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0. Introduction

In this paper, we shall treat a discrete analog of the well-known skew self-adjoint
canonical (Dirac type, Zakharov–Shabat or AKNS) system:

−iJ dY
dx
(x, z) = zY (x, z)+ V (x)Y (x, z), J =

[
Im 0
0 −Im

]
, x�0. (0.1)

Here z is a spectral variable,Y andV are 2m× 2m matrix functions on the half-line,
and V is skew self-adjoint, that is,V (x)∗ = JV (x)J with V (x)∗ being the matrix
adjoint of V (x). To obtain the discrete analog of (0.1) letU be the unique solution of
the initial value problem

dU

dx
(x) = −iU(x)JV (x), x�0, U(0) = I2m. (0.2)

Since JV (x) is self-adjoint, we get from (0.2) thatU(x) is unitary for eachx�0.
Now put S(x) = U(x)JU(x)∗ andW(x, z) = U(x)Y (x, z). Then

dW

dx
(x, z) = izS(x)W(x, z), S(x) = S(x)∗ = S(x)−1, x�0. (0.3)

It is now immediate that

Wn+1(�)−Wn(�) = − i
�
SnWn(�), Sn = S∗

n = S−1
n , n = 0,1, . . . (0.4)

is a natural discrete analog of (0.1). This discrete analog of the continuous pseudo-
canonical system is very important. In fact, whenm = 1, then the system (0.4) turns
out to be an auxiliary system for the nonlinear isotropic Heisenberg magnet (IHM)
model [36] (see also the detailed discussion after Theorem 0.5 below and the historical
remarks in [12]). Motivated by the IHM model we shall use the termspin sequence
to denote any sequence ofN ×N matrices{Sn} satisfying

Sn = S∗
n = S−1

n , n = 0,1,2, . . . . (0.5)

As for the skew self-adjoint continuous case[29] (see also [16]), one can associate
with (0.4) anm×m matrix function�(�), meromorphic on�� < −� < 0, such that

∞∑
n=0

[�(�)∗ Im]Wn(�)∗Wn(�)
[

�(�)
Im

]
<∞, (0.6)

whereWn(�), n�0, is the fundamental solutionof (0.4), i.e., the 2m × 2m matrix
solutionWn(�) of (0.4) normalized by the conditionW0(�) = I2m. One refers to� as
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theWeyl functionof (0.4). When the Weyl function is rational and strictly proper we
shall recover the system (0.4) explicitly from its Weyl function. For this purpose, we
need to introduce spin sequences that are the discrete analogs of the pseudo-exponential
potentials from [16,17] (see also the references therein).
The spin sequences from this special class are defined in terms of three parameter

matrices with the following properties. First fix an integerN > 0, and consider an
N × N matrix � with det � �= 0, anN × N matrix �0 such that�0 = �∗

0, and an
N × 2m matrix �0. These matrices should satisfy the following matrix identity:

��0 − �0�
∗ = i�0�∗

0. (0.7)

Given these three matrices�, �0, and�0 we define forn = 1,2, . . . theN×2m matrix
�n and theN ×N matrix �n via recursion:

�n+1= �n + i�−1�nJ,

�n+1= �n + �−1�n(�∗)−1 + �−1�nJ�∗
n(�

∗)−1. (0.8)

Next assume that the matrices�n, n = 0,1,2, . . . , are non-singular. Then we say that
the sequence of matrices{Sn} defined by

Sn = J + �∗
n�

−1
n �n − �∗

n+1�−1
n+1�n+1, n = 0,1,2, . . . , (0.9)

is the spin sequence determinedby the parameter matrices�, �0 and�0. Notice that
this requires the invertibility of the matrices�n.
For spin sequences defined in this way our first theorem presents an formula for the

fundamental solutionWn(�) of (0.4).

Theorem 0.1. Let � (det � �= 0), �0 (�0 = �∗
0) and �0 satisfy (0.7), and assume that

det�n �= 0 for 0�n�M, where�n is given by(0.8). For 0�n�M − 1 let Sn be
the matrices determined by�, �0 and �0 via (0.9) and (0.8). Then Sn = S∗

n = S−1
n

for 0�n�M − 1, and for 0�n�M the fundamental solutionWn(�) of the discrete
system(0.4) can be represented in the form

Wn(�) = W�,�(n, �)
(
I2m − i

�
J
)n
W�,�(0, �)

−1, (0.10)

whereW�,�(n, �) is defined by

W�,�(n, �) = I2m + i�∗
n�

−1
n (�IN − �)−1�n. (0.11)

When�0 > 0, there exist simple conditions on� and�0 to guarantee that det�n �=
0. First, if �0 > 0, then without loss of generality we can assume that�0 = IN .
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Indeed, it is easy to see that the sequence of matrices{Sn} defined by (0.9) and (0.8)
does not change if we substitute�, �0 and �0 by �

− 1
2

0 ��
1
2
0 , IN and �

− 1
2

0 �0. So let
us assume that�0 = IN . Next, we partition�0 into two N ×m blocks �1 and �2 as
follows: �0 = [�1 �2]. This together with�0 = IN allows us to rewrite (0.7) in the
form

� − �∗ = i(�1�∗
1 + �2�

∗
2). (0.12)

Furthermore, in this case�n is given by

�n = [(IN + i�−1)n�1 (IN − i�−1)n�2]. (0.13)

Finally, we shall assume that the pair{�, �1} is full range which means that

CN = span{�k�1Cm | k = 0,1,2, . . . , N − 1}.

The following proposition shows that under these conditions automatically det� �= 0
and det�n �= 0 for n = 0,1,2, . . ..

Proposition 0.2. Let � be a square matrix of order N, and�1 and�2 beN×m matrices
satisfying(0.12).Assume that the pair{�, �1} is full range. Then all the eigenvalues of
� are in the open upper half-planeC+, and for n = 1,2, . . . the matrices�n defined
by (0.8), with �0 = IN and �n given by (0.13), are positive definite and satisfy the
identity

��n − �n�
∗ = i�n�∗

n. (0.14)

Definition 0.3. A triple of matrices�, �1 and�2, with � square of orderN and�1 and
�2 of sizeN × m, is called admissible if the pairs{�, �1} and {�, �2} are full range
and the identity (0.12) holds.

We denote by the acronym FG (finitely generated) the class of spin sequences{Sn}
determined by the matrices�, �0 = IN and�0 = [�1 �2], where�, �1 and �2 form
an admissible triple. In this case, we also say that these spin sequences aredetermined
by the corresponding admissible triples. The next two theorems present the solutions
of the direct and inverse problem in terms of the Weyl function.

Theorem 0.4. Assume that the spin sequence{Sn}n�0 of the discrete pseudo-canonical
system(0.4) belongs to the class FG and is determined by the admissible triple�, �1
and �2. Then the system(0.4) has a unique Weyl function�, which satisfies(0.6) on
the half-plane� � < −1

2, a finite number of poles excluded, and this function is given
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by the formula

�(�) = i�∗
1(�IN − �)−1�2, (0.15)

where� = � − i�2�∗
2.

Notice that the function� in (0.15) is a strictly properm×m rational matrix function.
Conversely, if� is a strictly properm × m rational matrix function, then it admits a
representation of the form

�(�) = iϑ∗
1(�In − �)−1ϑ2, (0.16)

where� is a square matrix andϑ1,ϑ2 are matrices of sizen×m. We refer to the right-
hand side of (0.16) as aminimal realizationof � if among all possible representations
(0.16) of � the ordern of the matrix � is as small as possible. This terminology is
taken from mathematical system theory. We can now state the solution of the inverse
problem.

Theorem 0.5. Let � be a strictly proper rationalm×m matrix function, given by the
minimal realization(0.16).There is a unique positive definiten× n matrix solution X
of the algebraic Riccati equation

�X −X�∗ = i(Xϑ1ϑ
∗
1X − ϑ2ϑ

∗
2). (0.17)

Using X define matrices�1, �2, and � = � + i�2�∗
2 by

�1 = X 1
2ϑ1, �2 = X− 1

2ϑ2, � = X− 1
2 �X

1
2 . (0.18)

Then�, �1, and �2 form an admissible triple, and the given matrix function� is the
Weyl function of a system(0.4) of which the spin sequence{Sn} ∈ FG and is uniquely
determined by the admissible triple�, �1, and �2.

Next, we describe connections with the nonlinear IHM equation. For this purpose
consider the zero curvature representation [36] of the IHM model:

d

dt
Gn(t, �) = Fn+1(t, �)Gn(t, �)−Gn(t, �)Fn(t, �), (0.19)

where

Gn(t, �) = I2 − i

�
Sn(t), Fn(t, �) = V +

n (t)

� − i + V −
n (t)

� + i , (0.20)

V ±
r (t) := (1+ −→

S r−1(t) · −→
S r(t))

−1(I2 ± Sr(t))(I2 ± Sr−1(t)). (0.21)
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Here the vectors
−→
S r = [S1r S2r S3r ] belong toR3, R is real axis, the dot· denotes

the scalar product inR3, and the correspondence between the spin matrixSr and the
spin vector

−→
S r is given by the equality

Sr =
[
S3r S1r − iS2r
S1r + iS2r −S3r

]
. (0.22)

In other words the IHM equation

d
−→
S n

dt
= 2

−→
S n

∧( −→
S n+1

1+ −→
S n · −→

S n+1
+

−→
S n−1

1+ −→
S n−1 · −→

S n

)
, (0.23)

where
∧
stands for the vector product inR3, is equivalent to the compatibility condition

(0.19) of the systems

Wn+1(t, �)=Gn(t, �)Wn(t, �),
d

dt
Wn(t, �)= Fn(t, �)Wn(t, �) (n�0). (0.24)

In (0.23) it is required that‖−→S n‖ = 1. Now one can see easily that the representation
(0.22), where

−→
S n · −→S n = 1, is equivalent to the equalities (0.5) withSn �= ±I2. Thus

the first system in (0.24) coincides with system (0.4), wherem = 2, andSn �= ±I2.
We use these connections to obtain explicit solutions of the IHM model.
The literature on continuous canonical systems is very rich, especially for the self-

adjoint case; see, for instance, the books [10,12,14,26,35]. Self-adjoint continuous
canonical systems with pseudo-exponential potentials have been introduced in [15],
and for this class of potentials various direct and inverse problems have been solved;
see [17] and the references therein. The subclass of strictly pseudo-exponential po-
tentials has been treated in [3–5]. Interesting recent results on the spectral theory of
self-adjoint discrete systems and various useful references on this subject can be found
in [2,7,9,13,28,37]. Mainly Jacobi matrices (or block Jacobi matrices as in [2]) that are
related to Toda chain problems have been studied. For the skew self-adjoint discrete
case some references can be found in [11,12,18].
Theorem 0.1 is the discrete analog of Theorem 1.2 in [16]. The right-hand side of

(0.11) can be viewed as the transfer function of a linear input–output system (see [6]).
Transfer functions of the special form given by (0.11) were introduced in [33], and
also used for the representation of the fundamental solutions of continuous canonical
systems [34,35]. In Theorem 0.1 we are closer to [16] (see also [30,32]), where the
dependence on the parameterx differs from the one in [34,35]. The condition on an
admissible triple�, �1, �2 that the pairs{�, �1} and {�, �2} are full range pairs is
specific for the discrete case. Nevertheless, Theorems 0.4, 0.5 and parts of their proofs
are analogous to results and proofs in Section 2 of Gohberg et al. [16].
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This paper consists of four sections not counting this introduction. Since elements
from mathematical system theory play an important role in this paper, we present the
necessary preliminaries from that area in Section 1. In Section 2, we prove Theorem
0.1 and present some auxiliary results that will be used in the application to the IHM
model. Theorems 0.4, 0.5 and Proposition 0.2 are proved in Section 3. In Section 4, we
construct solutions of the IHM Eq. (0.23), describe the evolution of the Weyl function
and consider a simple example.

1. Preliminaries from mathematical system theory

The material from the state–space theory of rational matrix functions, that is used in
this paper, has its roots in the Kalman theory of input–output systems [21], and can be
found in books, see, e.g., [19,8]. In general the rational matrix functions appearing in
this paper areproper, that is, analytic at infinity, and they are square, of sizem×m,
say. Such a functionF can be represented in the form

F(�) = D + C(�IN − A)−1B, (1.1)

whereA is a square matrix (of which the orderN may be much larger thanm), the
matricesB and C are of sizesN × m andm × N , respectively, andD = F(∞). In
this paperD is often a zero matrix, and in that caseF is called strictly proper. The
representation (1.1) is called arealizationor a transfer matrix representationof F, and
the numberN = ord(A), is called thestate–space dimensionof the realization. Here,
ord(A) denotes theorder of the matrixA.
Realizations of a fixedF are not unique. The realization (1.1) is said to beminimal

if its state–space dimensionN is minimal among all possible realizations ofF. The
state–space dimension of a minimal realization ofF is called theMcMillan degree
of F and is denoted by degF . Notice that degF = 0 corresponds to the case when
ord(A) = 0, and this occurs if and only ifF(�) ≡ D. The realization (1.1) ofF is
minimal if and only if

span
N−1⋃
k=0

ImAkB = CN,

N−1⋂
k=0

KerCAk = {0}, N = ord(A). (1.2)

If for a pair of matrices{A, B} the first equality in (1.2) holds, then{A, B} is called
controllable or a full range pair. If the second equality in (1.2) is fulfilled, then{C,
A} is said to beobservableor a zero kernel pair. If a pair {A, B} is full range, and
K is anm×N matrix, whereN is the order ofA andm is the number of columns for
B, then the pair{A − BK, B} is also full range. An analogous result holds true for
zero kernel pairs.
Minimal realizations are unique up to a basis transformation, that is, if (1.1) is

a minimal realization ofF and F(�) = D + C̃(�IN − Ã)−1B̃ is a second minimal
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realization ofF, then there exists a unique invertible matrixS such thatÃ = SAS−1,
B̃ = SB, and C̃ = CS−1. In this caseS is called astate–space similarity.
Finally, if in (1.1) we haveD = Im, thenF(�) is invertible whenever� is not an

eigenvalue ofA− BC and in that case

F(�)−1 = Im − C(�IN − A×)−1B, A× = A− BC. (1.3)

2. The fundamental solution

In this section, we prove Theorem0.1 and present some results that will be used in
Section 4 (a result on the invertibility of matrices�n, in particular).

Proof of Theorem 0.1. First, we shall show that equalities (0.7) and (0.8) yield the
identity (0.14) for alln�0. The statement is proved by induction. Indeed, forn = 0 it
is true by assumption. Suppose (0.14) is true forn = r. Then using the expression for
�r+1 from (0.8) and identity (0.14) forn = r we get

��r+1 − �r+1�∗

= i�r�∗
r + i�−1�r�∗

r (�
∗)−1 + �rJ�∗

r (�
∗)−1 − �−1�rJ�∗

r . (2.1)

The first relation in (0.8) and formula (2.1) yield (0.14) forr = n+ 1 and thus for all
n�0.
The next equality will be crucial for our proof. Namely, we shall show that for

0�n�M − 1 we have

W�,�(n+ 1, �)

(
I2m − i

�
J

)
=
(
I2m − i

�
Sn

)
W�,�(n, �). (2.2)

By (0.11) formula (2.2) is equivalent to the formula

1

�
(Sn − J )=

(
I2m − i

�
Sn

)
�∗
n�

−1
n (�IN − �)−1�n

− �∗
n+1�−1

n+1(�IN − �)−1�n+1
(
I2m − i

�
J

)
. (2.3)

Using the Taylor expansion of(�IN − �)−1 at infinity one shows that (2.3) is in its
turn equivalent to the set of equalities:

Sn − J = �∗
n�

−1
n �n − �∗

n+1�−1
n+1�n+1, (2.4)

�∗
n+1�−1

n+1�
p�n+1 − i�∗

n+1�−1
n+1�

p−1�n+1J

= �∗
n�

−1
n �p�n − iSn�∗

n�
−1
n �p−1�n (p > 0). (2.5)
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Equality (2.4) is equivalent to (0.9). Taking into account the first relation in (0.8) we
have��n+1− i�n+1J = ��n+ �−1�n. Thus the equalities in (2.5) can be rewritten in
the formKn�p−2�n = 0, where

Kn = �∗
n+1�−1

n+1(�
2 + IN)− �∗

n�
−1
n �2 + iSn�∗

n�
−1
n �. (2.6)

Therefore, if we prove thatKn = 0, then equalities (2.5) will be proved, and so formula
(2.2) will be proved too. Substitute (0.9) into (2.6), and again use the first relation in
(0.8) to obtain

Kn = �∗
n+1�−1

n+1(�
2 + IN)− �∗

n�
−1
n �2 + iJ�∗

n�
−1
n �

+ i�∗
n�

−1
n �n�

∗
n�

−1
n � − i�∗

n+1�−1
n+1(�n + i�−1�nJ )�∗

n�
−1
n �. (2.7)

Now, we use (0.14) to obtaini�n�
∗
n�

−1
n = � − �n�∗�−1

n and substitute this relation
into (2.7). After easy transformations it follows that

Kn = �∗
n+1�−1

n+1
(
�−1�n(�∗)−1 + �n + �−1�nJ�∗

n(�
∗)−1

)
�∗�−1

n �

+ iJ�∗
n�

−1
n � − �∗

n�
∗�−1
n �. (2.8)

In view of the second relation in (0.8) the first term on the right-hand side of (2.8)
equals�∗

n+1�∗�−1
n � and we have

Kn = (�∗
n+1 + iJ�∗

n(�
∗)−1 − �∗

n)�
∗�−1
n �. (2.9)

By the first relation in (0.8) the equalityKn = 0 is now immediate, i.e., (2.2) is true.
Notice that equality (0.10) is valid forn = 0. Suppose that it is valid forn = r.

Then (0.4) and (0.10) yield

Wr+1(�) =
(
I2m − i

�
Sr

)
W�,�(r, �)

(
I2m − i

�
J
)r
W�,�(0, �)

−1. (2.10)

By (2.2) and (2.10) the validity of (0.10) forn = r + 1 easily follows, i.e., (0.10) is
proved by induction.
Consider now the matricesSn given by (0.9). It is easy to see thatSn = S∗

n . Notice
also that in view of (0.14) we have

W�,�(r, �)W�,�(r, �)
∗ = I2m (r�0), (2.11)

where � stands for complex conjugate for�. From (2.2) and (2.11) it follows that
(I2m − i�−1Sn)(I2m + i�−1Sn) = �−2(�2 + 1)I2m. Thus the equalityS∗

n = S−1
n holds,

which finishes the proof of the theorem.�
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The case when±i /∈ �(�) (� means spectrum) is important for the study of the IHM
model. Assume this condition is fulfilled, and put

Rn = (IN − i�−1)−n�n(IN + i(�∗)−1)−n, (2.12)

Qn = (IN + i�−1)−n�n(IN − i(�∗)−1)−n. (2.13)

The following proposition will be useful for formulating the conditions of invertibility
of �n in a somewhat different form then those in Proposition0.2 (see Corollary 2.2
below).

Proposition 2.1. Let the matrices� (det � �= 0), �0 = �∗
0, and �0 satisfy (0.7), and

let the matrices�n be given by(0.8). If i /∈ �(�), then the sequence of matrices{Rn}
is well defined and non-decreasing. If−i /∈ �(�), then the sequence of matrices{Qn}
is well defined and non-increasing.

Proof. To prove that the sequence{Rn} is non-decreasing it will suffice to show that

�n+1 − (IN − i�−1)�n(IN + i(�∗)−1)�0. (2.14)

For this purpose notice that

�n+1 − (IN − i�−1)�n(IN + i(�∗)−1)

= �n+1 − �n − �−1�n(�∗)−1 − i�−1(��n − �n�
∗)(�∗)−1.

Hence, in view of (0.8) and (0.14) we get

�n+1 − (IN − i�−1)�n(IN + i(�∗)−1)

= �−1(�nJ�∗
n + �n�

∗
n)(�

∗)−1. (2.15)

SinceJ + I2m�0, the inequality (2.14) is immediate from (2.15).
Similarly, from (0.8) and (0.14) we get

�n+1 − (IN + i�−1)�n(IN − i(�∗)−1)

= �−1(�nJ�∗
n − �n�

∗
n)(�

∗)−1�0, (2.16)

and so the sequence of matrices{Qn} is non-increasing. �

According to Proposition2.1, wheni /∈ �(�) and�0 > 0, we haveRn > 0.

Corollary 2.2. Let the conditions of Proposition2.1 hold, and assume thati /∈ �(�)
and �0 > 0. Then we get�n > 0 for all n > 0.
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Partition the matricesW�,�(r, �) and�r into two m-column blocks each:

W�,�(r, �) =
[(
W�,�(r, �)

)
1

(
W�,�(r, �)

)
2

]
, �r = [

(�r )1 (�r )2
]
.

The next lemma will be used in Section 4.

Lemma 2.3. Let the matrices� (0, ±i /∈ �(�)), �0 (�0 = �∗
0) and �0 satisfy (0.7),

and let the matrices�n be given by(0.8). Then forn�0 the following relations hold:

(
W�,�(n, i)

)
1= (

W�,�(n+ 1,−i))1
×
(
Im + 2

(
W�,�(n, i)

)∗
1�

∗
n�

−1
n (�

2 + IN)−1(�n)1
)
, (2.17)

(
W�,�(n,−i)

)
2= (

W�,�(n+ 1, i)
)
2

×
(
Im − 2

(
W�,�(n,−i)

)∗
2�

∗
n�

−1
n (�

2 + IN)−1(�n)2
)
. (2.18)

Proof. From the proof of Theorem0.1 we know thatKn = 0, whereKn is given by
(2.6). In particular, we get

Kn�
−1(�2 + IN)−1(�n)1 = 0, Kn�

−1(�2 + IN)−1(�n)2 = 0. (2.19)

To prove (2.17) notice that(�n+1)1 = �−1(� + iIN )(�n)1 and rewrite the first equality
in (2.19) as

�∗
n+1�−1

n+1(� + iIN )−1(�n+1)1 − �∗
n�

−1
n (� − iIN )−1(�n)1

+ i(I2m + Sn)�∗
n�

−1
n (�

2 + IN)−1(�n)1 = 0. (2.20)

Put � = −i in (2.2) and take into account (2.11) to derive

I2m + Sn = 2
(
W�,�(n+ 1,−i))1(W�,�(n, i)

)∗
1. (2.21)

In view of definition (0.11) ofW�,�, equality (2.17) follows from (2.20) and (2.21).
Putting � = i in (2.2) we get

I2m − Sn = 2
(
W�,�(n+ 1, i)

)
2

(
W�,�(n,−i)

)∗
2. (2.22)

Analogously to the proof of (2.17) we derive (2.18) from (2.22) and the second equality
in (2.19). �
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Remark 2.4. According to (2.21) and (2.22) the rank of the matricesI2m ± Sn is
less than or equal tom. Together with the formula (0.5) this implies that under the
conditions of Lemma 2.3 we haveSn = UnJU∗

n , whereUn are unitary matrices andJ
is defined in (0.1).

3. Weyl functions: direct and inverse problems

In this section we prove Theorems 0.4 and 0.5, and Proposition 0.2. At the end of
the section a lemma on the casei /∈ �(�) is treated too.

Proof of Proposition 0.2. Supposef is an eigenvector of�, that is,�f = cf , f �= 0.
Then formula (0.12) yields the equality

i(c − c)f ∗f = f ∗(�1�∗
1 + �2�

∗
2)f �0. (3.1)

So c ∈ C+. Moreover, if c = c, then according to (3.1) we have�∗
1f = �∗

2f = 0, and
therefore�f = �∗f . It follows that

f ∗�1 = 0, f ∗(� − cIN) = 0 (f �= 0). (3.2)

As {�, �1} is a full range pair, so the pair{�−cIN , �1} is full range, which contradicts
(3.2). This implies thatc ∈ C+, i.e., �(�) ⊂ C+.
Recall that identity (0.14) was deduced in the proof of Theorem 0.1. Taking into

account that�(�) ⊂ C+, identity (0.14) yields

�n = 1

2	

∫ ∞

−∞
(� − �IN)

−1�n�∗
n(�

∗ − �IN)
−1 d�. (3.3)

Notice now that the pair{�, (IN + i�−1)n�1} is full range and use (0.13), (3.3) to
obtain�n > 0 for all n�0. �

Remark 3.1. In the same way as in the proof of Proposition0.2 above the inclusion
�(�) ⊂ C+ follows from the weaker condition that the pair{�, �0} is full range.
However, the exampleN = 1, � = i, �1 = 0, �2�

∗
2 = 2, which yields�n ≡ 0 for

n > 0, shows that we have to require that the pair{�, �1} is full range in order to get
�n > 0. The full range condition on the pair{�, �0} is not enough for this conclusion.

Recall now Definition 0.3 of the admissible triple. Proposition 0.2 implies, in par-
ticular, that det� �= 0 for the admissible triple and the spin sequences{Sn} determined
by it are well defined for alln�0. In other words the class FG is well defined.
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Proof of Theorem 0.4. Let W�,�(n, �) be given by (0.11). WriteW�,�(0, �) as

W�,�(0, �) =
[
a(�) b(�)
c(�) d(�)

]
, (3.4)

where them×m matrix functionsb(�) and d(�) are given by

b(�) = i�∗
1(�IN − �)−1�2, d(�) = Im + i�∗

2(�IN − �)−1�2. (3.5)

We first prove that

b(�)d(�)−1 = i�∗
1(�IN − �)−1�2. (3.6)

Using (1.3) in preliminaries, from� = � − i�2�∗
2 and (3.5) we obtain

d(�)−1 = Im − i�∗
2(�IN − �)−1�2. (3.7)

From � = � − i�2�∗
2 and the equalities (3.5) and (3.7) we see that

b(�)d(�)−1

= i�∗
1(�IN − �)−1�2 + i�∗

1(�IN − �)−1(� − �)(�IN − �)−1�2. (3.8)

From (3.8) formula (3.6) follows.
Let � be defined by (0.15), and thus by virtue of (3.6) we have

�(�) = b(�)d(�)−1. (3.9)

By (3.4), (3.9) and the representation (0.10) of the fundamental solution we get

Wn(�)

[
�(�)
Im

]
=
(

� + i
�

)n
W�,�(n, �)

[
0

d(�)−1
]
. (3.10)

Notice also that (0.14) yields a more general formula than (2.11), namely

W�,�(n, �)
∗W�,�(n, �)

= I2m − i(� − �)�∗
n(�IN − �∗)−1�−1

n (�IN − �)−1�n. (3.11)

As the second term in the right-hand side of (3.11) is non-positive, it follows from
formula (3.11) that

W�,�(n, �)
∗W�,�(n, �)�I2m (� ∈ C−). (3.12)

Taking into account (3.10) and (3.12) we obtain (0.6), i.e.,� is a Weyl function.
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It remains only to prove the uniqueness of the Weyl function. Let us first show that
for someM > 0 and alln�0 we have the inequality

f ∗(IN − i(�∗)−1)n�−1
n (IN + i�−1)nf �Mf ∗f, f ∈ L, (3.13)

where

L := span�/∈�(�) Im (�IN − �)−1�1.

In view of (0.13) formula (3.11) yields

�∗
1(�IN − �∗)−1(IN − i(�∗)−1)n�−1

n

×(IN + i�−1)n(�IN − �)−1�1�
i

� − �
Im. (3.14)

Now to get (3.13) from (3.14) we note that span�/∈�(�) Im (�IN −�)−1�1 coincides with
the same span when� runs over anε-neighbourhoodOε of any �0 /∈ ��, for any
sufficiently smallε > 0.
By (3.11) and (3.13) we can chooseM1 > 0 such that we have

[Im 0]W�,�(n, �)
∗W�,�(n, �)

[
Im
0

]
� 1

2
for all |�| > M1. (3.15)

Without loss of generality we may assume thatM1 is large enough in order that
M1 > ‖�‖ and a(�) is invertible for |�| > M1. Then, taking into account (0.10) and
(3.15), we obtain

r∑
n=0

[Im
(
c(�)a(�)−1

)∗]
×Wn(�)∗Wn(�)

[
Im

c(�)a(�)−1
]
>
r

2

(
a(�)−1

)∗
a(�)−1 (3.16)

for all � in the domainD = {� : |�| > M1, � � < −1/2}. In other words, for� ∈ D
we have

∞∑
n=0
f ∗Wn(�)∗Wn(�)f = ∞ (f ∈ L1), (3.17)

where

L1 := Im

[
Im

c(�)a(�)−1
]
.
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Suppose now that� and �̃ are Weyl functions of (0.4) and that for some fixed
�0 ∈ D we have�̃(�0) �= �(�0). Put

L2 = Im

[
�(�0)
Im

]
+ Im

[
�̃(�0)
Im

]
.

According to the definition of the Weyl function we have

∞∑
n=0
f ∗Wn(�)∗Wn(�)f <∞ (f ∈ L2). (3.18)

As dim L1 = m and dimL2 > m, there is a non-zero vectorf such thatf ∈ (L1∩L2),
which contradicts (3.17) and (3.18). �

For the proof of Theorem 0.5 we shall use the following lemma which is of inde-
pendent interest.

Lemma 3.2. A strictly proper rationalm × m matrix function� admits a minimal
realization of the form

�(�) = i�∗
1(�IN − �)−1�2, (3.19)

such that� − �∗ = i(�1�∗
1 − �2�

∗
2).

Proof. We may assume that� is given by the minimal realization (0.16). First let us
show that Eq. (0.17) has a unique solutionX > 0.
The minimality of the realization (0.16) means that the pair{ϑ∗

1, �} is observable
and the pair{�, ϑ2} is controllable. Notice that Imϑ ⊇ Im ϑϑ∗ and f ∗ϑϑ∗ = 0 yields
f ∗ϑ = 0, i.e., Imϑ = Im ϑϑ∗. Hence the pair{�, ϑ2ϑ

∗
2} is controllable too. Therefore

the pair {ϑ2ϑ∗
2, i�

∗} is observable. The pair{i�∗, ϑ1} is controllable and hence c-
stabilizable, that is, there exists a matrixK such thati�∗ + ϑ1K has all its eigenvalues
in the open left half-plane. But then we can use Theorem 16.3.3 [24] (see also [20])
to show that the Eq. (0.17) has a unique non-negative solutionX and that this solution
X is positive definite.
Next, let�1, �2, � be defined by (0.18). From (0.17) and (0.18) we see that�−�∗ =

i(�1�
∗
1 − �2�

∗
2).

According to (0.16) and (0.18) the function� is also given by the realization (3.19).
Moreover as the realization (0.16) is minimal, the same is true for the realization
(3.19). �

Proof of Theorem 0.5. Let � be a strictly proper rationalm×m matrix function. Let
�1, �2, � be as in Lemma 3.2, and put� = � + i�2�

∗
2. Then the triple�, �1, and

�2 satisfies (0.12). Furthermore, the pairs{�, �2} and {�∗, �1} are full range. Since
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� = � + i�2�∗
2, it is immediate that the pair{�, �2} is full range (see Section1). By

(0.12) we have�∗ = �∗ + i�2�∗
2 = � − i�1�∗

1. Hence, as{�∗, �1} is a full range pair,
so the pair{�, �1} is full range too. Therefore the triple�, �1, and �2 is admissible.
From Theorem 0.4 it follows now that the function{Sn} determined by the admissible
triple �, �1 and �2 is indeed a solution of the inverse problem.
Let us prove now the uniqueness of the solution of the inverse problem. Suppose

that there is system (0.4) with another spin sequence{S̃n}, given by the admissible
triple �̃, �̃1, �̃2, and with the same Weyl function�. According to Theorem 0.4 we
have another realization for�, namely

�(�) = ĩ�∗
1(�IÑ − �̃)−1̃�2, �̃ = �̃ − ĩ�2̃�∗

2. (3.20)

As the pairs{̃�, �̃1} and {̃�, �̃2} are controllable, and̃� = �̃− ĩ�2̃�∗
2, �̃

∗ = ã− ĩ�1̃�∗
1,

it follows that the pairs{̃�, �̃2} and {̃�∗
, �̃1} are also controllable. Thus the realization

(3.20) is minimal and̃N = N . Moreover, there is (see Section 1) a state–space similarity
transforming the realization (0.15) into (3.20), that is, there exists an invertibleN ×N
matrix S such that

�̃ = S�S−1, �̃2 = S�2, �̃
∗
1 = �∗

1S
−1. (3.21)

Recall that̃�, �̃1, �̃2 is an admissible triple, and therefore we have

�̃ − �̃
∗ = i(̃�1̃�∗

1 − �̃2̃�
∗
2). (3.22)

From (3.21) and (3.22) it follows thatZ = S−1(S∗)−1 satisfies

�Z − Z�∗ = i(Z�1�
∗
1Z − �2�

∗
2), Z > 0. (3.23)

Completely similar to the uniqueness ofX > 0 in (0.17) one obtains the uniqueness of
the solutionZ > 0 of (3.23). By comparing the identity� − �∗ = i(�1�∗

1 − �2�
∗
2) with

(3.23) we see thatZ = IN and thusS is unitary. In view of this we havẽ� = S�S∗,
�̃2 = S�2, and �̃1 = S�1. This unitary equivalence transformation does not change the
spin sequence, i.e.,{Sn} = {S̃n}. �

The case wheni /∈ �(�) is important in the next section. We shall use the acronym
F̃G to denote the class of spin sequences{Sn} determined by the triples�, �1, �2, with
� anN×N non-singular matrix and�1, �2 of sizeN×m, satisfying the identity (0.12)
and the additional special conditioni /∈ �(�). Notice (see the beginning of the proof
of Proposition 0.2) that (0.12) implies that�(�) ⊂ C+. The next lemma shows that
without loss of generality we can also require that{�, �1} and {�, �2} are full range
pairs, i.e.,F̃G ⊆ FG.
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Lemma 3.3. Assume that the spin sequence{Sn} belongsF̃G. Then it can be deter-
mined by a triple�, �1, �2 such that� is non-singular, (0.12)holds, i /∈ �(�), and the
pairs {�, �1} and {�, �2} are full range.

Proof. Let N denote the minimal order of� (0, i /∈ �(�)) in the set of triples that
satisfy (0.12) and determine the given spin sequence{Sn}. Suppose theN ×N matrix
�̂ and theN ×m matriceŝ�1 and �̂2 form such a triple but the pair{̂�, �̂2} is not full
range. Put

L̂0 := span
∞⋃
k=0

Im �̂k �̂2, N0 := dim L̂0

and choose a unitary matrixq that mapŝL0 onto theL0 := Im [IN0 0]∗. Then we have

� := q�̂q∗ =
[

�̃ �12
0 �22

]
, �1 := q�̂1 =

[
�̃1



]
, �2 := q�̂2 =

[
�̃2
0

]
, (3.24)

where theN0 × N0 matrix �̃ (0, i /∈ �(̃�)) and theN0 × m matrices �̃1, �̃2 form a
triple which satisfies (0.12) and determines{Sn}. To show this we need to make some
preparations. AŝL0 is an invariant subspace of̂�, so L0 is an invariant subspace of
�, and thus� has the block triangular form given in (3.24). Moreover in view of the
inclusion Im̂�2 ⊆ L̂0, we have Im�2 ⊆ L0, i.e., �2 has the block form given in (3.24).
Taking into account thatq is unitary, 0, i /∈ �(̂�) and that̂�, �̂1, �̂2 satisfy (0.12) and
determine{Sn}, we see that 0, i /∈ �(�) and that�, �1, �2 satisfy (0.12) and determine
{Sn} too. So in view of (3.24) we have 0, i /∈ �(̃�) and the triplẽ�, �̃1, �̃2 satisfies
(0.12) as well. Now use the matricesQn defined in (2.13) to rewrite�

∗
n�

−1
n �n as a

2× 2 block matrix with blocks of sizem×m. This yields
�∗
n�

−1
n �n = {(�∗

n�
−1
n �n)kj }2k,j=1

with blocks

(�∗
n�

−1
n �n)11= �∗

1Q
−1
n �1,

(�∗
n�

−1
n �n)12= �∗

1Q
−1
n (IN + i�−1)−n(IN − i�−1)n�2,

(�∗
n�

−1
n �n)21= �∗

2(IN + i(�∗)−1)n(IN − i(�∗)−1)−nQ−1
n �1,

(�∗
n�

−1
n �n)22= �∗

2(IN + i(�∗)−1)n(IN − i(�∗)−1)−nQ−1
n

×(IN + i�−1)−n(IN − i�−1)n�2. (3.25)

PartitionQn+1−Qn into four blocks:Qn+1−Qn = {�kj }2k,j=1, where�11 is anN0×N0
block. In view of (0.13), (2.16), and (3.24) we obtain

�21= 0, �12 = 0, �22 = 0,
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�11= −2̃�−1(IN0 + ĩ�−1)−n−1(IN0 − ĩ�−1)ñ�2̃�
∗
2(IN0 + i(̃�∗)−1)n

×(IN0 − i(̃�∗)−1)−n−1(̃�∗)−1.

Denote by�̃n, �̃n, Q̃n, S̃n, etc. the matrices generated by the triple�̃, �̃1, �̃2. One can
see that�11 = Q̃n+1 − Q̃n. Taking into accountQ0 = IN we obtain that the matrices
Qn are block diagonal:Qn = diag{Q̃n, IN−N0}. Now according to (3.24), (3.25) it
follows that

�∗
n�

−1
n �n − �̃

∗
n�̃

−1
n �̃n =

[

∗
 0
0 0

]
. (3.26)

By (0.9) and (3.26) we getSn = S̃n, i.e., the triple �̃, �̃1, �̃2 determines the spin
sequence{Sn}. This contradicts the assumption thatN is minimal and therefore the pair
{̂�, �̂2} should be full range.
In the same way we shall show that the pair{̂�, �̂1} is full range too. Indeed, suppose

{̂�, �̂1} is not full range. Put now

L̂0 := span
∞⋃
k=0

Im �̂k �̂1, N0 := dim L̂0

and choose a unitary matrixq that mapŝL0 onto theL0 := Im [IN0 0]∗. Then similar
to the previous case we obtain

� := q�̂q∗ =
[

�̃ �12
0 �22

]
, �1 := q�̂1 =

[
�̃1
0

]
, �2 := q�̂2 =

[
�̃2



]
, (3.27)

where theN0 × N0 matrix �̃ (0, i /∈ �(̃�)) and th eN0 × m matrices�̃1, �̃2 form a
triple which satisfies (0.12). To show that the triplẽ�, �̃1, �̃2 determinesSn we shall
use the fact that�, �1, �2 determinesSn and rewrite�

∗
n�

−1
n �n as a 2×2 block matrix

with blocks of sizem×m as follows:

�∗
n�

−1
n �n = {(�∗

n�
−1
n �n)kj }2k,j=1

with

(�∗
n�

−1
n �n)22= �∗

2R
−1
n �2,

(�∗
n�

−1
n �n)21= �∗

2R
−1
n (IN − i�−1)−n(IN + i�−1)n�1,

(�∗
n�

−1
n �n)12= �∗

1(IN − i(�∗)−1)n(IN + i(�∗)−1)−nR−1
n �2,

(�∗
n�

−1
n �n)11= �∗

1(IN − i(�∗)−1)n(IN + i(�∗)−1)−nR−1
n

×(IN − i�−1)−n(IN + i�−1)n�1. (3.28)
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Here the matricesRn are given by (2.12). Partition nowRn+1 − Rn into four blocks:
Rn+1−Rn = {�kj }2k,j=1, where�11 is anN0×N0 block. In view of (2.15) and (3.27)
we obtain

�21= 0, �12 = 0, �22 = 0,

�11= 2̃�−1(IN0 − ĩ�−1)−n−1(IN0 + ĩ�−1)ñ�1̃�
∗
1(IN0 − i(̃�∗)−1)n

×(IN0 + i(̃�∗)−1)−n−1(̃�∗)−1.

Denote by�̃n, �̃n, R̃n, S̃n, etc. the matrices generated by the triple�̃, �̃1, �̃2. One can
see that�11 = R̃n+1− R̃n. Taking into accountR0 = IN we obtain that the matricesRn
are block diagonal:Rn = diag{R̃n, IN−N0}. Now according to (3.27), (3.28) it follows
that

�∗
n�

−1
n �n − �̃

∗
n�̃

−1
n �̃n =

[
0 0
0 
∗


]
. (3.29)

By (0.9) and (3.29) we getSn = S̃n, i.e., the triple �̃, �̃1, �̃2 determines the spin
sequence{Sn}. So the pair{̂�, �̂1} should also be full range.�
Finally, from the proof of Theorem 0.4 we have the following corollary.

Corollary 3.4. Let the parameter matrices� (0, i /∈ �(�)), �0(0) > 0 and �0(0)
satisfy the identity(0.7). Then the Weyl function� of the system determined by these
matrices is given by the formula

�(�) = i�∗
1�

−1
0 (�IN − �̃)−1�2, �̃ = � − i�2�∗

2�
−1
0 .

This corollary is proved by transforming the matrices�, �0(0) and �0(0) into the

equivalent set�
− 1
2

0 ��
1
2
0 , IN , �

− 1
2

0 �0.

4. Isotropic Heisenberg magnet

Explicit solutions of the discrete integrable nonlinear equations form an interest-
ing and actively studied domain (see Refs.[1,11,12,22,23,25,27,37]). To study the
IHM model we insert an additional variablet in our notations:�n(t), �n(t), Sn(t),
W�,�(n, t, �), �(t, �) and so on. Notice that the orderN and the parameter matrix�
do not depend ont, and the dependence ont of the other matrix functions is defined
by the equations:

d�0
dt

= −2((� − iIN )−1�0P+ + (� + iIN )−1�0P−
)
,

P± = 1
2(I2m ± J ) (4.1)
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and

d�0
dt

= −
(
(� − iIN )−1�0(t)+ (� + iIN )−1�0(t)

+ �0(t)(�
∗ + iIN )−1 + �0(t)(�

∗ − iIN )−1

+2(�2 + IN)−1
(
��0(t)J�0(t)

∗ + �0(t)J�0(t)
∗�∗)((�∗)2 + IN)−1

)
. (4.2)

We assume that the parameter matrices�, �0(0) and�0(0) satisfy the identity

��0(t)− �0(t)�
∗ = i�0(t)�0(t)∗ (4.3)

at t = 0. Then according to (4.1), (4.2) the identity (4.3) holds for allt. (This result
can be obtained by differentiating both sides of (4.3).)

Theorem 4.1. Assume the parameter matrices� (0, i /∈ �(�)), �0(0) > 0 and �0(0)
satisfy the identity

��0(0)− �0(0)�
∗ = i�0(0)�0(0)∗.

Define �0(t) and �0(t) by Eqs. (4.1) and (4.2). Then �0(t) > 0 on some interval
−ε < t < ε, and the sequence{Sn(t)} given by (0.9) and (0.8) belongs toF̃G for
each t from this interval. Moreover, {Sn(t)} (−ε < t < ε) satisfies the IHM equations
(0.22), (0.23).

Proof. As � does not depend ont and (4.3) is true, it is immediate that{Sn(t)} ⊂ F̃G.
Similar to the cases treated in [31,32] we shall successively obtain the derivatives

d
dt

�n, ddt�n,
d
dt

(
�∗
n�

−1
n

)
, and d

dt
W�,�(n, t, �), and use the expressions for these deriva-

tives to derive the zero curvature equation (0.19), which is equivalent to (0.22), (0.23);
see [12]. In view of (0.13) and (4.1) we have

�n(t) = [
(IN + i�−1)ne−2t (�−iIN )−1�1 (IN − i�−1)ne−2t (�+iIN )−1�2

]
, (4.4)

where�p := (�0(0))p (p = 1,2). Hence it follows that

d�n
dt

= −2((� − iIN )−1�nP+ + (� + iIN )−1�nP−
)
. (4.5)

Now we shall show by induction that

d�n
dt

= −
(
(� − iIN )−1�n(t)+ (� + iIN )−1�n(t)

+ �n(t)(�
∗ + iIN )−1 + �n(t)(�

∗ − iIN )−1

+2(�2+IN)−1
(
��n(t)J�n(t)

∗+�n(t)J�n(t)
∗�∗)((�∗)2+IN)−1

)
. (4.6)



M.A. Kaashoek, A.L. Sakhnovich / Journal of Functional Analysis 228 (2005) 207–233227

By (4.2) formula (4.6) is true forn = 0. Suppose it is true forn = r. Then, taking
into account the second relation in (0.8) we obtain

d�r+1
dt

= −
(
(� − iIN )−1�r+1(t)− (� − iIN )−1�−1�r (t)J�r (t)

∗(�∗)−1

+ (� + iIN )−1�r+1(t)− (� + iIN )−1�−1�r (t)J�r (t)
∗(�∗)−1

+ �r+1(t)(�∗ + iIN )−1 − �−1�r (t)J�r (t)
∗(�∗)−1(�∗ + iIN )−1

+ �r+1(t)(�∗ − iIN )−1 − �−1�r (t)J�r (t)
∗(�∗)−1(�∗ − iIN )−1

+2(�2 + IN)−1
(
(� + �−1)�r (t)J�r (t)

∗ + �r (t)J�r (t)
∗

×(�∗+(�∗)−1)
)
((�∗)2+IN)−1

)
+ d

dt

(
�−1�r (t)J�r (t)

∗(�∗)−1
)
. (4.7)

In view of (4.5) we easily calculate that

C1(t)= d

dt

(
�−1�r (t)J�r (t)

∗(�∗)−1
)

+ (� − iIN )−1�−1�r (t)J�r (t)
∗(�∗)−1 + (� + iIN )−1�−1�r (t)J

×�r (t)
∗(�∗)−1 + �−1�r (t)J�r (t)

∗(�∗)−1(�∗ + iIN )−1 + �−1

×�r (t)J�r (t)
∗(�∗)−1(�∗ − iIN )−1

= −(� − iIN )−1�−1�r (t)

×�r (t)
∗(�∗)−1 + (� + iIN )−1�−1�r (t)�r (t)∗(�∗)−1 − �−1�r (t)

×�r (t)
∗(�∗)−1(�∗+iIN )−1+�−1�r (t)�r (t)∗(�∗)−1(�∗−iIN )−1. (4.8)

Notice that(�− iIN )−1− (�+ iIN )−1 = 2i(�2+ IN)−1. Therefore we can rewrite (4.8)
as

C1(t)= 2i
(
�−1�r (t)�r (t)∗(�∗)−1((�∗)2 + IN)−1

− (�2 + IN)−1�−1�r (t)�r (t)∗(�∗)−1
)
. (4.9)

Notice also that

C2(t) := 2(�2 + IN)−1
(
(� + �−1)�r (t)J�r (t)

∗ + �r (t)J�r (t)
∗

×(�∗ + (�∗)−1)
)
((�∗)2 + IN)−1 = 2

(
�−1�r (t)J�r (t)

∗

×((�∗)2 + IN)−1 + (�2 + IN)−1�r (t)J�r (t)
∗(�∗)−1

)
. (4.10)
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Using the first relation in (0.8) and equalities (4.9), (4.10) we get

C2(t)− C1(t)= 2
(
�−1�r (t)J�r+1(t)∗((�∗)2 + IN)−1

+ (�2 + IN)−1�r+1(t)J�r (t)
∗(�∗)−1

) = 2(�2 + IN)−1
×(��r+1(t)J�r+1(t)∗ + �r+1(t)J�r+1(t)∗�∗)
×((�∗)2 + IN)−1. (4.11)

From (4.7) and (4.11) it follows that (4.6) is valid forn = r +1 and so for alln > 0.
Taking into account (4.5) and (4.6) we can obtain the equation

d

dt

(
�n(t)

∗�n(t)−1
)=H+

n (t)�n(t)
∗�n(t)−1(� − iIN )−1

+H−
n (t)�n(t)

∗�n(t)−1(� + iIN )−1, (4.12)

where

H+
n (t) = 2W�,�(n, t, i)P+W�,�(n, t,−i)∗, (4.13)

H−
n (t) = 2W�,�(n, t,−i)P−W�,�(n, t, i)

∗. (4.14)

Indeed, by (4.5) we have

d

dt

(
�n(t)

∗�n(t)−1
) = −

(
2P+�n(t)

∗(�∗ + iIN )−1

+2P−�n(t)
∗(�∗ − iIN )−1 + �n(t)

−1d�n
dt
(t)
)
�n(t)

−1. (4.15)

Identity (0.14) yields

((�∗)± iIN )−1�n(t)−1= �n(t)
−1(� ± iIN )−1 + i((�∗)± iIN )−1�n(t)−1

×�n(t)�n(t)
∗�n(t)−1(� ± iIN )−1. (4.16)

Finally notice that

2(�2 + IN)−1� = (� − iIN )−1 + (� + iIN )−1. (4.17)
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By using (4.6), (4.16) and (4.17), and after some calculations, we rewrite (4.15) in the
form (4.12), where

H+
n (t)= I2m + J − i�n(t)∗�n(t)−1(� − iIN )−1�n(t)J

+ iJ�n(t)
∗(�∗ − iIN )−1�n(t)−1�n(t)+ �n(t)

∗�n(t)−1

×(� − iIN )−1�n(t)J�n(t)
∗(�∗ − iIN )−1�n(t)−1�n(t), (4.18)

H−
n (t)= I2m − J + i�n(t)∗�n(t)−1(� + iIN )−1�n(t)J

− iJ�n(t)
∗(�∗ + iIN )−1�n(t)−1�n(t)− �n(t)

∗�n(t)−1

×(� + iIN )−1�n(t)J�n(t)
∗(�∗ + iIN )−1�n(t)−1�n(t). (4.19)

From (0.11) and (4.18) it follows that

H+
n (t) = I2m +W�,�(n, t, i)JW�,�(n, t,−i)∗

and so, taking into account (2.11), we derive (4.13). Equality (4.14) follows from (4.19)
in a similar way.
Recall now thatm = 2 and (2.11) holds. Then according to (2.17), (2.21) and (4.13)

we get

H+
n (t) = c+n (t)(I2 + Sn(t))(I2 + Sn−1(t)) (4.20)

and according to (2.18), (2.22) and (4.14) we get

H−
n (t) = c−n (t)(I2 − Sn(t))(I2 − Sn−1(t)), (4.21)

wherec±n (t) are scalar functions. In view of (4.13) and (4.14) we obtain also TrH±
n ,

where Tr denotes the trace. Indeed,

TrH±
n (t) ≡ 2. (4.22)

By Remark2.4 and formula (0.22) we derive

Tr (I2 ± Sn(t))(I2 ± Sn−1(t))= Tr (I2 + Sn(t)Sn−1(t))
= 2(1+ −→

S n−1(t) · −→
S n(t)). (4.23)

From (4.20)–(4.23) it follows that 1+ −→
S n−1(t) · −→

S n(t) �= 0. Now formulas (0.21),
(4.23) and (4.22) yield that

Tr V ±
n (t) ≡ 2≡ TrH±

n (t). (4.24)
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Taking into account (0.21), (4.20) and (4.21) we see thatV ±
n = ĉ±H±

n , and so (4.24)
yields equalitiesV ±

n ≡ H±
n . Hence we have

d

dt

(
�n(t)

∗�n(t)−1
)= V +

n (t)�n(t)
∗�n(t)−1(� − iIN )−1

+V −
n (t)�n(t)

∗�n(t)−1(� + iIN )−1. (4.25)

From V ±
n ≡ H±

n , (2.11) and definitions (4.13) and (4.14) we also get

V ±
n (t)W�,�(n, t,±i) = 2W�,�(n, t,±i)P±. (4.26)

Let us differentiate nowW�,�. For this purpose notice that

(� ± iIN )−1(� − �IN)
−1 = (� − �IN)−1 − (� ± iIN )−1

� ± i . (4.27)

Using (4.5), (4.25) and (4.27) we derive

d

dt
W�,�(n, t, �)= V +

n (t)
W�,�(n, t, �)−W�,�(n, t, i)

� − i + V −
n (t)

×W�,�(n, t, �)−W�,�(n, t,−i)
� + i − 2

W�,�(n, t, �)−W�,�(n, t, i)

� − i P+

−2W�,�(n, t, �)−W�,�(n, t,−i)
� + i P−. (4.28)

In view of (4.26) we can rewrite (4.28) as

d

dt
W�,�(n, t, �) = Fn(t, �)W�,�(n, t, �)−W�,�(n, t, �)F̂ (t, �), (4.29)

whereFn is given by the second relation in (0.20) and

F̂ = 2((� − i)−1P+ + (� + i)−1P−).

Thus, in view of Theorem0.1 and formula (4.29) the non-degenerate matrix functions
{Ŵn} given by

Ŵn(t, �) = �−nW�,�(n, t, �)

[
(� − i)ne2t (�−i)−1 0

0 (� + i)ne2t (�+i)−1

]

satisfy Eq. (0.24), i.e., the compatibility condition (0.19) is valid. As Eq. (0.19) is
equivalent to (0.23), the theorem is proved.�
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Theorem4.1 together with Corollary 3.4 yields the following result.

Corollary 4.2. Under the conditions of Theorem4.1 the evolution of the Weyl function
� of the systemWn+1(t, �) = Gn(t, �)Wn(t, �) is given by the formula

�(t, �) = i�∗
1e

−2t (�∗+iIN )−1�0(t)−1(�IN − �̃(t))−1e−2t (�+iIN )−1�2, (4.30)

�̃(t) = � − ie−2t (�+iIN )−1�2�∗
2e

−2t (�∗−iIN )−1�0(t)−1.

As an illustration let us consider a simple example.

Example 4.3. Put m = n = 1 and� = ih (h > 0, h �= 1), and choose scalars�1, �2
such that|�1|2+|�2|2 = 2h. Then�, �1, �2 form an admissible triple and�, �0(0) = 1,
�0(0) = [�1 �2] satisfy the conditions of Theorem4.1 and Corollary 4.2. Therefore
by (4.4) we have

�n(t) = h−n[(h+ 1)n�1 exp
{ 2it

h− 1

}
(h− 1)n�2 exp

{ 2it

h+ 1

}]
. (4.31)

From (0.14) and (4.31) it follows that

�n(t) ≡ cn(h)

2h2n+1
, cn(h) := (h+ 1)2n|�1|2 + (h− 1)2n|�2|2. (4.32)

According to (0.9), (4.31), and (4.32) we get now

(Sn(t))11 = 1− 8h2|�1�2|2(h2 − 1)2n

cn(h)cn+1(h)
, (Sn(t))22 = −(Sn(t))11,

(Sn(t))12= (Sn(t))∗21 = 4h�1�2
cn(h)cn+1(h)

exp
{ 4it

1− h2
}

×(h2 − 1)n
(
(h+ 1)2n+1|�1|2 − (h− 1)2n+1|�2|2

)
.

Finally Corollary 4.2 yields

�(t, �) = exp
{ 4it

1− h2
} i�1�2

� + i(|�2|2 − h) .
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