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Abstract 

 

OPC UA (OPC Unified Architecture) is a platform-independent standard series (IEC 62541) [1], [2] for communication of industrial automation 
devices and systems. The OPC Unified Architecture is an advanced communication technology for process control. Certainly the launching costs 
for the initial information model are quite high. AutomationML (Automation Markup Language) is an upcoming open standard series (IEC 
62714) [3], [4] for describing production plants or plant components. The goal of this contribution is to simplify the creation of OPC UA 
information models based on existing AutomationML data by examining the analogies between AutomationML and the OPC UA information 
model. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of the “8th International Conference on Digital Enterprise Technology - DET 
2014. 
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1. Introduction 
 

Engineering information  plays an important role for 
engineering efficiency. [5] This contribution tries to bring the 
engineering format AutomationML in contact to online 
production data and extends the application domain of OPC 
UA. Furthermore, AutomationML engineering data (offline) 
can be operationalized by means of the online communication 
in OPC UA. This will be reached by taking advantage  of 
analogies between OPC UA and AutomationML. The OPC UA 
information model base types will be expanded with 
AutomationML specific ones and required mapping rules will 
be drafted. Chapter 2 explains OPC UA and its information 
model concept. In chapter 3 the authors explain AutomationML 
and show one small example plant model. Chapter 4 contains 
analogies between the two standards and proposes necessary 
type definitions within the OPC UA context and explains these 
aspects by means of the example plant model. In Chapter 5 the 
authors will give a short summary and outlook. 

 
2. Online communication in OPC UA 

 
OPC UA specifies the exchange of real-time information of 

production plant data between control devices or IT systems 
from different manufacturers.  OPC UA server includes an 
information model that allows users to organize data and their 
semantics in a structured manner. The information model 
constitutes the address spaces of OPC UA servers. It is a full- 
mesh network of nodes with their properties and relations. In 
general, users create the information model for their OPC UA 
servers manually [6] at implementation time or implement 
vendor-specific automatisms. A server address space consists 
of the following element types: 
 Object: “A Node that represents a physical or abstract 

element of a system. Objects are modelled using the OPC 
UA Object Model. Systems, subsystems and devices are 
examples of Objects. An Object may be defined as an 
instance of an ObjectType.” [7] 

 ObjectType: “A Node that represents the type definition 
for an Object.” [7] 

 Variable: “A Variable is a Node that contains a value.” [7] 
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 VariableType: “Node that represents the type definition for 
a Variable” [8] 

 DataType: “An instance of a DataType Node that is used 
together with the ValueRank Attribute to define the data 
type of a Variable.” [8] 

 ReferenceType: “A Node that represents the type definition 
of a Reference. The ReferenceType specifies the semantics 
of a Reference. The name of a ReferenceType identifies 
how source Nodes are related to target Nodes and generally 
reflects an operation between the two, such as “A Contains 
B”.” [7] 

 Method: “A callable software function that is a component 
of an Object.” [7] 

 View: “A specific subset of the AddressSpace that is of 
interest to the Client.” [7] 

 
In this contribution, the authors use some predefined 

reference types which are explained in the following listing: 
 HasComponent: “The semantic is a part-of relationship. 

The TargetNode of a Reference of the HasComponent 
ReferenceType is a part of the SourceNode. This 
ReferenceType is used to relate Objects or ObjectTypes 
with their containing Objects, DataVariables, and Methods 
as well as complex Variables or VariableTypes with their 
DataVariables.” [8] 

 HasProperty: “The semantic is to identify the Properties of 
a Node.” [8] 

 HasTypeDefinition: “The semantic of this ReferenceType 
is to bind an Object or Variable to its ObjectType or 
VariableType, respectively.” [8] 

 HasSubType: “The semantic of this ReferenceType is to 
express a subtype relationship of types. It is used to span 
the ReferenceType hierarchy.” [8] 

 
Figure 1 depicts the graphical notation given by the 

OPCFoundation (see [7]) for modelling address spaces. The 
graphical notations for the references are depicted in Figure 2. 
There is also an XML format defined by OPC UA which can 
be used to describe address spaces. 

 

 
 

Fig. 1. OPC UA address space element types [7]. 

 

 
 
 

Fig. 2. OPC UA address space reference types [7]. 
 

The OPCFoundation provides a set of base types which can 
be used to create new objects and types derived from these 
standard types. Some organizations define so called companion 
specifications, e.g. ‘OPC UA For Devices’ (DI) and ‘OPC UA 
For Analyzer Devices’ (ADI). “DI is a companion specification 
designed for exposing and functionally grouping Device 
Parameters and Methods. ADI is a companion specification for 
sophisticated Analyzer Devices like Spectrometers or 
Chromatographs.” [9] Such a companion specification does not 
already exist for AutomationML. This contribution could be a 
rough base for such an AutomationML companion 
specification. 

OPC UA is interesting and important for IT systems within 
the production environment, e.g. MES (Manufacturing 
Execution System) as data and integration platform, 
particularly due to its numerous interfaces. 

 
3. Engineering data (offline) in AutomationML 

 
AutomationML is an XML based data format especially 

designed for the exchange of plant engineering information. 
The format interconnects engineering  tools of different 
disciplines and lifecycle phases, from plant construction over 
mechanical and electrical design to virtual start-up. 
AutomationML doesn’t define a new file format itself. It uses 
several existing and well-proven standards and defines rules to 
use and combine them. CAEX (IEC 62424) [10] is used as top 
level format, i.e. the main AutomationML file is in fact a CAEX 
file. Other used formats are Collada [11] for geometry and 
PLCOpenXML [12] for behaviour information. This 
contribution will focus on the top-level definitions of 
AutomationML models which are implemented in the format 
CAEX. CAEX provides object-oriented concepts such as 
classes and instances, and the possibility to describe arbitrary 
meshes. Disregarding the last feature the objects are stored in a 
tree structure. 

 
3.1. Structure of AutomationML 

 
Following, the main structure and objects appearing in 

AutomationML models will be described. The whole 
AutomationML structure, the most important elements, and the 
relations between them are compressed to three figures. 

Each AutomationML file can contain several libraries: 
InterfaceClassLibs for defining interfaces, RoleClassLibs for 
semantic role definitions and SystemUnitClassLibs which 
include reusable AutomationML objects. The fourth container 



299 Robert Henßen and Miriam Schleipen  /  Procedia CIRP   25  ( 2014 )  297 – 304 

 

type is the InstanceHierarchy which consists of real plant 
descriptions. 

Figure 3 depicts this basic structure of an AutomationML 

 
ChildElement 

 

RefBaseClass 
Path 

 
RefBaseClassPath 

file, the possible container structures (the three library types 
and the InstanceHierarchy) and for each  of this  the main 
including objects. The arrows in this figure depict a ‘consists 
of’ relation. 

InternalElement  SystemUnitClass 

ChildElement 

ChildElement 
SupportedRoleClass 

RoleRequirement SupportedRoleClass 

 
RoleClass 

 
 

RefBaseClassPath 
 

ChildElement 
 
 

Fig. 4. AutomationML main elements. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. AutomationML basic file structure. 
 

The   main   AutomationML   elements   and   all   possible 
relations between them are shown in Figure 4. The organization 

Figure 5 depicts the basic structure of a RoleClass, 
SystemUnitClass, or InternalElement. Each can contain 
arbitrary nested Attributes and Interfaces (see ChildElement 
relations). The Interfaces are called ExternalInterfaces and 
shall inherit from an InterfaceClass. They can be connected to 
other ExternalElements via InternalLinks. The 
InterfaceClasses are stored hierarchically and shall have 
independent inheritance relations. InterfaceClasses and 
certainly ExternalInterfaces may also have arbitrary nested 
Attributes. 

 
ChildElement 

in a hierarchical tree involves that every element type can have 
child elements of the same type (see ChildElement relations). 
SystemUnitClasses and RoleClasses are defined in an 
inheritance structure; the RefBaseClassPath relations define 
such inheritance relations. RoleClasses can be assigned  to 

RC/SUC/IE 
 
 

ChildElement 

ChildElement 
 
 
 

ChildElement 

 

 
Attribute 

SystemUnitClasses and InternalElements. In the latter case 
there are two different ways to make the RoleClass assignment 
using SupportedRoleClasses or the RoleRequirement. The 
remaining arrows in Figure 4 describe the possible relations 
between InternalElements and SystemUnitClasses. An 
InternalElement can inherit from a SystemUnitClass. In the 
scope of AutomationML SystemUnitClasses are only 
templates and can be changed after instantiation. The backward 

ExternalInterface 
 
 

InternalLink 
RefBaseClassPath 

 

InterfaceClass 

 
 
ChildElement 

relation indicates that a SystemUnitClass can define sub 
elements in terms of InternalElements. These sub elements 
(InternalElements) should be included on instantiation. 

RefBaseClassPath ChildElement 

RoleClasses describe functions of a physical or logical plant 
object independent of a technical implementation. They offer a 
possibility to specify an object on an abstract way and 
independent of the manufacturer. The assignment of a 
RoleClass to an object (SystemUnitClass or InternalElement) 
results in the allocation of fundamental functions or 
requirements. 

Fig. 5. AutomationML main object details. 
 

In addition to this, AutomationML defines extended 
concepts and a basic set of semantic roles. The Process- 
Product-Resource concept allows high level structuring of 
engineering data based on a process-centric, product-centric, or 
resource-centric view including relations between them. The 
AML Port concept allows a high level description of complex 
interfaces. It makes possible to combine several interfaces to a 
complex plug. The AML Facet concept allows the storage of a 
subset of attributes and interfaces at one AML object. The 
AML Group concept allows the storage of separate views on a 
subset  of the  AML objects.  The PropertySet  concept  was 

CAEXFile 
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defined  for  assigning  semantics  to  attributes  or  groups of 
attributes. 

 
3.2. Example model in AutomationML 

 
Figure 6 depicts the tree structure of an AutomationML 

example. The example model includes a small 
InstanceHierarchy called ‘TestProject’ with a production line 
including two different robots. 

The AutomationMLInterfaceClassLib and the 
AutomationMLBaseRoleClassLib are slimmed-down versions 
of the ones defined in the AutomationML standard. They 
contain only the used elements to shorten the example. 

The project-specific RoleClassLib ‘TestRoleLib’ defines a 
role ‘Robot’ which includes an attribute and a communication 
interface and is derived from the standardised RoleClass 
‘Resource’. These detail definitions of the role are not visible 
in Figure 6. The second role ‘SpecialRobot’ is derived from the 
first one. The SystemUnitClassLib ‘ABCSystemUnitclassLib’ 
specifies example types for a robot (assigned to the role Robot) 
and a production line. 

Back to the starting point, our TestProject: The instances 
‘MainLine’ and the first robot ‘RobotI’ instantiate the types of 
the SystemUnitClass without changes. The second robot 
‘RobotII’ has no corresponding object in the 
SystemUnitClassLib. Its special requirements are expressed by 
an assignment to the role ‘SpecialRobot’. 

 

 
 

Fig. 6. Object tree of the AutomationMLexample. 
 

4. Creation of OPC UA information models by means of 
AutomationML models 

 
4.1. Analogies between AutomationML and the OPC UA 
information model 

 
A short comparison follows to prelude the mapping between 

the information models of OPC UA and AutomationML. Both 
standards pursue an object-oriented approach and based on the 
type-instance concept. 

The analogy between UA objects and InternalElements is 
obvious. But already the inheritance mechanism is handled 
different. In AutomationML SystemUnitClasses are only 
templates for the InternalElements. It is explicitly allowed to 
add and remove parts of the instance. OPC UA handles the 
instantiation via the HasTypeDefinition reference more 
explicit, the ModellingRules specify whether the sub nodes 
have to exist after instantiation. In case of the mapping from 
InternalElements to UA objects, the ModellingRules of all sub 
nodes shall be set to ‘Optional’. There must be a basic and 
empty SystemUnitClass type in OPC UA to provide a type for 
InternalElements without a reference to a SystemUnitClass. 

Typecasting is in both standards not limited to objects. They 
use this principle for interfaces and relations also. Similarly the 
differentiation between objects and properties (OPC UA) 
respectively attributes (AutomationML). 

By default XML elements are organized in a tree structure 
alike AutomationML. Certainly AutomationML has methods 
to describe arbitrary meshes as well as OPC UA. 

OPC UA defines the semantics of objects in ObjectTypes. 
However AutomationML uses RoleClasses to assign semantics 
to objects not primarily the corresponding type 
(SystemUnitClass). 

 
4.2. Expansion of OPC UA information model base types with 
AutomationML specific ones 

 
The main structure of an AutomationML file from Figure 3 

is mapped into a slightly variant structure depicted in Figure 7. 
InstanceHierarchies can be stored at arbitrary positions in an 
OPC UA server model. The  libraries shall be stored in a 
common folder. 

Following the AutomationML specific OPC UA definitions 
will be listed. 

 
New OPC UA ReferenceType: 

 ReferenceType ‘HasAMLChild’ 
○ Subtype of ‘HasChild’ 
○ Hierarchical relation within the AutomationML tree 

hierarchy. 
○ These relations have no special meaning in 

AutomationML. Maybe there is no need to map these 
and they can be omitted. 

 
New OPC UA FolderTypes (all of these ObjectTypes are 

subtypes from the ObjectType ‘FolderType’): 
 ObjectType ‘AMLLibrariesFolderType’ 
○ Folder to exclusively store AutomationML libraries. 

Due to the fact that OPC UA allows TargetNodes with 
same BrowseNames, it is possible to store libraries in 
different versions at the same time which is forbidden in 
AutomationML. This offers the possibility to store 
several AutomationML files in one OPC UA 
information model. 

 ObjectType ‘AMLClassLibFolderType’ 
○ Type for the three AutomationML libraries, all 

AutomationML libraries shall be mapped to objects of 
this type. 
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○ Objects of this type are only allowed to have references 
of the type ‘HasAMLChild’ with TargetNodes of type 
CAEXObjectType. 

 ObjectType    ‘AMLInstanzHierarchyFolderType’ 
○ Type for mapped InstanzHierarchies 
○ Objects of this type are only allowed to have references 

of the type ‘HasAMLChild’ with TargetNodes of 
instances of type ‘AMLSystemUnitClass’. 

 
Further new OPC UA ObjectTypes: 

 ObjectType ‘CAEXObjectType’ 
○ Subtype of ‘BaseObjectType’ 
○ Abstract ObjectType, base for all 

AutomationMLClasses 
 ObjectTypes ‘AMLInterfaceClass’, ‘AMLRoleClass’ and 

‘AMLSystemUnitClass’ 
○ Subtype of ‘CAEXObjectType’ 
○ These are the basic ObjectTypes for the 

AutomationMLClasses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. AutomationML main structures in OPC UA. 

Figure 8 depicts the mapping of the relations between the 
main AutomationML elements (see Figure 4). The structure of 
the picture is not changed, so the mapping can be read directly 
from the graphic. 

 
One new OPC UA type is used: 

 ReferenceType ‘HasAMLRoleReference’ 
○ Subtype of ‘NonHierarchicalReferences’ 
○ The SourceNode shall be an object and the TargetNode 

shall be a subtype of ‘AMLRoleClass’. 
 

To use the inheritance possibility of roles it is needed that 
RoleClasses will be mapped to ObjectTypes. RoleClasses can’t 
be assigned via ‘HasTypeDefinition’ references or subtypes of 
this, because OPC UA doesn’t support multiple inheritances. 
The two AutomationML mechanisms SupportedRoleClass and 
RoleRequirement are handled in the same way. 
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Fig. 8. AutomationML elements in OPC UA. 
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RefBaseClassPath 
UA: HasSubtype 

ChildElement 
UA: HasAMLChild 

 
Fig. 9. AutomationML object details in OPC UA. 

 
As already explained  the ChildElement relations within 

class structures will be mapped to the new OPC UA 
‘HasAMLChild’ relations. Child InternalElements will be 
referenced via ‘HasComponent’ relations. The inheritance 
relations within SystemUnitClasses and RoleClasses can be 
mapped to OPC UA ‘HasSubtype’ relations. 

The mappings of the AutomationML object details (Figure 
5) are depicted in Figure 9. The analogy between the figures is 
obvious. 

 
There is one new OPC UA type used: 

 ReferenceType ’HasAMLInternalLink’ 
○ Subtype of ’NonHierarchicalReferences’ 
○ Symmetric reference 
○ SourceNode and TargetNode should be an 

ExternalInterface which must not located in 
RoleClasses. 

 
The Attributes and ExternalInterfaces will be referenced via 

‘HasComponent’ and not via ‘HasAMLChild’ relations. The 
‘HasAMLChild’ relation is only used within class/type 
structures. 

The InterfaceClass is the type definition of the 
ExternalInterface therefore it will be assigned via 
‘HasTypeDefinition’. Similarly to the RoleClasses and 
SystemUnitClasses, the relations between InterfaceClasses are 
mapped to ‘HasAMLChild’ within the XML tree structure and 
to ‘HasSubtype’ concerning inheritance relation. 

 
4.3. Example model transformed from AutomationML into 
OPC UA information model 

 
The example shown in Figure 6 will now be redefined 

within OPC UA. The next two figures show the result of a 
manual mapping. The OPC UA modelling syntax shown in 
Figure 1 and Figure 2 is used. 

Figure 10 depicts the class structures of the example. On the 
right side of the figure you can see the inheritance structure of 
the roles. On the top the role ‘SpecialRobot’ downwards past 
the roles ‘Robot’, ‘Resource’ and ‘AutomationMLBaseRole’ to 
the basic types ‘CAEXObjectType’ (AutomationML) and 
‘BaseObjectType’ (OPC UA). The role ‘Robot’ has two 
components, an interface ‘CommunicationInterface’ and an 
attribute ‘axes’. 

On the top left of Figure 10 there are the SystemUnitClasses. 
On top the ‘ABCRobot’, with reference to the role ‘Robot’, has 
the same components as the role. There is also the 
SystemUnitClass ‘ABCLine’ and the common  parent type 
‘AutomationMLBaseSytemUnit’, which is the father of all 
SystemUnitClasses in OPC UA models. 

In the middle you can find the InterfaceClass 
‘Communication’ derived by the 
‘AutomationMLBaseInterface’. Every interface (see ‘Robot’ 
and ‘ABCRobot’) has this InterfaceClass as type definition. 

RC/SUC/IE 
UA: Object(Type) 

ChildElement 
UA: HasComponent 

ChildElement 
UA: HasComponent 

ChildElement 
UA: HasComponent 

Attribute 
UA: Variable 

ChildElement 
UA: HasComponent 

ExternalInterface 
UA: Object 

ChildElement 
UA: HasComponent 

InternalLink  RefBaseClassPath 
UA: HasAMLInternalLink UA: HasTypeDefinition 

InterfaceClass 
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AMLInterfaceClass 
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The basic types of AutomationML can be defined  in a 

 
Fig. 10. Example class tree in OPC UA. 

 
The mapping of the InstanceHierarchy is shown in Figure 

11. The object on the top ‘AMLLibraries’ from type 
‘AMLLIbrariesFolderType’ is the folder for all 
AutomationML libraries. In this case, it contains also the 
InstanceHierarchy ‘TestProject’. This InstanceHierarchy is 
shown at the left and contains the ‘MainLine’ and the two 
robots. Every instance object has its SystemUnitClass type 
reference. The ‘RobotII’ has additionally a reference to the role 
‘SpecialRobot’. All libraries and their classes are shin, 
certainly without the defining components. 

 
 

5. Summary and outlook 
 

Goal of this contribution was to explain how to combine the 
two standards OPC UA and AutomationML with the goal to 
simplify the creation of OPC UA information models. Data 
exchange formats like AutomationML can be operationalized 
with specific OPC UA information models. There is a benefit 
from the analogies between the two standards, such as the type- 
instance concept, the differentiation between objects and 
attributes and typecast of interfaces and relations. 

companion specification for OPC UA. In this way, basic 
structures like RoleClasses and SystemUnitClasses can be 
predefined in OPC UA. This could lead into a standardised 
guideline to combine AutomationML with OPC UA. The 
publication of this possible companion specification can reduce 
errors during the implementation and increase reusability. If 
mapping rules are well defined the transformation can run 
automatically. 

Currently it is a big effort to create an information model for 
an OPC UA server. Reusing of information already modelled 
in AutomationML can simplify the usage of OPC UA. 

After a short introduction this contribution described the 
modelling concepts of OPC UA and the  plant  description 
format AutomationML. Analogies and differences between the 
formats are discussed and an AutomationML specific extension 
of the OPC UA basic types was proposed. Finally a short 
AutomationML example was given which was then mapped to 
OPC UA. 

First implementation and evaluation of the concepts will be 
realized in the European project SkillPro (Skill-based 
Propagation of "Plug&Produce"-Devices in Reconfigurable 
Production Systems by AML) [13]. An OPC UA server will be 
developed as part of the MES which will receive asset 
descriptions in the AutomationML format. 
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Fig. 11. Example InstanceHierarchy in OPC UA. 
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