
 Procedia CIRP 25 (2014) 297 – 304

Available online at www.sciencedirect.com

2212-8271 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientific Committee of the 8th International Conference on Digital Enterprise Technology - DET
2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”
doi: 10.1016/j.procir.2014.10.042

ScienceDirect

8th International Conference on Digital Enterprise Technology - DET 2014 – “Disruptive Innovation in
Manufacturing Engineering towards the 4th Industrial Revolution

Interoperability between OPC UA and AutomationML

Robert Henßen, Miriam Schleipen*

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Fraunhoferstr. 1, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49-721-6091-382; fax: +49-721-6091-413. E-mail address: miriam.schleipen@iosb.fraunhofer.de

Abstract

OPC UA (OPC Unified Architecture) is a platform-independent standard series (IEC 62541) [1], [2] for communication of industrial automation
devices and systems. The OPC Unified Architecture is an advanced communication technology for process control. Certainly the launching costs
for the initial information model are quite high. AutomationML (Automation Markup Language) is an upcoming open standard series (IEC
62714) [3], [4] for describing production plants or plant components. The goal of this contribution is to simplify the creation of OPC UA
information models based on existing AutomationML data by examining the analogies between AutomationML and the OPC UA information
model.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET
2014.

Keywords: AutomationML; OPC UA; Mapping

1. Introduction

Engineering information plays an important role for
engineering efficiency. [5] This contribution tries to bring the
engineering format AutomationML in contact to online
production data and extends the application domain of OPC
UA. Furthermore, AutomationML engineering data (offline)
can be operationalized by means of the online communication
in OPC UA. This will be reached by taking advantage of
analogies between OPC UA and AutomationML. The OPC UA
information model base types will be expanded with
AutomationML specific ones and required mapping rules will
be drafted. Chapter 2 explains OPC UA and its information
model concept. In chapter 3 the authors explain AutomationML
and show one small example plant model. Chapter 4 contains
analogies between the two standards and proposes necessary
type definitions within the OPC UA context and explains these
aspects by means of the example plant model. In Chapter 5 the
authors will give a short summary and outlook.

2. Online communication in OPC UA

OPC UA specifies the exchange of real-time information of

production plant data between control devices or IT systems
from different manufacturers. OPC UA server includes an
information model that allows users to organize data and their
semantics in a structured manner. The information model
constitutes the address spaces of OPC UA servers. It is a full-
mesh network of nodes with their properties and relations. In
general, users create the information model for their OPC UA
servers manually [6] at implementation time or implement
vendor-specific automatisms. A server address space consists
of the following element types:
 Object: “A Node that represents a physical or abstract

element of a system. Objects are modelled using the OPC
UA Object Model. Systems, subsystems and devices are
examples of Objects. An Object may be defined as an
instance of an ObjectType.” [7]

 ObjectType: “A Node that represents the type definition
for an Object.” [7]

 Variable: “A Variable is a Node that contains a value.” [7]

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of The International Scientifi c Committee of the 8th International Conference on Digital Enterprise
Technology - DET 2014 – “Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82143324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

298 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

 VariableType: “Node that represents the type definition for
a Variable” [8]

 DataType: “An instance of a DataType Node that is used
together with the ValueRank Attribute to define the data
type of a Variable.” [8]

 ReferenceType: “A Node that represents the type definition
of a Reference. The ReferenceType specifies the semantics
of a Reference. The name of a ReferenceType identifies
how source Nodes are related to target Nodes and generally
reflects an operation between the two, such as “A Contains
B”.” [7]

 Method: “A callable software function that is a component
of an Object.” [7]

 View: “A specific subset of the AddressSpace that is of
interest to the Client.” [7]

In this contribution, the authors use some predefined

reference types which are explained in the following listing:
 HasComponent: “The semantic is a part-of relationship.

The TargetNode of a Reference of the HasComponent
ReferenceType is a part of the SourceNode. This
ReferenceType is used to relate Objects or ObjectTypes
with their containing Objects, DataVariables, and Methods
as well as complex Variables or VariableTypes with their
DataVariables.” [8]

 HasProperty: “The semantic is to identify the Properties of
a Node.” [8]

 HasTypeDefinition: “The semantic of this ReferenceType
is to bind an Object or Variable to its ObjectType or
VariableType, respectively.” [8]

 HasSubType: “The semantic of this ReferenceType is to
express a subtype relationship of types. It is used to span
the ReferenceType hierarchy.” [8]

Figure 1 depicts the graphical notation given by the

OPCFoundation (see [7]) for modelling address spaces. The
graphical notations for the references are depicted in Figure 2.
There is also an XML format defined by OPC UA which can
be used to describe address spaces.

Fig. 1. OPC UA address space element types [7].

Fig. 2. OPC UA address space reference types [7].

The OPCFoundation provides a set of base types which can
be used to create new objects and types derived from these
standard types. Some organizations define so called companion
specifications, e.g. ‘OPC UA For Devices’ (DI) and ‘OPC UA
For Analyzer Devices’ (ADI). “DI is a companion specification
designed for exposing and functionally grouping Device
Parameters and Methods. ADI is a companion specification for
sophisticated Analyzer Devices like Spectrometers or
Chromatographs.” [9] Such a companion specification does not
already exist for AutomationML. This contribution could be a
rough base for such an AutomationML companion
specification.

OPC UA is interesting and important for IT systems within
the production environment, e.g. MES (Manufacturing
Execution System) as data and integration platform,
particularly due to its numerous interfaces.

3. Engineering data (offline) in AutomationML

AutomationML is an XML based data format especially

designed for the exchange of plant engineering information.
The format interconnects engineering tools of different
disciplines and lifecycle phases, from plant construction over
mechanical and electrical design to virtual start-up.
AutomationML doesn’t define a new file format itself. It uses
several existing and well-proven standards and defines rules to
use and combine them. CAEX (IEC 62424) [10] is used as top
level format, i.e. the main AutomationML file is in fact a CAEX
file. Other used formats are Collada [11] for geometry and
PLCOpenXML [12] for behaviour information. This
contribution will focus on the top-level definitions of
AutomationML models which are implemented in the format
CAEX. CAEX provides object-oriented concepts such as
classes and instances, and the possibility to describe arbitrary
meshes. Disregarding the last feature the objects are stored in a
tree structure.

3.1. Structure of AutomationML

Following, the main structure and objects appearing in

AutomationML models will be described. The whole
AutomationML structure, the most important elements, and the
relations between them are compressed to three figures.

Each AutomationML file can contain several libraries:
InterfaceClassLibs for defining interfaces, RoleClassLibs for
semantic role definitions and SystemUnitClassLibs which
include reusable AutomationML objects. The fourth container

299 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

type is the InstanceHierarchy which consists of real plant
descriptions.

Figure 3 depicts this basic structure of an AutomationML

ChildElement

RefBaseClass
Path

RefBaseClassPath

file, the possible container structures (the three library types
and the InstanceHierarchy) and for each of this the main
including objects. The arrows in this figure depict a ‘consists
of’ relation.

InternalElement SystemUnitClass

ChildElement

ChildElement
SupportedRoleClass

RoleRequirement SupportedRoleClass

RoleClass

RefBaseClassPath

ChildElement

Fig. 4. AutomationML main elements.

Fig. 3. AutomationML basic file structure.

The main AutomationML elements and all possible
relations between them are shown in Figure 4. The organization

Figure 5 depicts the basic structure of a RoleClass,
SystemUnitClass, or InternalElement. Each can contain
arbitrary nested Attributes and Interfaces (see ChildElement
relations). The Interfaces are called ExternalInterfaces and
shall inherit from an InterfaceClass. They can be connected to
other ExternalElements via InternalLinks. The
InterfaceClasses are stored hierarchically and shall have
independent inheritance relations. InterfaceClasses and
certainly ExternalInterfaces may also have arbitrary nested
Attributes.

ChildElement

in a hierarchical tree involves that every element type can have
child elements of the same type (see ChildElement relations).
SystemUnitClasses and RoleClasses are defined in an
inheritance structure; the RefBaseClassPath relations define
such inheritance relations. RoleClasses can be assigned to

RC/SUC/IE

ChildElement

ChildElement

ChildElement

Attribute

SystemUnitClasses and InternalElements. In the latter case
there are two different ways to make the RoleClass assignment
using SupportedRoleClasses or the RoleRequirement. The
remaining arrows in Figure 4 describe the possible relations
between InternalElements and SystemUnitClasses. An
InternalElement can inherit from a SystemUnitClass. In the
scope of AutomationML SystemUnitClasses are only
templates and can be changed after instantiation. The backward

ExternalInterface

InternalLink
RefBaseClassPath

InterfaceClass

ChildElement

relation indicates that a SystemUnitClass can define sub
elements in terms of InternalElements. These sub elements
(InternalElements) should be included on instantiation.

RefBaseClassPath ChildElement

RoleClasses describe functions of a physical or logical plant
object independent of a technical implementation. They offer a
possibility to specify an object on an abstract way and
independent of the manufacturer. The assignment of a
RoleClass to an object (SystemUnitClass or InternalElement)
results in the allocation of fundamental functions or
requirements.

Fig. 5. AutomationML main object details.

In addition to this, AutomationML defines extended
concepts and a basic set of semantic roles. The Process-
Product-Resource concept allows high level structuring of
engineering data based on a process-centric, product-centric, or
resource-centric view including relations between them. The
AML Port concept allows a high level description of complex
interfaces. It makes possible to combine several interfaces to a
complex plug. The AML Facet concept allows the storage of a
subset of attributes and interfaces at one AML object. The
AML Group concept allows the storage of separate views on a
subset of the AML objects. The PropertySet concept was

CAEXFile

300 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

defined for assigning semantics to attributes or groups of
attributes.

3.2. Example model in AutomationML

Figure 6 depicts the tree structure of an AutomationML

example. The example model includes a small
InstanceHierarchy called ‘TestProject’ with a production line
including two different robots.

The AutomationMLInterfaceClassLib and the
AutomationMLBaseRoleClassLib are slimmed-down versions
of the ones defined in the AutomationML standard. They
contain only the used elements to shorten the example.

The project-specific RoleClassLib ‘TestRoleLib’ defines a
role ‘Robot’ which includes an attribute and a communication
interface and is derived from the standardised RoleClass
‘Resource’. These detail definitions of the role are not visible
in Figure 6. The second role ‘SpecialRobot’ is derived from the
first one. The SystemUnitClassLib ‘ABCSystemUnitclassLib’
specifies example types for a robot (assigned to the role Robot)
and a production line.

Back to the starting point, our TestProject: The instances
‘MainLine’ and the first robot ‘RobotI’ instantiate the types of
the SystemUnitClass without changes. The second robot
‘RobotII’ has no corresponding object in the
SystemUnitClassLib. Its special requirements are expressed by
an assignment to the role ‘SpecialRobot’.

Fig. 6. Object tree of the AutomationMLexample.

4. Creation of OPC UA information models by means of
AutomationML models

4.1. Analogies between AutomationML and the OPC UA
information model

A short comparison follows to prelude the mapping between

the information models of OPC UA and AutomationML. Both
standards pursue an object-oriented approach and based on the
type-instance concept.

The analogy between UA objects and InternalElements is
obvious. But already the inheritance mechanism is handled
different. In AutomationML SystemUnitClasses are only
templates for the InternalElements. It is explicitly allowed to
add and remove parts of the instance. OPC UA handles the
instantiation via the HasTypeDefinition reference more
explicit, the ModellingRules specify whether the sub nodes
have to exist after instantiation. In case of the mapping from
InternalElements to UA objects, the ModellingRules of all sub
nodes shall be set to ‘Optional’. There must be a basic and
empty SystemUnitClass type in OPC UA to provide a type for
InternalElements without a reference to a SystemUnitClass.

Typecasting is in both standards not limited to objects. They
use this principle for interfaces and relations also. Similarly the
differentiation between objects and properties (OPC UA)
respectively attributes (AutomationML).

By default XML elements are organized in a tree structure
alike AutomationML. Certainly AutomationML has methods
to describe arbitrary meshes as well as OPC UA.

OPC UA defines the semantics of objects in ObjectTypes.
However AutomationML uses RoleClasses to assign semantics
to objects not primarily the corresponding type
(SystemUnitClass).

4.2. Expansion of OPC UA information model base types with
AutomationML specific ones

The main structure of an AutomationML file from Figure 3

is mapped into a slightly variant structure depicted in Figure 7.
InstanceHierarchies can be stored at arbitrary positions in an
OPC UA server model. The libraries shall be stored in a
common folder.

Following the AutomationML specific OPC UA definitions
will be listed.

New OPC UA ReferenceType:

 ReferenceType ‘HasAMLChild’
○ Subtype of ‘HasChild’
○ Hierarchical relation within the AutomationML tree

hierarchy.
○ These relations have no special meaning in

AutomationML. Maybe there is no need to map these
and they can be omitted.

New OPC UA FolderTypes (all of these ObjectTypes are

subtypes from the ObjectType ‘FolderType’):
 ObjectType ‘AMLLibrariesFolderType’
○ Folder to exclusively store AutomationML libraries.

Due to the fact that OPC UA allows TargetNodes with
same BrowseNames, it is possible to store libraries in
different versions at the same time which is forbidden in
AutomationML. This offers the possibility to store
several AutomationML files in one OPC UA
information model.

 ObjectType ‘AMLClassLibFolderType’
○ Type for the three AutomationML libraries, all

AutomationML libraries shall be mapped to objects of
this type.

301 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

○ Objects of this type are only allowed to have references
of the type ‘HasAMLChild’ with TargetNodes of type
CAEXObjectType.

 ObjectType ‘AMLInstanzHierarchyFolderType’
○ Type for mapped InstanzHierarchies
○ Objects of this type are only allowed to have references

of the type ‘HasAMLChild’ with TargetNodes of
instances of type ‘AMLSystemUnitClass’.

Further new OPC UA ObjectTypes:

 ObjectType ‘CAEXObjectType’
○ Subtype of ‘BaseObjectType’
○ Abstract ObjectType, base for all

AutomationMLClasses
 ObjectTypes ‘AMLInterfaceClass’, ‘AMLRoleClass’ and

‘AMLSystemUnitClass’
○ Subtype of ‘CAEXObjectType’
○ These are the basic ObjectTypes for the

AutomationMLClasses.

Fig. 7. AutomationML main structures in OPC UA.

Figure 8 depicts the mapping of the relations between the
main AutomationML elements (see Figure 4). The structure of
the picture is not changed, so the mapping can be read directly
from the graphic.

One new OPC UA type is used:

 ReferenceType ‘HasAMLRoleReference’
○ Subtype of ‘NonHierarchicalReferences’
○ The SourceNode shall be an object and the TargetNode

shall be a subtype of ‘AMLRoleClass’.

To use the inheritance possibility of roles it is needed that
RoleClasses will be mapped to ObjectTypes. RoleClasses can’t
be assigned via ‘HasTypeDefinition’ references or subtypes of
this, because OPC UA doesn’t support multiple inheritances.
The two AutomationML mechanisms SupportedRoleClass and
RoleRequirement are handled in the same way.

ChildElement
UA: HasComponent

RefBaseClassPath
UA: HasTypeDefinition

ChildElement
UA: HasAMLChild

RefBaseClassPath
UA: HasSubtype

InternalElement
UA: Object

SupportedRoleClass
RoleRequirement

UA: HasAMLRoleReference

ChildElement
UA: HasComponent

SystemUnitClass
UA: ObjectType:

AMLSystemUnitClass

SupportedRoleClass
UA: HasAMLRoleReference

RoleClass

UA: ObjectType:
AMLRoleClass

Fig. 8. AutomationML elements in OPC UA.

RefBaseClassPath
UA: HasSubtype

ChildElement
UA: HasAMLChild

Organizes

AutomationMLLibraries
UA: Object:

AMLLibrariesFolderType
Organizes

Organizes Organizes Organizes

InterfaceClassLib
UA: Object:

AMLClassLibFolderTyp

RoleClassLib
UA: Object:

AMLClassLibFolderTyp

SystemUnitClassLib
UA: Object:

AMLClassLibFolderTyp

InstanceHierarchy
UA: Object:

AMLInstanzHierarchyFo

HasAMLChild HasAMLChild HasAMLChild HasAMLChild

InterfaceClass
UA: ObjectType:

AMLInterfaceClass

RoleClass
UA: ObjectType:
AMLRoleClass

SystemUnitClass
UA: ObjectType:

AMLSystemUnitClass

InternalElement
UA: Object:

AMLSystemUnitClass

302 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

RefBaseClassPath
UA: HasSubtype

ChildElement
UA: HasAMLChild

Fig. 9. AutomationML object details in OPC UA.

As already explained the ChildElement relations within

class structures will be mapped to the new OPC UA
‘HasAMLChild’ relations. Child InternalElements will be
referenced via ‘HasComponent’ relations. The inheritance
relations within SystemUnitClasses and RoleClasses can be
mapped to OPC UA ‘HasSubtype’ relations.

The mappings of the AutomationML object details (Figure
5) are depicted in Figure 9. The analogy between the figures is
obvious.

There is one new OPC UA type used:

 ReferenceType ’HasAMLInternalLink’
○ Subtype of ’NonHierarchicalReferences’
○ Symmetric reference
○ SourceNode and TargetNode should be an

ExternalInterface which must not located in
RoleClasses.

The Attributes and ExternalInterfaces will be referenced via

‘HasComponent’ and not via ‘HasAMLChild’ relations. The
‘HasAMLChild’ relation is only used within class/type
structures.

The InterfaceClass is the type definition of the
ExternalInterface therefore it will be assigned via
‘HasTypeDefinition’. Similarly to the RoleClasses and
SystemUnitClasses, the relations between InterfaceClasses are
mapped to ‘HasAMLChild’ within the XML tree structure and
to ‘HasSubtype’ concerning inheritance relation.

4.3. Example model transformed from AutomationML into
OPC UA information model

The example shown in Figure 6 will now be redefined

within OPC UA. The next two figures show the result of a
manual mapping. The OPC UA modelling syntax shown in
Figure 1 and Figure 2 is used.

Figure 10 depicts the class structures of the example. On the
right side of the figure you can see the inheritance structure of
the roles. On the top the role ‘SpecialRobot’ downwards past
the roles ‘Robot’, ‘Resource’ and ‘AutomationMLBaseRole’ to
the basic types ‘CAEXObjectType’ (AutomationML) and
‘BaseObjectType’ (OPC UA). The role ‘Robot’ has two
components, an interface ‘CommunicationInterface’ and an
attribute ‘axes’.

On the top left of Figure 10 there are the SystemUnitClasses.
On top the ‘ABCRobot’, with reference to the role ‘Robot’, has
the same components as the role. There is also the
SystemUnitClass ‘ABCLine’ and the common parent type
‘AutomationMLBaseSytemUnit’, which is the father of all
SystemUnitClasses in OPC UA models.

In the middle you can find the InterfaceClass
‘Communication’ derived by the
‘AutomationMLBaseInterface’. Every interface (see ‘Robot’
and ‘ABCRobot’) has this InterfaceClass as type definition.

RC/SUC/IE
UA: Object(Type)

ChildElement
UA: HasComponent

ChildElement
UA: HasComponent

ChildElement
UA: HasComponent

Attribute
UA: Variable

ChildElement
UA: HasComponent

ExternalInterface
UA: Object

ChildElement
UA: HasComponent

InternalLink RefBaseClassPath
UA: HasAMLInternalLink UA: HasTypeDefinition

InterfaceClass
UA: ObjectTyp:

AMLInterfaceClass

303 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

The basic types of AutomationML can be defined in a

Fig. 10. Example class tree in OPC UA.

The mapping of the InstanceHierarchy is shown in Figure

11. The object on the top ‘AMLLibraries’ from type
‘AMLLIbrariesFolderType’ is the folder for all
AutomationML libraries. In this case, it contains also the
InstanceHierarchy ‘TestProject’. This InstanceHierarchy is
shown at the left and contains the ‘MainLine’ and the two
robots. Every instance object has its SystemUnitClass type
reference. The ‘RobotII’ has additionally a reference to the role
‘SpecialRobot’. All libraries and their classes are shin,
certainly without the defining components.

5. Summary and outlook

Goal of this contribution was to explain how to combine the
two standards OPC UA and AutomationML with the goal to
simplify the creation of OPC UA information models. Data
exchange formats like AutomationML can be operationalized
with specific OPC UA information models. There is a benefit
from the analogies between the two standards, such as the type-
instance concept, the differentiation between objects and
attributes and typecast of interfaces and relations.

companion specification for OPC UA. In this way, basic
structures like RoleClasses and SystemUnitClasses can be
predefined in OPC UA. This could lead into a standardised
guideline to combine AutomationML with OPC UA. The
publication of this possible companion specification can reduce
errors during the implementation and increase reusability. If
mapping rules are well defined the transformation can run
automatically.

Currently it is a big effort to create an information model for
an OPC UA server. Reusing of information already modelled
in AutomationML can simplify the usage of OPC UA.

After a short introduction this contribution described the
modelling concepts of OPC UA and the plant description
format AutomationML. Analogies and differences between the
formats are discussed and an AutomationML specific extension
of the OPC UA basic types was proposed. Finally a short
AutomationML example was given which was then mapped to
OPC UA.

First implementation and evaluation of the concepts will be
realized in the European project SkillPro (Skill-based
Propagation of "Plug&Produce"-Devices in Reconfigurable
Production Systems by AML) [13]. An OPC UA server will be
developed as part of the MES which will receive asset
descriptions in the AutomationML format.

304 Robert Henßen and Miriam Schleipen / Procedia CIRP 25 (2014) 297 – 304

Fig. 11. Example InstanceHierarchy in OPC UA.

References

[1] IEC 62541 (all parts):2010-2012 OPC Unified Architecture.
[2] Mahnke, W., Leitner, S-H. Damm, M. (2009): OPC Unified Architecture:

Springer.
[3] IEC 62714 (all parts), Engineering data exchange format for use in

industrial systems engineering – Automation Markup Language AML
(whitepaper available at http://www.automationml.org/).

[4] Draht, R. (Hrsg.) (2010): Datenaustausch in der Anlagenplanung mit
AutomationML: Springer

[5] Sauer, O., Jasperneite, J.: Adaptive information technology in
manufacturing. Proceedings of the CIRP International Conference on
Manufacturing Systems, Madison/Wisconsin, 01.-03.06.2011.

[6] Schleipen, M., Sauer, O., Wang, J.: Semantic integration by means of a
graphical OPC Unified Architecture (OPC UA) information model
designer for Manufacturing Execution Systems. In: Sihn/Kuhlang (Ed.),
Sustainable Production and Logistics in Global Networks. 43rd CIRP
International Conference on Manufacturing Systems, 26-28 May 2010,
Vienna: Neuer Wissenschaftlicher Verlag, pp. 633-640.

[7] IEC 62541-1:2010 OPC Unified Architecture Part 1: Overview and
Concepts

[8] IEC 62541-3:2010 OPC Unified Architecture Part 3: Address Space Model
[9] OPC Foundation, August 21, 2013 (available at

http://opcfoundation.org/Default.aspx/02_news/02_news_display.asp?id=
1064&MID=News)

[10] IEC 62424:2008, Representation of process control engineering –
Requests in P&I diagrams and data exchange between P&ID tools and
PCE-CAE tools.

[11] COLLADA 1.4.1: March 2008 COLLADA – Digital Asset Schema
Release 1.4.1 (available at
http://www.khronos.org/files/collada_spec_1_4.pdf).

[12] PLCopen XML 2.0:December 3rd 2008 and PLCopen XML 2.0.1: May
8th 2009, XML formats for IEC 61131-3
(available at <http://www.plcopen.org>/)

[13] SkillPro - Skill-based Propagation of "Plug&Produce"-Devices in
Reconfigurable Production Systems by AML, EU FP7 (available at
www.skilpro-project.eu), November 01, 2013.

