\sigma^{\prime} \in \mathrm{EL}_{r}^{1}\left(C_{g f_{m}}, s\right)$, by (3.2), $\sigma^{\prime}=\left(\sigma_{2}\right)_{f_{m}} \circ\left(\sigma_{1}\right)_{g}$, where $\sigma_{2} \in \operatorname{SL}_{r}^{1}\left(C_{g}, s\right)$ and $\sigma_{1} \in \operatorname{EL}_{r}^{1}(R, s)$. Since $\left(\sigma_{1}\right)_{g}\left(a_{1}, \ldots, a_{r}\right)=\left(\sigma_{2}\right)_{f_{m}}^{-1}(1,0, \ldots, 0)$, patching $\sigma_{1}\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r}^{1}\left(C_{f_{m}}, s\right)$ and $\left(\sigma_{2}\right)^{-1}(1,0, \ldots, 0) \in$
$\operatorname{Um}_{r}^{1}\left(C_{g}, s\right)$, we get a unimodular row $\left(c_{1}, \ldots, c_{r}\right) \in \operatorname{Um}_{r}^{1}(C, s)$. Since C is of the type $A\{d, l+1$, $m-1,0\}$, by induction hypothesis on m, there exists $\phi \in \mathrm{EL}_{r}^{1}(C, s)$ such that $\phi\left(c_{1}, \ldots, c_{r}\right)=$ $(1,0, \ldots, 0)$. Taking projection, we get $\Phi \in \mathrm{EL}_{r}^{1}(R, s)$ such that $\Phi \sigma_{1}\left(a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. This completes the proof.

Corollary 3.6. Let A be a ring of dimension d and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$. Let c be 1 or X_{l}. If $s \in A$ and $r \geqslant \max \{3, d+2\}$, then $\mathrm{EL}_{r}^{1}(R, s c)$ acts transitively on $\operatorname{Um}_{r}^{1}(R, s c)$.

Proof. Let $\left(a_{1}, \ldots, a_{r}\right) \in \operatorname{Um}_{r}^{1}(R, s c)$. The case $c=1$ is done by (3.5). Assume $c=X_{l}$. We can assume, after an $\mathrm{EL}_{r}^{1}\left(R, s X_{l}\right)$-transformation, that $a_{2}, \ldots, a_{r} \in s X_{l} R$. Then we can find $\left(b_{1}, \ldots, b_{r}\right) \in \operatorname{Um}_{r}\left(R, s X_{l}\right)$ such that the following equation holds:

$$
\begin{equation*}
a_{1} b_{1}+\cdots+a_{r} b_{r}=1 \tag{i}
\end{equation*}
$$

Now consider the A-automorphism $\mu: R \rightarrow R$ defined as follows

$$
\begin{gathered}
X_{i} \mapsto X_{i} \quad \text { for } i=1, \ldots, l-1, \\
X_{l} \mapsto X_{l}\left(f_{1} \ldots f_{m}\right)^{N} \quad \text { for some large positive integer } N .
\end{gathered}
$$

Applying μ, we can read the image of Eq. (i) in the subring $S=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}\right]$. By (2.3), we obtain $\psi \in \operatorname{EL}_{r}^{1}\left(R, s X_{l}\right)$ such that $\psi\left(\mu\left(a_{1}\right), \ldots, \mu\left(a_{r}\right)\right)=(1,0, \ldots, 0)$. Since $\mu^{-1}\left(X_{l}\right)$ and X_{l} generate the same ideal in R, applying μ^{-1}, the proof follows.

Corollary 3.7. Let A be a ring of dimension d and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$. Then $\mathrm{EL}_{r}^{1}(R)$ acts transitively on $\operatorname{Um}_{r}(R)$ for $r \geqslant \max \{3, d+2\}$.

The following result is similar to [10, Theorem 5.1]. The Laurent polynomial case (i.e. $f_{i}=Y_{i}$) is due to Suslin [12].

Theorem 3.8. Let A be a ring of dimension d and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$ (i.e. R is of the type $A\{d, l, m, 0\}$). Then
(i) The canonical map $\Phi_{r}: \mathrm{GL}_{r}(R) / \mathrm{EL}_{r}^{1}(R) \rightarrow K_{1}(R)$ is surjective for $r \geqslant \max \{2, d+1\}$.
(ii) Assume $f_{i} \in A\left[Y_{i}\right]$ is a monic polynomial for all i. Then for $r \geqslant \max \{3, d+2\}$, any stably elementary matrix in $\mathrm{GL}_{r}(R)$ is in $\mathrm{EL}_{r}^{1}(R)$. In particular, Φ_{d+2} is an isomorphism.

Proof. (i) Let $[M] \in K_{1}(R)$. We have to show that $[M]=[N]$ in $K_{1}(R)$ for some $N \in \mathrm{GL}_{d+1}(R)$. Without loss of generality, we may assume that $M \in \mathrm{GL}_{d+2}(R)$. By (3.5), there exists an elementary matrix $\sigma \in \mathrm{EL}_{d+2}^{1}(R)$ such that $M \sigma=\left(\begin{array}{cc}M^{\prime} & a \\ 0 & 1\end{array}\right)$. Applying further $\sigma^{\prime} \in \mathrm{EL}_{d+2}^{1}(R)$, we get $\sigma^{\prime} M \sigma=\left(\begin{array}{c}N \\ 0 \\ 0\end{array} 1\right)$, where $M^{\prime}, N \in \mathrm{GL}_{d+1}(R)$. Hence $[M]=[N]$ in $K_{1}(R)$. This completes the proof of (i).
(ii) Let $M \in \operatorname{GL}_{r}(R)$ be a stably elementary matrix. For $m=0$, we are done by (2.9). Assume $m \geqslant 1$.

Let $S=1+f_{m} A\left[Y_{m}\right]$. Then $R_{S}=B\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m-1}, \frac{1}{f_{1} \ldots f_{m-1}}\right]$, where $B=A\left[Y_{m}\right]_{f_{m} S}$ and $\operatorname{dim} B=\operatorname{dim} A$. Since R_{S} is of the type $B\{d, l, m-1,0\}$, by induction hypothesis on $m, M \in \mathrm{EL}_{r}^{1}\left(R_{S}\right)$. Hence there exists $g \in S$ such that $M \in \operatorname{EL}_{r}^{1}\left(R_{g}\right)$. Let $\sigma \in \operatorname{EL}_{r}^{1}\left(R_{g}\right)$ be such that $\sigma M=I d$.

Write $C=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m-1}}\right]$. Consider the following fiber product diagram

By (3.2), $\sigma=\left(\sigma_{2}\right)_{f_{m}} \circ\left(\sigma_{1}\right)_{g}$, where $\sigma_{2} \in \mathrm{SL}_{r}\left(C_{g}\right)$ and $\sigma_{1} \in \mathrm{EL}_{r}^{1}\left(C_{f_{m}}\right)$. Since $\left(\sigma_{1} M\right)_{g}=\left(\sigma_{2}\right)_{f_{m}}^{-1}$, patching $\sigma_{1} M$ and $\left(\sigma_{2}\right)^{-1}$, we get $N \in \mathrm{GL}_{r}(C)$ such that $N_{f_{m}}=\sigma_{1} M$.

Write $D=A\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m-1}, \frac{1}{f_{1} \ldots f_{m-1}}\right]$. Then $D\left[Y_{m}\right]=C$ and $D\left[Y_{m}\right]_{f_{m}}=R$. Since $N \in$ $\mathrm{GL}_{r}\left(D\left[Y_{m}\right]\right), f_{m} \in D\left[Y_{m}\right]$ is a monic polynomial and $N_{f_{m}}=\sigma_{1} M$ is stably elementary, by (2.8), N is stably elementary. Since C is of the type $A\{d, l+1, m-1,0\}$, by induction hypothesis on $m, N \in \mathrm{EL}_{r}^{1}(C)$. Since σ_{1} is elementary, we get that $M \in \mathrm{EL}_{r}^{1}(R)$. This completes the proof of (ii).

Lemma 3.9. Let R be a ring of the type $A\{d, l, m, n\}$. Let P be a projective R-module of rank $r \geqslant \max \{2,1+d\}$. Then there exist an $s \in A, p_{1}, \ldots, p_{r} \in P$ and $\varphi_{1}, \ldots, \varphi_{r} \in \operatorname{Hom}(P, R)$ such that the following properties holds.
(i) P_{s} is free.
(ii) $\left(\varphi_{i}\left(p_{j}\right)\right)=\operatorname{diagonal}(s, s, \ldots, s)$.
(iii) $s P \subset p_{1} A+\cdots+p_{r} A$.
(iv) The image of s in $A_{\text {red }}$ is a non-zerodivisor.
(v) $(0: s A)=\left(0: s^{2} A\right)$.

Proof. Without loss of generality, we may assume that A is reduced. Let S be the set of all nonzerodivisors in A. Since $\operatorname{dim} A_{S}=0$ and projective R_{S}-module P_{S} has constant rank, we may assume that A_{S} is a field. Then it is easy to see that $A_{S}\left[T_{i}, \frac{g_{i j}}{h_{i}}\right]=A_{S}\left[T_{i}, \frac{1}{h_{i}}\right]$ (assuming $\left.\operatorname{gcd}\left(g_{i j}, h_{i}\right)=1\right)$. Therefore $R_{S}=A_{S}\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, T_{1}, \ldots, T_{n}, \frac{1}{f_{1} \ldots f_{m} h_{1} \ldots h_{n}}\right]$ is a localization of a polynomial ring over a field. Hence projective modules over R_{S} are stably free. Since P_{S} is stably free of rank \geqslant $\max \{2,1+d\}$, by (3.5), P_{S} is a free R_{S}-module of rank r. We can find an $s \in S$ such that P_{S} is a free R_{S}-module. The remaining properties can be checked by taking a basis $p_{1}, \ldots, p_{r} \in P$ of P_{S}, a basis $\varphi_{1}, \ldots, \varphi_{r} \in \operatorname{Hom}(P, R)$ of P_{s}^{*} and replacing s by some power of s, if needed. This completes the proof.

Lemma 3.10. Let R be a ring of the type $A\{d, l, m, n\}$. Let P be a projective R-module of rank r. Choose $s \in A$, $p_{1}, \ldots, p_{r} \in P$ and $\varphi_{1}, \ldots, \varphi_{r} \in \operatorname{Hom}(P, R)$ satisfying the properties of (3.9). Let ($\left.a, p\right) \in \operatorname{Um}(R \oplus P, s A)$ with $p=c_{1} p_{1}+\cdots+c_{r} p_{r}$, where $c_{i} \in s R$ for $i=1$ to r. Assume there exists $\phi \in \mathrm{EL}_{r+1}^{1}(R, s)$ such that $\phi\left(a, c_{1}, \ldots, c_{r}\right)=(1,0, \ldots, 0)$. Then there exists $\Phi \in \mathrm{EL}^{1}(R \oplus P)$ such that $\Phi(a, p)=(1,0)$.

Proof. Since $\phi \in \mathrm{EL}_{r+1}^{1}(R, s), \phi=\prod_{j=1}^{n} \phi_{j}$, where $\phi_{j}=\Delta_{s \psi_{j}}$ or $\Gamma_{\nu^{t}}$ with $\psi_{j}=\left(b_{1 j}, \ldots, b_{r j}\right) \in R^{r *}$ and $v=\left(f_{1}, \ldots, f_{r}\right) \in R^{r}$.

Define a map $\Theta: \mathrm{EL}_{r+1}^{1}(R, s) \rightarrow \mathrm{EL}^{1}(R \oplus P)$ as follows

$$
\Theta\left(\Delta_{s \psi_{j}}\right)=\left(\begin{array}{cc}
1 & \sum_{i=1}^{r} b_{i j} \varphi_{i} \\
0 & i d_{P}
\end{array}\right) \quad \text { and } \quad \Theta\left(\Gamma_{v^{t}}\right)=\left(\begin{array}{cc}
1 & 0 \\
\sum_{i=1}^{r} f_{i} p_{i} & i d_{P}
\end{array}\right)
$$

Let $\Phi=\prod_{j=1}^{n} \Theta\left(\phi_{j}\right) \in \mathrm{EL}^{1}(R \oplus P)$. Then it is easy to see that $\Phi(a, p)=(1,0)$. This completes the proof.

Remark 3.11. From the proof of above lemma, it is clear that if $\phi \in \mathrm{EL}_{r+1}^{1}\left(R, s X_{l}\right)$ such that $\phi\left(a, c_{1}, \ldots, c_{r}\right)=(1,0, \ldots, 0)$, then $\Phi \in \mathrm{EL}^{1}\left(R \oplus P, X_{l}\right)$ such that $\Phi(a, p)=(1,0)$.

For Laurent polynomial ring (i.e. $f_{i}=Y_{i}$ and $J=R$), the following result is due to Lindel [4].

Theorem 3.12. Let A be a ring of dimension d and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$ (i.e. R is of the type $A\{d, l, m, 0\}$). Let P be a projective R-module of rank $r \geqslant \max \{2, d+1\}$. If J denotes the ideal R or $X_{l} R$, then $\mathrm{EL}^{1}(R \oplus P, J)$ acts transitively on $\operatorname{Um}^{1}(R \oplus P, J)$.

Proof. Without loss of generality, we may assume that A is reduced. We will use induction on d. When $d=0$, we may assume that A is a field. Hence projective modules over R are stably free (proof of Lemma 3.9). Using (3.6), we are done.

Assume $d>0$. By (3.9), there exist a non-zerodivisor $s \in A, p_{1}, \ldots, p_{r} \in P$ and $\phi_{1}, \ldots, \phi_{r} \in P^{*}=$ $\operatorname{Hom}_{R}(P, R)$ satisfying the properties of (3.9). If $s \in A$ is a unit, then P is a free and the result follows from (3.6). Assume s is not a unit.

Let $(a, p) \in \operatorname{Um}^{1}(R \oplus P, J)$. Let "bar" denote reduction modulo the ideal $s^{2} R$. Since $\operatorname{dim} \bar{A}<\operatorname{dim} A$, by induction hypothesis, there exists $\varphi \in \mathrm{EL}^{1}(\bar{R} \oplus \bar{P}, \bar{J})$ such that $\varphi(\bar{a}, \bar{p})=(1,0)$. Using (2.1), let $\Phi \in \mathrm{EL}^{1}(R \oplus P, J)$ be a lift of φ and $\Phi(a, p)=(b, q)$, where $b \equiv 1 \bmod s^{2} J R$ and $q \in s^{2} J P$.

By (3.9), there exist $a_{1}, \ldots, a_{r} \in S J R$ such that $q=a_{1} p_{1}+\cdots+a_{r} p_{r}$. It follows that $\left(b, a_{1}, \ldots, a_{r}\right) \in$ $\operatorname{Um}_{r+1}(R, s J)$. By (3.6), there exists $\phi \in \mathrm{EL}_{r+1}^{1}(R, s J)$ such that $\phi\left(b, a_{1}, \ldots, a_{r}\right)=(1,0, \ldots, 0)$. Applying (3.11), we get $\Psi \in \mathrm{EL}^{1}(R \oplus P, J)$ such that $\Psi(b, q)=(1,0)$. Therefore $\Psi \Phi(a, p)=(1,0)$. This completes the proof.

For Laurent polynomial ring (i.e. $f_{i}=Y_{i}$), the following result is due to Bhatwadekar, Lindel and Rao [2].

Theorem 3.13. Let k be a field and let A be an affine k-algebra of dimension d. Let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots\right.$, $\left.Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$ (i.e. R is of the type $A\{d, l, m, 0\}$). Then every projective R-module P of rank \geqslant $d+1$ has a unimodular element.

Proof. We assume that A is reduced and use induction on $\operatorname{dim} A$. If $\operatorname{dim} A=0$, then every projective module of constant rank is free (3.5), (3.9). Assume $\operatorname{dim} A>0$.

By (3.9), there exists a non-zerodivisor $s \in A$ such that P_{S} is free R_{s}-module. Let "bar" denote reduction modulo the ideal $s R$. By induction hypothesis, \bar{P} has a unimodular element, say \bar{p}. Clearly $(p, s) \in \operatorname{Um}(P \oplus R)$, where $p \in P$ is a lift of \bar{p}. By (2.2), we may assume that ht $I \geqslant d+1$, where $I=O_{P}(p)$. We claim that $I_{(1+s A)}=R_{(1+s A)}$ (i.e. $p \in \operatorname{Um}\left(P_{1+s A}\right)$).

Since R is a Jacobson ring, $\sqrt{I}=\bigcap \mathfrak{m}$ is the intersection of all maximal ideals of R containing I. Since $I+s R=R, s \notin(I \cap A)$. Let \mathfrak{m} be any maximal ideal of R which contains I. Since A and R are affine k-algebras, $\mathfrak{m} \cap A$ is a maximal ideal of A. Hence $\mathfrak{m} \cap A$ contains an element of the form $1+s a$ for some $a \in A$ (as $s \notin \mathfrak{m} \cap A$). Hence $\mathfrak{m} R_{(1+s A)}=R_{(1+s A)}$ and $I_{(1+s A)}=R_{(1+s A)}$. This proves the claim.

Let $S=1+s A$. Let $t \in S$ be such that $p \in \operatorname{Um}\left(P_{t}\right)$. Choose $p_{1} \in \operatorname{Um}\left(P_{s}\right)$. Since $R_{s S}$ is of the type $A_{s S}\{d-1, l, m, 0\}$, by (3.12), there exists $\varphi \in \mathrm{EL}^{1}\left(P_{s S}\right)$ such that $\varphi\left(p_{1}\right)=p$. We can choose $t_{1}=t t_{2} \in S$ such that $\varphi \in \operatorname{EL}^{1}\left(P_{s t_{1}}\right)$. By (2.7), $\varphi=\left(\varphi_{1}\right)_{s} \circ\left(\varphi_{2}\right)_{t_{1}}$, where $\varphi_{2} \in \operatorname{Aut}\left(P_{s}\right)$ and $\varphi_{1} \in \operatorname{Aut}\left(P_{t_{1}}\right)$. Consider the following fiber product diagram

Since $\left(\varphi_{2}\right)_{t_{1}}\left(p_{1}\right)=\left(\varphi_{1}\right)_{s}^{-1}(p)$, patching $\varphi_{2}\left(p_{1}\right) \in \operatorname{Um}\left(P_{s}\right)$ and $\varphi_{1}^{-1}(p) \in \operatorname{Um}\left(P_{t}\right)$, we get a unimodular element in P. This proves the result.

The following result generalizes a result of Ravi Rao [10] where it is proved that P is cancellative.
Theorem 3.14. Let A be a ring of dimension d and let $R=A\left[X, \frac{f_{1}}{g}, \ldots, \frac{f_{n}}{g}\right]$, where $g, f_{i} \in A[X]$ with $g a$ non-zerodivisor. Let P be a projective R-module of rank $r \geqslant \max \{2, d+1\}$. Then $\mathrm{EL}^{1}(R \oplus P)$ acts transitively on $\operatorname{Um}(R \oplus P)$.

Proof. We will assume that A is reduced and apply induction on $\operatorname{dim} A$. If $\operatorname{dim} A=0$, then we may assume that A is a field. Hence R is a PID and P is free. By (2.3), we are done.

Assume $\operatorname{dim} A=d>0$. By (3.9), we can choose a non-zerodivisor $s \in A, p_{1}, \ldots, p_{r} \in P$ and $\phi_{1}, \ldots, \phi_{r} \in P^{*}$ satisfying the properties of (3.9).

Let $(a, p) \in \operatorname{Um}(R \oplus P)$. Let "bar" denote reduction modulo $\operatorname{sg} R$. Then $\operatorname{dim} \bar{R}<\operatorname{dim} R$ and $r \geqslant$ $\operatorname{dim} \bar{R}+1$. By Serre's result [11], \bar{P} has a unimodular element, say \bar{q}. Then $(0, \bar{q}) \in \operatorname{Um}(\bar{R} \oplus \bar{P})$. By Bass result [1], there exists $\phi \in \operatorname{EL}^{1}(\bar{R} \oplus \bar{P})$ such that $\phi(\bar{a}, \bar{p})=(0, \bar{q})$. Using (2.1), let $\Phi \in \operatorname{EL}^{1}(R \oplus P)$ be a lift of ϕ and $\Phi(a, p)=(b, q)$, where $b \in \operatorname{sg} R$. By (2.2), we may assume that ht $O_{P}(q) \geqslant d+1$.

Write $B=A[X], x=s g, I=O_{P}(q)$ and $C=R$. Then $\operatorname{dim} B=\operatorname{dim} C$ and $B_{s g}=C_{s g}$. By (2.5(ii)), there exists $h \in A[X]$ such that $1+\operatorname{sgh} \in O_{P}(q)$. Hence there exists $\varphi \in P^{*}$ such that $\varphi(q)=1+\operatorname{sgh}$.

By (2.5(iii)), there exists $b^{\prime} \in R$ such that $b-b^{\prime}(1+s g h)=1+s g+s^{2} g^{2} h^{\prime}$ for some $h^{\prime} \in A[X]$. Since $\Delta_{-b^{\prime} \varphi}(b, q)=\left(b-b^{\prime} \varphi(q), q\right)=\left(1+s g+s^{2} g^{2} h^{\prime}, q\right)=\left(b_{0}, q\right)$ and $\Gamma_{-q}\left(b_{0}, q\right)=\left(b_{0}, q-b_{0} q\right)=\left(b_{0}, s g q_{1}\right)$ for some $q_{1} \in P$ and $b_{0} \in A[X]$ with $b_{0}=1 \bmod \operatorname{sg} A[X]$.

Write $s g q_{1}=c_{1} p_{1}+\cdots+c_{r} p_{r}$ for some $c_{i} \in R$. Then $\left(b_{0}, c_{1}, \ldots, c_{r}\right) \in \operatorname{Um}_{r+1}^{1}(R, s g)$. It is easy to see that by adding some multiples of b_{0} to c_{1}, \ldots, c_{r}, we may assume that ($b_{0}, c_{1}, \ldots, c_{r}$) \in $\operatorname{Um}^{1}(A[X], \operatorname{sg} A[X])$. By (2.3), there exists $\Theta \in \mathrm{EL}_{r+1}^{1}(A[X], s)$ such that $\Theta\left(b_{0}, c_{1}, \ldots, c_{r}\right)=(1,0, \ldots, 0)$. Applying (3.10), there exists $\Psi \in \mathrm{EL}^{1}(R \oplus P)$ such that $\Psi\left(b_{0}, \operatorname{sg} q_{1}\right)=(1,0)$. This proves the result.

Question 3.15. Let R be a ring of type $A\{d, l, m, n\}$ and let P be a projective R-module of rank $\geqslant \max \{2, d+1\}$.
(i) Does $\mathrm{EL}^{1}(R \oplus P)$ act transitively on $\operatorname{Um}(R \oplus P)$? In particular, is P cancellative?
(ii) Does P have a unimodular element?

Assume $n=0$. Then (i) is (3.12) and for affine algebras over a field, (ii) is (3.13).
When either P is free or $\bar{k}=\overline{\mathbb{F}}_{p}$, then the following result is proved in [5].
Theorem 3.16. Let \bar{k} be an algebraically closed field with $1 / d!\in \bar{k}$ and let A be an affine \bar{k}-algebra of dimension d. Let $f(T) \in A[T]$ be a monic polynomial and assume that either
(i) $R=A\left[T, \frac{1}{f(T)}\right]$ or
(ii) $R=A\left[T, \frac{f_{1}}{f}, \ldots, \frac{f_{n}}{f}\right]$, where f, f_{1}, \ldots, f_{n} is $A[T]$-regular sequence.

Then every projective R-module P of rank d is cancellative.
Proof. By (3.9), there exists a non-zerodivisor $s \in A$ satisfying the properties of (3.9). Let $(a, p) \in$ $\operatorname{Um}(R \oplus P)$.

Let "bar" denote reduction modulo ideal $s^{3} A$. Since $\operatorname{dim} \bar{A}<\operatorname{dim} A$, by (3.12), (3.14), there exists $\phi \in \operatorname{EL}^{1}(\bar{R} \oplus \bar{P})$ such that $\phi(\bar{a}, \bar{p})=(1,0)$. Let $\Phi \in \operatorname{EL}^{1}(R \oplus P)$ be a lift of ϕ. Then $\Phi(a, p)=(b, q)$, where $(b, q) \in \operatorname{Um}^{1}\left(R \oplus P, s^{2} A\right)$. Now the proof follows by [5, Theorem 4.4].

The proof of the following result is same as of (3.16) using [5, Theorem 5.5].
Theorem 3.17. Let k be a real closed field and let A be an affine k-algebra of dimension $d-2$. Let $f \in A[X, T]$ be a monic polynomial in T which does not belong to any real maximal ideal of $A[X, T]$. Assume that either
(i) $R=A[X, T, 1 / f]$ or
(ii) $R=A\left[X, T, f_{1} / f, \ldots, f_{n} / f\right]$, where f, f_{1}, \ldots, f_{n} is $A[X, T]$-regular sequence.

Then every projective R-module of rank $d-1$ is cancellative.

4. An analogue of Wiemers result

We begin this section with the following result which can be proved by the same arguments as in [13, Corollary 3.4] and using (3.12).

Theorem 4.1. Let A be a ring of dimension d and $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$, where $f_{i} \in A\left[Y_{i}\right]$. Let P be a projective R-module of rank $\geqslant d+1$. Then the natural map $\operatorname{Aut}_{R}(P) \rightarrow \operatorname{Aut}_{\bar{R}}\left(P / X_{l} P\right)$ with $\bar{R}=R / X_{l} R$ is surjective.

Using the automorphism μ defined in (3.6), the following result can be proved by the same arguments as in [13, Proposition 4.1].

Proposition 4.2. Let A be a ring of dimension $d, 1 / d!\in A$ and $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$ with $l \geqslant 1, f_{i} \in A\left[Y_{i}\right]$. Then $\mathrm{GL}_{d+1}\left(R, X_{l} J R\right)$ acts transitively on $\operatorname{Um}_{d+1}\left(R, X_{l} J R\right)$, where J is an ideal of A.

When $f_{i}=Y_{i}$, the following result is due to Wiemers [13, Theorem 4.3]. The proof of this result is same as of [13, Theorem 4.3] using (4.1), (4.2).

Theorem 4.3. Let A be a ring of dimension d with $1 / d!\in A$ and let $R=A\left[X_{1}, \ldots, X_{l}, Y_{1}, \ldots, Y_{m}, \frac{1}{f_{1} \ldots f_{m}}\right]$ with $f_{i} \in A\left[Y_{i}\right]$ for $i=1$ to m. Let P be a projective R-module of rank $\geqslant d$. If Q is another projective $R-$ module such that $R \oplus P \cong R \oplus Q$ and $\bar{P} \cong \bar{Q}$, then $P \cong Q$, where "bar" denotes reduction modulo the ideal $\left(X_{1}, \ldots, X_{l}\right) R$.

Using (3.16), (4.3), we get the following result.
Corollary 4.4. Let \bar{k} be an algebraically closed field with $1 / d!\in \bar{k}$ and let A be an affine \bar{k}-algebra of dimension d. Let $f(T) \in A[T]$ be a monic polynomial and let $R=A\left[X_{1}, \ldots, X_{l}, T, \frac{1}{f(T)}\right]$. Then every projective R-module of rank $\geqslant d$ is cancellative.

References

[1] H. Bass, K-theory and stable algebra, Publ. Math. Inst. Hautes Études Sci. 22 (1964) 5-60.
[2] S.M. Bhatwadekar, H. Lindel, R.A. Rao, The Bass Murthy question: Serre dimension of Laurent polynomial extensions, Invent. Math. 81 (1985) 189-203.
[3] S.M. Bhatwadekar, A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984) $150-158$.
[4] H. Lindel, Unimodular elements in projective modules, J. Algebra 172 (1995) 301-319.
[5] M.K. Keshari, Cancellation problem for projective modules over affine algebras, J. K-Theory 3 (2009) 561-581.
[6] M.K. Keshari, Euler class group of a Noetherian ring, PhM thesis, 2001, http://www.math.iitb.ac.in/~keshari.
[7] B. Plumstead, The conjectures of Eisenbud and Evans, Amer. J. Math. 105 (1983) 1417-1433.
[8] D. Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976) 167-171.
[9] Ravi A. Rao, A question of H. Bass on the cancellative nature of large projective modules over polynomial rings, Amer. J. Math. 110 (1988) 641-657.
[10] Ravi A. Rao, Stability theorems for overrings of polynomial rings, II, J. Algebra 78 (1982) 437-444.
[11] J.P. Serre, Modules projectifs et espaces fibres a fibre vectorielle, Sem. Dubreil-Pisot, vol. 23, 1957/1958.
[12] A.A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977) 221-238.
[13] A. Wiemers, Cancellation properties of projective modules over Laurent polynomial rings, J. Algebra 156 (1993) $108-124$.

[^0]: * Corresponding author.

 E-mail addresses: alpesh@math.iitb.ac.in (A.M. Dhorajia), keshari@math.iitb.ac.in (M.K. Keshari).
 0021-8693/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2009.09.018

