
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Artificial Intelligence 172 (2008) 392–412

www.elsevier.com/locate/artint

Learning how to combine sensory-motor functions
into a robust behavior ✩

Benoit Morisset a,∗, Malik Ghallab b

a SRI International, Artificial Intelligence Center, Menlo Park, CA, USA
b INRIA, Rocquencourt, France

Received 29 March 2005; received in revised form 23 July 2007; accepted 27 July 2007

Available online 2 October 2007

Abstract

This article describes a system, called ROBEL, for defining a robot controller that learns from experience very robust ways
of performing a high-level task such as “navigate to”. The designer specifies a collection of skills, represented as hierarchical
tasks networks, whose primitives are sensory-motor functions. The skills provide different ways of combining these sensory-motor
functions to achieve the desired task. The specified skills are assumed to be complementary and to cover different situations. The
relationship between control states, defined through a set of task-dependent features, and the appropriate skills for pursuing the task
is learned as a finite observable Markov decision process (MDP). This MDP provides a general policy for the task; it is independent
of the environment and characterizes the abilities of the robot for the task.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Robot behavior; Sensory-motor function; Skill; Planning; Learning

1. Introduction

Programming a robot for robustly carrying out various tasks in changing, open-ended environments is highly chal-
lenging. The technical literature is rich in controversial discussions about the merits and limitations of approaches
ranging from automata-based, purely reactive techniques, to deliberative approaches with explicit models and reason-
ing capabilities, as well as approaches extending popular programming paradigms to robotics, such as synchronous
programming, object programming, agent programming, logic programming or constraint programming. A pragmatic
view of robot programming, that is widely shared today, states that, (i) there is a clear need for consistently integrating
a wide spectrum of representations, (ii) deliberation is needed but the abstract representations of deliberation tech-
niques cannot handle alone, and directly, the low-level feedback loops from sensors to actuators, and (iii) learning is
required for mapping human advice and specifications into robot programs.

We describe here an approach along that view. The approach involves two steps:

✩ The authors collaborated for this work when both where with LAAS-CNRS, University of Toulouse, France.
* Corresponding author.

E-mail addresses: morisset@ai.sri.com (B. Morisset), Malik.Ghallab@inria.fr (M. Ghallab).
0004-3702/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2007.07.003

https://core.ac.uk/display/82143456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 393
Fig. 1. Hilare 2.

(1) specifying offline and synthesizing a collection of complex plans for achieving a robot task with a given set of
sensory-motor functions, and

(2) learning a controller for adequately using this collection of plans.

The learning step is the main focus and original contribution of this paper.
Let us assume that we are given a robot equipped with several sensors—sonar, laser, vision—and actuators—

wheels, arm—for moving around and handling objects (Fig. 1). This robot is endowed with various sensory-motor
functions, such as localization, map building and updating, motion planning, motion control along a planned trajec-
tory, obstacle avoidance, and arm and grasping control. Let us further assume that this robot has several redundant
ways of implementing the same sensory-motor function, eventually using different combinations of sensors and actu-
ators. There are advantages in having several redundant hardware and software means for achieving a sensory-motor
function. Redundancy is required for coping with possible hardware failures. Furthermore, no single method or sensor
has universal coverage. Each has its weak points and drawbacks. A diversity of means for achieving a sensory-motor
function allows for building up robust behavior.

Robustness also requires deliberation capabilities in order to combine several such means into plans appropriate
for the current task and context and to revise those plans when needed. Planning techniques usually rely on relational
models of tasks with abstract preconditions and effects. The abstract description of a task such as “navigate to” can
be useful for mission planning, but not for robustly performing the navigation task with low-level sensory-motor
functions. To achieve the deliberation capabilities needed at this level, our approach relies on two automated planning
techniques, namely hierarchical tasks networks (HTNs) and Markov decision processes (MDPs).

For each high-level task the designer specifies offline a collection of HTNs that are complex plans, called skills.
The primitives of these HTNs are modules implementing sensory-motor functions. Each skill is a possible way of
combining a few of these functions to achieve the desired task. A skill has a rich context-dependent control structure.
It includes alternatives whose selection depends on the sensor data. The degree of suitability of each skill for pursuing
the task can vary depending on the current context. It is assumed that the skills specified by the designer for the task
are complementary and provide good coverage of the diversity of execution contexts of that task.

394 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
The controller must choose dynamically, at each moment, the right skill for pursuing the task.1 This choice is far
from being obvious since the execution context is difficult to characterize and to map to skills at the robot design
stage. However, it is shown here that the relationship between control states and skills can be adequately represented
as an observable finite MDP and learned through experience. The action space of this MDP is the available set of
skills for the task; its state space is the robot control space.

The control state is defined through the discretized values of a set of task-dependent features describing the current
context. For the navigation task these features are, for example, the current estimated uncertainty in the robot location,
or the level of cluttering of the perceived local environment. The values of these features are maintained and updated
at about 10 Hz. A transition occurs in the control space when a change in the control state is observed. These non-
deterministic transitions are labeled by the current skill—since skills are the action space. The probability and cost
distributions associated with each transition are estimated during a learning stage. The learned MDP characterizes the
robot’s abilities for that task.

The controller relies on this learned MDP. It applies a closed-loop control. But it does not follow a universal policy
computed offline, as is usually done with MDP controllers in decision-theoretic planning [7]. Our approach is more
akin to the receding horizon control, as discussed in [3], in which a closed-loop policy is obtained by repeated online
planning from the current state, and by the application to that state of the first action (in our case the first skill) of the
obtained plan. Usually, in the receding horizon control, each online planning step provides an open-loop policy, that
is, a sequence of actions. In our case however, each online planning step provides a closed-loop policy, obtained by
decision-theoretic planning, taking into account the objectives specific to that step, as perceived in the control space.

We selected this MDP controller approach for quite natural reasons. First, we need a stochastic mapping from the
execution contexts to skills. Decision trees, for example, can be easily learned, but do not handle conveniently a sto-
chastic mapping. In contrast, this is very natural with MDPs. Furthermore, we were able to choose finite observable
MDPs because our MDP state space was not a priori given. We designed it, as a part of the controller design, by
choosing and discretizing task-dependent features that are observable and that characterize well the execution con-
text. This choice of observable finite MDPs is motivated by obvious complexity reasons: it drastically simplifies the
learning stage as well as the policy planning stage. Finally, our choice of a particular receding horizon control, by
the repeated online computation of a closed-loop policy, is more subtle but also very natural. A universal closed-loop
policy computed offline is a feasible approach only when the control objectives, as well as the model of the system
to be controlled, are available at the design stage. In our case, the control objective—that is, the goal to reach in a
navigation task—cannot be expressed, once and for all, in the control space. One must either rely on environment-
dependent MDPs, with obvious drawbacks in genericity and complexity, or recompute online closed-loop policies at
each control state for the current objective. The latter choice has great benefits in genericity and efficiency, and also
in robustness. The controller is not dependent on the convergence properties of an offline computed universal policy.
It is more reactive and more focused on the current goal through the repeated online planning of a closed-loop policy
applied to the current control state.

This is certainly not the first contribution that relies on a planning formalism and on plan-based control in order
to program an autonomous robot. For example, the “Structured Reactive Controllers” [4] are close to our concerns
and have been demonstrated effectively on the Rhino mobile robot. The efforts for extending and adapting the Golog
language [22] to programming autonomous robots offer another interesting example from a quite different perspective,
that of the Situation Calculus formalism [30], eventually in combination with HTNs [13] or MDPs [8]. The “societal
agent theory” of [23] offers another interesting approach for specifying and combining sequentially, concurrently or
in a cooperative mode, several agent-based behaviors. The CDL language used for specifying agent interactions is
similar to our programming environment. HTNs are used in [6] to specify navigation plans for the Rhino robot and to
improve by plan transformation the set of specified HTNs. Let us also mention the “dual dynamics” approach of [17]
that permits the flexible interaction and control of several skills. These are typical examples of possible architectures
for designing controllers for autonomous robots (see [2] for a more comprehensive survey). Our approach relies on
the use of HTNs for the specification and synthesis of skills as task networks. The approach is effective because
of the intermediate position of this representation between programming and automated planning. In one of our
implementations we relied on SHOP [28], a domain independent HTN planner, in order to synthesize offline skills

1 Unless stated otherwise, throughout this paper the word control refers to this high-level process of choosing a skill and modifying the robot
physical behavior according the sensory-motor functions of the chosen skill.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 395
from generic specifications [26]. This programming approach is very flexible and allows for robustness because of the
consistent use of several redundant HTN skills.

The main contribution of this paper is an original approach for learning, from the robot experience, an MDP-based
controller that enables a dynamic choice of a skill appropriate to the current context for pursuing the task. Learning
a policy—that is, a mapping from a state space to an action space—is a well-known problem with widely studied
techniques such as the TD(λ) [32] or the Q-learning [36] algorithms, and a broad variety of reinforcement learning
methods [33]. These approaches are well founded and have good properties inherited from those of dynamic program-
ming, such as convergence toward optimal policies [19]. Our approach relies on dynamic programming and the value
iteration algorithm. However, because of the receding horizon control, it is different from the usual reinforcement
learning. We do not aim at reaching a stationary value function Q(s, a) from which an optimal universal policy is
derived. Instead, at each decision step a new value function and a new policy are computed online, based on local con-
ditions and control objectives. We deal here only with the so-called indirect learning problem [3], that is, estimating
the probability and cost distributions of the MDP controller.

Reinforcement learning is quite popular in robotics; it may be used at several levels [31], including the control of
navigation tasks. Several authors have directly expressed Markov states as cells of a navigation grid and addressed
navigation through MDP algorithms such as, for example, value iteration [10,21,35]. Learning systems have been
developed in this framework. For example, XFRMLEARN extends these approaches further with a knowledge-based
learning mechanism that adds subplans from experience to improve navigation performances [5]. Other approaches
considered learning at very specific levels, for example, to improve path planning capabilities [9,15].

Our approach stands at a more generic level. Its purpose is to acquire autonomously the mapping from an abstract
state space, which is the control space, to the action space of redundant skills. We have proposed a convenient control
space. We have also introduced a new and effective receding horizon control, by the repeated online planning of a
closed-loop policy applied to the current state with respect to the updated current objectives. The approach relies
on an original search mechanism that repeatedly projects a topological route into the control space, allowing for a
precise and local expression of the navigation goal within the control space. The learning of this automaton relies on
simple and effective techniques. Because of the abstract state space, the learned MDP is independent of a particular
environment; it characterizes the robot capabilities.

This contribution is backed up by an implementation of the three components of the approach—sensory motor
functions, HTN skills, and MDP controller—within a mobile robot, and by extensive experiments and evaluation for
indoor navigation tasks.

These three components are successively described in the following three sections. The experiments and results are
given in a subsequent section, followed by a conclusion with an assessment of the approach.

2. Sensory-motor functions

Let us denote a software module implementing a sensory-motor function as an sm function; sm functions are
the low-level primitives available for programming the robot. Each sm function is coded as one or more modules
in our software engineering environment, called Genom [2,12]. Each sm function offers a set of services that can
be requested by another sm function or by the controller. Each call creates a process managed according to a finite
automaton composed of states such as Idle, Initializing, Interrupted, Executing, or Failed (Fig. 2). The transition events
are issued by the controller (noted “event/-” on Fig. 2) or by the execution engine (noted “-/event”).

A call to an sm function returns a report either indicating the end of a normal execution (the state of the process
switches to Idle), or giving additional information about nonnominal execution. If an error occurs during the execution,
a specific report corresponding to the error is issued and the activity switches to the state Failed.

As underlined in the introduction, it is important to have a redundant set of sm functions, several of them im-
plementing, in complementary ways, localization, mapping, or motion control. To be able to specify skills using sm
functions, it is also very important to have a good knowledge of these functions, of their weak and strong points, and
of how they complement each other. This section details the sm functions that we have implemented or used in our
experiments. It briefly describes the geometric and topological representations of space used within the sm functions.

We rely on a geometric model of the environment learned and maintained by the robot. This model is a 2D map
of obstacle edges acquired from the laser range data. A simultaneous localization and mapping (SLAM) technique is
used to generate and maintain this map of the environment [27].

396 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Fig. 2. Genom activity automaton.

A labeled topological graph of the environment is associated to the geometric 2D map. Cells are polygons that
partition the metric map. Each cell is characterized by its name and a color that corresponds to navigation features
such as Corridor, Corridor with landmarks, Large Door, Narrow Door, Confined Area, Open Area, Open Area with fixed
localization devices.2 Edges of the topological graph are labeled by estimates of the metrical length of the path from
one cell to the next and by heuristic estimates of how easy the traversal of such a path is.

2.1. Segment-based localization

This function relies on the map maintained by the robot from the laser range data. The SLAM technique uses a
data estimation approach called extended Kalman filtering in order to match the local perception with the previously
built model [27]. It offers a continuous position-updating mode, which is used when a good probabilistic estimate of
the robot position is available. This sm function explicitly maintains the inaccuracy of the robot position estimate as
an ellipsoid of uncertainty. When this estimated inaccuracy is above a threshold, the robot is assumed to be lost; a
relocalization mode is be performed. A constraint relaxation on the position inaccuracy extends the search space until
a good matching with the map is found.

This sm function is generally reliable and robust to partial occlusions, and much more precise than odometry.
However, occlusion of the laser beam by obstacles gives unreliable data. Occlusion occurs when dense unexpected
obstacles are gathered in front of the robot. Moreover, in long corridors the laser obtains no data along the corridor
axis. The inaccuracy estimate of the robot position increases along the corridor axis. Restarting the position updating
loop in a long corridor can prove to be difficult. A feedback from this sm function can be a report of bad localization,
which warns that the inaccuracy of the robot position has exceeded an allowed threshold. The robot stops, turns on the
spot, and reactivates the relocalization mode. This can be repeated to find a nonambiguous position in the environment
to restart the localization loop.

2.2. Localization on visual landmarks

This function relies on a calibrated monocular vision to detect known landmarks such as doors or wall posters [16].
It derives from the perceptual data a very accurate estimation of the robot position. Setting up is simple: a few wall
posters and characteristic planar features on walls are learned in supervised mode. However, landmarks are available
and visible only in a few areas of the environment. Hence this sm function is mainly used to update from time to
time the last known robot position. A feedback from this sm function is a report of a potentially visible landmark,
which indicates that the robot enters an area of visibility of a landmark. The robot stops and turns toward the expected

2 Existing environment modeling techniques enable automatic acquisition of such a topological graph with the cells and their labels, e.g., [34].
However, in the implementation referred to here, the topological graph is hand-programmed.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 397
landmark; it searches the landmark by using the pan-and-tilt mount. A failure report discloses that the landmark was
not identified. Eventually, the robot retries from a second predefined position in the landmark visibility area.

2.3. Absolute localization

The environment may have areas equipped with calibrated fixed devices, such as infrared reflectors or cameras, or
even areas where a differential GPS signal is available. These devices permit very accurate and robust localization [11],
but the sm function works only when the robot is within a covered area.

2.4. Elastic band for motion control along a planned trajectory

This sm function updates and dynamically maintains a flexible trajectory as an elastic band or a sequence of
configurations from the current robot position to the goal [20]. Connection between configurations relies on a set of
internal forces that are used to optimize the global shape of the path. External forces are associated with obstacles and
are applied to all configurations in the band in order to dynamically modify the path to take it away from obstacles.
This sm function takes into account the planned path, the map, and the online input from the laser data. It gives a
robust method for long-range navigation. However, the band deformation is a local optimization between internal
and external forces; the techniques may fall into local minima. This is the case when a mobile obstacle blocks the
band against another obstacle. Furthermore, it is a costly computational process that may limit the reactivity in certain
cluttered, dynamic environments. This also limits the band length.

The feedback may warn that the band execution is blocked by a temporary obstacle that cannot be avoided (e.g.,
a closed door, an obstacle in a corridor). This obstacle is perceived by the laser and is not represented in the map.
If the band relies on a planned path, the new obstacle is added to the map. A new trajectory taking into account the
unexpected obstacle is computed, and a new elastic band is executed. Another report may warn that the actual band is
no longer adapted to the planned path. In this case, a new band must be created.

2.5. Reactive obstacle avoidance

This sm function provides a reactive motion capability toward a goal without needing a planned path [24]. It extracts
from sensory data a description of free regions. It selects the region closest to the goal, taking into account the distance
to the obstacles. It computes and tries to achieve a motion command to that region.

The function offers a reactive motion capability that remains efficient in a cluttered space. However, like all the
reactive methods, it may fall into local minima. It is not appropriate for long-range navigation. Its feedback is a failure
report generated when the reactive execution is blocked.

2.6. Path planner

A path planner [29] may be seen as an sm function from the viewpoint of a high-level navigation controller. Note
that a planned path does not take into account environmental changes and new obstacles. Furthermore, a path planner
may not succeed in finding a path. This may happen when the initial or goal configurations are too close to obstacles:
because of the inaccuracy in the estimated robot position, the corresponding configurations may not be found within
the free part of the configuration space. The robot must move away from the obstacles by using a reactive motion sm
function before a new path can be planned.

3. Skills

A navigation task such as (Goto x y θ) given by a mission planning step requires an integrated use of several
sm functions among those presented earlier. Each consistent combination of these sm functions is a particular plan
called a skill. A navigation skill is one way of performing the navigation task. A skill has specific characteristics
that make it more appropriate for some contexts or environments, and less for others. We will discuss later how the
controller chooses the skill appropriate for the context. We exemplify some of such skills for the navigation task before
giving the detail of the HTN representation for skills.

398 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Skill A1. This skill uses three sm functions: the path planner, the elastic band for the dynamic motion execution, and
the laser-based localization. When A1 is chosen to carry out a navigation, the laser-based localization is initialized.
The robot position is maintained dynamically. A geometric path is computed to reach the goal position. The control
along that path is carried out by the elastic band sm function. Stopping the skill interrupts the band execution and the
localization loop; it restores the initial state of the map if temporary obstacles have been added to it. Suspending the
skill stops the band execution. The path, the band and the localization loop are maintained. A suspended skill can be
resumed by restarting the execution of the current elastic band.

Skill A2. This skill uses three sm functions: the path planner, the reactive obstacle avoidance, and the laser-based
localization. The path planner provides waypoints (vertices of the trajectory) to the reactive motion function. Despite
these waypoints the reactive motion can be trapped in local minima in cluttered environments. Its avoidance capability
is higher than that of the elastic band sm function. However, the reactivity to obstacles and the attraction to waypoints
may lead to oscillations and to a discontinuous motion that confuses the localization sm function. This is a clear
drawback for A2 in long corridors.

Skill A3. This skill is like A2 but without path planning and with a reduced speed in obstacle avoidance. It starts with
the reactive motion and the laser-based localization loop. It offers an efficient alternative in narrow environments like
offices, and in cluttered spaces where path planning may fail. It can be preferred to A1 in order to avoid unreliable
replanning steps if the elastic band is blocked by a cluttered environment. Navigation with this skill is reactive, hence
it may fall into a local minima problem. The weakness of the laser localization in long corridors is also a drawback
for A3.

Skill A4. This skill uses the reactive obstacle avoidance together with the odometer and the visual landmark localiza-
tion sm functions. The odometer inaccuracy can be locally reset by visual localization when the robot goes by a known
landmark. Reactive navigation between landmarks allows the robot to cross a corridor without accurate knowledge of
its position. Typically skill A4 can be used in long corridors if visual landmarks are available. However, the growing
inaccuracy can make it difficult to find out the next landmark. The visual search method allows for some inaccuracy on
the robot position by moving the cameras but this inaccuracy cannot exceed 1 m. For this reason landmarks should not
to be too far apart with respect to the required updating of odometry estimates. Furthermore, the reactive navigation
of A4 may fall into local minima.

Skill A5. This skill relies on the reactive obstacle avoidance sm function and the absolute localization sm function
when the robot is within an area equipped with absolute localization devices.

Skills are represented as hierarchical task networks (Fig. 3). The HTN formalism is adapted to skills because of its
expressiveness and its flexible control structure. HTNs offer a middle ground between programming and automated
planning, allowing the designer to express search control knowledge, which is available in our case. In HTN planning,
the planner is given this search control knowledge as a set of methods. A method is a formal description of how to
decompose a task into a set of subtasks, together with the conditions and ordering constraints of this decomposition.
Several alternative methods may be available for decomposing a given task. Planning proceeds by decomposing non-
primitive tasks recursively into smaller and smaller subtasks, until only primitive tasks are reached. These can be
performed directly using available actions (see for details [14], Chapter 11).

HTNs can be very general. For ROBEL we need only the restricted class of ordered simple task networks. Graphi-
cally, such an HTN is an And/Or tree. An internal node of the HTN tree is a task or a subtask that can be pursued in
different ways depending on the context. These alternate ways are specified by methods for decomposing the task or
subtask into an ordered conjunction of subtasks. The leaves of the tree are primitive actions, each corresponding to a
unique query sent to the Genom module representing the sm function.

A root task is dynamically decomposed, according to the context, into a set of primitive actions organized as
concurrent or sequential subsets. Execution starts as soon as the decomposition process reaches a leaf, even if the
entire decomposition process is not complete. A primitive action can be blocking or nonblocking. In blocking mode,
the control flow waits until the end of this action is reported before starting the next action in the sequence flow.
In nonblocking mode, actions in a sequence are triggered sequentially without waiting for a feedback. A blocking

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 399
Fig. 3. START task of skill A1.

primitive action is considered ended after a report has been issued by the sm function and after that report has been
processed by the control system. The report from a nonblocking primitive action may occur and be processed after an
unpredictable delay. A nonblocking primitive can be seen as a background process whose execution may affect the
skill, but it does not change the decomposition process. For example, the segment-based localization loop is started in
nonblocking mode.

Each skill corresponds to six different HTN tasks: start, stop, suspend, resume, succeed, and
fail. The start task represents the nominal skill execution. The stop task stops the skill, restores the neutral
state, and is characterized by the lack of any sm function execution. It also enables the environment model modified
by the skill execution to recover its previous form. The suspend and resume tasks are triggered by the recovery
system described below. The suspend task stops the execution by freezing the state of the active sm functions. The
resume task restarts the skill execution from such a frozen state. The fail (resp. succeed) task is followed when
the skill execution reaches a failure (resp. a success) end. These tasks are used to restore the neutral state and to allow
certain executions required in these specific cases.

The implementation of the five skills presented above involves several methods for each start task. For example,
the localization task is decomposed with two methods: the segment-based method used by skills A1, A2, A3 and A5,
and the vision-based method used by A4. The motion task is decomposed with two methods: the planned motion
method used by A1, A2 and A4, and the reactive motion method used by A3 and A5.

In a first implementation of ROBEL [25], no particular planner has been used to synthesize the five skills presented
above. For each skill, each task is decomposed by a unique predefined method. This deterministic decomposition
scheme has been directly implemented in Open-PRS (Procedural Reasoning System) [18]. The decomposition takes
place online when a skill is started, stopped, suspended, or resumed. In a subsequent implementation [26], the of-
fline synthesis of a set of skills from specified formal methods has been performed interactively using the Shop-2
planner [28].

4. The resource and recovery manager

A skill triggers several parallel activities that share resources. It receives reports back from its own sm functions.
These feedback reports and the shared resources are managed by the Resource and Recovery Manager (R&RM).

400 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Fig. 4. The ROBEL system.

The R&RM catches and reacts appropriately to reports emitted by sm functions (Fig. 4). The Resource and Recovery
Manager is also specified and implemented through a set of HTN tasks, called R-tasks.

A nonnominal report from a skill signals a particular type of sm function execution. The aim of the corresponding
R-task is to recover to a nominal execution of the skill. The following two example illustrates the recovery mecha-
nisms:

• A report from a localization function signaling that the robot is lost triggers a relocalization mode. The robot turns
on the spot, trying to catch in the environment some new feature to reinitialize the localization loop.

• The path planner may fail if the robot is too close to an obstacle. In that case a specific report is issued. The
R-task corresponding to this report starts a clearance procedure and moves the robot away from the obstacles. If
the clearance is successful, the resource manager resumes the execution of the current skill.

Some nonnominal reports can be nonrecoverable failures. In these cases, the corresponding R-task sends a fail message
to the skill pursuing this sm function. Nominal reports may disclose the success of the global task. In this case, the
success alternative of the skill is activated.

Resources to be managed are either physical and nonsharable (e.g., motors, cameras, pan-and-tilt mount) or logical
(the environment model that can be temporally modified). The execution of a set of concurrent nonblocking actions
can imply the simultaneous execution of different sm functions. These concurrent executions may generate a resource
conflict. For example, when a report signaling a bad localization is issued, the R-task corresponding to this report
must lock the resource “motor” to stop the robot and to start the re-localization procedure. To allow this recovery
procedure, the skill under execution must unlock the resource “motor” in conflict.

The R&RM manager organizes the resource sharing with semaphores and priorities.

• Each nonsharable resource is semaphorized. The request for a resource takes into account the priority level of
each consumer. This priority level is specified by the designer.

• The execution of an R-task is not interruptible. If another HTN task requires a resource already in use by a control
execution, the message activating this task (either skill or control) is added to a spooler according to its priority
level.

• An R-task has a priority higher than those of start and suspend tasks but lower than those of stop and
fail tasks.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 401
When a nonnominal report is issued by a Genom module, the R-task corresponding to this report starts its execution.
It requests the resource it needs. If this resource is already in use by a skill the manager sends to this skill a suspend
message, and leaves a resume message for the skill in the spooler according to its priority. The suspend alternative
is executed, freeing the resource and enabling the R-task to be executed. If the R-task execution succeeds, waiting
messages are removed and executed until the spooler becomes empty. If the R-task execution fails, the resume message
is removed from the spooler and the fail alternative is executed for the skill.

5. The controller

5.1. The control space

The controller must choose the skill that is the most appropriate to the current state for pursuing the task (Fig. 4).
A set of control features must provide control information. The choice of these control features is an important design
issue. For example, in the navigation task the control features that characterizes the navigation conditions are the
following:

• The cluttering of the environment, which is defined as the weighted sum of the distances to nearest obstacles
perceived by the laser range finder, with a dominant weight along the robot motion axis. This information is
important in establishing the execution conditions of the motion and the localization sm functions.

• The angular variation of the profile of the laser range data which characterizes the robot’s local environment.
Close to a wall, the cluttering value is high but the angular variation remains low. In an open area the cluttering
value is low while the angular variation may be high.

• The current inaccuracy of the robot position, a value that is estimated from the co-variance matrix maintained by
the localization sm function.

• The current confidence in the robot position estimate. The inaccuracy is not sufficient to qualify the localization.
Each call to the localization sm function supplies a heuristic estimate of the confidence in the last processed
position.

• The navigation color of the current area. When the robot position estimate falls within some labeled cell of
the topological graph, the corresponding labels are taken into account, for example, Corridor, Corridor with
landmarks, Large door, Narrow door, Confined area, Open area, Area with fixed localization.

• The current skill. This information is essential to assess the control state and possible transitions between skills.

Let f1, . . . , fm be a set of control features that range over finite sets, fi ∈ Di . A control state is defined by the
values of these control features. Hence, the control space is provided by the Cartesian product

∏m
i=1 Di .

To have a finite state space we need finite ranges Di . For that, continuous features are discretized over a few
intervals. In our implementation, the choice of these intervals was made manually by analyzing statistical data. We
recorded the values of the features for the robot in different navigation contexts. For instance, the cluttering feature
is useful for characterizing the obstacle avoidance conditions. To determine the intervals for this feature, the robot
was placed in significantly different situations regarding avoidance constraints: open spaces, doorways, offices, each
with several densities of obstacles. For each situation, the values of the cluttering feature were recorded. These values,
labeled by the situations we wanted to discriminate, were analyzed. Because we were controlling the experiment
by choosing the more appropriate situations to record, it was easy to define thresholds and intervals separating the
situations of interest. In more complex cases, classical clustering techniques could have been used.

In our experiments, the cluttering feature, the angular variation, the inaccuracy of the pose estimate and the confi-
dence in the pose estimate are discretized respectively over four, three, four and three intervals. The navigation color
of the area ranges over seven values; we have five skills. Hence,

∏m
i=1 |Di | = 4 × 3 × 4 × 3 × 7 × 5 = 5040.

The values of these five features are maintained and updated at about 10 Hz. A transition occurs in the control
space when a change in the value of a feature is observed. The 10 Hz rate is sufficiently high with respect to the speed
of the robot to guarantee that every change in the control space will be noticed, including every change in the color of
the traversed area.

402 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
For convenience, we consider an additional global failure state that is reached whenever the recovery and resource
manager of a skill reports a failure. We finally end up with the finite control space S = {failure}∪∏m

i=1 Di , from which
we define a control automaton.

5.2. The control automaton

Unpredictable external events may modify the environment and consequently the values of control features. For
example. someone passing by may change the value of the cluttering feature, or the localization inaccuracy feature.
Even without external events, that is with the assumption of a static environment, the transition from one control
state to the next is not fully predictable unless one assumes complete and precise models of the environment and no
uncertainty in the sensing functions. These assumptions are clearly unrealistic. Hence we relied on nondeterministic
transition models.

The nondeterministic control automaton is defined as the tuple Σ = {S,A,P,C,R} where

• S = {failure} ∪ ∏m
i=1 Di is the finite control space.

• A is the finite set of skills.
• P :S ×A× S → [0,1] is a probability distribution on the state-transition function; Pa(s

′|s) is the probability that
the execution of skill a in state s leads to state s′.

• c :A×S ×S → �+ is a cost function; c(a, s, s′) is the cost of performing the transition from s to s′ when execut-
ing the skill a; C(a, s) is the average over all possible transitions with a from s: C(a, s) = ∑

s′ c(a, s, s′)Pa(s
′|s).

• R :S → � is a reward function.

The utility of a pair (s, a) is defined as U(s, a) = R(s) − C(a, s).
A and S are given by design from the definition of the set of skills and the set of control features. In the navigation

system illustrated here, A = 5 skills and S = 5041 states. P and C are obtained from observed statistics during a
learning phase. Rewards are computed and updated at each step for the given navigation destination.

The control automaton Σ defines a Markov decision process. As an MDP, Σ could be used reactively on the basis
of a universal policy π that selects for a given state s the best skill π(s) to be executed. However, a universal policy
cannot meet different navigation destinations. A more precise approach takes into account explicitly the specified
destination g, transposed into Σ as a set Sg of desirable goal states in the control space, with appropriate rewards.
This set Sg is given by a repeated look-ahead mechanism based on a search for paths in Σ that may reflect a topological
route to the destination g. This mechanism permits a robust receding horizon control with online planning of a closed-
loop policy, applied to the current state and with respect to the current objectives, updated for that state.

5.3. Goal states in the control space

Given a navigation destination g, let r be a route in the topological graph from the current robot position to g. r is a
sequence of topological cells; it is given by a search in the topological graph, eventually taking into account estimated
metrical lengths of edges between cells. Let us characterize a route r by the sequence σr = 〈c1c2 . . . ck〉 of the distinct
colors of traversed cells such that ci
= ci+1 for i = 1 to k − 1; that is, ci corresponds to one or several consecutive
cells of the same color that are traversed by route r .

It is not possible to map directly the navigation destination g into a control goal state sg because we are using an
abstract control space Σ that does not represent explicitly spatial positions. But this abstract control space does take
into account the color of the traversed area. Hence, it is possible to map a route r leading to g into a set of paths in Σ

with corresponding colors, and to entail from it appropriate rewards to control states in these paths.
Let p be a path in Σ between two states. Path p can be characterized by its color signature σp , that is, the sequence

of colors of control states along path p. A path p in Σ is color compatible with a route r in the topological graph,
denoted color(p, r); when σp corresponds to the same sequence of colors as σr with possible repetition factors, that is

color(p, r) iff σp = 〈ci1c
i2 . . . c

ik 〉 for σr = 〈c1c2 . . . ck〉 and i1 > 0, . . . , ik > 0 are integers.
1 2 k

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 403
color(p, r) requires that path p in Σ is traversing control states having the same color as the planned topological
route r . A repetition factor corresponds to the number of control states, eventually several but at least one, required
for traversing one or several consecutive topological cells of identical colors.

Let r be a route in the topological graph from the current robot position to the destination g, and σr =
〈c1 . . . cici+1 . . . ck〉. Let s0 be the current control state; its color is by definition c1. The set of paths {p ∈ Σ |
color(p, r) holds} is given by a tree T , rooted in s0, and defined recursively as follows. Let s be an interior node
of T whose color is ci , for i = 1 to k − 1, s′ is a successor of s in T iff the following conditions hold:

• s′ is a successor of s in Σ , i.e., there is an action a such that Pa(s
′|s)
= 0.

• The color of s′ is either ci+1 or ci . In the latter case s′ is required to be different from s and from any of the
immediate predecessors of s that have the same color ci ,

• When i = k − 1 and the color of s′ is ck , then s′ is a leaf node in T .

This definition allows for paths in Σ with loops, but it forbids infinite loops over a subset of states with the same
color. The tree T is obviously finite since each node has a finite number of immediate successors, and the depth of T

is bounded by k and by the condition of distinct consecutive states with the same color.
The tree T is given by a straightforward depth-first search in Σ , keeping only paths that reach a leaf node. In the

worst case, T can be of exponential size. In practice, however, the sequence σr focuses T to a very narrow search with
few color-compatible paths. We may even have an empty tree; that is, no complete path meets the above conditions.
In that case we can either look for another topological route r ′ to the given destination and repeat the procedure, or we
can take the deepest path in T found along the depth-first search and consider it to be a good-enough approximation
of a color-compatible path for the purpose of the heuristics needed to choose the next skill.

Having defined T , the reward function in Σ with respect to the destination g, to the current position and current
control state of the robot is computed in the following way.

• Initially, R(s) ← −R0 for every s ∈ Σ , R0 being a positive integer.
• R(s′) ← R0 for every leaf node s′ in T .
• R(s) ← 0 for every interior node s in T .

This procedure gives positive rewards to goal states in Sg , neutral rewards to intermediate states leading to Sg , and
negative rewards to other states. It is important to notice that this set Sg of control states is a heuristic projection of
the planned topological route to the destination g.3 There is no guarantee that following blindly (i.e., in an open-loop
control) a path p in Σ that meets color(p, r) will lead to the destination, and there is no guarantee that every successful
navigation to the destination corresponds to a sequence of control states that meets color(p, r). This is an efficient and
reliable way of focusing the MDP utility function with respect to the navigation destination, to the current position and
control state, and to the planned route. It is quite robust since we are using it in a receding horizon control procedure
with online replanning of a closed-loop policy at each step.

5.4. Updating the control policy

At this point we must find the best skill to apply to the current state s0 in order to reach a state in Sg , given the
probability distribution function P and the utility function U : U(s, a) = R(s) − C(a, s).

A simple adaptation of the Value Iteration algorithm solves this problem (Fig. 5). One must solve the usual Bellman
equation: E(s) = maxa∈A Q(s, a), where E(s) is the expected utility in a state s, and Q(s, a) is the expected value
of executing the skill a in a state s: Q(s, a) = U(s, a) + γ

∑
s′∈S Pa(s

′|s)E(s′), where γ is the discount factor,
0 < γ < 1, to reduce the contribution of distant rewards and costs to the current state. The dynamic programming
approach for solving the Bellman equation leads to the iterative update:

Ek(s) ← max
a∈A

{
U(s, a) + γ

∑
Pa(s

′|s)Ek−1(s
′)
}

3 We also experimented with a heuristics that extends the color-compatible condition with a constraints on the metrical length of r with respect
to an estimate of the minimal length of p.

404 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Value-Iteration (Σ ,U ,γ)
for each s ∈ S do

if s ∈ Sg then E(s) ← 0
else E(s) ← ∞

k ← 1
while k < maximum number of iterations do

for each s ∈ S do
for each a ∈ A do

Q(s, a) ← U(s, a) + γ
∑

s′∈S Pa(s′|s)Ek−1(s′)
Ek(s) ← maxa∈A Q(s, a)

π(s) ← arg maxa∈A Q(s, a)

k ← k + 1
return(π)
end

Fig. 5. Value iteration.

The stopping criterion for this iterative update can be either a fixed upper bound on the number of iterations, as
stated in the algorithm, or a more flexible criterion of close convergence toward the fixed point given by the Bellman
equation:

max
s∈S

∣∣En(s) − En−1(s)
∣∣ < ε (1)

The output of the algorithm is not a fixed policy that will be used throughout, but an updated policy for the current
state and current estimated objectives.

5.5. The control loop

The receding horizon closed-loop controller uses the updated policy π given by the previous procedure as follows:

• The computed skill π(s0) is triggered; that is, the start HTN task for π(s0) is executed.
• The robot keeps observing the current control state; when a new state s is observed, it performs the following.

◦ It updates the route r , the set Sg of goal states, and the reward function R with respect to s.
◦ It finds the new policy π with respect to this context and the skill to apply to s.

The closed loop is repeated until the control reports a success or a failure. Recovery from a failure state consists in
trying from the parent state an untried skill. If none is available, a global failure of the task is reported. This receding
horizon control loop is fairly robust sensing noise, to imprecise and partial models of the environment and to external
events that may change the control state since we restart a new planning of the policy from the updated state.

5.6. Estimating the distributions of the control automaton

During the learning stage, a sequence of randomly generated navigation goals is given to the robot. Along its
navigations, new control states are met and new transitions are recorded or updated. Each time a transition from s to
s′ with skill a is performed, the traversed distance and time are recorded, and the average values for this transition
are updated. The cost of the transition c(a, s, s′) can be defined as a weighted average of the traversal time for this
transition, taking into account the eventual control steps required during the execution of the skill a in s together with
the outcome of that control. The statistics on a(s) are recorded to update the probability distribution function.

During the learning stage, a failure is used to extend the scope of untried skills: we move back to the parent state
and try a new skill. If none is available or if a new failure is recorded, the robot is manually moved to another part of
the environment and the learning of Σ is resumed from this new location. The current state can be a state previously
visited before the failure, or a new state in Σ .

Several strategies can be defined to learn P and C in Σ . For example:

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 405
Fig. 6. A cluttered environment.

• A skill is chosen randomly for a given task; this skill is pursued until either it succeeds or a fatal failure is notified.
In this case, a new skill is chosen randomly and is executed according to the same principle. This strategy is used
initially to expand Σ .

• Σ is used according to the normal control except in a state on which not enough data has been recorded; a skill is
randomly applied to this state in order to augment known statistics, for example, the random choice of an untried
skill in that state.

The former is a pure exploration strategy, and the latter is a blending of exploration and exploitation.

6. Experimental results

To assess the contributions proposed here, we wanted to qualify (i) the multiskill approach for navigating in
different types of indoor environments and (ii) the learning technique and the control automata. In the first stage
(Section 6.1) we wanted to assess the coverage of a reasonably small set of five skills for coping with a spectrum of
indoor environments as wide as possible. In the second stage (Section 6.2) the purpose was to evaluate how possible
and how easy it is to generate a controller Σ for handling two skills, A1 and A3.

6.1. Coverage of skills

The five skills described earlier have been fully implemented on our Diligent Robot [1] and extensively experi-
mented with. To characterize the usefulness domain of each skill we measured in a series of navigation tasks, the
success rate and other parameters such as the distance covered, the average speed, the number of retries, and con-
trol actions. Various types of navigation conditions have been considered with several degradations of the navigation
conditions,4 obtained by

• Modifying the environment: cluttering an area (Fig. 6) and hiding landmarks (Fig. 7).
• Modifying navigation data: removing essential features from the 2D map.

4 Note that usually experimental setups in robotics simplify the environment, while here we are making more complex.

406 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Fig. 7. Degradation of a long corridor.

Fig. 8. A complete occlusion of 2D edges.

Five different types of experimental conditions have been distinguished:

• Case 1: very long range navigation in nominal environment and map, e.g., turning around a circuit of 250 m of
corridors several times; minimum distance between obstacles is greater than 1 m.

• Case 2: traversal of a highly cluttered area (as in Fig. 6); minimum distance between obstacle is greater than
0.75 m.

• Case 3: traversal of the area covered by fixed cameras with the occlusion of the 2D characteristic edges of that
area (Fig. 8).

• Case 4: traversal of very long corridors with no obstacles.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 407
Skill case 1 case 2 case 3 case 4 case 5

A1 #r = 20 #r = 5 #r = 5 #r = 20 #r = 20
SR = 100% SR = 0 to 100% SR = 0% SR = 100% SR = 5%

A2 #r = 12 #r = 5 #r = 5 #r = 12 #r = 0
SR = 80% SR = 0 to 100% SR = 0% SR = 80% SR ≈ 5%

A3 #r = 10 #r = 10 #r = 0 #r = 0 #r = 0
SR = 0 to 100% SR = 100% SR ≈ 0% SR ≈ 80% SR ≈ 5%

A4 #r = 0 #r = 0 #r = 0 #r = 20 #r = 12
SR = 95% SR = 100%

Fig. 9. Experimental results.

• Case 5: traversal of long corridors with hidden landmarks and a map degraded by removal of several essential 2D
features, such as the contour of a very characteristic heating appliance (Fig. 7).

The experimental results are summarized in Fig. 9,
where #r denotes the number of runs, and SR is the success rate of the experiment. In some cases, the perfor-

mance of a skill varies widely depending on the specifics of each run. Instead of averaging the results, we found it
more meaningful to record and analyze the variation conditions. The following comments clarify the experimental
conditions and some results:

• Skill A1: This skill was able to perform 20 loops of 250 m with an average speed of 0.26 m/s with no failure as
long as no narrow pass is encountered on the circuit (SR = 100%). We noticed that SR drops sharply in case 1
if the circuit contains a narrow pass of less than 1 m with sharp angles. In this context, all failures are reported
by the elastic band that is unable to handle this situation. Similarly, for case 2 the results vary from easy success
to complete failure depending on the minimum distance between obstacles (SR = 0 to 100%). As expected, A1

fails completely in case 3 if the 2D edges are occluded since the laser-based localization is unable to operate
(SR = 0%). Twenty runs have been successfully performed in case 4 (SR = 100%). However, we observed that
too many obstacle avoidances performed in the middle of corridors may reduce SR because of a failure of the laser-
based localization. In case 5 longer corridors or imprecise initial localization sharply reduces SR (SR = 5%). All
the failures recorded in these cases come from the laser-based localization.

• Skill A2: Because of better avoidance capability of the reactive obstacle avoidance module over the elastic band,
A2 is significantly more robust than A1 in narrow and intricate passes (case 1). A2 is also slightly faster than
A1 for this case (0.28 m/s). However, the greater reactivity of the obstacle avoidance generates more rotations
of the robot. These rotations may lead to a less-precise laser-based localization, which explains lower values of
SR (SR = 80% for case 1 and SR = 80% for case 4 as opposed to 100% for A1 in both cases). As for A1, a
wide spectrum of results is obtained in case 2 depending on the environmental conditions. We noticed that if the
combination of the reactive obstacle avoidance with the path planner is useful for case 1, it may create some local
minima for case 2: the reactive obstacle avoidance starts oscillating between the repulsion of a close obstacle and
the attraction of the next waypoint. This situation generates a systematic failure (SR = 0 to 100%). For case 3,
100% of failure is obtained because of the inability of the laser-based localization. For case 5, since A2 uses the
same localization function as A1 and since the obstacle avoidance method is not essential in the traversal of a
corridor, we conclude that no difference exists between A1 and A2.

• Skill A3: Since this skill does not use a path planner, A3 cannot perform the circuit of case 1 (SR = 0%). We
manually introduced several waypoints along the circuit to guide the navigation. Waypoints too far apart lead to a
failure when the reactive obstacle avoidance reaches a local minimum. On the other hand, A3 is very successful
in case 2 (SR = 100%) even when the distance between obstacles is as low as 0.75 m, but A3 navigates at a slow
speed (average speed = 0.14 m/s). Case 3 has not been tested because A3 uses the same laser-based localization
as A1 and A2. Consequently we can predict that A3 will fail in that case. In a straight corridor with no local
minima, we infer that the performance of A3 for case 4 and case 5 will be approximately the same as A2.

408 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
• Skill A4: For case 1, case 2, and case 3, the corresponding environments were not covered with the needed visual
landmarks. Only the long corridors were equipped. For case 4 and case 5, A4 is not sensitive to the length of the
corridor or the degradation of its map as long as it contains enough landmarks.

• Skill A5 (not shown in the table): This skill fails everywhere except in case 3, since it is the only case where the
robot can be externally localized.

An interesting view of our results is that for each case there is at least one successful skill. These are the following:

– for case 1: A1 or A2
– for case 2: A3
– for case 3: A5 or A4 if the area is equipped with visual landmarks
– for case 4: A1, A2 and A4
– for case 5: A4

This clearly supports the assumption that the skills specified by the designer for the navigation task can be comple-
mentary and provide good coverage of the diversity of execution contexts of that task. It also supports the proposed
approach of a controller that switches from one skill to another according to the context through the repeated online
planning of a closed-loop policy applied to the current control state.

The above results correspond to navigation experiments using a single skill at a time. Four skills, A1, A2, A3 and
A4, have been demonstrated together [1] using a set of selection rules specified manually. The fragile results obtained
with the rule-based controller triggered our work on learning a robust control system.

6.2. Learning the controller

Our purpose here is to assess the approach for learning a controller Σ . To simplify the experiment, we restricted
the controller to handling only two skills, using a reduced control space of just four features. We started with an empty
automaton and two complementary skills:

• Skill A1, composed of path planning, elastic band, and laser-based localization.
• Skill A3 that works reactively, without path planning, with reactive obstacle avoidance, and laser localization as

with A1.

The velocity of the reactive obstacle avoidance is twice as slow as the velocity of the elastic band. This, together
with the path planner, makes A1 more efficient in large and open environments. On the other hand, the limited avoid-
ance capabilities of the elastic band make A3 better adapted to highly cluttered environments.

In this experiment, the learning strategy favors the exploration, that is, the completion of each transition. If a skill
has not been tried for the current state (untried skill), this skill is automatically chosen by the controller without any
computation of π .

The control state space is defined with the following four features: the cluttering of the environment (ranging from
C0 to C3), the angular variation of the laser profile (ranging from P0 to P2), the navigation color (OA for “open area”
and CA for “confined area”), and the skill being executed when the state is encountered.

A sample of four transitions is represented in Fig. 12. The probability P and the cost C are given for each transition
as they appear at the end of the experiment. The cost C is the inverse of the average speed recorded for each transition.

The experiment involves a total of 173 navigations over three phases with, respectively 83 navigations (noted from
n1 to n83), 30 navigations (from n84 to n114) and 58 navigations (from n115 to n173).

Phase 1. The learning starts with a series of 83 navigations in a large open environment. During these navigations,
86 states and 159 transitions are created in Σ (left part of Fig. 10). After the 53rd navigation the number of new
transitions encountered by the system tends to be stable. Between n53 and n83, the computation of π returns A1 for
any state encountered except for two states (in n60 and n70) whose transitions with A3 were still untried (Fig. 11).
The constant selection of A1 during the last 30 navigations shows that the controller correctly learned the superiority
of A1 over A3 for the open environments.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 409
Fig. 10. Evolution of the size of the graph.

Fig. 11. Percentage of choice of A1.

Two typical transitions in open environments are presented in Fig. 12(a) and (b). Figure (a) shows that continuous
execution of A1 gives the lowest average cost C = 2.96, whereas continuous execution of A3 in figure (b) yields an
average cost of C = 11.43. The skill transitions A1 → A3 and A3 → A1 produce higher costs because the robot must
stop before transitioning to a new skill.

410 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
Fig. 12. Example of transitions.

Phase 2. Here 30 navigations are run in a modified environment where several obstacles are added. This new situation
generates 14 new states between n84 and n87 and 10 new transitions are tried until n93. During these nine first
navigations, six failures are recorded for A1, each time from a state with a high level for the clutter feature. After n101
and until n114, each time a state with a high level for the clutter feature is encountered, the execution of A1 is stopped
by the controller and the obstacle avoidance is systematically performed with A3. No more failures are recorded with
A1. As soon as the clutter feature returns to a low level, the computation of π switches back to a selection of A1. A1 is
then kept as long as the value of the clutter feature stays low. Whereas in the previous phase A1 was more appropriate
than A3, in this second phase the system is able to learn within 30 navigations the better efficiency of A3 in cluttered
environments.

Figs. 12(c) and (d) represent two transitions encountered immediately prior to obstacle avoidance. The current
states for these transitions are characterized by the confined area navigation color (CA), the highest level of clutter
(C3) and the most variable laser profile (P 2). Figure (c) shows that the only way to avoid a failure for this transition
is to switch to A3. The example (d) shows that no failure is generated when A3 is kept. The only failures reported in
this situation occur when A1 is executed.

Phase 3. The goal of the third step is to verify that the learning of the second phase (avoidance) did not corrupt the
learning of the first phase (open navigation). The obstacles are removed to recover the same environment as in Phase 1,
and 58 more navigations are performed. This new step shows that the learning in Phase 1 was not complete: 10 new
states are created and 23 untried transitions are completed. Despite these untried transitions, between n114 and n152,
30 navigations are performed with 100% selection of A1 by π . After n151, A1 is constantly selected during the last
21 navigations. This last step shows that despite incomplete learning, the efficiency of A1 in Phase 1 has not been
forgotten after the learning in Phase 2.

B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412 411
7. Conclusion

ROBEL, the robot programming system proposed here, involves three components for achieving in a robust way a
high-level task:

• A set of redundant sensory-motor functions, implemented through software modules within the Genom software
engineering environment.

• A set of skills specified as HTN plans whose primitives are sm functions. These skills provide different ways of
combining some of the available sm functions to achieve the desired task. Skills are complementary and provide
good coverage of the diversity of execution contexts of that task.

• An observable finite MDP controller, learned through experience, which chooses dynamically at each control state
the right skill for pursuing the task. It implements an original receding horizon control, by the repeated online
planning of a closed-loop policy applied to the current state with respect to the updated current objectives.

This system has been fully implemented and deployed on an indoor mobile platform and experimented with in nav-
igation tasks within a wide laboratory environment. The approach is fairly generic and illustrates the use of planning
techniques in robotics, not for the synthesis of mission plans but for achieving a robust execution of the high-level
steps of such mission plans. The learned controller is fairly generic and independent of the specifics of a particular
environment. It characterizes the robot capabilities for the task. In principle it can be incrementally augmented with
new sm functions and new skills.

The HTN planning technique used for specifying detailed skills to be followed by a controller for decomposing
a complex task into primitive actions is fairly general and powerful. It can be widely applied in robotics because it
can take into account closed-loop feedback from sensors and primitive actions. It extends significantly and can rely
on the capabilities of the rule-based or procedure-based languages for programming reactive controllers, as in the
system described here. In a first implementation, these HTNs were hand-programmed in Open-PRS. In a subsequent
implementation, the offline synthesis of a set of skills from specified formal methods has been achieved using the
Shop-2 planner [26]. The designer selects from this set the most relevant skills for which learning is performed.

The MDP planning technique relies on an abstract dedicated space, namely the space of control states for the
navigation task. This abstract space is defined through a set of task-dependent features. It is independent of the robot
environment. The size of the control space is just a few thousand states. Consequently, MDP algorithms can be used
efficiently to replan online a closed-loop policy at each current state for the updated current objectives, as perceived
in the control space. Furthermore, the learning stage of the probability and cost distributions in Σ is feasible at
a reasonable cost. The drawback of these advantages is the ad hoc definition of the control space through task-
dependent features, which requires very good knowledge of the sensory-motor functions and the navigation task.
While in principle the system described here can be extended by the addition of new skills for the same task, or for
other tasks, it is not clear how easy it would be to update the control space or to define new spaces for other tasks.

In addition to future work directions mentioned above, an important test of ROBEL will be the extension of the
set of tasks to manipulation tasks such as “open a door”. This significant development will require the integration of
new manipulation functions, the design of redundant behaviors for these tasks and their associated control, and the
extension of the control state. We believe ROBEL to be generic enough to support and permit such developments.

References

[1] R. Alami, I. Belousov, S. Fleury, M. Herrb, F. Ingrand, J. Minguez, B. Morisset, Diligent: Towards a human-friendly navigation system, in:
IROS’2000, Takamatsu, Japan, 2000.

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, An architecture for autonomy, International Journal of Robotics Research 17 (4)
(1998) 315–337.

[3] A.G. Barto, S.J. Bradtke, S.P. Singh, Learning to act using real-time dynamic programming, Artificial Intelligence 72 (1–2) (1995) 81–138.
[4] M. Beetz, Structured reactive controllers—a computational model of everyday activity, in: 3rd Int. Conf. on Autonomous Agents, 1999,

pp. 228–235.
[5] M. Beetz, T. Belker, Environment and task adaptation for robotics agents, in: ECAI, 2000.
[6] T. Belker, M. Hammel, J. Hertzberg, Learning to optimize mobile robot navigation based on HTN plans, in: ICRA, 2003, pp. 4136–4141.
[7] C. Boutilier, T. Dean, S. Hanks, Decision theoretic planning: Structural assumptions and computational leverage, Journal of Artificial Intelli-

gence Research 11 (1999) 1–94.

412 B. Morisset, M. Ghallab / Artificial Intelligence 172 (2008) 392–412
[8] C. Boutilier, R. Reiter, M. Soutchanski, S. Thrun, Decision-theoretic, high-level robot programming in the situation calculus, in: Proc. 17th
National Conference on Artificial Intelligence (AAAI’00), Austin, Texas, 2000, pp. 355–362.

[9] S. Buck, U. Weber, M. Beetz, T. Schmitt, Multi robot path planning for dynamic environments: A case study, in: Proc. IEEE Intl. Conf. on
Intelligent Robots and Systems, 2001.

[10] T. Dean, M. Wellman, Planning and Control, Morgan Kaufmann, 1991.
[11] S. Fleury, T. Baron, M. Herrb, Monocular localization of a mobile robot, in: IAS-3, Pittsburgh, USA, 1994.
[12] S. Fleury, M. Herrb, R. Chatila, Genom: A tool for the specification and the implementation of operating modules in a distributed robot

architecture, in: IROS, 1997, pp. 842–848.
[13] A. Gabaldon, Programming hierarchical task networks in the situation calculus, in: AIPS’02 Workshop on On-line Planning and Scheduling,

Toulouse, France, April 2002.
[14] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice, Morgan Kaufmann Publishers, 2004.
[15] K.Z. Haigh, M. Veloso, Learning situation-dependent costs: Improving planning from probabilistic robot execution, in: 2nd Int. Conf. on

Autonomous Agents, 1998.
[16] J.B. Hayet, F. Lerasle, M. Devy, Planar landmarks to localize a mobile robot, in: SIRS’2000, Berkshire, England, July 2000, pp. 163–169.
[17] J. Hertzberg, H. Jaeger, Ph. Morignot, U.R. Zimmer, A framework for plan execution in behavior-based robots, in: ISIC-98, Gaithersburg,

MD, 1998, pp. 8–13.
[18] F. Ingrand, R. Chatila, R. Alami, F. Robert, PRS: A high level supervision and control language for autonomous mobile robots, in: IEEE

ICRA, St Paul (USA), 1996.
[19] T. Jaakkola, M. Jordan, S. Singh, On the convergence of stochastic iterative dynamic programming algorithms, Neural Computation 6 (6)

(1994) 1185–1201.
[20] H. Jaouini, M. Khatib, J.P. Laumond, Elastic bands for nonholonomic car-like robots: Algorithms and combinatorial issues, in: 3rd Int.

Workshop on the Algorithmic Foundations of Robotics (WAFR’98), 1998.
[21] L.P. Kaelbling, A.R. Cassandra, J.A. Kurien, Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation, in: IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, 1996.
[22] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, R. Scherl, GOLOG: A logic programming language for dynamic domains, Journal of Logic

Programming 31 (1997) 59–83.
[23] D.C. MacKenzie, R.C. Arkin, J.M. Cameron, Multiagent mission specification and execution, Autonomous Robots 4 (1) (1997) 29 V52.
[24] J. Minguez, L. Montano, Nearness diagram navigation (ND): A new real time collision avoidance approach, in: IROS, Japan, 2000, pp. 2094–

2100.
[25] B. Morisset, M. Ghallab, Learning how to combine sensory-motor modalities for a robust behavior, in: M. Beetz, J. Hertzberg, M. Ghallab,

M.E. Pollack (Eds.), Advances in Plan-Based Control of Robotic Agents, in: Lecture Notes in Artificial Intelligence, vol. 2466, Springer,
2002, pp. 157–178.

[26] B. Morisset, G. Infantes, M. Ghallab, F. Ingrand, Robel: Synthesizing and controlling complex robust robot behaviors, in: ECAI 2004, 2004.
[27] P. Moutarlier, R. Chatila, Stochastic multisensory data fusion for mobile robot location and environment modelling, in: Proc. Int. Symp. on

Robotics Research, Tokyo, 1989.
[28] D.S. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, F. Yaman, SHOP2: An HTN planning system, Journal of Artificial Intelligence

Research 20 (2003) 379–404.
[29] S. Quinlan, O. Khatib, Towards real-time execution of motion tasks, in: R. Chatila, G. Hirzinger (Eds.), Experimental Robotics 2, Springer,

1992.
[30] R. Reiter, Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems, MIT Press, 2001.
[31] W.D. Smart, L.P. Kaelbling, Effective reinforcement learning for mobile robots, in: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA

2002), 2002, pp. 3404–3410.
[32] R.S. Sutton, Learning to predict by the methods of temporal differences, Machine Learning 3 (1988) 9–44.
[33] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
[34] S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, Artificial Intelligence 99 (1) (1998) 21–71.
[35] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Frohlinghaus, D. Henning, T. Hofmann, M. Krell, T. Schmidt, Map learning and high speed

navigation in Rhino, in: D. Kortenkamp, R.P. Bonasso, R. Murphy (Eds.), AI-based Mobile Robots: Case Studies of Successful Robot Systems,
MIT Press, 1998.

[36] C. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992) 279–292.

