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In this Letter we study adiabatic and isocurvature perturbations in the frame of inflation with multiple
sound speeds involved. We suggest this scenario can be realized by a number of generalized scalar fields
with arbitrary kinetic forms. These scalars have their own sound speeds respectively, so the propagations
of field fluctuations are individual. Specifically, we study a model constructed by two DBI type actions. We
find that the critical length scale for the freezing of perturbations corresponds to the maximum sound
horizon. Moreover, if the mass term of one field is much lighter than that of the other, the entropy
perturbation could be quite large and so may give rise to a growth outside sound horizon. At cubic
order, we find that the non-Gaussianity of local type is possibly large when entropy perturbations are
able to convert into curvature perturbations. We also calculate the non-Gaussianity of equilateral type
approximately.
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1. Introduction

Inflationary cosmology has become the prevalent paradigm to
understand the early stage of our universe, with its advantages of
resolving the flatness, homogeneity and monopole problems [1,2],
and predicts a scale-invariant primordial power spectrum consis-
tent with current cosmological observations [3] very well. How-
ever, a single field inflation model often suffers from fine tuning
problems on the parameters of its potential, such as the mass and
the coupling constant.

In recent years, people has noticed that, when a number of
scalar fields are involved, they can relax many limits on the sin-
gle scalar inflation model [4]. Usually, these fields are able to work
cooperatively to give an enough long inflationary stage, even none
of them can sustain inflation separately. Models of this type have
been considered later in Refs. [5–8]. The main results show that
both the e-folding number N and the curvature perturbation ζ

are approximately proportional to the number of the scalars N .
Later, the model of N-flation was proposed by Dimopoulos et al.
[9], which showed that a number of axions predicted by string
theory can give rise to a radiatively stable inflation. This model has
explored the possibility for an attractive embedding of multi-field
inflation in string theory.
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Over the past several years, based on the recent developments
in string theory, there have been many studies on its applications
to the early universe in inflationary cosmology. However, people
still often encounter fine tuning and inconsistency problems when
they try to combine string theory with cosmology as reviewed in
Ref. [10]. Facing to these embarrassments, it is usually suggested
that N-flation is able to relax these troubles and so can let stringy
cosmology survive. A good example is that Piao et al. have success-
fully applied assisted inflation mechanism to amend the problems
of tachyon inflation [11]. There are also many works on investigat-
ing multi-field inflation models in stringy cosmology, for example
see Refs. [12–17].

Recently, an interesting inflation model, which has a non-
canonical kinetic term inspired by string theory, was studied in-
tensively in the literature. Due to a non-canonical kinetic term, the
propagation of field fluctuations in this model is characterized by
a sound speed parameter and the perturbations get freezed not on
Hubble radius, but the sound horizon instead. One specific real-
ization of this type of models can be described by a Dirac–Born–
Infeld-like (DBI) action [18,19]. Based on brane inflation [20], the
model with a single DBI field was investigated in detail [21–23],
which has explored a window of inflation models without flat po-
tentials. In this model, a warping factor was applied to provide a
speed limit which keeps the inflaton near the top of a potential
even if the potential is steep.

In this Letter, we study an inflation model involving multiple
sound speeds with each sound speed characterizing one field fluc-
tuation. We suggest this scenario can be realized by a number of
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general scalar fields with arbitrary kinetic forms, and these scalars
have their own sound speeds, respectively [24]. Therefore, we call
this model as Multi-Speed Inflation. In this model, the propagations
of field fluctuations are individual, and the usual conceptions in
multi-field inflation models might be not suitable in this scenario.
For example, in a usual generalized N-flation model, the length
scale for perturbations being freezed takes the unique sound hori-
zon; however, in our model it corresponds to the maximum sound
horizon.

Specifically, we consider a double-field inflation model, with
each field being described by a DBI action and the total action
is constructed by the sum of they two. It is worth emphasizing
that our model is different from the usual DBI N-flation in which
only multiple moduli fields are involved in one DBI action [25–31],
but ours is constructed by multiple DBI type actions (DBIs), as pro-
posed in Ref. [24]. The model we considered in the paper can be
achieved as follows. We consider two D3-branes in a background
metric field with negligible covariant derivatives of field strengths
and we assume that these branes are decoupled from others. Be-
sides, we also need to neglect the backreaction of those branes
on the background geometry as is usually done in brane inflation
models. Specifically we are interested in two phenomenological
scenarios. The first one is these two scalars work cooperatively
like those in usual N-flation models, which gives the predictions
on primordial perturbations the similar as those obtained in sin-
gle field DBI inflation. The second one is the scenario of cascade
inflation with one scalar providing first several efolding numbers
and then the other finishing the rest. For the second scenario, if
the mass term of one field is much lighter than that of the other,
the entropy perturbation could be quite large and so may give rise
to a growth outside sound horizon. At cubic order, we find that
the non-Gaussianity of local type is possibly large if entropy per-
turbations can be converted into curvature perturbations. We also
calculate the non-Gaussianity of equilateral type approximately.

The Letter is organized as follows. In Section 2, we propose a
model of Multi-Speed Inflation, then study its generic background
dynamics. In Section 3, we study its linear perturbations using
Arnowitt–Deser–Misner (ADM) formalism, and show that different
field fluctuations are governed by different sound speeds respec-
tively. In this case we provide a new decomposition on adiabatic
and isocurvature perturbations. In Section 4, we analyze a specific
inflation model constructed by two DBI type actions, first investi-
gate its background evolution, and then give its curvature pertur-
bation and entropy perturbation, and finally its non-Gaussianity is
addressed.

In the Letter we take the normalization M2
p = 1/8πG = 1 and

the sign of metric is adopted as (−,+,+,+) in the following.

2. The model

Our starting point is the action as follows,

S =
∫

d4x
√−g

[
1

2
R +

∑
I

P I (XI , φI )

]
, (1)

with

XI ≡ −1

2
gμν∇μφI∇νφI , (2)

defined as the kinetic term of the Ith scalar field φI . This model
involves multiple k-essence-type fields. For simplicity, we assume
that there are no couplings between scalar fields, so each field
evolves independently except for gravity coupling.1

1 We refer Refs. [32,33] for a discussion on initial condition of inflation.
An inflation model constructed with a single k-essence was
originally proposed by [34] and later its perturbation theory has
been studied [35]. In the literature this type of model has been
widely studied, and one of the most significant features is that
there is an effective sound speed describing the propagation of
the perturbations [36–39]. However, one may already notice that
in our model, for each a k-essence field there is one sound speed
correspondingly. Therefore, the field fluctuations in our model do
not propagate synchronously. In the current Letter, our main inter-
ests focus on the effects of multiple sound speeds in perturbation
theory. However, before studying the perturbations, we first take
an investigation on the background equations.

By varying the action with respect to the metric, we can obtain
the energy–momentum tensor of the form

T μν =
∑

I

(
P I gμν + P I,XI ∇μφI∇νφI

)
, (3)

where P I ,XI denotes the partial derivative of P I with respect to XI .
Moreover, the scalar fields satisfy generalized Klein–Gordon equa-
tions, which are given by

∇μ

(
P I,XI ∇μφI

) + P I,I = 0, (4)

where P I ,I is the partial derivative of P I with respect to the scalar
φI .

Considering a spatially flat Friedmann–Robertson–Walker (FRW)
spacetime with its metric

ds2 = −dt2 + a2(t)d�x2, (5)

we can read the energy density and pressure of a field φI from the
energy–momentum stress

ρI = 2XI P I,XI − P I , pI = P I . (6)

The equations of motion for the scalar fields reduce to

φ̈I +
(

3H + Ṗ I,XI

P I,XI

)
φ̇I − P I,I

P I,XI

= 0, (7)

where we define the Hubble parameter H ≡ ȧ/a. Moreover, we in-
troduce the sound speed parameters,

c2
sI ≡ pI,XI

ρI,XI

= P I,XI

P I,XI + 2XI P I,XI XI

, (8)

and also use the dimensionless parameters

sI ≡ ċsI

HcsI
, (9)

for each of which measures the variation of the sound speed csI in
one Hubble time.

3. Linear perturbations

Now we start to study the linear perturbations of the model
introduced in the previous section. Since we are working in the
frame of a cosmological system, the metric perturbations ought
to be included as well as the field fluctuations. However, one can
eliminate one degree of freedom by taking a suitable gauge. We
would like to expand the action to the second order with the
ADM formalism [40]. In this formalism, we can eliminate one extra
degree of freedom of perturbations at the beginning of the calcula-
tion, by choosing the spatially flat gauge with the spatial curvature
vanishing as (3)R = 0.
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3.1. ADM formalism and the action at quadratic order

To start, the spacetime metric in the ADM formalism is written
as

ds2 = −N2 dt2 + hij
(
dxi + Ni dt

)(
dx j + N j dt

)
, (10)

with N being the lapse function and Ni the shift vector. Substitut-
ing this metric into the original expression of the action, we get

S =
∫

dt dx3
√

h

[
N

∑
I

P I + 1

2N

(
Eij Ei j − E2)], (11)

where h = det(hij), and the tensor Eij is defined as

Eij = 1

2
(ḣi j − ∇i N j − ∇ j Ni), (12)

which is related to the extrinsic curvature of the spatial slice with
Kij = N−1 Eij . We use the lowercase index i to denote the spatial
coordinates.

To vary the action with N , we obtain the Hamiltonian con-
straint,

2
∑

I

P I − 1

N2

(
Eij Ei j − E2 + 2

∑
I

P I,XI v I v I

)
= 0, (13)

where there is

v I = φ̇I − Ni∂iφI ; (14)

while the variation of the action with respect to Ni yields the mo-
mentum constraint as follows,

∇ j
[
N−1(E j

i − Eδ
j
i

)] = N−1
∑

I

P I,XI v I∂iφI . (15)

We have already restricted ourselves to the spatially flat gauge
of the FRW background with the spatial metric as hij = a2(t)δi j .
Therefore, the degrees of freedom merely comes from the field
fluctuations as the following decomposition,

φI (t, �x) → φI (t) + δφI (t, �x). (16)

Meanwhile, we need to expand the lapse function and shift vector
in form of,

N = 1 + α, Ni = V i + ∂iβ, (17)

where the scalar functions α and β can be expressed in terms of
the field fluctuations δφI , and V i belongs to the vector modes and
so can be eliminated to second order.

By solving the linearized constraint equations (13) and (15), we
have

α = 1

2H

∑
I

P I,XI v IδφI , (18)

and

∂2β = a2

2H

∑
I

[
− P I,XI

c2
sI

v Iδv I + (P I,I − 2XI P I,I X I )δφI

+ P I,XI

H

(
XI P I,XI

c2
sI

− 3H2
)

v IδφI

]
, (19)

and here δv I = δφ̇I to linear order.
Making use of the above results, now we can expand the action

to quadratic order. To do some integrations by parts and regroup
the terms, the second order action takes the form
S2 =
∫

dt dx3 a3

2

∑
I

[
P I,XI

c2
sI

δφ̇2
I − P I,XI

a2
∂iδφI∂iδφI

+ 2P I,I X I φ̇IδφIδφ̇I −
∑

J

MI J δφIδφ J

]
, (20)

where the effective mass matrix of the field fluctuations is given
by

MI J = 1

2H

(
φ̇2

I P I,I X I φ̇ J P J ,X J + φ̇I P I,XI φ̇
2
J P J , J X J

)
+ 1

4H2

∑
K

(
1 − 1

c2
sK

)
φ̇2

K P K ,K XK P I,XI P J ,X J

− 1

a3

d

dt

[
a3

4H

(
2 + 1

c2
sI

+ 1

c2
s J

)
φ̇I P I,XI φ̇ J P J ,X J

]

− P I,I IδI J , (21)

which is strongly suppressed by slow-roll parameters in the frame
of usual inflationary cosmology.

One may notice, if there is only one field, the above results are
consistent with a model of single k-essence field as analyzed in
Ref. [35]. However, in our case there are multiple sound speeds
which govern the propagations of the field fluctuations. For each
sound speed, there is a critical length scale which takes the form
cs/H . We would like to call this scale as sound horizon.

3.2. Curvature perturbations and isocurvature perturbations

Having obtained the second order action, we can proceed to
study the field fluctuations by solving their perturbation equations
in concrete models. However, before doing that, let us take a closer
look at the kinetic terms of the field fluctuations. From Eq. (20), it
is not straightforward how to define the modes of curvature and
isocurvature perturbations, since the model involves more than
one sound speeds which make the usual decomposition of an or-
thonormal basis in field spaces invalid. So we need to develop a
new decomposition which should includes the information of the
sound speeds. To do it, we need to go back to the basic definition
of curvature perturbation in perturbed Einstein’s equations.

A widely used quantity characterizing the gauge invariant cur-
vature perturbation is given by

R ≡ Φ − H
δq

ρ + p

= Φk + H
δσk

σ̇
. (22)

Here Φ is the gravitational potential, δq represents the perturba-
tion of momentum, and σ is the so-called adiabatic field.

One can find that this field takes the form σ̇ =
√∑

I φ̇2
I in usual

cases. However, recall that, in our model the (0i) components of
the perturbed energy–momentum stress give the momentum per-
turbation as follows,

δq = −
∑

I

P I,XI φ̇IδφI , (23)

while, the background energy density and the pressure yield

ρ + p =
∑

I

P I,XI φ̇
2
I . (24)

Thus the adiabatic field in our model is given by

σ̇ =
√∑

I

P I,XI φ̇
2
I , (25)
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and its perturbation can be expressed as

δσ =
∑

I

P I,XI

φ̇I

σ̇
δφI , (26)

which characterize the adiabatic fluctuations.
Moreover, we usually define another useful gauge-invariant

variable, curvature perturbation on uniform-density hypersurface
[41], with its expression as follows,

ζ ≡ −Φ − H
δρ

ρ̇
. (27)

On large scales, we have R � −ζ in a spatially flat universe. Thus,
both two quantities can be used to describe adiabatic fluctuations.
If the matter content of a cosmological system is made of multiple
components, we can define the curvature perturbation associated
with each individual energy density components, which are given
by

ζI = −Φ − H
δρI

ρ̇I
. (28)

Since in a system with multiple matter components, there are non-
vanishing entropic pressure perturbations even with every compo-
nent being adiabatic. So we can describe the entropy perturbations
by using the following expressions,

SI J = 3(ζI − ζ J ), (29)

which are so called relative entropy perturbations.
Furthermore, we can define the adiabatic unit vector eI

σ as fol-
lows,

eI
σ = √

P I,XI

φ̇I

σ̇
. (30)

To take a further step, we have

δσ = √
P I,XI δφI e

I
σ , (31)

and thus we can see that this decomposition is no longer on an
orthonormal basis.

In order to make the analysis more explicitly, we consider an
example of two k-essence fields. In this case the adiabatic pertur-
bation and entropy perturbation can be given by

δσ = cos θ
√

P1,X1δφ1 + sin θ
√

P2,X2δφ2, (32)

δs = − sin θ
√

P1,X1δφ1 + cos θ
√

P2,X2δφ2, (33)

and the angle is defined by

tan θ =
√

P2,X2 φ̇2√
P1,X1 φ̇1

. (34)

Using the above decomposition, we now obtain the formal ex-
pressions of dimensionless curvature and isocurvature perturbation
variables,

R � H
δσ

σ̇
, S = H

δs

σ̇
, (35)

on the spatially flat slices. Note that, as S is not directly observ-
able during inflation, what we are interested in is its spectral in-
dex but not the amplitude. Therefore, its normalization is quite
arbitrary. We take such a particular choice in Eq. (35) since it
has been widely used in usual double-field inflation as shown in
Refs. [42–45].
4. A model of two DBI type actions

In this section, we study a specific inflation model involv-
ing multiple sound speeds. The model was originally proposed in
Ref. [24], where the model is constructed by multiple DBI type
actions and its general feature has been studied under certain
approximations. Now we focus on a concrete model which only
involves two DBI type actions, with

P I (XI , φI ) = 1

f (φI )

[
1 − √

1 − 2 f (φI )XI
] − V I (φI ), (36)

with I = 1,2. This model might be viewed as an effective descrip-
tion of D-brane dynamics (for example, see Refs. [46]). Considering
a system constructed by two D3-branes in a background metric
field with negligible covariant derivatives of the field strengths and
assuming that these two branes are falling into their own throats,
this system can be described by the above action which has a
stringy origin as shown in Ref. [47].

In this model, the scalar φI describes the position of the brane.
If we consider the branes are falling into the AdS-like throats and
neglect the backreaction of the branes upon the background geom-
etry, the warping factor usually takes the form

f (φI ) = λI

φ4
I

. (37)

This assumption can be satisfied when the contribution of the
background flux is much larger than that from the branes.

4.1. Background equations

After having introduced the model, now we can study its back-
ground dynamics in the frame of FRW metric. For the scalars, the
sound speeds are given by

csI = √
1 − 2 f (φI )XI , (38)

and there is P I,XI = 1/csI . The above equation yields

|φ̇I | = φ2
I

(
1 − c2

sI

λI

) 1
2

. (39)

Since in the current Letter we focus our interests on the relativistic
limit with small sound speeds, then |φ̇I | � φ2

I /
√

λI .
Specifically, we consider the case of IR type potential with the

form of

V I = V 0I − 1

2
m2

I φ
2
I . (40)

The first part of the potential V 0I origins from the anti-brane ten-
sion from other throats. In IR DBI inflation [23], D-branes roll to-
wards the tip of the throats, thus the potential contains terms like
tachyon. Moreover, due to the warping factor f (φI ), those scalars
are able to stay near the top of their potentials, and so we have
H2 � 1

3

∑
I V 0I . In the following, we would like to investigate the

background in details.
In order to obtain a semi-analytic solution, we would like to

take a useful assumption with sI ≡ ċsI
HcsI

being small numbers, and
consider the relativistic limit of the branes.

A similar case of a single field has been studied in [23]. How-
ever, in our model the total Lagrangian is constructed by two DBI
fields, where each one field contribute one Lagrangian and has its
own sound speed, respectively. Therefore, we actually have two
sound speeds. Recall the generalized Klein–Gordon equations (7),
they can be reexpressed as follows,
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d

dt

(
φ̇I

csI

)
+ 3H

φ̇I

csI
+ f,I

f 2
(1 − csI ) − f,I φ̇

2
I

2 f csI
+ V ,I = 0. (41)

Under the relativistic limit of the scalars we can have an ansatz,
which takes the following form,

φI = −
√

λI

t

(
1 − αI

(−t)pI
+ · · ·

)
, (42)

where we set t → −∞ at the beginning of inflation.2 Therefore, to
insert the ansatz into the above equation, then we find the leading
terms in Eq. (41) come from the second term

3H
√

λI√
2αI (pI − 1)(−t)2− pI

2

, (43)

and the potential term which is equal to
√

λIm2
I

t
. (44)

The others are suppressed by 1
Ht which is negligible in inflation

(where |Ht| 
 1 or equivalently φI � √
λI H), and this requirement

is consistent with the assumption that the scalars lie on the top of
potential during inflation. Finally, by matching the leading terms,
we get pI = 2 and αI = 9H2

2m4
I

, and so the solutions of the scalars are

given by

φI � −
√

λI

t

(
1 − 9H2

2m4
I t2

+ · · ·
)

. (45)

Making use of the solutions, we have the sound speeds

cs I � − 3H

m2
I t

, (46)

to the leading order, and so can check that the approximations
with sI � 1 are consistent with the equations of motion when t →
−∞.

4.2. Quantum fluctuations and power spectrum

Now let us study the dynamics of quantum fluctuations in this
model. To do so, we go back to the second order action (20) di-
rectly and define the new variables which are canonically normal-
ized with conformal time. These variables are defined as

v I = a

√
P I,XI

csI
δφI , (47)

for the two scalars. Thus the dominant terms of second order ac-
tion can be given as follows,

S2 ⊇
∫

dτ dx3
2∑

I=1

[
v ′2

I − c2
sI∂i v I∂i v I + z′′

I

zI
v2

I

]
, (48)

under an assumption of weakly coupling between two fields. In
the above action, we have introduced some background-dependent
functions

zI = a
φ̇I

√
P I,XI

csI H
. (49)

2 In stringy configuration, the flux–antibrane annihilation in the multiple throats
naturally provides an attractive point for small field inflation with the branes gener-
ating at the tips of the throats through tunneling from an eternal inflation [22,48].
In the inflationary background, the equations of motion describ-
ing these two canonical perturbation variables in Fourier space are
given by

v ′′
Ik +

(
c2

sIk
2 − z′′

I

zI

)
v Ik = 0,

z′′
I

zI
� 2

τ 2
. (50)

One can see that, for each field fluctuation, there is a correspond-
ing sound horizon respectively. This scenario is quite different from
the case considered in Ref. [29] where there is only sound speed
characterize the propagation of the adiabatic mode.

To complete the quantization of the field fluctuations, we can
decompose the variables as

v I (τ , �x) =
∫

dk3

(2π)
3
2

[
aI�k v Ik + a†

I−�k v∗
I−k

]
ei�k�x, (51)

where the operators aI and a†
I are annihilation and creation oper-

ators, which satisfy the following commutation relation[
aI�k,a†

I�k′
] = δ(�k − �k′). (52)

Moreover, the normalization conditions require

v Ik v∗ ′
Ik − v∗

Ik v ′
Ik = i. (53)

Eventually, we choose that all the modes of perturbations be-
have as in the adiabatic Minkowski vacuum initially, and thus ob-
tain the solutions

v I k = e−icsI kτ

√
2csIk

(
1 − i

csIkτ

)
. (54)

These solutions imply that the power spectrum of the field fluctu-
ations are of the value,

δφI = √
PδφI � H∗I

2π
, (55)

after they escape out of their own sound horizons [49]. The sub-
script ‘∗I ’ denotes the sound horizon crossing time for the field
perturbation δφI .

Since in inflation the Hubble parameter is almost unchanged,
and the amplitudes of field perturbations are also nearly conserved
due to the feature of nearly scale-invariance, we can conclude that
the amplitudes of all field fluctuations take almost the same value
outside of their sound horizons. Due to this quantity, we can take
the maximum of those sound horizons as the final freezing scale
for all the field fluctuations, which corresponds to the perturbation
mode with the largest sound speed. For example, if we take m1 <

m2 in our model which gives cs1 > cs2 according to Eq. (46), then
the critical sound horizon takes cs1

H .
Based on the above analysis and making use of Eqs. (35), (55)

and the background solutions, one obtains the curvature perturba-
tion at the maximum sound horizon crossing time

R � N 2

2π
√

λI

(
1 + 27H4

2m2
1m2

2 N 2

)
, (56)

where we have considered the next-to-leading correction and in-
troduced the efolding number N ≡ ∫

H dt . The leading term of
entropy perturbation can be resolved as well,

S � 27H4(m2
1 − m2

2)

4π
√

λIm3
1m3

2

+ O
(

N −2), (57)

which is proportional to a parameter, relative sound speed �cs , at
the crossing time, with its definition in form of
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�cs = cs1 − cs2 � 3H(m2
1 − m2

2)

m2
1m2

2t
. (58)

Concerning the result (57), what we have obtained is the dom-
inant term which comes from the cancellation between the first
and second term in Eq. (33) in virtue of the values of field fluc-
tuations. This result is reliable if we only consider the dominant
term and have neglected the correlations between two fields inside
Hubble radius, which has been intensively discussed in the litera-
ture. However, a more careful derivative shows that the subdomi-
nant term, which comes from the correlations of two fields, would
become important at specific cases, for example when m1 = m2
in our model, and so would lead to an average of the square of
the isocurvature perturbation not vanishing even for m1 = m2. As
shown in Eq. (57), this correlation term is proportional to N −2

where N is the efolding number. Moreover, we would like to em-
phasize that, since entropy perturbation is not directly detectable,
we do not care about its amplitude too much but its spectral index
instead.

Besides, we can see that, if there is only one single field, the en-
tropy perturbation vanishes. Even for the case of double fields, the
entropy perturbation is still not large in usual DBI inflation, since
its amplitude is suppressed by the relative sound speed for which
we have expanded the detailed formalism in our concrete model.
However, one may notice that a relatively small mass term may
uplift the entropy perturbations. For example, if we take m1 � m2,
the amplitude of entropy perturbation takes an approximate form
as S ∼ H4

m3
1m2

which can be very large due to an enough light mass

m1. This feature might be very important and could be applied in
a curvaton model with DBI type actions which will be discussed in
near future [50].

Moreover, the leading term of the curvature perturbation is
consistent with the result obtained in Ref. [23], and the second
order contribution is suppressed by a square of the efolding num-
ber and so we can neglect it in usual case. One should keep in
mind that, if we tune one of the masses to be small enough, the
second order term could also dominate over. Furthermore, we give
the spectral tilts as follows,

nR − 1 ≡ d ln P R
d ln k

� − 4

N
, (59)

nS − 1 ≡ d ln P S
d ln k

� −8ε, (60)

in which we have the following relation

ε = − Ḣ

H2
� λI (m2

1 + m2
2)

3N 3M2
p

, (61)

in our model. The dependence of the spectral indices on the e-
folding number N for different background values are plotted in
Fig. 1.

From Fig. 1 we can read that, both the spectral index of cur-
vature perturbation and that of entropy perturbation are roughly
scale-invariant, but with their tilts a little red. Moreover, the devi-
ation of the entropy perturbation from a scale-invariant spectrum
is smaller than that of the curvature perturbation at the regime
of large efolding numbers, while larger at small efolding num-
bers. According to the recent cosmological observation, for instance
WMAP five year data [3], we have a constraint on the amplitude
of the curvature perturbation R � 4.8 × 10−5. So if we choose the
background parameters λI = 1014, the best fit value for efolding
number is N � 55 which satisfies the current cosmological obser-
vations very well.
Fig. 1. The plot of spectral indices as functions of the e-folding number N for cur-
vature and entropy perturbations. The red solid line denotes the spectral index of
curvature perturbation; the yellow dashed line denotes the spectral index of entropy
perturbation. The background parameters are taken as: λ1 = λ2 = 1014, m1 = 10−6,
m2 = 5 × 10−6. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

5. Non-Gaussianities

In the above section we have calculated the primordial fluc-
tuations in linear order. If our model indeed makes sense to the
physics of the early universe, it would be necessary to extend
the theoretical framework beyond the leading order. In particular,
the information of non-Gaussianity provides a potentially power-
ful discriminant between numerous models describing early uni-
verse and have attracted considerable interests. Non-Gaussianities
in usual single field inflation models were considered in [51–55]
and in more detail in [56] and it was found that non-Gaussianities
would be small. Later, large non-Gaussianity of specific shape [57]
which is of equilateral type can be obtained in single DBI inflation
[58], but its value of local type is still very small [59]. The non-
Gaussianity of local type can be sizable in bounce cosmology as
studied by Ref. [60]. We refer Ref. [61] for a comprehensive review
on this issue and Refs. [62] for some recent developments.

In this section we use δN formalism [63–65] to study the non-
Gaussianities in details. To start, we define the power spectrum
P R and bispectrum B R as follows,

〈Rk1 Rk2〉 = (2π)3δ3(�k1 + �k2)P R(k1), (62)

〈Rk1 Rk2 Rk3〉 = (2π)3δ3(�k1 + �k2 + �k3)B R(k1,k2,k3), (63)

and then these two spectra can be related in terms of the nonlin-
earity parameter fNL,

B R(k1,k2,k3) = 3

10
(2π)4

∑
k3

i∏
k3

i

P 2
R fNL(k1,k2,k3), (64)

in momentum space.
The concept of δN formalism identifies the curvature perturba-

tion with the perturbation of local expansion R = δN , and so the
curvature perturbation can be expanded as follows,

R =
∑

N,IδφI + 1

2

∑
N,I J δφIδφ J + · · · . (65)
I I J
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If we have calculated the three point correlators of field fluctua-
tions, the non-linearity parameter can obtained by making use of
above equations.

5.1. Equilateral type

Specifically, now we make a rough study on the three point
correlator and non-Gaussianity of equilateral type. A simple way
to investigate the three point correlator is to perturb the second
order Lagrangian as shown in Eq. (20). With an assumption of
weak coupling between the fields, we perturb the sound speeds
in the quadratic Lagrangian and then obtain the Lagrangian with
the leading order terms up to cubic parts,

L3 ⊇
∑

I

a3

2c5
sI φ̇I

[
δφ̇3

I − c2
sI

a2
δφ̇I (∇δφI )

2
]
. (66)

Correspondingly, the dominant terms in the interaction Hamilto-
nian in Fourier space are given by

H int ⊇
∫

dk3

[
−

∑
I

a3

2c5
sI φ̇I

(
δφ̇3

I + c2
sI

a2
k2δφ̇Iδφ

2
I

)]
. (67)

Then we decompose the field fluctuations in canonical quantiza-
tion process with creation and annihilation operators defined in
Eq. (52),

δφIk(t) = uI (�k)aIk + u∗
I (−�k)a†

I−k,

uI (�k) = H√
2k3

(1 + icsIkτ )e−icsI kτ . (68)

Since we have obtained the interaction Hamiltonian and the modes
of the field fluctuations, now we are able to calculate the three
point correlator, which takes,3

〈δφIk1δφIk2δφIk3〉 = −i

∫
dt

〈[δφIk1δφIk2δφIk3 , H int]
〉
. (69)

From Eqs. (67) and (68), we can see that H int ∼ ∑
I 1/c2

sI . Note that
this is consistent with the result in usual single DBI inflation which
is proportional to 1/c2

s [59].
Furthermore, from Eq. (72), we can read the partial derivative

of the efolding number with respect to each field. Substituting this
equation into Eq. (65) and using the expression (64), we finally
obtain an approximate form of fNL of equilateral type as follows,

f equil
NL ∼ (cs1 + cs2)(c5

s1 + c5
s2)

c2
s1c2

s2(c2
s1 + c2

s2)
2

. (70)

This result is also consistent with the case of single DBI in-
flation [59]. Moreover, if we take cs1 larger than cs2, then the
non-linearity parameter takes fNL ∼ 1/c2

s2. Therefore, we can con-
clude the non-Gaussianity of equilateral type is sensitive to the
smallest sound speed. (To make a comparison, the linear curvature
perturbation strongly depend on the largest sound speed, which
corresponds to the maximum sound horizon.)

5.2. Local type

To take a further step, we consider non-Gaussianity of local
type in the model we have studied in previous section.

3 For simplicity, we have assumed there is no coupling between two fields and
calculate the three-point function of each field. The studies on N-flation with single
DBI action were intensively studied in Refs. [27,66–69].
As analyzed previously, for all field fluctuations, their ampli-
tudes take almost the same value δφI � H

2π after they exit their
own sound horizons. Thus the non-linearity parameter of local
type is given by

fNL � 5

6

∑
J K N, J N,K N, J K

(
∑

I N,I N,I )2
. (71)

Moreover, from the formula of curvature perturbation (35), we can
read the following relations,

N,1 �
√

λI Hφ2
1

φ4
1 + cs1

cs2
φ4

2

, N,2 �
√

λI Hφ2
2

φ4
2 + cs2

cs1
φ4

1

. (72)

Moreover, we define a parameter

q ≡ φ2

φ1
, (73)

which represents the ratio between two scalars. Using this param-
eter we can simply describe two background evolutions. One is
q ∼ 1, which denotes that both two fields are rolling down along
their potentials synchronously as considered in previous sections;
the other is q 
 1, which describes that, the heavy field φ2 en-
ters its warping throat and provides first few efolds for inflation
and then the light field φ1 starts the second episode of inflation.
The latter case provides a specific realization of cascade inflation
[70–75].

Substituting the above relations into Eq. (71) and using the defi-
nition (73), we can obtain an approximate form of non-Gaussianity
of local type directly,

f local
NL ∼ q

N1
, (74)

where N1 denotes the efolds contributed by the field φ1. From
this result, one can see that the non-Gaussianity of local type is
suppressed by the efolding number. For example, we consider two
fields are rolling down in the same rate and thus there is N � 60,
we obtain f local

NL ∼ O (10−2). In this case the deviation of curva-
ture perturbation from Gaussian distribution is very small, and also
consistent with the result in single DBI inflation. However, if we let
the light field only provides the last several efolds during which
there is q 
 1, it gives f local

NL ∝ q which could be very large. We
understand its physics in the following. Initially, the heavy field
φ2 dominates the background evolution, and so the perturbations
from the other field φ1 contribute on iso-curvature modes. Later
the first period of inflation ceases with a cutoff φ2 ∼ M p and then
φ1 dominates over, and this process converts entropy perturbations
into adiabatic. In this process there is usually a non-linear growth
of curvature perturbations outside sound horizon. This mechanism
has been widely applied in curvaton [76–81], and Ekpyrotic mod-
els [82–85].

6. Conclusion and discussions

In this Letter, we have studied an inflation model involving
multiple sound speeds. This scenario can be embedded into in-
flation models with multiple components, for example a model of
N-flation, which in usual can avoid some difficulties of single field
inflation models, and so is regarded as an attractive implemen-
tation of inflation. In recent years, there have been many works
around the issue of N-flation, such as Refs. [86–92], and we refer
to Refs. [93,94] for recent reviews. However, in all these pioneer
works, there is only one sound speed involved. In the model we
proposed, due to a number of sound speeds, it may lead to plen-
tiful interesting phenomena. In the current Letter, we only focus
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on the curvature and entropy perturbations and has already found
that the decomposition on these two modes in usual N-flation
models cannot be applied in our model.

Specifically, we have studied a new model in which a collection
of two DBI fields drives inflation simultaneously. This model was
originally proposed in Ref. [24], which has discovered that some
non-perturbative effects are involved when we study background
evolution and curvature perturbation. In the current Letter, we
considered a tachyonic potential and provided detailed calculations
on perturbations. To linear order, we find that the perturbations
do not get freezed until the modes exit the maximum of all the
sound horizons, and so the linear perturbations depend on the
largest sound speed. Moreover, both the curvature perturbations
and entropy perturbations are nearly scale-invariant with red tilts.
However, their spectral indices are different. For curvature pertur-
bations, the tilt is suppressed by the efolding number as 1/N ;
while the tilt of the spectral index of entropy perturbations is sup-
pressed by efolding number as 1/N 3.

Furthermore, we have investigated the non-Gaussianities of
equilateral type and local type in this model. By calculating
the three point correlators, our results show that, for the non-
Gaussianity of equilateral type is much sensitive to the smallest
sound speed which takes the form fNL ∼ 1/c2

s . Besides, since our
model is constructed by double fields, there is entropy pertur-
bations generated during inflation. Therefore, when the entropy
perturbations contribute to curvature perturbations at late times
of inflation, they can lead to a sizable non-Gaussianity of local
type. However, if both two field evolve in the same rate during
inflation, the non-Gaussianity of local type is still suppressed by
slow roll parameter.

We close by making a comparison between our work and
Ref. [66] in the limit where the sound speeds of the adiabatic and
entropy modes are the same. In the current Letter we roughly fo-
cus our interests on three points, curvature perturbation, entropy
perturbation, and non-Gaussianities. In the limit with two sound
speeds being the same, the curvature perturbations in our model
coincide with those obtained in [66]. However, the entropy pertur-
bations are different. As we have explained in the main context,
since we focus on the examples that the two scalar fluctuations
are nearly uncorrelated, the dominant term of entropy perturba-
tion comes from their cancellation. If we take the same value for
two sound speeds, it requires m1 = m2 in our model and so cor-
responds to the case that the correlation term dominates over in
the expression of entropy perturbation. In this situation the behav-
ior of entropy perturbation would reduce to the result obtained in
Ref. [66]. The study of this scenario will appear in the near future.
Finally, by making a comparison directly, we can find the form
of equilateral non-Gaussianity is consistent with that in Ref. [66]
when we take two sound speeds be the same.
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