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0. Introduction

In this paper, we shall treat a discrete analog of the well-known skew self-adjoint
canonical (Dirac type, Zakharov—Shabat or AKNS) system:

I, O

—ind—i(x,z) =zY(x, )+ V®)Y(x,2), J= [ 0 -1,

], x>0. (0.1)

Here z is a spectral variabley andV are 2n x 2m matrix functions on the half-line,
and V is skew self-adjoint, that isy (x)* = JV(x)J with V(x)* being the matrix
adjoint of V(x). To obtain the discrete analog d.1) letU be the unique solution of
the initial value problem

C;—Z(x):—iU(x)JV(x), x>0, U(0) = Iy. (0.2)

Since JV(x) is self-adjoint, we get from(Q.2) thatU(x) is unitary for eachx>0.
Now put S(x) = U(x)JU (x)* and W(x,z) = U(x)Y(x,z). Then

cil—‘;v(x, ) =izSWx,2), Sx)=5x)*=5x)"" x>0 (0.3)

It is now immediate that
, i _
Wnia(D) = Wa(D) = == S, Wa (D), Sy=S; =571 n=01, .. (0.4)

is a natural discrete analog 00.0). This discrete analog of the continuous pseudo-
canonical system is very important. In fact, when= 1, then the system (0.4) turns

out to be an auxiliary system for the nonlinear isotropic Heisenberg magnet (IHM)
model [36] (see also the detailed discussion after Theorem 0.5 below and the historical
remarks in [12]). Motivated by the IHM model we shall use the tespin sequence

to denote any sequence &f x N matrices{S,} satisfying

S,=8'=81 n=012.... (0.5)

n n

As for the skew self-adjoint continuous ca@9] (see also [16]), one can associate
with (0.4) anm x m matrix function ¢(X), meromorphic orS1 < —J < 0, such that

n=0

where W, (1), n>0, is thefundamental solutiorof (0.4), i.e., the & x 2m matrix
solution W,, (1) of (0.4) normalized by the conditioWy(1) = I2,,. One refers top as
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the Weyl functionof (0.4). When the Weyl function is rational and strictly proper we
shall recover the system (0.4) explicitly from its Weyl function. For this purpose, we
need to introduce spin sequences that are the discrete analogs of the pseudo-exponential
potentials from [16,17] (see also the references therein).

The spin sequences from this special class are defined in terms of three parameter
matrices with the following properties. First fix an integhr > 0, and consider an
N x N matrix « with deta # 0, an N x N matrix g such thatXy = X§, and an
N x 2m matrix Ag. These matrices should satisfy the following matrix identity:

aXo — Zoo* = iAoAp. (0.7)

Given these three matrices X, and Ag we define forn = 1, 2, ... the N x 2m matrix
A, and theN x N matrix X, via recursion:

An+l =N\, + i“_l/\n J,
To1 =2, + o 1, @) o AL T AR ()7L (0.8)

Next assume that the matricgs, n = 0,1, 2,..., are non-singular. Then we say that
the sequence of matricds,} defined by

Sp=J+ AT A = A S H A, =012, (0.9)

is the spin sequence determindy the parameter matrices o and Ag. Notice that
this requires the invertibility of the matrices,.

For spin sequences defined in this way our first theorem presents an formula for the
fundamental solutiori¥,, (1) of (0.4).

Theorem 0.1. Let o (deta # 0), Zo (20 = Z) and Ap satisfy(0.7), and assume that
detX, # 0 for 0O<n< M, whereZ, is given by(0.8). For 0O<n<M — 1 let S, be
the matrices determined by, X9 and Ag via (0.9) and (0.8). Then S, = S = S,,‘1

for 0<Kn<M — 1, and for 0<n< M the fundamental solution, (1) of the discrete
system(0.4) can be represented in the form

n i\ .
W () = Wy a(n ) (L2 = 37) Wy a @72, (0.10)
where W, A (n, A) is defined by

Wy, 2) = Iy + iN 21y — ) 72A,,. (0.11)

When Xg > 0, there exist simple conditions anand Ag to guarantee that dei, #
0. First, if X9 > 0, then without loss of generality we can assume that= Iy.
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Indeed, it is easy to see that the sequence of matfi§gsdefined by 0.9) and (0.8)
1 1 1

does not change if we substitute o and Ag by Z,%axZ, Iy and Z,%Ao. So let
us assume thaty = Iy. Next, we partitionAg into two N x m blocks 01 and 0, as
follows: Ag = [01 02]. This together withXy = Iy allows us to rewrite (0.7) in the
form

o — o =i(0107 + 0203). (0.12)
Furthermore, in this casd, is given by
Ap = [y +ic D01 (Iy —io”1)"0,]. (0.13)
Finally, we shall assume that the pdi, 01} is full range which means that
CN = spafd 0:C" | k=0,1,2,...,N — 1}.

The following proposition shows that under these conditions automatically. geD
and det¥, #0 forn=0,1,2,....

Proposition 0.2. Let o be a square matrix of order Naind 61 and 62 be N xm matrices
satisfying(0.12). Assume that the paifx, 01} is full range. Then all the eigenvalues of
o are in the open upper half-plan€, and forn =1, 2, ... the matricesX, defined
by (0.8), with X9 = Iy and A, given by(0.13), are positive definite and satisfy the
identity

o, — z:nO()‘< S lAnAZ (014)

Definition 0.3. A triple of matricesa, 01 and 02, with « square of ordeN and 01 and
0, of size N x m, is called admissible if the pairg:, 01} and {«, 02} are full range
and the identity @.12) holds.

We denote by the acronym F@Gin(tely generatelithe class of spin sequences,}
determined by the matricegs X9 = Iy and Ag = [01 0], wherea, 01 and 0, form
an admissible triple. In this case, we also say that these spin sequenacktamined
by the corresponding admissible triples. The next two theorems present the solutions
of the direct and inverse problem in terms of the Weyl function.

Theorem 0.4. Assume that the spin sequer(&g}, >0 of the discrete pseudo-canonical
system(0.4) belongs to the class FG and is determined by the admissible tripta
and 62. Then the systen0.4) has a unique Weyl functiop, which satisfieq0.6) on
the half-plane3 A < —2, a finite number of poles excludeand this function is given
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by the formula
@(2) = i0;(Aly — B)" 02, (0.15)

where f = o — i0205.

Notice that the functiorp in (0.15) is a strictly propet x m rational matrix function.
Conversely, ifp is a strictly properm x m rational matrix function, then it admits a
representation of the form

@(2) = i05 (0, — 7)1, (0.16)

wherey is a square matrix andy, 9> are matrices of size x m. We refer to the right-

hand side of @.16) as aminimal realizationof ¢ if among all possible representations
(0.16) of ¢ the ordern of the matrixy is as small as possible. This terminology is
taken from mathematical system theory. We can now state the solution of the inverse
problem.

Theorem 0.5. Let ¢ be a strictly proper rationaln x m matrix function given by the
minimal realization(0.16). There is a unique positive definitex n matrix solution X
of the algebraic Riccati equation

X — Xy" = i(X0197X — 920%). (0.17)
Using X define matrice81, 02, and o = f§ + i0205 by
1 _1 11
01=X2¢1, 0O2=X 20, f=X 2y9X2. (0.18)
Theno, 01, and 02 form an admissible tripleand the given matrix functiow is the

Weyl function of a systetf.4) of which the spin sequends,} € FG and is uniquely
determined by the admissible tripte 01, and 0.

Next, we describe connections with the nonlinear IHM equation. For this purpose
consider the zero curvature representation [36] of the IHM model:

d

dl Gn(tv /1) = F}’l+l(tv /I)Gn(tv /1) - Gl‘l(tv ;L)Fn(tv /’{)7 (019)
where

Got ) =B 5.0, Fyaay= i@ Vi ® (0.20)

n\l, = 12 )vn , n\l, _/l—l. )»+l" .

VE®) = 1+ S 210 - 5 0) U2 £ S (0) (U2 £ 5,-1.(1)). (0.21)
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Here the vectorss , = [S} 52 %] belong toR3, R is real axis, the dot denotes

the scalar product ifit3, and the correspondence between the spin majriand the
spin vector?r is given by the equality

s3 s1_js?
Sr = [sr1+i82 ' —s%] (022)
r r r

In other words the IHM equation

d?n _ ?nJrl i\'nfl ) ’ (023)

dt Z?n/\<1+?n-?n+1+1+?nl'?n

where /\ stands for the vector product &°, is equivalent to the compatibility condition
(0.19) of the systems

W}'H-l(tﬂ )") = Gn(ta )v)Wn (tv /1)9

%Wn(t, 2) = Fot, YWy(t, 2)  (n=0). (0.24)

In (0.23) it is required thau?,,n = 1. Now one can see easily that the representation
(0.22), where_s?,, -?n =1, is equivalent to the equalities (0.5) wify # +I>. Thus

the first system in (0.24) coincides with system (0.4), whare= 2, and S,, # 1.

We use these connections to obtain explicit solutions of the IHM model.

The literature on continuous canonical systems is very rich, especially for the self-
adjoint case; see, for instance, the books [10,12,14,26,35]. Self-adjoint continuous
canonical systems with pseudo-exponential potentials have been introduced in [15],
and for this class of potentials various direct and inverse problems have been solved;
see [17] and the references therein. The subclass of strictly pseudo-exponential po-
tentials has been treated in [3-5]. Interesting recent results on the spectral theory of
self-adjoint discrete systems and various useful references on this subject can be found
in [2,7,9,13,28,37]. Mainly Jacobi matrices (or block Jacobi matrices as in [2]) that are
related to Toda chain problems have been studied. For the skew self-adjoint discrete
case some references can be found in [11,12,18].

Theorem 0.1 is the discrete analog of Theorem 1.2 in [16]. The right-hand side of
(0.11) can be viewed as the transfer function of a linear input—output system (see [6]).
Transfer functions of the special form given by (0.11) were introduced in [33], and
also used for the representation of the fundamental solutions of continuous canonical
systems [34,35]. In Theorem 0.1 we are closer to [16] (see also [30,32]), where the
dependence on the parameiediffers from the one in [34,35]. The condition on an
admissible triplea, 61, 0> that the pairs{«, 01} and {«, 02} are full range pairs is
specific for the discrete case. Nevertheless, Theorems 0.4, 0.5 and parts of their proofs
are analogous to results and proofs in Section 2 of Gohberg et al. [16].
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This paper consists of four sections not counting this introduction. Since elements
from mathematical system theory play an important role in this paper, we present the
necessary preliminaries from that area in Section 1. In Section 2, we prove Theorem
0.1 and present some auxiliary results that will be used in the application to the IHM
model. Theorems 0.4, 0.5 and Proposition 0.2 are proved in Section 3. In Section 4, we
construct solutions of the IHM Eq. (0.23), describe the evolution of the Weyl function
and consider a simple example.

1. Preliminaries from mathematical system theory

The material from the state—space theory of rational matrix functions, that is used in
this paper, has its roots in the Kalman theory of input—output systems [21], and can be
found in books, see, e.g., [19,8]. In general the rational matrix functions appearing in
this paper aregroper, that is, analytic at infinity, and they are square, of sizex m,
say. Such a functiofr can be represented in the form

F(J) =D+ C(Aly — A)"!B, (1.1)

where A is a square matrix (of which the ord®& may be much larger tham), the

matricesB and C are of sizesN x m andm x N, respectively, andD = F(c0). In

this paperD is often a zero matrix, and in that cabeis called strictly proper The

representation1(1) is called arealizationor atransfer matrix representatioof F, and

the numberN = ord(A), is called thestate—space dimensiaof the realization. Here,
ord(A) denotes theorder of the matrix A.

Realizations of a fixedr are not unique. The realization (1.1) is said torb@mimal
if its state—space dimensioN is minimal among all possible realizations Bf The
state—space dimension of a minimal realizationFois called theMcMillan degree
of F and is denoted by def. Notice that degF' = O corresponds to the case when
ord(A) = 0, and this occurs if and only i¥' (1) = D. The realization (1.1) ofF is
minimal if and only if

N-1 N-1
span| J ImA*B=C". [ KercA*={0}, N =ord(4). (1.2)
k=0 k=0

If for a pair of matrices{A, B} the first equality in {.2) holds, then A, B} is called
controllable or a full range pair. If the second equality in (1.2) is fulfilled, thefC,
A} is said to beobservableor a zero kernel pair If a pair {A, B} is full range, and
K is anm x N matrix, whereN is the order ofA and m is the nhumber of columns for
B, then the pair{A — BK, B} is also full range. An analogous result holds true for
zero kernel pairs.

Minimal realizations are unique up to a basis transformation, that is, if (1.1) is
a minimal realization ofF and F(1) = D + C(.Iy — A)"1B is a second minimal
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reallza'uon ofF, then there exists a unique invertible matBxsuch thatA = SAS™L,
=SB, andC = CS~L. In this caseSis called astate—space similarity
Fmally, if in (1.1) we haveD = I,, then F(7) is invertible wheneverl is not an
eigenvalue ofA — BC and in that case

F)t=1,—-C0QIy—-A%"1B, A*=A-BC. (1.3)

2. The fundamental solution

In this section, we prove Theorethl and present some results that will be used in
Section 4 (a result on the invertibility of matric&s,, in particular).

Proof of Theorem 0.1. First, we shall show that equalities (0.7) and (0.8) yield the
identity (0.14) for alln>0. The statement is proved by induction. Indeed,fet O it

is true by assumption. Suppose (0.14) is truerfee r. Then using the expression for
%,41 from (0.8) and identity (0.14) for = r we get

o1 — z:r—Q—le*
= iAAF + i A A @) T AN )T — oA T AR (2.1)
The first relation in 0.8) and formula (2.1) yield (0.14) for=n 4+ 1 and thus for all
n>0.

The next equality will be crucial for our proof. Namely, we shall show that for
0<n<M —1 we have

Wy a(n+1.2) (12,,1 - ;—J> - (12m - %sn) Wy a(n, 2). (2.2)
By (0.11) formula (2.2) is equivalent to the formula
1 i xv—1 -1
Z(S” —N=\Iy — ES" AZ Ay —a) Ay
1 . _ i
— N Z Oy — ) A (12m - 71]> . (2.3)

Using the Taylor expansion ofi/y — o)~ at infinity one shows that2(3) is in its
turn equivalent to the set of equalities:

Sp—J = AT A — Af T H A, (2.4)
An+1zn—%lapA”+1 - iA:+1E;+1OCp71A”+1J

= AT Yol A, — i S AFE P TIA, (p > 0). (2.5)
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Equality @.4) is equivalent to (0.9). Taking into account the first relation in (0.8) we
haveuA, 11 —iAns1J = oA, + o~ 1A,. Thus the equalities in (2.5) can be rewritten in
the form K,0”?—2A, = 0, where

Kn =N 15007+ Iy) — A Z be? + i8S, AL % . (2.6)

Therefore, if we prove thak,, = 0, then equalities2.5) will be proved, and so formula
(2.2) will be proved too. Substitute (0.9) into (2.6), and again use the first relation in
(0.8) to obtain

Kn=A 1S b @2+ Iy) — A Mo +iJ AL

FiINE A AT o — AR T (A + i A DRSS Y (2.7)
Now, we use Q.14) to obtainiA,A*X ! = o — 2,¢*2 1 and substitute this relation
into (2.7). After easy transformations it follows that

Kn=A? +12;j1<a—12n(a*)—1 F3, 4 a‘lAnJA:(a*)—l) T 1y

+iJNZ e — Al s, (2.8)
In view of the second relation in0(8) the first term on the right-hand side of (2.8)
equalsA’, o*%, Yo and we have

Kn= (N +id A @)™ — Ao s, o (2.9)

By the first relation in Q.8) the equalityk, = 0 is now immediate, i.e., (2.2) is true.
Notice that equality (0.10) is valid for = 0. Suppose that it is valid for = r.
Then (0.4) and (0.10) yield

i N
Wosa(h) = (1% - iSr) WA 2)(Tan = =0 ) Wy a0 27 (2.10)

By (2.2) and (2.10) the validity of (0.10) fot = r + 1 easily follows, i.e., (0.10) is
proved by induction.

Consider now the matriceS, given by (0.9). It is easy to see th8f = S;;. Notice
also that in view of (0.14) we have

Wo A DWy A, D) = T (r20), (2.11)
where 1 stands for complex conjugate for. From @.2) and (2.11) it follows that

(Iom — i2728,) (o + i571S,) = 272(J2 + 1) I,,. Thus the equalitys* = S, holds,
which finishes the proof of the theorem(d
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The case wher:i ¢ o(o) (6 means spectrum) is important for the study of the IHM
model. Assume this condition is fulfilled, and put

Ry = (Iy —ia ) 7"E,(Iy + i) ™™, (2.12)
Qn = (Iy +ia D", (Iy — i) ™H™" (2.13)
The following proposition will be useful for formulating the conditions of invertibility
of Z, in a somewhat different form then those in Propositth@ (see Corollary 2.2
below).
Proposition 2.1. Let the matricesx (deta # 0), Xo = X§, and Ag satisfy (0.7), and
let the matricesX,, be given by(0.8). If i ¢ o(x), then the sequence of matricéR,,}
is well defined and non-decreasing.H ¢ o(x), then the sequence of matricég,,}

is well defined and non-increasing.

Proof. To prove that the sequend®,} is non-decreasing it will suffice to show that
Zu41 — Iy — i HZ,(Iy + i@ H >0, (2.14)
For this purpose notice that

Zpp1— Iy — i DIy +i(@)™h)
=it — Zp — 0 18,0 — a0, — T ()7L
Hence, in view of Q.8) and (0.14) we get
Zpa1— Uy — i DIy +i(@H)™h
= o0 YA TAS + A A ()7L (2.15)

Since J + I, >0, the inequality 2.14) is immediate from (2.15).
Similarly, from (0.8) and (0.14) we get

Zup1— Uy + i DIy —i (@)™
= o0 HALJ AL — A A ()10, (2.16)
and so the sequence of matricgs,} is non-increasing. O
According to Propositior2.1, wheni ¢ ¢(x) and Zg > 0, we haver, > 0.

Corollary 2.2. Let the conditions of Propositio2.1 hold, and assume that ¢ o(x)
and o > 0. Then we ge&, > 0 for all n > O.
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Partition the matricesv, 5 (r, 2) and A, into two m-column blocks each:

Wor(u2) = [(Wan(. D)y (Wan(o D))o Ar=[(A1 (An2]

The next lemma will be used in Section 4.

Lemma 2.3. Let the matricesx (0, i ¢ a(®)), Zo (Zo = Z) and Ag satisfy (0.7),
and let the matricex,, be given by(0.8). Then forn >0 the following relations hold

(Wyr(n, i), = (Wynn + 1, =),

x(lm + 2(Wyn(n, D)) ALE 262 + IN)*l(An)l), (2.17)

(Woa(n, =), = (Wya(n + 1, 1)),

x(lm — 2(Wya(n, =) ArZ, 102 + IN)*(An)z). (2.18)

Proof. From the proof of Theoren®.1 we know thatk,, = 0, whereK,, is given by
(2.6). In particular, we get

Koo Y02+ In) THAD1 =0, Kuo H @ 4+ In) T H(A)2 = 0. (2.19)

To prove @.17) notice thatA,+1)1 = a Y +ily)(A,)1 and rewrite the first equality
in (2.19) as

A Z @+ i) T A1 — ALZ e — i) TN A
+illom + SOALZ @ + In) " H (AL = 0. (2.20)
Put A = —i in (2.2) and take into account (2.11) to derive
Iom + Su = 2(Woa(n + 1, =) 1 (Wy A (n, 1)) (2.21)

In view of definition 0.11) of W, o, equality (2.17) follows from (2.20) and (2.21).
Putting 2 =i in (2.2) we get

Iom — Su = 2(Wo o + 1,1)),(Wy A(n, —i))5. (2.22)

Analogously to the proof of2.17) we derive (2.18) from (2.22) and the second equality
in (2.19). O
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Remark 2.4. According to @.21) and (2.22) the rank of the matricés, + S, is
less than or equal ton. Together with the formula (0.5) this implies that under the
conditions of Lemma 2.3 we hav&, = U,JU,;, whereU, are unitary matrices and

is defined in (0.1).

3. Weyl functions: direct and inverse problems

In this section we prove Theorems 0.4 and 0.5, and Proposition 0.2. At the end of
the section a lemma on the casé o(x) is treated too.

Proof of Proposition 0.2. Supposef is an eigenvector of;, that is,of = c¢f, f # 0.
Then formula (0.12) yields the equality

i©— ) f*f = f*(010F + 0203) f >0, (3.1)

So ¢ € C;. Moreover, ifc = ¢, then according to3.1) we havef); f = 05f = 0, and
thereforeo f = o* f. It follows that

fr01=0, f*a—cly)=0 (f#0). (3.2)

As {a, 01} is a full range pair, so the paie.—cly, 01} is full range, which contradicts
(3.2). This implies that € C,4, i.e., o(a) C C4.

Recall that identity (0.14) was deduced in the proof of Theorem 0.1. Taking into
account thaio (o) C C,., identity (0.14) yields

1 o0
T, = — (o0 — AN) LA A (0 = Ady) "L d . (3.3)

= 20 oo

Notice now that the paifa, (Iy + io~1)"01} is full range and use(13), (3.3) to
obtainX, >0 foralln>0. O

Remark 3.1. In the same way as in the proof of Propositi@r2 above the inclusion
a(a) C C; follows from the weaker condition that the paj, Ag} is full range.
However, the exampleV = 1, « = i, 01 = 0, 0205 = 2, which yieldsX, = 0 for
n > 0, shows that we have to require that the dair04} is full range in order to get
%, > 0. The full range condition on the pafi, Ag} is not enough for this conclusion.

Recall now Definition 0.3 of the admissible triple. Proposition 0.2 implies, in par-
ticular, that detc £ O for the admissible triple and the spin sequeng®s determined
by it are well defined for alk > 0. In other words the class FG is well defined.
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Proof of Theorem 0.4. Let W, A (n, 1) be given by (0.11). WriteW, 5 (0, 1) as

_ | a(d) b(A)
Wa.A(OJ)—[C(A) d(i)] (3.4)

where them x m matrix functionsb (1) andd (1) are given by
b)) = i0i(Ay — o) Y02, d(2) = L, + 052y — o)~ 105 (3.5)
We first prove that
b(d()~t =05y — B)~10. (3.6)
Using (.3) in preliminaries, fromp = o — 0205 and (3.5) we obtain
d)t =1, —i050Iy — p)~10,. (3.7)
From = o — i0205 and the equalities3(5) and (3.7) we see that

b(J)d ()7t
= i0{(Uy — o) M2+ i05(AIy — o)~ (B — o) (Aly — B)~102. (3.8)

From 3.8) formula (3.6) follows.
Let ¢ be defined by (0.15), and thus by virtue of (3.6) we have

P(2) = b(Ad (). (3.9)

By (3.4), (3.9) and the representation (0.10) of the fundamental solution we get

) A4+i\"
wnoo[‘l’,(nf)}:(%) Wa,A(n,m[ d(g_l] (3.10)

Notice also that@.14) yields a more general formula than (2.11), namely

Wl,A(nv //L)*Wl,/\(n’ }“)
= Loy — i — DAy — o) 72 00y — )7 2A,. (3.11)

As the second term in the right-hand side 8f1(1) is non-positive, it follows from
formula (3.11) that

Wy n(n, )Wy aln, ) <Izm (heC_). (3.12)

Taking into account3.10) and (3.12) we obtain (0.6), i.ep, is a Weyl function.
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It remains only to prove the uniqueness of the Weyl function. Let us first show that
for someM > 0 and alln >0 we have the inequality

AUy — i)™ Uy + i Y F <M f. felL, (3.13)
where
L = span g, Im (Aly — o)~ 01.
In view of (0.13) formula (3.11) yields
0i(ly — o)ty — i) Hrzt

x(Iy +ia~ Y Uy — o)~ 10, < 7’—1 In. (3.14)

Now to get 8.13) from (3.14) we note that span,, Im (il —a)~101 coincides with
the same span whena runs over ane-neighbourhoodO. of any Ag ¢ g, for any
sufficiently smalle > 0.

By (3.11) and (3.13) we can chood¢; > 0 such that we have

1
[ O]wa,A(n,z)*wa,A(n,;L)[lg}>§ forall || > M. (3.15)

Without loss of generality we may assume thdy is large enough in order that
M1 > |l«|| and a(4) is invertible for |1] > Mj. Then, taking into account0(10) and
(3.15), we obtain

Dm (c(Da()™h)
n=0

I

XWH(A)*WH(;L) [C(i)a’z;b)l

] > %(a(/l)*l)*a(z)*l (3.16)

for all A in the domainD ={A: |1 > M1, 31 < —1/2}. In other words, forl € D
we have

W) Wa() f =00 (f €Ly, (3.17)

n=0

where

I
Ly :=Im |:c(/l)a(2)_1:| .
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Suppose now that and ¢ are Weyl functions of @.4) and that for some fixed
o € D we havep(lg) # ¢(Lo). Put

L= Im [(P(io)} S+ im [@(ﬂuo)}
; .

m Im

According to the definition of the Weyl function we have

DS W) W) f <00 (f € L2 (3.18)

n=0

As dim L1 = m and dimLy > m, there is a non-zero vectérsuch thatf € (L1NLy),
which contradicts 3.17) and (3.18). O

For the proof of Theorem 0.5 we shall use the following lemma which is of inde-
pendent interest.

Lemma 3.2. A strictly proper rationalm x m matrix function ¢ admits a minimal
realization of the form

() =05y — p)~ 102, (3.19)

such thatf — f* = i(010; — 0205).

Proof. We may assume thap is given by the minimal realization0(16). First let us
show that Eqg. (0.17) has a unique soluti&n> 0.

The minimality of the realization (0.16) means that the palf, y} is observable
and the pair{y, 92} is controllable. Notice that Im 2 Im ¥9* and f*9¥9* = 0 yields
¥ =0, ie., Imd = ImdJI9*. Hence the paily, ¥2935} is controllable too. Therefore
the pair {9293, iy*} is observable. The paifiy*, ¥1} is controllable and hence c-
stabilizable, that is, there exists a matKkxsuch thatiy* + 91K has all its eigenvalues
in the open left half-plane. But then we can use Theorem 16.3.3 [24] (see also [20])
to show that the Eq. (0.17) has a unique non-negative soliiand that this solution
X is positive definite.

Next, let61, 02, p be defined by (0.18). From (0.17) and (0.18) we see fhaf* =
(0107 — 0203).

According to (0.16) and (0.18) the functiamnis also given by the realization (3.19).
Moreover as the realization (0.16) is minimal, the same is true for the realization
(3.19). O

Proof of Theorem 0.5. Let ¢ be a strictly proper rationah x m matrix function. Let
01, 02, p be as in Lemma 3.2, and put = f + i6205. Then the triplea, 61, and
0, satisfies (0.12). Furthermore, the pal 0} and {#*, 0,1} are full range. Since
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a = f+i0205, it is immediate that the paifx, 02} is full range (see Sectioft). By
(0.12) we havef* = o* +i0205 = o — i0107. Hence, agf*, 01} is a full range pair,
so the pair{a, 01} is full range too. Therefore the triple, 01, and 02 is admissible.
From Theorem 0.4 it follows now that the functigfi,} determined by the admissible
triple o, 61 and 62 is indeed a solution of the inverse problem.

Let us prove now the uniqueness of the solution of the inverse problem. Suppose
that there is_system (0.4) with another spin sequefi:¢, given by the admissible
triple @, 01, 02, and with the same Weyl functiop. According to Theorem 0.4 we
have another realization fap, namely

~ ~y

() =05 — B) 02, B =75—i0:0,. (3.20)

As the pairs{z, ()1} and{oc ()2} are controllable, aan = ac—l()z()z [f =a —z()l()l,
it follows that the paws{ﬁ 92 and{ﬁ 81} are also controllable. Thus the realization
(3.20) is minimal andV = N. Moreover, there is (see Section 1) a state—space similarity
transforming the realization (0.15) into (3.20), that is, there exists an invertibleN
matrix S such that

B=SBSL, 0=50, 0; =051 (3.21)
Recall thata, 51, 52 is an admissible triple, and therefore we have
B—F" = i(010; — 0205). (3.22)
From 3.21) and (3.22) it follows thaZ = S—1(5*)~! satisfies
BZ — ZB* =i(Z0101Z — 0205), Z > 0. (3.23)

Completely similar to the uniqueness Bf> 0 in (0.17) one obtains the uniqueness of
the solutionZ > 0 of (3.23). By comparing the identit§ — f* = i (6167 — 6205) with
(3.23) we see thaZ = Iy and thusS is unitary. In view of this we have = So.S*,

02 = S0, and 01 = §01. This unitary equivalence transformation does not change the
spin sequence, i.e{S,} = {Sn} U

__The case wheri ¢ ¢(x) is important in the next section. We shall use the acronym
FG to denote the class of spin sequenggg determined by the triples, 01, 02, with

o an N x N non-singular matrix and;, 02 of size N x m, satisfying the identity (0.12)
and the additional special conditian¢ o(x). Notice (see the beginning of the proof
of Proposition 0.2) that (0.12) implies thaix) ¢ C,. The next lemma shows that
without loss of generality we can also require ttaf 01} and {«, 62} are full range
pairs, i.e.,FG C FG.
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Lemma 3.3. Assume that the spin sequeng%,} belongslfé. Then it can be deter-
mined by a triplex, 01, 02 such thatx is non-singulay (0.12) holds i ¢ a(x), and the
pairs {«, 01} and {a, 02} are full range

Proof. Let N denote the minimal order of (0, i ¢ o(x)) in the set of triples that
satisfy (0.12) and determine the given spin sequeilgg. Suppose theV x N matrix
% and theN x m matricesf1 and 0, form such a triple but the paifa, 0,2} is not full
range. Put

o0
Lo:= spanU Im#@0,,  No:=dim Lo
k=0

and choose a unitary matrixthat mapszo onto theLo := Im[Iy, 0]*. Then we have

~ £t ~ [0 =~ [0
6i=gq q*z[a 0612:|’ 91:26]912[;3—]’ HZ::q92=|:02:|, (324)

where theNg x No matrix & (0, i ¢ o(%)) and the Ng x m matricesgl, 52 form a
triple which satisfies@.12) and determinefs,}. To show this we need to make some
preparations. Ad.g is an invariant subspace @f so Lg is an invariant subspace of
«, and thusx_has the block triangular form given in (3.24). Moreover in view of the
inclusion Im@, C Zo, we have Im0, C Lo, i.e., 02 has the block form given in (3.24).
Taking into account that) is unitary, Q i ¢ (@) and thata, 01, 02 satisfy (0.12) and
determine(S, }, we see that 0i ¢ o(«) and thata, 01, 0, satisfy (0.12) and determine
{S,} too. So in view of (3.24) we have,0 ¢ o(x) and the triplex, 61, 6, satisfies
(0.12) as well. Now use the matrice3, defined in (2.13) to rewrite\; X 1A, as a
2 x 2 block matrix with blocks of sizen x m. This yields

A A = {AFZ AR o

n=n

with blocks

(A2 A 11= 050,101,
(A A 12= 050, Uy +io Y™ (Iy — ia ™) 02,
(AZ A 21 = 05(In + i ()™ D" (Iy — i (@)™ ™" 0,101,
(ArZ A2z = 05(Iy +i(@) ™" Iy — i@ H ™0, !
x(Iy + i) (Iy — ia™1)"0o. (3.25)

Partition 0, 1— Q,, into four blocks:Q,+1— 0, = {ij}f,/:y whereyq4 is an Ng x Ng
block. In view of 0.13), (2.16), and (3.24) we obtain

121=0, 712=0, x22=0,



224 M.A. Kaashoek, A.L. Sakhnovich/Journal of Functional Analysis 228 (2005) 207-233

111=—20 NIy + 7% DT Uy — 15 Y 00l (Ing + i @)Y
x(Iyg — i@ H ™ HEH

Denote by/~\n, f,,, Q,,, §n, etc. the matrices generated by the tri’ﬁ]e?l, 52 One can
see thaty; = Q,,+1 — Q,, Taking into accouniQo = Iy we obtain that the matrices
0, are block diagonal:Q,, = dlag{Qn, In—no}. Now according to §.24), (3.25) it
follows that

ASTIA, - KSR, = [’“*’“ 0] (3.26)
n<n 0 0
By (0.9) and (3.26) we ges, = S,, i.e., the triplea, 51, 52 determines the spin
sequencds, }. This contradicts the assumption thdtis minimal and therefore the pair
{a, 62} should be full range.
In the same way we shall show that the piair 61} is full range too. Indeed, suppose
(a, 01} is not full range. Put now

o0
Lo:= spanU Im&01, No:=dim Lo
k=0

and choose a unitary matrixthat mapszo onto theLg := Im[Iy, O]*. Then similar
to the previous case we obtain

~

~ ¢t ~ [0 ~ [0
o= qoig* = [Siiﬂ ()1:=q()1=|:01:|, ozzzq(b:[’f] (3.27)

where theNg x Ng matrix @ (0, i ¢ o(%)) and th eNg x m matrices 0, 52 form a
triple which satisfies@.12). To show that the tripl&, 01, 0> determinesS, we shall
use the fact that, 01, 0> determinessS, and rewriteAj,‘Z;lAn as a 2x 2 block matrix
with blocks of sizem x m as follows:

A* 1A” - {(An n lA )k]}k/ =1
with
(A*Z_l/\ Yoo = QER_lQZ,
(N2 A2 =03R, Uy — i H ™" (Iy + i )" 04,
A2 )12 =05y — i) ™D Uy + i)™ "R 102,

(An n 1An)11 = (IN - i(:x*)_l)"([N + i(oc*)_l)_”Rn—l
x(Iy — i Y™ (Iy +io~1)"0,. (3.28)
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Here the matrices®, are given by 2.12). Partition nowR, 11 — R, into four blocks:
Rii1— R, = {xkj},f!jzl, wherey,1 is an Ng x No block. In view of (2.15) and (3.27)
we obtain '

121=0, x12=0, 722=0,
1=20" Uy — i7" Ly + 15" 0107 Iy — i)Y
x(Ing +i@H™H™ @)L

Denote by/N\n, in, ﬁ,, o §n, etc. the matrices generated by the triﬁle@l, 52. One can
see thaty;; = n+1—R Taking into accountiro = /y we obtain that the matrices,
are block diagonalR, = diag{R,, In— No}- Now according to (3.27), (3.28) it follows
that

*y el 0 0
AN, — KSR, = [o K*K]. (3.29)

By (0.9) and (3.29) we gef, = S,, i.e., the triple, F)l, 52 determines the spin
sequencdsS,}. So the pair{a, 01} should also be full range.0)

Finally, from the proof of Theorem 0.4 we have the following corollary.

Corollary 3.4. Let the parameter matrices (0, i ¢ a(2)), Zo(0) > 0 and Ag(0)
satisfy the identity(0.7). Then the Weyl functiop of the system determined by these
matrices is given by the formula

() = i05Z5 Ay — )02, B=o—i005552

This corollary |s proved by transforming the matrices £o(0) and Ag(0) into the
1
equivalent set, azg, In, 42 Ao.

4. Isotropic Heisenberg magnet

Explicit solutions of the discrete integrable nonlinear equations form an interest-
ing and actively studied domain (see Ref&,11,12,22,23,25,27,37]). To study the
IHM model we insert an additional variabkein our notations:A, (1), Z,(t), S, (1),
Wya(n, t, A), e(t, 4) and so on. Notice that the ord®& and the parameter matrix
do not depend on, and the dependence drof the other matrix functions is defined
by the equations:

dA
d—to = —2((@—iIn)"YAoPy + (a+ily) tAP-),

Pr= 3w+ ) (4.1)
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and

>
% = —((oc —iIN) M Zo(t) + (4 ily) ' Eo(t)

+ Zo(t) (o +ily) "t + Zo(r) (o —ily) "t

+ 22 + 1) (280 T Ao(1)* + Ao Ao () ) ()2 + 1) 7Y). (4.2)
We assume that the parameter matriee&o(0) and Ag(0) satisfy the identity
oaXo(t) — Zo(t)o* = iAog(t)Ao(t)* 4.3)

at+ = 0. Then according to4(1), (4.2) the identity (4.3) holds for atl (This result
can be obtained by differentiating both sides of (4.3).)

Theorem 4.1. Assume the parameter matrices(0, i ¢ o(x)), Zo(0) > 0 and Ag(0)
satisfy the identity

2Z0(0) — Zo(0)or™ = i Ag(0)Ap(0)*.

Define Zo(r) and Ao(r) by Egs.(4.1) and (4.2). Then XZo(t) > 0 on some interval
—& < t < g, and the sequencéS, ()} given by (0.9) and (0.8) belongs toFG for
each t from this interval. Moreove(s, (1)} (—e <t < ¢) satisfies the IHM equations
(0.22), (0.23).

Proof. As o does not depend onand (4.3) is true, it is immediate th&s, (1)} C FG.

Similar to the cases treated in [31,32] we shall successively obtain the derivatives
LA, L%, L(AXZ 1), and LW, A(n, 1, 2), and use the expressions for these deriva-
tives to derive the zero curvature equation (0.19), which is equivalent to (0.22), (0.23);
see [12]. In view of (0.13) and (4.1) we have

An(0) = [y + i Ly 2= g (g — ioc—l)"e—Z’(””N)’lez], (4.4)
where 0, :== (Ao(0)), (p =1, 2). Hence it follows that

dA,
dt

= —2((a—ily) *AuPy + (4 ily) A, P2). (4.5)

Now we shall show by induction that

dx,
dt

= —(@= i) + @+ i) T 0)

+ 2, (O 4 i Iy) T+ 2, () (o0 — i Iy) 7t

F262 1) @A O A O AT A () 0) (P 1) ). (4.6)
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By (4.2) formula (4.6) is true fom = 0. Suppose it is true for = r. Then, taking
into account the second relation in (0.8) we obtain

dzdr[“ = —((cx —iIN) () — (= i) T A O T A (@)
+ @+ iIN) 81 () — o+ iIy) "L A () T A () (o)7L
+ 1O +ily) T = o AT A ) T e +iIy) T
+Z 1O =iy — T AT A @) TN —iIy) T

+20% + Iy) @+ DA DT A D + A ()T A0

x(a*+<a*)—1))((oc*>2+1N>—1)+%(oc—lArmJAr(t)*(oc*)‘l). (4.7)

In view of (4.5) we easily calculate that

d
C1() = - (A OT A ()7

+ (o —iIn) Yo A O T A O (@) + (e + i Iy) Lo A ()

XA (0)* @)+ o0 IA (O T A (O () T i) T ot

XA ()T A ) (@) ot —ily) ™t

=—(a—ily) e A (1)

XA (@) (@4 i Iy) TR A OA O (@) T — oA ()

X Ar(O)* (@)t +HIy) e A (OA () @) Tt —iTy) T (4.8)
Notice that(e—iIy) 1 — (x+ily) "t = 2i (6?4 Iy)~L. Therefore we can rewrite4(8)
as

C1(1) = 2i (@A (VA (O)* (@) T + Iv)
— @+ IN) A OA O (). (4.9)

Notice also that

Ca(t) := 202 + In) "M@+ o HAOT A1) + A (1) T A (1)
x(@ 4 () H) (N + Iy) T = 2(a A O I A ()
()2 + )7+ @+ ) A TA@0) () Y. (4.10)
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Using the first relation in(.8) and equalities (4.9), (4.10) we get
Ca(t) — C1(t) = 2( PAL ()T Ari1 (O (02 + Iy) ™t
+ O + I T A O TA O ()T = 2P + Iy

X(aAr 41D T Arp1(D* + Apy1(D) T Apy1(1) o)
x((@)? 4+ Iy) L. (4.11)

From @.7) and (4.11) it follows that (4.6) is valid for = r +1 and so for allz > O.
Taking into account (4.5) and (4.6) we can obtain the equation

i(An O, ()Y = HF (A @) Z () 2o —ily) 7t

dt
+ Hy (A Za () o+ iIy) 7 (4.12)
where
H(t) = 2Wy A(n, 1, ) Py Wy p(n, 1, —i)*, (4.13)
H, (t) = 2Wy a(n, t, —i) P_Wy A(n, 1, )" (4.14)

Indeed, by 4.5) we have

%(An (O Ta07Y) = — (2P A ()" (@ + i)™
. e 1 _,dZ, .
£ 2P A () (o —iIy) "L+ 2, (t) 7(;))zn(r) : (4.15)
Identity (0.14) yields

(@) £ily) T, =20 Mot ily) T i) £ily) 07t
XA (D AR () () o £ily) "L (4.16)

Finally notice that

202+ Iy) Yo = (u—ily) Y4+ (e +ily) "L (4.17)
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By using @.6), (4.16) and (4.17), and after some calculations, we rewrite (4.15) in the
form (4.12), where

HI(t)=Ipm+J —iA )T, () o — ily) A (1) ]
+id A (O (& = i) T () TIAL (D) + A (), ()7
x(o — i IN) EAR (O T Ay (0)* (o — i Iy) T, () 7 AL (), (4.18)

Hy () =Ion — J + A ()*Z, (1) Mo+ iIy) " A (0T
— i JA (O (0 + 1 IN) T, () T AR () — A (), ()
X4 i Iy) T AR DT A o + i) T (T (4.19)
From (0.11) and (4.18) it follows that
and so, taking into accoun2.(1), we derive (4.13). Equality (4.14) follows from (4.19)
in a similar way.
Recall now thatn = 2 and (2.11) holds. Then according to (2.17), (2.21) and (4.13)
we get
HF (1) = () I+ Sa() (T2 + Sp—1(1)) (4.20)
and according t02.18), (2.22) and (4.14) we get
H, (1) = ¢, (1)(I2 — $,(1))(I2 — Sp—1(1)), (4.21)

where cE(¢) are scalar functions. In view o#(13) and (4.14) we obtain also ®F,
where Tr denotes the trace. Indeed,

TrHE() =2 (4.22)
By Remark2.4 and formula (0.22) we derive

Tr (T2 % S, (1)) (I2 & Sp_1(6)) = Tr (I + Sy (1) Sy_1.(8))
=21+ S 1) - S, (4.23)

From @.20)—(4.23) it follows that & S ,_1(f) - S .(t) # 0. Now formulas (0.21),
(4.23) and (4.22) yield that

TrvE() =2=TrH=(1). (4.24)
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Taking into account(.21), (4.20) and (4.21) we see thEf = ¢*HF, and so (4.24)
yields equalitiesV;* = HF. Hence we have

%MANzﬁrﬂ=WVMAN2ﬁr%w4mrl
+ Vo (OA ) T () o+ iIy) 7L (4.25)
From V* = H*, (2.11) and definitions (4.13) and (4.14) we also get
VEOW, A, 1, +i) = 2Wy A(n, t, £i) Py. (4.26)
Let us differentiate nowW, ». For this purpose notice that

(o0 —2My) = (axily)t

(aily) HNo—ily) ™t = - (4.27)
Using @.5), (4.25) and (4.27) we derive
d A W A(n5t7/l)_W A(n9tal) —
7 Va1, ) = V,F ()= — +V, (0
Wy A, t, ) — Wy a(n, t, —i) Wy A, t, ) — Wy a(n, t, i)
X . - - -2 : - : P+
Ati A—i
W, ) =W, St —i
_92 oz,A(n ) .ot,A(n i) P (4.28)
A+i
In view of (4.26) we can rewrite (4.28) as
d . ~
I Wunn, t, 1) = Fy(t, YWy a(n, t, 4) — Wy a(n, t, )F(t, 2), (4.29)

where F,, is given by the second relation i9.20) and
F=2(-iP. +(+i)tP).

Thus, in view of Theoren®.1 and formula (4.29) the non-degenerate matrix functions
{W,} given by

-1
~ . (4 —i)re2 =i 0
Wy(t, A) =4 " oc,/\(nv t, 7) |:O O+ l-)nezl(l—&-i)_l

satisfy Eq. 0.24), i.e., the compatibility condition (0.19) is valid. As Eqg. (0.19) is
equivalent to (0.23), the theorem is proved.]
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Theorem4.1 together with Corollary 3.4 yields the following result.

Corollary 4.2. Under the conditions of Theoretl the evolution of the Weyl function
¢ of the systenW, 11(¢, 1) = G, (t, )W, (¢, 2) is given by the formula

o(t, 2) = i0te 2 HINT S =Ly — B(r)~te 2 @HIN T g, (4.30)
E(l) — ie—2t(tx+i1N)’l62936—&(&*—iIN)’lzo(t)—l‘

As an illustration let us consider a simple example.

Example 4.3.Putm =n =1 anda =ik (h > 0, h # 1), and choose scala®y, 02
such that|f1|2+|6-|% = 2h. Thena, 61, 62 form an admissible triple and, £o(0) = 1,
Ao(0) = [01 0] satisfy the conditions of Theored.1 and Corollary 4.2. Therefore
by (4.4) we have

_n " 2it . 2it
An(t) = h [(h +1)"0, exp{h—_l] (h — 1)"0pexp [h_+1” (4.31)
From ©.14) and (4.31) it follows that

cn(h)

() = Spontl

en(h) == (h+ D201 + (h — 1)?"|02)°. (4.32)

According to 0.9), (4.31), and (4.32) we get now

8h2)0102|2(h% — 1)%

(Sn())11=1~- ey (S, ()22 = — (S ()11,
. 41010, 4it
(Sn(1))12=(Sp(1))31 = e i & {m}

x(h? — 1" ((h + D27 101)% — (h — D" T10,)%).

Finally Corollary 4.2 yields

4it ] 10102

P, 1) = eXp{ 1—hn2)7+i(022 = h)
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