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Existence and uniqueness theorems for stochastic evolution equations are
developed in a Hilbert space context. The results are based on a blending of the
theorems for evolution equations with stochastic integration for Hilbert space
valued random processes. The results are applied to stochastically forced
parabolic partial differential equations such as have arisen in heat transfer
problems.

. INTRODUCTION

We develop existence and uniqueness theorems for stochastic abstract
evolution equations in a Hilbert space context. Our results are based on
a blending of the existence and uniqueness theorems for solutions of abstract
evolution equations ([8-10, 12, 13]) with the theory of stochastic integration
for Hilbert space valued random processes [l, 4, 6, 14]. More precisely,
by giving appropriate definitions of a Wiener process and stochastic integra-
tion in a Hilbert space context, we are able to treat evolution equations
of the form u(t) = uy + [ tTl A(s) u(s) ds -+ ftTl @(s) dw, where A(s) is a closed
(possibly unbounded) linear operator, @ is a suitable transformation valued
stochastic process, and w(t) is a Hilbert space valued Wiener process.

We let (2, #, 1) be a probability space with &7 as Borel fleld and p as
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measure, and we assume that y is complete. We also let H denote a separable
Hilbert space throughout the sequel. We suppose that the reader is somewhat
familiar with the theory of Banach space valued random variables (see,
for example [6]); however, for convenience, we include a brief appendix
containing the definitions and results relevant to the paper.

We give the basic definitions of an H-valued Wiener process and the
corresponding stochastic integral in Section 2 together with a number of
their properties. Then we state and prove the existence and uniqueness
theorems in Section 3. The results are applied to stochastically forced
parabolic partial differential equations in Section 4.

2. WIENER PROCESSES AND STOCHASTIC INTEGRALS

We define Wiener processes and develop the stochastic integral in a Hilbert
space context in this section.

DErINITION 2.1, Let 2(t) be an H-valued random process on T = [T, T}).
Then w(z) is a Wiener process if

(1) E{w(t) — w(s)} = O0foralls, tin T;

(it} w(t) 1s continuous in ¢t wpl;!

(i)  E{{w(t) — w(s)] o [w(t) — w(s)]} 2 = (¢ — )W for all 5,2 in T,
where W is a compact, positive, bounded trace class operator mapping H
into itself;

(1v) E{| w(t) — w(s)*} < oo for all s, ¢ 1n T'; and,

(V) w(ty) — w(t;) and w(s,) — w(sy) are independent for all s, , s, , ¢, , £,
in T with s; <<s, <8 < 1.

We note that the operator W has countably many eigenvalues {);}, that
X, =0 for all i, that Tr(W) =3, ,);, and that there is a complete
orthonormal basis {e;} of H for which We; = Ae; .

Several variants of Definition 2.1 can be obtained by replacing (v) by
either of the weaker conditions:

(V)" <w(ty) — w(ty), Ay and {w(sy) — w(sy), Ay» are independent for all
S8, 1,8, in T with s; << s, < t; < and all &y, Ay in H;
(V)" <w(ty) — w(ty), ;> and {w(s,) — w(s;), e;> are independent for all
S1,8, b, b in T with s; <5, <8 < 1y
1 wpl” is shorthand for “with probability one.”

21f hy and h, are elements of H, then hy o h, is the element of #(H, H) given by
(y © Bo)h = hy <h, Ry (cf., [4]).
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These variants of the definition lead to essentially identical results (see [2]).
If w(r) is an H-valued Wicner process, then there are complex random
processes {f#,(#)} on T such that

w(t) Y Bit)e (2.2

Z==()

almost everywhere in (¢, w}, where {;} is an orthonormal basis of H consisting
of eigenvectors of W. Moreover, Re{f,(#)} and Im{B,(¢)} are real Wiener
processes. From (2.2), it is easy to sec that

E{ w(t) — w(s), w(t) — w(s)>} = Tr(Wyjt —s! (2.3)
for t,s in T. We now have

PropositioN 2.4. If w(t) is an H-valued Wiener process, then there is a
family {#,, t € T} of o-algebras such that
(1) F,CFCH fors <t
(it) w(t) is measurable velative to F, for all t in T,
(1) w(t) — w(s) is independent of F, for s < t;
(iv) [w(t) — w(s)] o [w(t) — w(s)] is independent of F, for s << t.

Proof. Take, for example, .# to be the g-algebra generated by the sets
w(s) ™M), se T, s < t, O a Borel set in H. Properties (i)-(iii) are obvious
and (iv) is an immediate consequence of the fact that the mapping ¢ of
H @ H into L(H, H) given by (h, , hy) = h,0h, is continuous [4, Proposi-
tions 2.2 and 2.4].

CoroLLARY 2.5. E{w(t) — w(s) ! #,} == 0 wpl for s < t,
E{w(t) — w(s)] o [w(t) — w(s)] | £} = (t — s)W wpl for s <21,
and {[w(t) — w(s)] o [w(t) — w(s)}hy , Iy is independent of F, for s <t and

all by, hy in H.

If w(t) is an H-valued Wiener process, then, for convenience, we fix a
family {#;} satisfying the conditions of Proposition 2.4 and associate it
with @(f). We then have

DeriniTION 2.6.  Let K be a Hilbert space. Then #(H, K) == {®(-, -) : @
is an #(H, K)-valued stochastic process on T' X £2 such that &(z) is measur-
able relative to & for all t in T}, #\H,K)={PecM(H,K): P 1s at
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step function on T}, J#,(H,K) = {®ecd(H, K): [; E|O@)2dt < oo},
and M (H, K) = {@c . d(H,K): [;]| D)2 dt < oo wpl}.

If @ is an element of .#,(H, K), then the K-valued stochastic integral,
J7 @(t, w) dw, can be defined in a similar way to that used in the scalar case by
Skorokhod [7]. More precisely, if @ is an element of .4 (H, K) N .#,(H, K),
then [, O(t, w) dw is given by a finite sum of the form ¥ ®(t;, w){w(t; ;) ~w(;)}.
If @ is any element of .4 (H, K), then there is a sequence {@,} of elements
of A (H, K)n .#(H, K) such that @, — @ almost everywhere on T x Q
and
lim J E{|® — @, 2} dt = 0. (2.7)

T

Moreover, {[r @,(t, w) dw} has a unique limit in Ly(2, K). This limit is the
stochastic integral [, @(t, w) dw. Now, if @ is an element of .#,(H, K),
then there is a sequence {®,} of elements .#(H, K) such that {@,} converges
to @ almost everywhere on T x 2 and {[; @,(t, ) dw} converges in

probability to a K-valued random variable. This random variable is the
stochastic integral, [y D(t, w) duw.

Proposition 2.8. If ®is an element of 4 ,(H, K), then E{[, ®(t, w) dw} =0
and

E }H | (1, ) du ]ﬁ < Te(W) | E( @) (2.9)

Proof. See [14].
We now introduce the stochastic differential.

Derinrrion 2.10.  Letu(t), t € T, be the K-valued stochastic process given
by

u(t) — u(Ty) = f ; q(s, w) ds -+ f ; B(s, o) dw, @.11)

where @ is an element of .#,(H, K) and ¢(s, ) is a K-valued stochastic
process with [7 || g(s, w)|| ds << o0 wpl which is measurable relative to %
for all ¢ in 7. Then u is said to have the stochastic differential ¢ dt 4+ @ dw
and we write du = g dt + @ duw.

The following proposition gives this definition some ‘‘substance”.

ProrosiTioN 2.12. If D is an element of M (H, K), then the indefinite
stochastic integral u(t) = fT D(s, w) dw is continuous in ¢ on T wpl.
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Proof. We first show that if @ is in .#(H, K)n . .#,(H, K), then
{u(t), #} is a K-valued martingale. Since @ is a f step function,

u(t) = u(s) + Z Dt )a(t;, 1) — w(t;)] for s <1

It follows that E{u(t)| #} = u(s) for s <t since u(s) is measurable
relative to %, D(t)[w(t,_,) — w(t;)] is measurable relative to #,, and
Biae(t) — w(t) | 7} = 0,

Now, if @ is an element of .#,(H, K), then there is a sequence {®@,} of
elements of .# (H, K) N .#,(H, K) such that @, converges to @ almost
everywhere on 7' Q and lim,_, [; B{{® - @, |’} dt = 0. By virtue of a
convergence property of conditional expectations [6], it follows that {u(¢), %}
is a K-valued martingale in this case also.

Finally, if @ is an element of . //q(H K)and{®,} is a sequence of elements of
A(H, K) used to deﬁne jT (s, w) dw, then {|lu(t) — u,{t)], %} 1s a real
semimartingale where u,,(f) == f, D (s, w) dw (see [6]). This semimartingale
may be viewed as a separable real semimartingale [3].

The proof that u(#) is continuous in ¢ wpl then follows exactly along the
lines of the proof for the scalar case given by Skorokhod [7].2

We observe that if # has a stochastic differential, then the real stochastic
process || u(1)l| may be viewed as a separable real process since u(f) is con-
tinuous wpl. This observation will be useful in the sequel and cnables us
to avoid the question of generalizing the notion of separability for a random
process to the Hilbert space context.

Several basic properties of the stochastic integral are given in the following
propositions whose straightforward proofs are omitted [2].

PROPOSITION 2.13. If @ is an element of .#,(H, K), then [, @ dw =
Yoo [r @, we; dB; wpl, where w(t) is given by 2.2.

ProposITION 2.14. Let v, = [ u,(t) dB; where u; is an element of 4 (C, K).
If 700 Jr E{| u; P} dt < o0, then v = = Y v is @ well-defined K-valued
random variable and E{| v (1% < 3, o A; [ E{l w; |2} dt.

Proposrrion 2.15. If @, D, are elements of o (H, K) such that (i) D,
converges (strongly) to @ almost everywhere on T X 2, and (ii) there is an
oft) in Ly(T') such that || ()| < oft) almost everywhere on T' X 8, then

lim J @, dw — f ® duw (2.16)
T

in probability.

3 The details can be found in [2].
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ProrosiTION 2.17. If @ is an element of .4 (H, K) and B is a (nonrandom)
element of (K, G), G a Hilbert space, then B([; @ dw) = [; B dw wpl.

In the sequel, we also require the double stochastic integral. This can
be defined quite naturally by analogy with the scalar case [7]. In particular,
we have

DrerintTioN 2018, Let A(H, K) = {¥(-, -, ") : ¥ is an ¥(H, K)-valued
stochastic process on T' x T x £ such that ¥(¢, -) and W(', t) are measurable
refative to #; forall ¢t in T},

A y(H, K) = \é‘Pe,/V(H, K):fT L E{ W% ds di < oc;

and

N oH, K) = \W e A(H, K):fTJ'Tusvy;stdz < oowp1§.

If ¥ is in A(H, K), then y)(w) = [ (J7 P(s, t, w) ds) du(t) and yy(w) =
Jr (J7 ¥(s, t, w) dw(?)) ds are well-defined K-valued random variables with
y1 = ¥, Wpl. Thus, the stochastic double integral is defined as y, or y,
(see [2] for details). Moreover, we have

ProrositioN 2.19. If ¥ is an element of NVy(H, K) and c(*) is a continuous
map of T into K, then

f j (s, 1) du(t) d Z f (s, te, dB;ds  wpl  (2.20)
and

f <'ff s, e, e(s)) dp; ds

T 1~0

op

]
>

IT Jﬁ; (s, ey, ¢(s))y dp; ds wpl

where w(t) is given by 2.2.

We conclude this section with two technical lemmas which are used in
the proof of the main theorem.

Lemma 2.22. Let A be a closed linear map of K into K and let F(A)
be the domain of A. If ¢(°) is an element of M (C, K) such that ¢(s) € D(A) for
all s in T and Aq(-)e 4 (C, K), then [rqdbe 2(A) wpl and A [;qdb =
fr Aq db wpl where b is a scalar Wiener process.
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Proof. The proof is a simple modification of the proof of Theorem 20,
p. 153, of [15] and is, therefore, omirtted.

Lemma 2.23. Let A be a closed linear map of K into K and let w(t) be an
H-valued Wiener process with representation 2.2. Suppose that (1) @ € .4 (H, K)
such that (¢ )e e Z(A)wpl for all i and t and 4P()e; € .4 ,(C, K) for all 1,
and (i) Zl, /\ [r i AD(t)e; |2 dt < wp] Then fz D dw e Z(A) wpl,
Afr ®dw =3, [r Ae, dB; wpl, and A fT (5) dw is continuous in t wpl.

Proof. A complete proof is given in [2]. Here, to indicate the ideas
involved, we treat the special case where @ € #(H, K), APe, e .#,(C, K),
and 370 A, fr Bl A(t)e; [P} dt < o0t

In view of Lemma 2.22, we have

A Z J B(t)e, dB, — Z f Ad(t)e, dB; . (2.24)

i=0

Now, it follows from Proposition 2.13 that Zjofr D(t)e; dB; tends to
Jr @ dw wpl as n approaches 1nﬁn1tv Since A4 is a closed linear operator,
[r @ dw e 2(4) wpl. Moreover, P r A@(z e; df3; is well-defined by virtue
of Proposition 2.14 and so, A [, ® dw = ¥, [r ADe; dB; .

As for continuity, we have

o N: nooat 2 * Cr |
E 31‘14 JT Gdw— Y f AD(s)e, d | : < Y AE jJ ;f/;’lcb(s)giﬂzds;
: 1 i=0" T1 ’ n+1 T
(2.25)
by Proposition 2.14. It follows that
\' i ¢ nooLt ' '
po e sup Af D dw — ZJ A@(s)eid,@l—\\ e OQf»O as n-— 0.
£ T

i=0 Y Ty

(Note that the indicated probability exists since a separable version of the
norm expression can be used.) The result then is an immediate consequence
of Proposition 2.12.

* The general case is readily deduced from the special case by use of the function
xV¥(w) given by

nff |®pdt <N and 3 A J | AD@)e, |2 dt < N
r T

xM(w) = i:u

0 otherwise
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3. ExisteNCE AND UNIQUENESS THEOREMS

Let H be a separable Hilbert space and let K be a Hilbert space. We

now turn our attention to the stochastic evolution equation
t t
u(t) — uy + J A(syu(s) ds = f D(s) duw, (3.1)
Ty Ty

where A(s) is a closed linear operator on K, @() 1s an element of .#,(H, K),
w(-) is an H-valued Wiener process, and u, is a K-valued random variable.
We may write (3.1) in differential form as du - A(t) u(t) dt = @ dw,
u(T)) = uy.

DerINITION 3.2. A K-valued random process u(t) is a solution of (3.1)
if (1) u(¢t) satisfies (3.1) wpl on 7, (ii) u(¢) is measurable relative to %, for
all ¢, and (i11) u(¢) is continuous wpl in ¢. T'wo solutions u(t) and #(z) of (3.1)
are the “‘same” if u(¢) and #(f) are uniformly stochastically equivalent
(i.e., p{w :sup, | u(?) — a@)] = 0} = 1).

Our existence theorems for (3.1) are all based on existence theorems
for the corresponding abstract evolution equation

o At =0,  o(T) = v,. (3.3)

Existence and uniqueness theorems for (3.3) are given in [8-10, 12, and 13].
The basic idea of these theorems is to impose sufficiently strong conditions
on A(t) in order to insure the existence of an evolution operator U(t, s).
The solution of (3.3) is then obtained by a ‘‘variation of constants” formula.
We essentially use the same idea here.

If the abstract evolution Eq. (3.3) has a umique solution, then it is easy
to prove using the linearity of (3.1) that solutions of (3.1) are unique to
within a uniform stochastic equivalence (i.e., are the “same”). Thus, we
concentrate on establishing the existence of solutions of (3.1).

THrOREM 3.4.  Suppose that (i) A(t) = A where —A is the infinitesimal
generator of a strongly continuous semigroup U(t); (1) w(?) is an H-valued
Wiener process with (2.2) as representation and {A;} as associated eigenvalues;
(iil) @(*) is an element of M ,(H, K) with &(t)e; € Z(A) wpl for all t and i and
with AD()e; € M(H, K) for all 7; (iv) sup,,!| ADH)e; || < C wpl and (v)
D(-) s uniformly bounded on T wpl. Then (3.1) has the solution u(t) =
Ut — Tuy + ftrl Ut — Y D(s)dw for all uy such that uye 2(4) wpl.
Moreover, the solution is unigue to within a uniform stochastic equivalence.

Theorem 3.4 is based on the standard semigroup result for (3.3) [8].
The following theorem is based on a perturbation result [13].
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Tueorem 3.5. Suppose that (1) (1) =- A, - B(t) where A, ix the
infinitesimal generator of a strongly continuous semigroup, B(t) e X (K, K) for
all t, and B(-) is strongly continuously differentiable on T (i1) w(t) is an H-valued
Wiener process with (2.2) as representation and {};} as associated eigenvalues;
(i1) D() is an element of H (H, K) with ®(t)e, ¢ 7 (A,) wpl for all t and i and
ADP(e; € M (H, K) for all i; (iv) sup, | 4D, << C wpl and (v)
D(-) s um'forntzly bounded on T wpl. Then (3.1) has the solution u(t) --
U, Tyuy - [ r, U, ) D(s) dw for all uy with uye Z(4y) wpl, where U2, 5)
is the evolution operator generated by -—A(1). Moreover, the solution is unique
to within a uniform stochastic equivalence.

The following general theorem which we shall prove® is based on the
general existence theorem for (3.3) [9, 10].

THEOREM 3.6.  Suppose that (1) —A(t) generates an evolution operator
Ult, s) with the following properties (a) U(t, s) is linear, bounded and strongly
continuous in s and { for Ty <\ s <<t << Ty, (b) U(t, t) =1 and U(t, 5) =
U, r)Ur,s) for Ty <s<r <t <Ty, (¢) Ult,s) maps Z(A(s)) into
G(AQ)) for s < t, (d) U(t,s) is strongly continuously differentiable in t for
t > sand cUjet(t, s) - A(t) Ut, s) = 0 and

| AU ) < (3.7)
for T, <s <t < T, where n, ts a constant independent of s and t, and
(e) Ult,s) = exp(—(t — ) A@)) +~ W, s) for T, <s <t < T, where
W(t, s) e L(K, K) is strongly continuous in t and exp(—7A(t)) is the analytic
semigroup generated by —A(t) and

I exp(—(t — ) AN < me (3.8)
IA@) Wt )l < mfi 8 — s 17, (3.9)

where m, , 1, and 0 are constants (independent of s and t) with O < 0 << 1/2;8
(i1) 20(¢) is an H-valued Wiener process with (2.2) as associated representation
and {A;} as associated eigenvalues; (iii) D() i&s an element of M (H, K) with
D(s)e; € (A1) wpl for all s <<t and all i and A(t) D()e; € M o(C, K) for
all t and 75 (iv) sup; cip{| A(t) P(s)e; [} < C wpl; and (v) D(t) is uniformly
bounded in norm in t wpl. Then (3.1) has the solution

u(t) = U(t, Th)ug + J” U(t, B(s) dw  for all u,.

Ty
Moreover, the solution is unique to within a uniform stochastic equivalence.
5 The proofs of Theorems 3.4 and 3.5 are entirely analogous and are therefore

omitted.
¢ See [9 or 10] for conditions on — A4(z) which insure the existence of U(t, s).
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Before proving this theorem, we note that if we assume only that
O(-) e My(H, K) and —A(t) generates an evolution operator, then we can
prove an existence theorem for “weak” solutions of (3.1) based on the
notion of ““weak” solutions of (3.3) introduced in [10]. We now have

Proof of Theorem 3.6.  Since (3.3) has a unique solution under the assump-
tion (i), we may assume without loss of generality that u, = 0 wpl.

We remark that assumptions (iii) and (iv) imply that A(t) D(-)e; € 4 ,(C, K)
for all ¢ and all 7.

We begin by establishing the following:

Uy(t, ) O() e M(H, K), (3.10)
where
Ut s) st
DR N
sup g f AU, 9B(s)e; 12 dsg <o wpl 3.11)
®y),

uniformly in ¢, and

A@) Uy(t, Y D()e; e #,(C,K)  forall tand . (3.12)

Since U{t, s) is strongly continuous in s for s < ¢, || U(, *)|| is measurable
and bounded on [T , #). Since @(-) e A(H, K),

[ U 9e@Eas < [ U Pl 0ERds <0 wpl.

In view of (i)(e), the properties of analytic semigroups and (iii), we have
A() U(t, s) D(s)e; = exp{—(t — s) A(r)) A(t) D(s)e; -+ A(t) W(t, 5) D(s)e; wpl.
It follows that

2mg2a?
‘ t— s 126

1 AU, 5)P(s)e; [F < 2952 A()P(s)e; P +

wpl

(where || D(s)] < « wpl by (v)). Integrating this inequality and using the
assumption (iv), we deduce that (3.11) holds.

Since A(t) Uy(t, *) is nonrandom, A(t) U(t, s) D(s)e; is measurable relative
to &, and so, (3.12) follows from (3.11).

Let = > 0 be fixed. Since Uy(t, -) P(") e #,(H, K) by (3.10), we may
define u (¢) by setting

t—1
U(t, s)D(s) dw t=2Ty+
u(t)= ("7 (3.13)
0 t< T+

505/10/3-3
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‘We claim that

{7
AU, s)D(s) dw t= T, 0=
A = {7 (314
O t < Tl T

The claim is trivial if ¢ < 7} + 7. So let us suppose that ¢ > 7', | 7 and
let us set 7% == [T, t — 7], @*(") = Uyt, ) D(-) and A* = A(t). In view
of (3.10)~(3.12) and the assumptions (i)(c), (iii) and (iv), we see that the
conditions of Lemma 2.23 are satisfied by A%, @*() and 7*. It follows
that [7. ®*(s) dw € Z(A*) wpl and that

a

A* ( N AXs)ydw = Y Jﬂi—TA(t)U([, §)B(s)e; dB; .

i=0 ¥ Ty

In other words, u.(t) € Z(A(t)) wpl and

A(tyu(t) — Z‘ TANU, 9PG)e dB; wpl. (3.15)

=0 Ty

Since 7 > 0, we have
pl—
J AU, $)B(s)2 ds < ’“ (T 7)  wpl (3.16)
T

by virtue of (3.7). Proposition 2.13 then allows us to conclude that (3.14)
holds.
We shall now show that A(s) u,(s) is integrable on T for fixed +. Let ¢
be an element of [7| + 7, T}) and let ¥,(s, r) be given by
NI N Ty -l-r<Cs < t
(s, r) = | AQEENRE) - tor L A

0 otherwise.

Then W (s, r) is measurable in (s, ¥) and is measurable relative to #, and .#,
since A(s) U(s, r) is nonrandom, and @(-) is in .#(H, K). But

fT f W5, )| ds dr = f ([T AU ez ) ds

Ty+7r Ty

< 2Ty — T1)3* wpl (3.18)

by virtue of (3.7) and assumption (v). In other words, ¥,(-, ) € 45(H, K)
and so,

J”T (fT s, 7) ds) dw = J"T ( fT wys, r)dw) ds  wpl. (3.19
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It follows from (3.14) that
a At
| ( j W(s, 7) dw) ds = | A (s)ds  wpl (3.20)
T T Ty

and hence, that A(s) u (s) is mtegrable on [Ty, t] for any ¢ and fixed 7 > 0.

We now assert that fr A(s) u,(s) ds — u(t) + fr (s) dw in probability
as T —> 0 Using (3.19) and (3 20), we deduce ‘that fT A(s)u(s)ds =
~jt_7 v+, 1) D(r) dw + IT Ulr + 7, r)D(r)dw — |77 Ult, r) D(r) dw.
Now jT U(t,r) D(r) dw ~+IT L(t ) Pr)dw wpl as 720 by Proposi-
tion 2.12. Since

2

UG R0 de ;\

< TW) | E(QUE -+ mn)E | 90)E dr

t—T

< Te(W)ca?r  forsome ¢ >0
(by (v)), fLT U{r 4 7,7) @(r) dw — O in probability as - 0. Thus, to
complete verification of the assertion, we show that

| tT U(r + 7, r)®(r) dw — J; B(r) dw

in probability as = — 0. Let @,(r) be given by

\L(rfl/n r)d(r) Ty <r<t—1n
¥ >t — 1/

D,(r) = (3.21)

Then @,(r) converges to D(r) strongly and || @,(r)l] < ¢; || D(r)]} for some
¢, > 0 (by (i)(a)). Thus, Proposition 2.15 applies and we have shown that

lim J’t A(S)u,(s) ds = —u(t) + [t &(s) duw (3.22)
t 71 Y7y

in probability.
We show that A(t) u(t) is continuous in expectation on T. Let v, (t) =
A(t) u(t) with fixed =+ > 0. From 3.14, we deduce that

o,(t + h)— v, (f) = J’H’H At + WU + h, B(s) dw

—T

+] :T At + BU(t -+ b, 5) - AUt ) P(s) dww (3.25)
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fort > T, - . But

il th At + BUG -+ b, )00 do | | < T W2
so that
iz )| :ih‘f A(t + WUt + b, $)P(s) do “2§ =0 (3.26)

Since U(2, s) is an evolution operator,

f :T {A(t + B)U(t + b, s) — A(8)U(t, 5)}B(s) dww
= {A(t + B)U(t + h, t) — At l(t)  wpl.

In view of the strong continuity of A(¢) U(2, s) in ¢ for t > s, we see that

lim E 3” | t: (At + WUt + by s) — A DU, $))D(s) deo ]|2§ =0. (327)

As v.(t) = 0 for t < T} + 7, we conclude that

1,%‘}3 Efiv(t+ k) —2(0)F}=0 forall ¢in T.

In other words, ,(f) is continuous in expectation. Thus, to show that
A(t) u(t) is continuous in expectation on T' it will be sufficient to show that

lim sup E{|| A@®)u(t) — v )|} = 0. (3.28)

70 tel
Suppose first that ¢ € [T + 7, T,]. Now

E{l A@)u(t) — A@@)u,(0)%

:E} ‘; f;TA(t)U(t, s)D(s)e; dB(s) Hzg by (2.13)

S i)‘iE 3 Jl I A@U(E, s)P(s)e; | ds% by (2.14).

Since A(t)Uy(t, -)B(-) € #(C, K), the right hand side is

00 : \ DnaPa
< zé) NE (J.t_f (2n?) A(DDP(s)e; |I* + “rt-:s—lr) ds
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by assumption (i)(e), the properties of analytic semigroups and assumption
(iii);
2752

< Tr W (27]22C27‘ + 7_—_—0)—

1-(1‘9)) using assumption (iv)
— 0 as 7 - 0 uniformly in f and in 2 on T
If now te [Ty, Ty + 7], then u.(¢) = 0 and so
E{|l A(t)u(t) — A ()}

Ty +7

< Y ME 3 [ 146U, @(6)e, 1 ds
i=0 Ty

— 0 as7— O uniformlyiniandinton T

as before, thus establishing (3.28). So

t 11
f A(S)u(s) ds — f A(s)u(s) ds in expectation as 7 — 0 and
T T

17
f A(s)u(s) ds is continuous in ton T wpl. (3.29)
T

1

Equation (3.29) combined with (3.22) shows that u(t) satisfies the equation
wpl and the continuity of u(¢) follows from the continuity of

f ; B(s) dw — f tTlA(s)u(s) ds

(from 3.29 and 2.12).
Hence u(t) is a solution of (3.1) with 4, = 0 wpl.

4. StocHASTIC ParABOLIC PARTIAL DIFFERENTIAL EQUATIONS

As an application of the resuits of Section 3, we consider the class of
stochastic parabolic partial differential equations

du 4 A(t)u(t) dt = P(t)dw,  w(Ty) = u, 4.1)
where uye H = Ly(G), G a domain with smooth boundary, w(t) is an

H-valued Wiener process, @(-) € M(Ly(G), Lo(G)), —A(t) is an elliptic
operator on Ly(G), and the conditions of Theorem 3.6 are satisfied.
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In order to give specific examples of (4.1), we introduce the necessary
machinery from the theory of parabolic partial differential equations. We let G
be a bounded domain in %, whose boundary, ¢, is an # —~ |-dimensional
variety which is locally C*. If %k == (k,,.., k) is a multiindex, then
k| =k + - k,and DV =- ¢'%1/(6x{r -+ &xl=) (in the generalized sense).
Letting i = L,(G), we define the spaces

HMG) = {we H: Diwe Hfor | k| < m; (4.2)

H(6) - GG
(in the H"(G) topology which is generated by the inner product

ROy J D D' dx); (4.3)
histisim ¥ 0
HYEG) = Ly(eG); (44)
and,
H"(6G) = {v e Ly(0G) : Do e Ly(dG), | k| < m). (4.5)

We note that the dual spaces H°(0G) and H~*(¢G) may be defined for
0 < p << m. We also have

DEerINITION 4.6. Suppose that J and H are Hilbert spaces with norms
Il “liy and | ||y, respectively, and that "CH both algebraically and
topologically. Then a bilinear form a(-, -} on F x V is coercive over a
subspace I, of I if there are constants, 9, 2= 0 and 5, > 0 such that

Refa(v, v)} = 7o \ﬁ/ — il © ‘?‘?{ 4.7)

forall oin I .
We now introduce the bilinear forms a(t; #, v) and b(t; u, v) on H™(G)
given by

a(tyu,v) == ) j ay(t, &) D'u Do dx, (4.8)
U <m ¥ G
‘ n-1 d];/
b(t; 1, ¥) = a(t; u, v) - ZO (Nj(z)u, 77) (4.9)

where Day,(t, )L (T X G) and are Holder continuous in / uniformly

7 Cy*(G) 1s the space of infinitely differentiable functions with compact support on
G.
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on G with exponent >>2/3, N(t) is a bounded linear map of H"(G) into
H-tm=i-112)(3G), (-, -) denotes the inner product in H-"-1-Y2(8G), dijdvi is a
normal derivative (in a generalized sense), and the functions ¢ — (Ny(t)u, v)
are measurable with |(V;(t)u,v) — (N;(s)u, 2)) << ¢ [T — s M ullgmll 0l gmeiase
for u e H™(G), v € H"912(9G), where ¢; , « = 0 are constants independent
of ¢ and s. These bilinear forms generate the differential operators A(t),
1 =1,2,3, given by

At = Y (—1)FD¥ay (1, x) D), ue Z(AL),  (410)

R <m
where

2(4,(t)) = {uc H™G) : A(t\ue H, D'u = 0on T X ¢G
forik| <m— 1},

G(Ay1)) = {uec H(G) : Ay(tyee H, B(t)u =0on T x oG
forj =0,...,m — 1},

D(Ay(1)) = {uc HMG) : Aj(tue H, Bty = N(tuon T x ¢G
forj =0,..,m — 1},

and Bj(t) are the given differential operators. If we assume that a(z; -, *)
is coercive over Hy™(G) for all ¢, then — 4,() generates an evolution operator
having properties (a)-(c) of Theorem 3.6. Similarly, if we assume that
a(t; -, -) is coercive over H™(G) or that b(t; -, -) is coercive over H™(G),
then —Ay(f) or —A,(t) generates an evolution operator having properties
(a}~(c) of Theorem 3.6. (See [2] for details.) We note that under these
conditions the partial differential equations # -+ A,(H)u = f(¢), w(T)) = u,
have unique solutions for f in L(T; H).

Our general example now has the form: du - A(t) u(t)dt = D(t) dw,
u(Ty) = uye H wpl where A(t) = A(t), i = 1, 2 or 3, w(t) = Yo Bilt)e;
with e;(x) an orthonormal basis of H = L,(G), and @(t) satisfies the conditions
(i) D(t) is measurable in (¢, w) and is measurable relative to %, for all ¢,
(ii) sup, | D)} < o wpl for some o = 0, (11)) D(s)e, € D(A(t)) wpl fors < ¢,
and (iv) sup; ;|| A(t) D(s)e; || << C wpl for some C > 0. This general
example satisfies the conditions of Theorem 3.6 and so has the ‘‘unique”
solution

u(t) = U(t, Ty - f " U, )0(s) du

— U, Tuy -+ i [ Ut 9B 4By

YT
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where U(t, s) is the evolution operator generated by —A(f). Various specific
cases are given in [2].

APPENDIX: INFINITE DIMENSIONAL RANDOM VARIABLES

We collect some of the standard definitions and results of the theory
of Banach space-valued random variables in this appendix as a convenience
for the reader. The treatment is along the lines of that given by Scalora [6].

Let (2, 2, p) be a probability space with & as Borel field and g as measure.
We assume that p is complete. Also let X be a Banach space. We then have

DEeFINITION A.l. A strongly measurable mapping x(-) of £ into X is
called a random variable.

A random variable x(*) is integrable on 2 if and only if there is a sequence
{x,(")} of finitely valued random variables such that (i) x,(-) converges to x(-)
almost everywhere, and (ii) lim,, .. foll ¥,(w) — %, ()| dp = 0.

DerFinitioNn A.2. If x(°) is integrable on £2, then the expectation of
x, E{x), is the element of X given by

E{x} = f a{w)du = lim | x,(w) da. (A.3)

DeriniTION A4, Let F be a Borel field with % C 2 and let x(-) be
integrable on £2. The conditional expectation of x relative to F, E{x | F},
is a random variable such that

J‘F x{(w)du = f B | F)(w) dp (A.5)

for all Fin &#.
We note that E{x | #} is unique wpl, is integrable on £, and is measurable
relative to F.

DrerFiNiTION A.6. Let T == [Ty, T,) be a finite interval. A mapping
x(t, w) of T x 2 into X is called a stochastic process on T if x(-, ") is
measurable in the pair (f, ) (using Lebesgue measure on 7).

Definition A.6 is more restrictive than the usual one (cf., Doob [3]) but
is adequate for our purposes. Also, we usually write x(¢) in place of x(¢, w)
when discussing stochastic processes.

DrriNirioN A.7. Two measurable sets Fy and F, in P are independent
if wW(Fy N Fy) = u(Fy) u(Fy). If () is a random variable mapping {2 into X
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and y(-) is a random variable mapping £ into Y, then x(*) and y(-) are
independent if the sets {w : x(w) € 4} and {w : y(w) € B} are independent
for all Borel sets A of X and all Borel sets B of Y. Finally, a random variable
x() is independent of the Borel field # C 2, if the sets F and {w : x(w) € 4}
are independent for all F in & and all Borel sets 4 of X.

The following propositions contain various results needed in the paper,
These propositions are easy extensions of similar results for the ordinary
case and are proven in detail in [2].

ProposiTiON A.8. If x(+) and y(-) are independent X and Y valued random
variables, respectively, and if [ and g are nonrandom Baire functions mapping
X and Y, respectively, into the complex numbers C, then f(x(:)) and g(¥('))
are independent random variables.

ProrosiTioN A.9. Let F be a Borel field with F C . Let f, x and ®
be random variables on 2 to C, X and L (X, Y), respectively. Then

() if Elxl} < oo, then E{E(x| F)} = Efx);

(i) E{| x|} < oo and xismeasurable relativeto F , then E{x | ¥} = x
wpl.

(i) if E{flx|} << o0, E{{f |ll x|} < o0, and x is measurable relative
to &, then E{fx | F} = E{f| F}x wpl;

(iv) ff E{fx|®} < oo, E{|| D} < 00 and D is measurable relative to F,
then E{®x | F} = OE{x | #} wpl; and

(v) i E{| x|} < o0 and xisindependent of F , then E{x | F} = E{x} wpl.
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