Available online at www.sciencedirect.com
JOURNAL OF
PURE AND
APPLIED ALGEBRA

On toric varieties which are almost set-theoretic complete intersections

Margherita Barile
Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, 70125 Bari, Italy

Received 4 May 2005
Available online 22 November 2005
Communicated by A.V. Geramita

Abstract

We describe a class of affine toric varieties V that are set-theoretically minimally defined by $\operatorname{codim} V+1$ binomial equations over fields of any characteristic. (c) 2005 Elsevier B.V. All rights reserved.

MSC: 14M25; 14M10; 19F27

0. Introduction

Let K be an algebraically closed field. Let V be an affine variety, $V \subset K^{N}$, where N is the smallest possible. The arithmetical rank (ara) of V is defined as the least number of equations that are needed to define V set-theoretically as a subvariety of K^{N}. In general we have that ara $V \geq \operatorname{codim} V$. If equality holds, V is called a set-theoretic complete intersection. If ara $V \leq \operatorname{codim} V+1, V$ is called an almost set-theoretic complete intersection. The problem of determining when a toric variety is (almost) settheoretic complete intersection is open in general; it includes the still unsettled case of monomial curves, which was intensively studied over the last three decades (see, e.g., [6, 10-12,14-16]). In [3] it was shown that, whenever V is a simplicial toric variety with a full parametrization, then ara $V=\operatorname{codim} V$ in all positive characteristics, whereas

[^0]0022-4049/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jpaa.2005.09.008
ara $V \leq \operatorname{codim} V+1$ in characteristic zero. A different class of toric varieties with the same property has recently been described in [1]. In this paper we present a class of toric varieties V of arbitrary codimension greater than 2 , such that ara $V=\operatorname{codim} V+1$ in all characteristics: each variety V is defined, over any field, by the vanishing of the same set of codim $V+1$ binomials, even though these do not generate the defining ideal $I(V) \subset K\left[x_{1}, \ldots, x_{N}\right]$. It seems that no example of this kind has ever appeared in the recent literature.

1. Preliminaries

Let K be an algebraically closed field. Let $n \geq 3$ be an integer and let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the standard basis of \mathbb{Z}^{n}. Set $N=2 n$ and consider the following subset of \mathbb{N}^{N} :

$$
\begin{aligned}
T= & \left\{d_{1} \mathbf{e}_{1}, \ldots, d_{n-1} \mathbf{e}_{n-1}, \mathbf{e}_{n}, f_{1} \mathbf{e}_{1}+g_{1} \mathbf{e}_{n}, \ldots\right. \\
& \left.f_{n-1} \mathbf{e}_{n-1}+g_{n-1} \mathbf{e}_{n}, h_{1} \mathbf{e}_{1}+\cdots+h_{n-1} \mathbf{e}_{n-1}\right\}
\end{aligned}
$$

where $d_{1}, \ldots, d_{n-1}, f_{1}, \ldots, f_{n-1}, g_{1}, \ldots, g_{n-1}, h_{1}, \ldots, h_{n-1}$ are all positive integers such that

$$
\begin{align*}
& \operatorname{gcd}\left(d_{i}, f_{i}\right)=1 \quad \text { for all } i=1, \ldots, n-1 \tag{1}\\
& \operatorname{gcd}\left(d_{i}, h_{i}\right)=1 \quad \text { for all } i=1, \ldots, n-1 \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(d_{i}, d_{j}\right)=1 \quad \text { for all } i, j=1, \ldots, n-1, i \neq j \tag{3}
\end{equation*}
$$

Suppose, moreover, that there are two distinct (positive) primes p and q such that p divides d_{i} and q divides d_{j} for some indices i and j. With T we can associate the affine variety $V \subset K^{N}$ admitting the following parametrization.

$$
V:\left\{\begin{array}{l}
x_{1}=u_{1}^{d_{1}} \\
\vdots \\
x_{n-1}=u_{n-1}^{d_{n-1}} \\
x_{n}=u_{n} \\
y_{1}=u_{1}^{f_{1}} u_{n}^{g_{1}} \\
\vdots \\
y_{n-1}=u_{n-1}^{f_{n-1}} u_{n}^{g_{n-1}} \\
y_{n}=u_{1}^{h_{1}} \cdots u_{n-1}^{h_{n-1}}
\end{array}\right.
$$

We have that codim $V=n$. The polynomials in the defining ideal $I(V)$ of V are the linear combinations of binomials

$$
B_{\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}}=x_{1}^{\alpha_{1}^{+}} \cdots x_{n}^{\alpha_{n}^{+}} y_{1}^{\beta_{1}^{+}} \cdots y_{n}^{\beta_{n}^{+}}-x_{1}^{\alpha_{1}^{-}} \cdots x_{n}^{\alpha_{n}^{-}} y_{1}^{\beta_{1}^{-}} \cdots y_{n}^{\beta_{n}^{-}}
$$

where $\left(\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{N} \backslash\{\boldsymbol{0}\}$ is such that

$$
\begin{align*}
& \alpha_{1} d_{1} \mathbf{e}_{1}+\cdots+\alpha_{n-1} d_{n-1} \mathbf{e}_{n-1}+\alpha_{n} \mathbf{e}_{n} \\
& \quad+\beta_{1}\left(f_{1} \mathbf{e}_{1}+g_{1} \mathbf{e}_{n}\right)+\cdots+\beta_{n-1}\left(f_{n-1} \mathbf{e}_{n-1}+g_{n-1} \mathbf{e}_{n}\right) \\
& \quad+\beta_{n}\left(h_{1} \mathbf{e}_{1}+\cdots+h_{n-1} \mathbf{e}_{n-1}\right)=\mathbf{0} \tag{}
\end{align*}
$$

and $\alpha_{i}^{+}=\max \left\{\alpha_{i}, 0\right\}, \alpha_{i}^{-}=\max \left\{-\alpha_{i}, 0\right\}, \beta_{i}^{+}=\max \left\{\beta_{i}, 0\right\}$ and $\beta_{i}^{-}=\max \left\{-\beta_{i}, 0\right\}$. There is a one-to-one correspondence between the set of binomials in $I(V)$ and the set of relations $(*)$ between the elements of T. Our aim is to prove the following:

Theorem 1. ara $V=n+1$.
This will be done by proving the two inequalities separately, in Sections 2 and 4 respectively.

2. The defining equations

In this section we explicitly exhibit $n+1$ binomial equations which define V settheoretically over any field K.

From (1) it follows that there are $\alpha_{1}, \ldots, \alpha_{n-1}, \beta_{1} \ldots, \beta_{n-1} \in \mathbb{Z}$ such that

$$
\begin{equation*}
h_{i}=\alpha_{i} d_{i}+\beta_{i} f_{i} \quad \text { for all } i=1, \ldots, n-1 \tag{4}
\end{equation*}
$$

Then

$$
\sum_{i=1}^{n-1} \alpha_{i} d_{i} \mathbf{e}_{i}-\left(\sum_{i=1}^{n-1} \beta_{i} g_{i}\right) \mathbf{e}_{n}+\sum_{i=1}^{n-1} \beta_{i}\left(f_{i} \mathbf{e}_{i}+g_{i} \mathbf{e}_{n}\right)-\sum_{i=1}^{n-1} h_{i} \mathbf{e}_{i}=0
$$

Hence the binomial

$$
G=B_{\left(\alpha_{1}, \ldots, \alpha_{n-1},-\sum_{i=1}^{n-1} \beta_{i} g_{i}, \beta_{1}, \ldots, \beta_{n-1},-1\right)}
$$

belongs to $I(V)$. Let

$$
F=y_{n}^{d_{1} \cdots d_{n-1}}-x_{1}^{h_{1} d_{2} \cdots d_{n-1}} \cdots x_{i}^{d_{1} \cdots d_{i-1} h_{i} d_{i+1} \cdots d_{n}} \cdots x_{n-1}^{d_{1} \cdots d_{n-2} h_{n-1}}
$$

and

$$
F_{i}=y_{i}^{d_{i}}-x_{i}^{f_{i}} x_{n}^{d_{i} g_{i}} \quad \text { for all } i=1, \ldots, n-1
$$

An easy computation yields that $F, F_{1}, \ldots, F_{n-1} \in I(V)$.
Proposition 1. Variety V is set-theoretically defined by

$$
F_{1}=\cdots=F_{n-1}=F=G=0
$$

Proof. We only have to prove that every $\mathbf{w} \in K^{N}$ fulfilling the given equations belongs to V. So let $\mathbf{w}=\left(\bar{x}_{1}, \ldots, \bar{x}_{n}, \bar{y}_{1}, \ldots, \bar{y}_{n}\right) \in K^{N}$ be such that

$$
\begin{align*}
& F_{1}(\mathbf{w})=\cdots=F_{n-1}(\mathbf{w})=0 \tag{5}\\
& F(\mathbf{w})=0 \tag{6}\\
& G(\mathbf{w})=0 \tag{7}
\end{align*}
$$

Let $u_{1}, \ldots, u_{n} \in K$ be such that $\bar{x}_{i}=u_{i}^{d_{i}}$ for all $i=1, \ldots, n-1$, and set $u_{n}=\bar{x}_{n}$. We show that for a suitable choice of u_{1}, \ldots, u_{n-1}, we have

$$
\begin{equation*}
\bar{y}_{i}=u_{i}^{f_{i}} u_{n}^{g_{i}} \quad \text { for all } i=1, \ldots, n-1, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{y}_{n}=u_{1}^{h_{1}} \cdots u_{n-1}^{h_{n-1}} . \tag{9}
\end{equation*}
$$

We first show that, up to replacing some u_{i} with another d_{i} th root of \bar{x}_{i}, (8) is fulfilled. From (6) we deduce that $\bar{y}_{n}^{d_{1} \cdots d_{n-1}}=u_{1}^{h_{1} d_{1} \cdots d_{n-1}} \cdots u_{n-1}^{h_{n-1} d_{1} \cdots d_{n-1}}$, so that

$$
\begin{equation*}
\bar{y}_{n}=u_{1}^{h_{1}} \cdots u_{n-1}^{h_{n-1}} \eta, \tag{9}
\end{equation*}
$$

for some $\eta \in K$ such that $\eta^{d_{1} \cdots d_{n-1}}=1$. For all $i=1, \ldots, n-1$ let $\eta_{i} \in K$ be a primitive d_{i} th root of unity. Then (3) implies that $\eta^{\prime}=\eta_{1} \cdots \eta_{n-1}$ is a primitive $d_{1} \cdots d_{n-1}$ th root of unity. Hence, for a suitable positive integer s, we have $\eta^{\prime s}=\eta$. Choose $u_{i} \eta_{i}^{s}$ instead of u_{i}, for all $i=1, \ldots, n-1$. Then (9)' turns into (9). Condition (8) is also fulfilled if $\bar{x}_{n}=0$. So suppose that $\bar{x}_{n} \neq 0$. We prove that, up to a modification of u_{1}, \ldots, u_{n-1} which preserves (9), condition (8) is satisfied. From (5) we derive that, for all $i=1, \ldots, n-1$, $\bar{y}_{i}^{d_{i}}=u_{i}^{d_{i} f_{i}} u_{n}^{d_{i} g_{i}}$, so that

$$
\begin{equation*}
\bar{y}_{i}=u_{i}^{f_{i}} u_{n}^{g_{i}} \theta_{i} \tag{8}
\end{equation*}
$$

where $\theta_{i} \in K$ is some d_{i} th root of unity. From (1) it follows that $\theta_{i}=\omega_{i}^{f_{i}}$ where $\omega_{i} \in K$ is some d_{i} th root of unity. We replace u_{i} by $u_{i} \omega_{i}$ for all $i=1, \ldots, n-1$. Then (8)' turns into (8). Finally, from (7) it follows that $\bar{y}_{n} \bar{x}_{n}^{\beta_{1} g_{1}+\cdots+\beta_{n-1} g_{n-1}}=\bar{x}_{1}^{\alpha_{1}} \cdots \bar{x}_{n-1}^{\alpha_{n-1}} \bar{y}_{1}^{\beta_{1}} \cdots \bar{y}_{n-1}^{\beta_{n-1}}$, whence

$$
\bar{y}_{n} u_{n}^{\beta_{1} g_{1}+\cdots+\beta_{n-1} g_{n-1}}=u_{1}^{\alpha_{1} d_{1}+\beta_{1} f_{1}} \cdots u_{n-1}^{\alpha_{n-1} d_{n-1}+\beta_{n-1} f_{n-1}} u_{n}^{\beta_{1} g_{1}+\cdots \beta_{n-1} g_{n-1}},
$$

which, since $u_{n} \neq 0$, and in view of (4), implies (9). This completes the proof.
We have just proven that:
Corollary 1. ara $V \leq n+1$.
In general, even if V is set-theoretically defined by $n+1$ binomial equations, $n+1$ binomials are not sufficient to generate the defining ideal of $I(V)$. This is shown in the next example.

Example 1. Let $n=3$, and take $d_{1}=2, d_{2}=3, f_{1}=3, f_{2}=5, g_{1}=g_{2}=1, h_{1}=3$, $h_{2}=5$. The corresponding toric variety is

$$
V:\left\{\begin{array}{l}
x_{1}=u_{1}^{2} \\
x_{2}=u_{2}^{3} \\
x_{3}=u_{3} \\
y_{1}=u_{1}^{3} u_{3} \\
y_{2}=u_{2}^{5} u_{3} \\
y_{3}=u_{1}^{3} u_{2}^{5}
\end{array}\right.
$$

A computation by CoCoA [9] yields that the defining ideal $I(V)$ is minimally generated by the following eight binomials:

$$
\begin{array}{lc}
y_{1}^{2}-x_{1}^{3} x_{3}^{2}, & y_{2}^{3}-x_{2}^{5} x_{3}^{3},
\end{array} y_{3}^{6}-x_{1}^{9} x_{2}^{10}, \quad x_{3}^{2} y_{3}-y_{1} y_{2}, ~ 子 ~ y_{2}^{2} y_{3}-x_{2}^{5} x_{3} y_{1}, \quad x_{3} y_{3}^{3}-x_{1}^{3} x_{2}^{5} y_{1} .
$$

Since $f_{i}=h_{i}$ for $i=1,2$, in (4) we can take $\alpha_{i}=0$ and $\beta_{i}=1$ for $i=1,2$. Then the first four binomials in the above list are F_{1}, F_{2}, F and G respectively. According to Proposition 1 they suffice to define V set-theoretically.

3. Some cohomological results

In the next section we shall complete the proof of Theorem 1 using cohomological tools. In this section we provide the necessary preliminary lemmas on étale cohomology. We refer to [13] for the basic notions. Let $K^{*}=K \backslash\{0\}$.

Lemma 1. Let n be a positive integer, and let r be an integer prime to char K. Let d_{1}, \ldots, d_{n} be positive integers such that, for some index i, d_{i} and r are not coprime, and consider the morphism of schemes

$$
\begin{aligned}
& \delta:\left(K^{*}\right)^{n} \rightarrow\left(K^{*}\right)^{n} \\
& \left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}^{d_{1}}, \ldots, u_{n}^{d_{n}}\right)
\end{aligned}
$$

Then the map

$$
\kappa_{n}: H_{\mathrm{c}}^{n+1}\left(\left(K^{*}\right)^{n}\right) \rightarrow H_{\mathrm{c}}^{n+1}\left(\left(K^{*}\right)^{n}\right)
$$

induced in cohomology with compact support is not injective.
Proof. In what follows H_{et} and H_{c} will denote étale cohomology and cohomology with compact support with respect to $\mathbb{Z} / r \mathbb{Z}$; for the sake of simplicity we shall omit the coefficient group in this and in the next proofs. We proceed by induction on $n \geq 1$. For $n=1$ we have the morphism

$$
\begin{aligned}
& \delta: K^{*} \rightarrow K^{*} \\
& u_{1} \mapsto u_{1}^{d_{1}}
\end{aligned}
$$

and we know that exponentiation to d_{1} in K induces multiplication by d_{1} in cohomology with compact support. Thus δ gives rise to the following commutative diagram with exact rows in cohomology with compact support:

$$
\begin{array}{ccccccc}
0 & & \mathbb{Z} / r \mathbb{Z} & & \mathbb{Z} / r \mathbb{Z} & & 0 \\
\| & & { }^{2 \mid} & \simeq & 2 \mid & & \| \\
H_{\mathrm{c}}^{1}(\{0\}) & \rightarrow & H_{\mathrm{c}}^{2}\left(K^{*}\right) & \rightarrow & H_{\mathrm{c}}^{2}(K) & \rightarrow & H_{\mathrm{c}}^{2}(\{0\}) \\
& & & & & & \\
& & \downarrow \kappa_{1} & & \downarrow \cdot d_{1} & & \\
& & & & & \\
H_{\mathrm{c}}^{1}(\{0\}) & \rightarrow & H_{\mathrm{c}}^{2}\left(K^{*}\right) & \rightarrow & H_{\mathrm{c}}^{2}(K) & \rightarrow & H_{\mathrm{c}}^{2}(\{0\}) \\
\| & & 2 \mid & \simeq & 2 \mid & & \| \\
0 & & \mathbb{Z} / r \mathbb{Z} & & \mathbb{Z} / r \mathbb{Z} & & 0
\end{array}
$$

Since by assumption d_{1} and r are not coprime, multiplication by d_{1} in $\mathbb{Z} / r \mathbb{Z}$ is not injective. It follows that κ_{1} is not injective. Now let $n>1$ and suppose the claim true for all smaller n. Without loss of generality we may assume that d_{1} is not prime to r. Note that $\{0\} \times\left(K^{*}\right)^{n-1}$ is a closed subset of $K \times\left(K^{*}\right)^{n-1}$ and $\left(K \times\left(K^{*}\right)^{n-1}\right) \backslash\left(\{0\} \times\left(K^{*}\right)^{n-1}\right)=\left(K^{*}\right)^{n}$. After identifying $\{0\} \times\left(K^{*}\right)^{n-1}$ with $\left(K^{*}\right)^{n-1}$ we have an exact sequence of cohomology with compact support

$$
\begin{equation*}
H_{\mathrm{c}}^{n}\left(K \times\left(K^{*}\right)^{n-1}\right) \rightarrow H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right) \rightarrow H_{\mathrm{c}}^{n+1}\left(\left(K^{*}\right)^{n}\right) \rightarrow H_{\mathrm{c}}^{n+1}\left(K \times\left(K^{*}\right)^{n-1}\right) \tag{10}
\end{equation*}
$$

According to the Künneth formula, for all indices i we have

$$
H_{\mathrm{c}}^{i}\left(K \times\left(K^{*}\right)^{n-1}\right) \simeq \bigoplus_{p+q_{1}+\cdots+q_{n-1}=i} H_{\mathrm{c}}^{p}(K) \otimes H_{\mathrm{c}}^{q_{1}}\left(K^{*}\right) \otimes \cdots \otimes H_{\mathrm{c}}^{q_{n-1}}\left(K^{*}\right) .
$$

Since $H_{\mathrm{c}}^{p}(K)=0$ for $p \neq 2$ and $H_{\mathrm{c}}^{q}\left(K^{*}\right)=0$ for $q \neq 1,2$, it follows that

$$
H_{\mathrm{c}}^{n}\left(K \times\left(K^{*}\right)^{n-1}\right)=0
$$

Let

$$
\begin{aligned}
& \delta^{\prime}:\left(K^{*}\right)^{n-1} \rightarrow\left(K^{*}\right)^{n-1} \\
& \left(u_{1}, \ldots, u_{n-1}\right) \mapsto\left(u_{1}^{d_{1}}, \ldots, u_{n-1}^{d_{n-1}}\right)
\end{aligned}
$$

be the map obtained from δ by restriction, and let

$$
\kappa_{n-1}: H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right) \rightarrow H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right)
$$

be the homomorphism it induces in cohomology with compact support. Then (10) gives rise to the following commutative diagram with exact rows:

$$
\begin{array}{cccccc}
0 & \rightarrow & H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right) & \rightarrow & H_{\mathrm{c}}^{n+1}\left(\left(K^{*}\right)^{n}\right) \\
\downarrow \kappa_{n-1} & & \downarrow \kappa_{n} \\
0 & \rightarrow & H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right) & \rightarrow & H_{\mathrm{c}}^{n+1}\left(\left(K^{*}\right)^{n}\right) .
\end{array}
$$

Since, by induction, κ_{n-1} is not injective, it follows that κ_{n} is not injective. This completes the proof.

The following result is due to Newstead and is quoted from [7].
Lemma 2. Let $W \subset \tilde{W}$ be affine varieties. Let $d=\operatorname{dim} \tilde{W} \backslash W$. If there are s equations F_{1}, \ldots, F_{s} such that $W=\tilde{W} \cap V\left(F_{1}, \ldots, F_{s}\right)$, then

$$
H_{\mathrm{et}}^{d+i}(\tilde{W} \backslash W, \mathbb{Z} / r \mathbb{Z})=0 \quad \text { for all } i \geq s
$$

and for all $r \in \mathbb{Z}$ which are prime to char K.
From this we derive the following cohomological criterion on the number of equations defining an affine variety set-theoretically.

Corollary 2. Let V be a subvariety of the affine space K^{N}. Let $s<2 N$ be a positive integer such that

$$
H_{\mathrm{c}}^{s}(V, \mathbb{Z} / r \mathbb{Z}) \neq 0
$$

for some positive integer r prime to char K. Then ara $V \geq N-s$.
Proof. As in the preceding proofs, we shall omit the coefficient group $\mathbb{Z} / r \mathbb{Z}$. We have an exact sequence

$$
H_{\mathrm{c}}^{s}\left(K^{N}\right) \rightarrow H_{\mathrm{c}}^{s}(V) \rightarrow H_{\mathrm{c}}^{s+1}\left(K^{N} \backslash V\right),
$$

where $H_{\mathrm{c}}^{s}\left(K^{N}\right)=0$. If $H_{\mathrm{c}}^{s}(V) \neq 0$, it follows that $H_{\mathrm{c}}^{s+1}\left(K^{N} \backslash V\right) \neq 0$. Applying Poincaré Duality (see [13, Corollary 11.2, p. 276]) yields

$$
H_{\mathrm{et}}^{2 N-s-1}\left(K^{N} \backslash V\right) \simeq H_{\mathrm{c}}^{s+1}\left(K^{N} \backslash V\right) \neq 0,
$$

so that, by Lemma $2, V$ is not defined set-theoretically by $N-s-1$ equations, i.e., ara $V \geq N-s$, as claimed. This completes the proof.

4. The cohomological lower bound

We are now ready to complete the proof of Theorem 1 for the toric variety V introduced above. We show

Proposition 2. ara $V \geq n+1$.
Proof. Let $r \in\{p, q\}$. Suppose that char $K \neq r$. It suffices to show that the claim holds under this assumption: since $p \neq q$, the characteristic of any ground field is different from p or different from q. All the cohomology groups considered in this proof are referred to the coefficient group $\mathbb{Z} / r \mathbb{Z}$. Let

$$
\begin{aligned}
& \phi: K^{n} \rightarrow V \\
& \left(u_{1}, \ldots, u_{n}\right) \mapsto\left(u_{1}^{d_{1}}, \ldots, u_{n-1}^{d_{n-1}}, u_{n}, u_{1}^{f_{1}} u_{n}^{g_{1}}, \ldots, u_{n-1}^{f_{n-1}} u_{n}^{g_{n-1}}, u_{1}^{h_{1}} \cdots u_{n-1}^{h_{n-1}}\right)
\end{aligned}
$$

and let $W \subset K^{n}$ be the subvariety defined by $u_{n}=u_{1} \cdots u_{n-1}=0$. The restriction

$$
\phi^{\prime}: K^{n} \backslash W \rightarrow V \backslash \phi(W)
$$

is a bijection. Surjectivity is obvious, we only have to prove injectivity. Let $\mathbf{u}=$ $\left(\bar{u}_{1}, \ldots, \bar{u}_{n-1}, \bar{u}_{n}\right) \in K^{n} \backslash W$. First assume that $\bar{u}_{n} \neq 0$. Let $i \in\{1, \ldots, n-1\}$. We prove that \bar{u}_{i} is uniquely determined by $\phi(\mathbf{u})$. This is evidently true if $\bar{u}_{i}=0$. So suppose that $\bar{u}_{i} \neq 0$. By (1) there are $a_{i}, b_{i} \in \mathbf{Z}$ such that $a_{i} d_{i}+b_{i} f_{i}=1$. Hence

$$
\bar{u}_{i}=\bar{u}_{i}^{a_{i} d_{i}+b_{i} f_{i}}=\left(\bar{u}_{i}^{d_{i}}\right)^{a_{i}} \frac{\left(\bar{u}_{i}^{f_{i}} \bar{u}_{n}^{g_{i}}\right)^{b_{i}}}{\bar{u}_{n}^{g_{i} b_{i}}} .
$$

Now assume that $\bar{u}_{n}=0$, so that $\bar{u}_{1}, \ldots, \bar{u}_{n-1} \neq 0$. Let $\mathbf{v}=\left(\bar{v}_{1}, \ldots, \bar{v}_{n-1}, 0\right) \in K^{n}$ be such that $\phi^{\prime}(\mathbf{v})=\phi^{\prime}(\mathbf{u})$. Then, for all $i=1, \ldots, n-1, \bar{v}_{i}^{d_{i}}=\bar{u}_{i}^{d_{i}}$ so that

$$
\begin{equation*}
\bar{v}_{i}=\eta_{i} \bar{u}_{i} \tag{11}
\end{equation*}
$$

for some d_{i} th root of unity η_{i}. We also have that

$$
\begin{equation*}
\bar{v}_{1}^{h_{1}} \cdots \bar{v}_{n-1}^{h_{n-1}}=\bar{u}_{1}^{h_{1}} \cdots \bar{u}_{n-1}^{h_{n-1}} . \tag{12}
\end{equation*}
$$

Since $\bar{u}_{i} \neq 0$ for all $i=1, \ldots, n-1$, from (11) and (12) it follows that

$$
\eta_{1}^{h_{1}} \cdots \eta_{n-1}^{h_{n-1}}=1
$$

Hence

$$
\begin{equation*}
\omega_{1}=\eta_{1}^{h_{1}}=\eta_{2}^{-h_{2}} \cdots \eta_{n-1}^{-h_{n-1}} \tag{13}
\end{equation*}
$$

is both a d_{1} th root and an ℓ_{1} th root of unity, where $\ell_{1}=1 \mathrm{~cm}\left(d_{2}, \ldots, d_{n-1}\right)$. Since, by (3), $\operatorname{gcd}\left(\ell_{1}, d_{1}\right)=1$, it follows that $\omega_{1}=1$. Hence, in view of (13), η_{1} is both a d_{1} th and a h_{1} th root of unity. By (2) it follows that $\eta_{1}=1$. Similarly, one shows that $\eta_{i}=1$ for all $i=2, \ldots, n-1$. Hence, by (11), $\mathbf{v}=\mathbf{u}$, which completes the proof that ϕ^{\prime} is injective. Since it is finite, it is proper. Therefore, according to [8], Lemma 3.1, it induces an isomorphism in cohomology

$$
\phi_{i}^{\prime}: H_{\mathrm{c}}^{i}(V \backslash \phi(W)) \simeq H_{\mathrm{c}}^{i}\left(K^{n} \backslash W\right),
$$

for all indices i. Now consider the restriction map

$$
\begin{aligned}
& \phi^{\prime \prime}: W \rightarrow \phi(W) \\
& \left(u_{1}, \ldots, u_{n-1}, 0\right) \mapsto\left(u_{1}^{d_{1}}, \ldots, u_{n-1}^{d_{n-1}}, 0, \ldots, 0\right)
\end{aligned}
$$

and the maps it induces in cohomology

$$
\phi_{i}^{\prime \prime}: H_{\mathrm{c}}^{i}(\phi(W)) \rightarrow H_{\mathrm{c}}^{i}(W) .
$$

We have the following commutative diagram with exact rows:

$$
\begin{array}{ccccccc}
H_{\mathrm{c}}^{n-1}(V) & \rightarrow & H_{\mathrm{c}}^{n-1}(\phi(W)) & \rightarrow & H_{\mathrm{c}}^{n}(V \backslash \phi(W)) & & \\
& & \downarrow \phi_{n-1}^{\prime \prime} & & 2 \mid \downarrow \phi_{n}^{\prime} & & \\
& & & & & \\
H_{\mathrm{c}}^{n-1}\left(K^{n}\right) & \rightarrow & H_{\mathrm{c}}^{n-1}(W) & \rightarrow & H_{\mathrm{c}}^{n}\left(K^{n} \backslash W\right) & \rightarrow & H_{\mathrm{c}}^{n}\left(K^{n}\right) \\
\| & & & \simeq & & & \| \\
0 & & & & & 0
\end{array}
$$

Our next aim is to show that $\phi_{n-1}^{\prime \prime}$ is not injective. It will follow that $\phi_{n}^{\prime} \alpha$ is not injective, and, consequently, α is not injective, so that

$$
H_{\mathrm{c}}^{n-1}(V) \neq 0 .
$$

In view of Corollary 2 , this will imply the claim. Let X be the subvariety of K^{n-1} defined by $u_{1} \cdots u_{n-1}=0$. Then, up to omitting zero coordinates, $\phi^{\prime \prime}$ can be viewed as the map:

$$
\begin{aligned}
& \phi^{\prime \prime}: X \rightarrow X \\
& \left(u_{1}, \ldots, u_{n-1}\right) \mapsto\left(u_{1}^{d_{1}}, \ldots, u_{n-1}^{d_{n-1}}\right) .
\end{aligned}
$$

We have to show that the induced map

$$
\phi_{n-1}^{\prime \prime}: H_{\mathrm{c}}^{n-1}(X) \rightarrow H_{\mathrm{c}}^{n-1}(X)
$$

is not injective. Note that $K^{n-1} \backslash X=\left(K^{*}\right)^{n-1}$. Thus we have the following commutative diagram with exact rows, where κ_{n-1} is the map defined in Lemma 1:

$$
\begin{aligned}
& \left.\right) \quad \begin{array}{l}
\| \\
H_{\mathrm{c}}^{n}\left(K^{n-1}\right)
\end{array} \\
& \downarrow \phi_{n-1}^{\prime \prime} \quad \downarrow \kappa_{n-1} \\
& \begin{array}{ccccc}
H_{\mathrm{c}}^{n-1}\left(K^{n-1}\right) & \rightarrow \quad H_{\mathrm{c}}^{n-1}(X) & \rightarrow & H_{\mathrm{c}}^{n}\left(\left(K^{*}\right)^{n-1}\right) & \rightarrow \\
\| & & H_{\mathrm{c}}^{n}\left(K^{n-1}\right) \\
0 & & & & \| \\
& & &
\end{array}
\end{aligned}
$$

By Lemma 1, since r is a prime factor of some of the exponents d_{i}, if char $K \neq r, \kappa_{n-1}$ is not injective, hence nor is $\phi_{n-1}^{\prime \prime}$, as was to be shown. This completes the proof.

5. Final remarks

For the toric varieties V considered in this paper, the minimal number of defining equations coincides with the minimal number of binomial defining equations, i.e., ara $V=$ bar $V=n+1$, where "bar" denotes the so-called binomial arithmetical rank, a notion introduced by Thoma [17]. In general, ara $V<$ bar V : an example is given by the projective monomial curves studied by Robbiano and Valla [15], which are defined by two equations (and thus are set-theoretic complete intersections), but one of these equations is, in general, non-binomial. As it was shown in [4], over fields of characteristic zero we have ara $V=$ bar $V=\operatorname{codim} V$ for a toric variety V only in a very special case, namely if and only if the defining ideal $I(V)$ is a complete intersection (i.e., if and only if it is generated by codim V equations). The criterion changes completely in characteristic p : there the above equality holds for a much larger class of toric varieties, whose attached affine semigroup $\mathbb{N T}$ is completely p-glued, a combinatorial property described in [4]. This difference explains why there are several examples of toric varieties whose arithmetical rank strictly depends on the characteristic of the ground field. One can find classes for which ara $V=\operatorname{bar} V=\operatorname{codim} V$ in one positive characteristic, whereas ara $V>\operatorname{codim} V$ in all remaining characteristics: this is the case for the simplicial toric varieties of codimension 2 described in [5], and for certain Veronese varieties, of arbitrarily high codimension, considered in [2]. In this respect, the main result of this paper presents a new situation: the arithmetical rank is constant in all characteristics. Moreover the defining equations are the same over all fields. This is not true for monomial curves in the three-dimensional projective space: in every positive characteristic they are binomial set-theoretic complete intersections, but the two defining binomial equations change from one characteristic to the other (see [14]), whereas in characteristic zero their arithmetical ranks are unknown in general.

Acknowledgement

The author was partially supported by the Italian Ministry of Education, University and Research.

References

[1] M. Barile, Almost set-theoretic complete intersections in characteristic zero, 2005 (preprint), arXiv:math.AG/0504052.
[2] M. Barile, A note on Veronese varieties, Rend. Circ. Mat. Palermo (in press).
[3] M. Barile, M. Morales, A. Thoma, On simplicial toric varieties which are set-theoretic complete intersections, J. Algebra 226 (2000) 880-892.
[4] M. Barile, M. Morales, A. Thoma, Set-theoretic complete intersections on binomials, Proc. Amer. Soc. 130 (2002) 1893-1903.
[5] M. Barile, G. Lyubeznik, Set-theoretic complete intersections in characteristic p, Proc. Amer. Soc. 133 (2005) 3199-3209.
[6] H. Bresinsky, Monomial Gorenstein curves in \mathbf{A}^{4} are set-theoretic complete intersections, Manuscripta Math. 27 (1979) 353-358.
[7] W. Bruns, R. Schwänzl, The number of equations defining a determinantal variety, Bull. London Math. Soc. 22 (1990) 439-445.
[8] M. Chalupnik, P. Kowalski, Lazard's theorem for differential algebraic groups and proalgebraic groups, Pacific J. Math. 202 (2002) 305-312.
[9] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra. Available at: http://cocoa.dima.unige.it.
[10] S. Eliahou, Idéaux de définition des courbes monomiales, in: S. Greco, R. Strano (Eds.), Complete Intersections, in: Lecture Notes in Mathematics, vol. 1092, Springer, Heidelberg, 1984, pp. 229-240.
[11] K. Eto, Almost complete intersection monomial curves in \mathbf{A}^{4}, Comm. Algebra 22 (1994) 5325-5342.
[12] A. Katsabekis, Projection of cones and the arithmetical rank of toric varieties, J. Pure Appl. Algebra 199 (2005) 133-147.
[13] J.S. Milne, Étale Cohomology, Princeton University Press, Princeton, 1980.
[14] T.T. Moh, Set-theoretic complete intersections, Proc. Amer. Math. Soc. 94 (1985) 217-220.
[15] L. Robbiano, G. Valla, On set-theoretic complete intersections in the projective space, Rend. Sem. Mat. Fis. Milano 53 (1983) 333-346.
[16] A. Thoma, On the set-theoretic complete intersection problem for monomial curves in \mathbf{A}^{n} and \mathbf{P}^{n}, J. Pure Appl. Algebra 104 (1995) 333-344.
[17] A. Thoma, On the binomial arithmetical rank, Arch. Math. 74 (2000) 22-25.

[^0]: E-mail address: barile@dm.uniba.it.

