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Introduct ion  

The purpose of this paper is to study concepts relevant to a refuta- 
tion of Solovay's conjecture that every strongly compact cardinal is 
supercompact. We obtai~ a counterexample to the conjecture by prov- 
ing that every measurable cardinal that is a limit of strongly compact 
cardinals is itself strongly compact [Theorem 2.21 ], and th ~t the least 
cardinal with this property (if it exists) is not supercompact. We in :fact 
prove the stronger statement that the leasl cardinal with this property 
is not the limit of a stationary subset of measurable cardinals [Theorem 
2.22]. [By a theorem of Solovay [ 15], if ~ is 2~-supercompact, then 
the set (a < ~:: tx is a measurable cardinal) is a stationary subset of ~:.] 
We then develop a gene :al method for preserving certain strongly com- 
pact cardinals in suitable Cohen extensions, and present an outline of a 
proof that it is consistent relative to certain large cardinals that the first 
strongly compact is not supercompact. Jacques Stern [21 ] has used this 
method to obtain consistency results concerning the second strongly 
compact cardinai. 

Shortly after the distribution of a preliminary version of our results, 
Magidor obtained by entirely different methods the much stronger 
result that it is consistert, relative to the consistency of the existence 
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pactness and Supercompactness", written under the supervision of Dr. Robert Solovay to whom 
the author is very grateful. Parts of  this work were supported by an NSF Fellowship and b ' / the  
NSF Grant GP-3395 I, 
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of  a strongly compact cardinal, that  the first strongly compact  is in fact 
the first measurable [ 11 ]. This settles a problem of  Tarski. 

Our counterexample to Solovay's conjecture does not  require a lengthy 
proof. However, many of  the temporally p r~ed ing  concepts are o f  imer- 
est in their own right, and we present them in Part 2 o f  this paper. Part 1 
is a brief study of  Jech's notion o f  a closed unbounded subset o f  p~ h. 
We present therein a characterization of  the stationary subsets o f  p~k. 

Notation 

We generally use standard set-theoretical notation throughout.  Excep- 
tions and expressions that do not enjoy uniform approval are clearly 
stated. 

If A is a set, 

f lA = {x: (Vy E A) (x e y )} .  

IJA = (x: (3y e A) (x  e y ) } .  

I fA and B are sets, aB is tile set o f  all functions with domain A and 
range a subset o fB.  F o r f e  AB and !4: c_ A, 

llWl = {x: ( a y e  I¢) f.t~.,) = x ) } .  

p(A) is the set of  all subsets of  A unless otherwise stated. 
Small Greek letters almost always denote  ordinals. Exceptions are 

clearly stated. Cardinals are initial ordinals and are usually denoted by 
the letters "g" ,  "v",  and "X". I fA  is a set, IAI is the cardinality of  A. 
If s: and ), are cardinals, p ~  is the set o f  all subsets o f ~  of  cardinality 
less than •, ~x = ixt¢t, and ~,<~ = IU (~, :  ~ < s:}l. We reserve the term 
"inaccessible" for strongly inaccessible cardinals. A cardinal x is a 
strong limit if it is a limit cardinal ,nd  if in addition 2 v < x for all v < to. 
Henceforth g, v, and ~, will be cardinals with r regular and ;k ~ s: > co. 

We shall say that ta is a two-valued measure on a non-empty set X if 
tt : p(X) ~ 2 is a measure in the usual ~nse  o f  the word. tt is non- 
principle if there is no x ~ X so that for every A c X, #(A ~ = 1 iff  
x e A.  tt is ~:-additive if for every a < tc and f :  ~t -~ p(X) so that  

ta(f(/$)) = 1 for every/~ < a,/a(fl#<~, f(~))  = 1. 
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Let ~ be a model  o f  ZFC and r ( v  0 , ..., or, ) a term of ZF.  Def i le  

~ O o ,  . . . ,  on ,  o n ,  l ) to be the formula "r(o o . . . . .  on )  = on+ l "' of  ZF.  Then 

for x o . . . . .  x n ,  xn+ t in ~ ,  we say that "in ~ ,  r(x o . . . .  , x n ) = xn+ 1 "  or 
" ~  ~ r(x o . . . .  , x,~) = xn÷l to  mean that ~ ~ ¢(x 0 , . . . ,  x n , xn+ 1). Some- 
times, when we are not working in ~ ,  we write "Vn+ I = r ~ ( x  o,  ..., x n ) "  

for " ~ g ~  r ( x  0 . . . .  , x n )  = xn÷ t "  
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PART 1. THE CLOSED UNBOUNDED FILTER ON p,~X 

In a paper on combinatorial properties of  sets [3] ,  Jech extends the 
concept of  a closed unbounded subset of  a regular cardinal t¢ to the 
broader notion of  a closed unbounded  subset of  p~ ~, for any cardinal 
?~/> K, and shows that many  o f  the standard arguments concerning the 
former concept extend to the latter concept  as well. In the same paper, 
Jech translates Jensen's combinatorial property  ~ for a cardinal ~: to the 

context  of  p~ ~. 
We briefly consider in Section 1 o f  this part a more  stringent notion 

of  closure and use it to obtain a characterization of  the stationary sub- 
sets of  pK;k. It is a well-known fact that i fS  is a subset of  a regular car- 
dinal x, then S is not  stationary i if  there is a function f : S -* ~¢ so that 
f(a) < ~ for all ~ in S and for eve~] unbounded subset T o f  S , / i s  not  
constant on T. We prove that for ?wery unbounded subset S o f  p~;k, S is 
not stationary iff  there is a function f : S -* ~ X ;k so that f(3') ~ yX 3, for 
all y in S and for every unbounded subset T o f  S, f is not  constant  on T. 
We also prove that the condition on f c a n n o t  be weakened to allow f t o  
be a function from S into ;~. 

In Section 2 we use the characterization of  the stationary subsets of  

p ~ ,  and the technique which Kunen developed [41 to show that every 
subtle cardinal has the diamond property,  to prove the somewhat sur- 
prising result that i f x  is subtle and ~ is any cardinal ; ~ ,  then p ~ ,  has 
the generalized diamond property.  

§ 1. A characterization of the stationary subsets of p~ ~ 

1.1. Definition (Jech). Let U be a subset o f  p~)~. U is unbounded if  for  
all z in PK ~,, there is an x in U so that z c_ x;  U is directed if for all x and 
y in U, there is a z in U so that x tj y c z; U is closed if for all A c U 
such that A is directed and iAI < ~:, 0,4 is in U; and U is stationary if 
for all closed, unbounded subsets A o f  p.~ ~,, U n A =/= ~. If  q¢ is a family 
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of  subsets of  pK},, q¢ is closed un&,r less than ~: intersections if for all 
v < g and f : v -* ,'h~, fla<~ f ( a )  ~ c~. q¢ is closed under diagonal inter- 

sections if for all sequences <A~; ~ < 3,} such that  Aa ~ q¢' for all ~ < ~,, 
the set {x ~ p~X: ('qt~ ~ x ) (x  E A~)} is in c!¢, 

1.2. Theorem (Jech [31 ). (i) The f imti& ~:( closed unbounded subsets o f  

p~ k is closed under less than ~ intersections and diagonal intersections. 

(ii) l f  S is a stationary subset oJ 'p~h and f : S -~ X is such that f ( x )  ~ x 

fo r  aH x in S, there is a stationary subset  T o r S  so that f is constant on T. 

1.3. Definit ion. A subset U of  p~ X is strongly closed if it is closed and 
if in addit ion,  for all non-empty  A c U. f lA is in U. If  qo ~ LIn<to (nx)p~, 
with Iq~l < ~, e ( q d )  = {x ~ p~k: for all o in q~ i fo  is n-at)" and o is an 
n-tuple of  x,  then t,(o) C x}. 

Note that  the set {x ~ p~X: x 4= 0} is a closed unbounded  subset o f  
p,~ X which is not  strongly closed. It is easy to check that the family of  
strongly closed unbounded  subsets o f  p~ h, is closed under  less than 
intersections and diagonal intersections, and that  if q~ c_ LIn<oa (n?,)pK~, 
is such that  I q4,* i <  g, ther~ e ( q ~ )  is strongly closed and unbounded ,  

1.4. Proposition. Let  U be a strongly closed unbounded subset o f  pK k. 
Then there is a cl~ g (nX)pgk so that IC~ t <<. 6o a n d e  (q¢ ) = U. 

Proof. For  every n < w, define o~ : nx --* p~ k so that  for % ,  .,., % _  1 
in X, 

o, ,(% . . . . .  % - 1 )  = f l {x  ~ U: {% . . . . .  % - 1  } g- x }  . 

L e t q ¢  = {on: n < w}.  That  U ~  e ( q ¢ )  is clear, I f x  ~ e (q¢) ,  then 

,4 = {3' ~ P~ X: ( 3 n  < w )  ( 3 % ,  ..., 3a , ,_  1 ~ x )  (v,, (a 0 , ..., % _  1) = Y } 

is a directed subset of U and x = IJA. By closure of  U, x is in U. 

Before proceeding with the next  theorem,  we note  that  i fo  : nk  .+ p.~X 
and n > 2, there is a v* : XX X -~ p~X so that  e ( (v*})  c_. e ({v}) .  



332 T.K. Menas, On strong corapactne~s and mpercompacmess 

1.5. Theorem. Let  U be a closed unbounded  subset o f  I:~X. There is a 
w : XX 3`'~" p ~ , s u c h  t h a t ~  ({w) )  C - U. 

Proof. For  every n < co, define o n : n+l~ _, pK ~ by  induction on n, For 

n = 0 and a < ~,, let Oo(a) be an element o f  U such that a ~ o0(a). I f  o k 

has been defined for all k < n + 1 and a 0 , .... a n are in >,, let on+ I (a0, " ' ,  ~n) 

be an element of  U such that 

U (x e PK X: ( 3k < n + 1) (3/~0,...,/3k_ 1 ~ {a 0 . . . . .  an}) (X = vk([3 o .... ,/3~_1))} 

C_ Vn+l (aO, .... a n ) .  

Set Ct¢ = (On: n < co}. 
I f x  ~ e (qd) ,  then A = (y ~ pKh: there is a k < ¢o ~and/30 . . . . .  i3k- l 

in x so t h a t y  = ok(/~ 0 . . . . .  /~k-l)) is a directed subset o f  U and x = 0,4. 

Hence, x is in U. 
For n < w,  let On* : hX3,-* p~3` be ~uch that e ({on* }) ~ e ( {o  n }), and 

define w : ~, X ;~ -~ PK X so that for t~ and/3 in 3`, w(a,/3) = On< ~ o*(a,/3). 

Then e ( ( w } )  c__ U. 

1.6. Corollary. An unbounded  subset S of  p~ ~ is not  stationao, i f f  there 
is a f i tnction f :  S -~ ~ X 3  ̀so that f ( y )  E y × y fo r  all y in S, and )br  all 
unbounded T C - S, f is no t  constant  on T. 

Proof. The implication from fight to left follows by applying Theorem 

1.2(ii) successively to the two  components  of.t: 
For the reverse implication, let S be an unbounded  non-stationary 

subset o f  p~ 3`. By the theorem, there is a ;." : ~ X 3  ̀-~ p~ 3  ̀such that 

e ({w}) ~ PK ~' - S. Define f : S -* X X 3, so that for y in S, fO ' )  = (ay, ~v) 
is a tuple in y X y such that w(ay,  [3y) ~_ y .  Suppose there is an un- 

bounded subset T of  S such t h a t f i s  const~,ut on T, i .e , , f iT1 = {(e,/3)}, 
for some e and/3 in ?~. Let z be any element o f  T such that w(a,  t3) c_ z. 

Since z is in T , f ( z )  = (a,/3) and by  the definition o f f ,  w(a,/3) f~ z, 

which is a contradiction. 

Remark. If  U is a closed unbounded  subset o f  p~3` so that for  all x and 

y in-U, x u y  isin U, then there i sa  w : ; ~  p~3` such that ~ ({w}) ~ U. 

[For  e in ~,, let w(e)  be an element  o f  U such that e ~ w(a). l  
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The following propositic, n shows that the function f in Corollary 1.6 
can not  be assumed to have range in k. 

1.7, Proposition. I l k  > ~:, there is a non-stationary unbounded subset S 
o f  p~ )~ such ',hat ybr all f : S -~ k with f (x )  ~ x for  all x in S, there is an 
unbounded subset T o.t" S ~:ith f constant on T. 

Proof.  Let t : ), "< ;k -~ ), be the standard GiSdel enumeration of  all ordered 
pairs o f  k with the property that for any cardinal v less than k, l[v × v] = v, 
We show that S = p~ ~ - e ((1)) has the desired properties. 

We first prove that there is no function o : ~,-~ p~;k such that ~ (~o))  c_. 

~ ({ /} ) .  Note that it suffices to prove this for k = ~:+. (For if v : ;~ ~ p~k 
is such that e ( (o) )  C e ({~' }), then o* : ~÷ ~ p~ ~:+ defined for a < x + by 

:- n ( x  E e ({v)) :  x} n 

has the property that ~ ({o* ) )  ~. ~ ((11 ~:*× ~:÷ )).) So assume that there 

is such a v and let 

g(~)= (least a < ~:~ (/(/3, a)  $ fl{x ~ e ({o)): ~ x ) )  

for ~ < ~+. There is a stationary subset A of  x+ and an ~ < ~+, such that 
g[A ] = {ix }. But then for/3 in A,/(13, c~) is in 13 {x ~ e ((o)) :  tx E x ) ,  
which is absurd since IAI = x÷. 

Now suppose that f : S ~ k is such that f (x )  ~ x for all x in S and that 
for all ~ < ~.; Aa = (x ~ S: f ( x )  = ~x) is not unbounded.  Define o : ~, --> p~X 
so that for all ¢x < k there is no z in Ac, with o(t~) c_c z. By the above ob-  
servation,  C ((  v } ) ~ e ({ l } ). I f x is in ~ ( { o ) ) - (~ ( { l ) ), then x is in S 
and v(f(x))  c__ x, which contradicts the fact that x is in Af(x). 

By Theorena 1.5, for every closed unbounded subset U of  p~k there 
is a closed unt~ounded subset U* of  U, such that for all x and y in U*, 
x c~ y is in U*, In contrast to this, Proposition 1.7 and the remark pre- 

ceding it show the existence (for 3, > ~:) o f  a closed unbounded  subset 

U of  p~X such that for eve "y closed unbounded subset U* of U, there 
are x and y in U* with x u y not in U*. 

Let ~¢, v and X be cardinals such that x <~ v < X. If  U is a closed un- 
bounded subset of  puv, the set {y E pKX: y n v E U) is a closed un- 

bounded subset o f  p,) , .  However it is not  difficult to construct  a closed 
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unbounded subset U o f  p~X so that  U~ = {x ~ p~v: ( ] y  ~ D r) ( y  r7 v = x)} 
is not  closed. The following proposition shows that U v is closed if U is 
strongly closed. 

1.8. Proposition. f f  U is a strongly closed unbounded subset o f  p~ ~,, the 
set U v = {x ~- p~v: (=ly ~ U)O' n v = x)} is a strongly closed unbounded 

subset o f  p~ v. 

Proof. By a lemma of  Solovay [ 18],  it suffices to show that U~ is closed 
under increasing sequences o f  length less than ~. 

Let (x~; a < 6> be an increasing sequence of  elements o f  U~, where 
< K (for t~ </3 < ~, xa c_c_ xa). For every t~ < ~ select an element ya of  

Usuch that y~ n v = x~ and define zc, = 13a~, ~ ya. By the strong closure 
of U, z~ is in U for all ~ < 6, and for a < ~ < 6, z~ c.C_ za. Then z = U~ < 6 z~ 
isin U a n d z  n v=  U~<n x~ isin U~. 

1.9. Corollary. f f  U is a stationary subset o f  pKv, { y E p~X: y N v E U} 
is a stationary subset o f  p~ X. 

1.10. We remark without  p roof  that  if 2 <K < ~,<~, there are exactly 2 x<K 
dosed unbounded and 2 x strongly closed unbounded subsets of  PK X. 
Theorem 1.5 shows that the two families generate the same filter. 

§ 2. The generalized diamond property 

In a set of  notes on the constructible universe and on combinatorial 
properties of  cardinals, jointly authored by Jensen and Kunen,  Kunen 
introduces the concept o f  subtlety and proves that every subtle cardinal 
has the diamond property.  A cardinal ~ is subtle if for  every function 
s : K -* p(~) such that s(a) c__ a for all a in ~, and for every closed un- 
bounded subset U o f  K, there are t~ </~ in U such that s(a) = s(~) n a. 
The diamond property is due to Jensen, who first used it to construct  
a Suslin tree in the constructible universe. A cardinal ~: has the diamond 
property, O(~:), if there is a function s : r -', p(~) such that for all t~ in ~:, 
s(a) c_. ~, and for all subsets A of  ~, {~ E r :  A n a - s(a)} is a stationary 
subset of  ~:. Jeeh translates this to the context  of  p~X as follows: p,cA 
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has the diamondproperO:,  O(~, X), if there is a t : p~X ~ p~ X such that 

t (x)  c_ x for all x in pgX, and {x ~ p~X: t (x)  = x n A} is a stationary 
subset o f  p~?t for all subsets A of  X. We will show in Theorem 1.14 

that if ~ is subtle and X ~ ~, p~X has the diamond proper ty .  

I. I i .  Definition, ~: is h-subtle if for all fimctions s : p~ X -~ p~ X st~ch 
that s(x) ~_ x for every x in p ,  X, and for every closed unbounded  sub- 

set U of  p~ X, there are x and y in U such that x ~ y and s(x)  = sO') n x. 

1.12. Lemma. i f  x is subtle, then ~ is h-subtle for  all cardinals X > ~¢. 

Proof, Let U be a closed unbounded subset of  p~ X and s : p~ X --> p~ X 
so that s(x)  ~ x for all x in p~X. Select a sequence <x , ;a  < x~ of  ele- 
ments of  U s o  that for all a < 13< ~:, xa g; xo, and for all limit ordinals 

< ft, x~ = Id~<~ x~. Set x = IJa<~x ~ . Define a bijection k : x -+ ~ and 
a function h : ,c -*- n so that for a < ~¢, k [ x J  is an ordinal and h(c0 = 

k I x , l .  
Since h is a monotone  increasing continuous functmn, there is a 

closed unbounded subset C of  x, such that i f~  is in C, then ~ is a limit 
ordinal and h(t~) = ~. For  o~ in C, define t(~) = k[s(x~)].  By the subtlety 
of  t¢ there are o~ </3 in C such that t(cO = t(/3) n ~. Translating, we have 

s(x~) = s(x o) n x~ and x~, g x~. 

1.13. Lemma. Let  U be a closed un bounded subset o f  p~ X and 

l : ~X X'* Xa  bijectlon. 7 h e r . ' a r e f i v w t i o n s h  : X-* t candg  : X ~  

such that Jbr all x in px X, i f  x t~ ~ is an ordinal and x is in ~ ({h, l, g}), 
then x is in U. 

Proof.  By Theorem 1.5, there is a w : XX X-~ p~,'k such that  e ( ( w } )  c__ U. 

Define functions rt 0 , ~r I : X × X ~ X and h : X -+ K such that for all t~ 

and/~ in X, 7ro(t(c~,/3)) = a,  ~r I (l(t~,/3)) = ~, and h(l(a,(3)) = tw(t~,/3)1. For  
and/3 in k, let kl(a,a) : h( l (a,  (3)) -~ w(a,/3) be a bijection. For  all ~ and 

/3 in X, let g(l (a ,~))  = ka(/3) if :lefined, otherwise g(l(a,(3)) = O. 

The p r o o f  o f  the following theorem is a generalization o f  Kunen 's  
p roof  that  every subtle cardinal has the diamond property.  
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L 1 4 .  Theorem. I l K  is subtle and ~ > K, pK X has the d iamond property. 

Proof. Let L = {x ~ pKk : x E e ((l}) and x n r is an ordinal}, where 
l :  ~ X ~, -> ), is a bijection. L is a closed unbounded subset o f  p~ k. For  
x and y in L,  de f ine  x < y i f  x c y and x n K < y r, ~. 

We will define for all x in L, h x : x -+ x n ~ ,  gx : x - -  x ,  and t (x )  c_ x 

by induction on K n x .  S u p p o s e  y is in L and h x , gx and t (x)  have been 

defined for all x in L with x < y. 
Case I. There are h : y -~ y n K, g : y -* y ,  and a c y such that for all 

x in L n ~ ({h, g}), i f x  < y ,  then t(x) 4: a n x. Set hy = h, gy =g,  and 

t(y) = a. 
Case II. Euppose Case I does not hold. Then let hy : y -* (0},  

gy : y -~ {0),  and t0,)  = 0. 
We claim that for all subsets A of  X, the set S a = {x ~ p~;k: x n A = t(x)) 

is stationary. Suppose not. Then by Lemma 1.13, there is a subset A of  
and functions h' : k ~ ~ and g' : k -~ k such that 

E = L n e ( { h ' , g ' ) ) C - p  k - S  A . 

For all x in L define 

s ( x )  = ( l ( a , ' r ) :  C-nil ~ x )  ((~ = / ( 0 ,  fl) < hx(~) = ~/) 

v ((x = l(1,/~) <gx(~) = 7) v(~ = l(2,~)  ^ ~,E t(x)))}. 

By Lemma 1.12, there are x and y in E such that x < y and s(x) = 
s(y) n x. [In the p roof  of  Lemma 1.12 we could take the sequence 

<x,,: a < K) so that for all ~ < fl < ~, x~ n ~ < x~ c~ u ] Then hy ~ x = hx, 

gy r Y = gx, and t (x )  = tO') n x .  
Let hy = h' ~ y, g~ = g' r y ,  and a = A n y.  By our assumptions on h', 

I ? g', and A, for  all z in L n e ( {hy ,gy  }) i f z  < y, then t ( z )  ~ a n z. It fol- 

lows that in the definition of  hy,  gy,  and t (y) ,  case I holds. This contra- 

dicts the fact that t(x) = t(y) n x. 

Theorem 1. t 4 is somewhat  surprising because it shows that the dia- 
mond property of  p~ ;~ can not in general be destroyed by forcing con- 
ditions that are t¢ ÷-closed. 

1.1 5. Corollary. l f  K is subtle and ~ is any cardinal ;~ ~, there are 2 ~ 

almost disjoint stationary subsets o f  p~ k. 
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[Two subsets A and B of  p~ ?~ are almost disjoint if A n B is not  sta- 
tionary. ] 

Proof. Jech [6] shows that  if p~ ~ has the d iamond proper ty ,  there are 
2 x ahnost  disjoint stationary subsets of  p~ ~,. 

i .16, Corollary, lfv~ is subtle and k is ato' cardbtal ~ K, p~ ~ is, the dis- 

joint  union o f  ~ <~ stationary subsets, 

Proof.  For every x in p~;k, i e t A  x = {y  ~_ x: ty = x ) .  By the theorem,  
the A x 's  are stationary. Also if x and 3' are in p~ ~, and x ~ y, then 
A x n Ay = O, 

If;k is regular, p~), can a'ways be split into ~, disjoint stationary sub- 
sets. Also Jech has shown that if ~: is a successor cardinal and ;k is 
regular, then any stationary subset of PK ;k is file disjoint union of X 
stationary subsets. A flleorem of  Solovay shows that  if X is regular, 
any stationary subset of  )~ is the disjoint union of  X stationary subsets. 
We conjecture that  if ~,," is rei,~,ular and ~, is any cardinal greater than ~, 
any stationary subset of  p~. ~, can be split into ~,<~ disjoint stationary 
subsets. 
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Part 2. FINE MEASURES ON PK X 

In [6], Keisler and Tarski introduce the concept of strong compact- 
ness as an extension of the e-compactness property of first order logic 
and study several equivalent notions. Working in a different vein, Solo- 
vay introduces in [ 15] the concept of  supercompactness as an extension 
of a property of normal measures on a measurable cardinal and conjec- 
tures that the two concepts are essentially the same. We prove in this 
part that Solovay's conjecture is false and study fine, minimal and nor- 
mal measures on p~),. 

Preliminaries are to be found in Sectionl. In Section 2 we consider 
certain related conjectures and produce counterexamples. We also prove 
that the existence of an extendible cardinal implies the existence of a 
great number of strongly compact cardinals that are not supercompact. 
In Section 3 we show how to preserve strong compactness in certain 
Cohen extensions and use this technique to outline the construction of  
a countable standard model of ZFC in which there is exactly one strong- 
ly compact cardinal and no supercompacts. 

§ 1. Preliminaries 

2.1. Definition. A two-valued nieasure/a on p~ k isfine if it is K-additive 
and if for all a < ~,,/a((x ~ p~),: ot ~ x}) = 1. x is ).-strongly compact if 
there is a fine measure on p~ k and strongly compact if there is a fine 
measure on p~), for all k ~ g. 

There are several other equivalent formulations of strong compact- 
ness, the most notable among these being the ~:-compactness of the 
infinitary language L~.~. We refer the reader to Keisler-Tarski [6] and 
to Jech [3]. 

2.2. Definition. A fine measure # oil p~ h is normal if for every function 
f f r o m  p~k into X, if#({x e pKk: f ( x ) e  x}) = 1, then for some t~ < X, 
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/a((x ~ p,X: f (x )  = a }) = I. ~: is X-supercompact if there is a normal 
measure on p,, k and supereompact if there is a normal measure on p,, 
for all X ~ ~:. 

2.3. Definition. A set M is closed under  X-sequences if every fun,:tion 
from X into M is in M, If Is is an ~l-additive measure on a set X, the 
closure of  bt (abbreviated to "clos (ta)') is the least cardinal X such th l t  
the transitive collapse of  the ultrapower o f  the universe with respect to 
/a is closed under v-sequences for every v < X. [We assume that the 
reader is fardliar  with the elementary ultrapower techniques. If/a is an 
bll-additive measure on a set X, "] : V ~ 3,1 ~ vx/tJ "' will always mean 
that ] is the canonical elementary embedding of the universe into the 
transitive collapse M of  the ultrapower of  the universe with respect to 
#. All elementary embeddings will be assumed to be with respect to the 
relation ~.] 

2.4, Theorem (Reinhardt -Solovay [ 15 ] ). K is supercompact i f f f o r  all 
X ~ ~, there is an elementary embedding ] : (V; ~) -~ (M; ~ ) so that M 
is closed under X-sequences. JO¢) > X, and ~¢ is the least ordinal so that 

2.5. Let g be a fine measure on p~X a a d ]  : V- M~- VP~X/la. I f f i s  a 

function with domain p~ X, vf-lu will always be the element of  M that 
corresponds to file equivalence class of fwi~zh respect to ta. We omit 
the "ta" when no confusion results. I I c  is ir M, (c x ; x ~ p~X) will be 
some function such that V(c x ; x ~ p~ k~n = c. 

Let v be a cardinal so that t~ ~< v ~< X, and q : p~ X -~ PK v so that for 
all ~ in v, ta({x ~ p~X: ~ ~ q(x)}) = 1. Then q,0a) is a fine measure on 
p , v  (q,(la) is defined so that fo~ any subset A of p ,v ,  q,(ta)(A) = 1 iff 
Is({x E p~X: q ( x ) E  A}) = 1). Let /0 : V-.~ M 0 ,~ vP~;~/q,(la), and define 
k : M o -* M so that for any function f with domain pKv, k(rf'n¢, (~)) = 
Vfo gnU. k is an elementary embedding o f M  0 into M, and k o ]o =1. 

Now suppose that ~ is n ~rmal. A theorem of  Solovay [ 15 ] shows 
that clos(g) = (X<K) + . A simple induction shows that for all a ~< k, 
r-( o (x n ~ ) ;x  ~ pKX~ = t~ (where f o r y  a set o f  ordinals, o (y) is the 
order type o f y  with respect to the well ordering induced by E). We 
define (2~'<*) ~ and (2~<K) +M to be the ordinals 7 and ~, respectively, 
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such that M ~ ('y is the cardinality o f  the power  set of  )<K, and 6 is the 
least cardinal greater than 3,). Since M is closed under  ~<'~-sequences and 
/(to) is inaccessible in M, 2 x<~ < (2 x<~ )M and (2x<K) +~! </(K) .  By the 
usual cardinality arguments, ](K) < (2x<K) ~ . It follows that 
(2x<~) +M < (2x<~) +. 

To continue the discussion, suppose that v < X and that qOq = 3' n v 
for all y in p~X. Then q , (# )  is a normal measure on p~v. 

2.6. Proposition. If3, ~ 2 ~<K, the least ordinal moved by k is (2v<~) +M°. 

Proof. First note that for all ~ < v, 

k(a) = k(r-~o(x 0,, a); x E P,c v~q*(u)) 

= Ro(Cv n v) n ~); y E p~XD ~* 

= q o O ,  n y p X> = 

It then follows that for all x in PK v, k(x)  = x,  and for all subsets A of 
pKv, k(A)  = 4. Also, if W is a subset of  p(p~v) and [¢ is in M0, k(W) = t¢. 

Now suppose that there is an ordinal less than (2~<~) ÷M° that  is 
moved by k :rod that a is the least ordinal with this property.  There is a 
subset W of  P(PK v) in M 0 and a bijection f : t t /~ a also in M 0 . M 
(k(f)  is a bijection from k(l¥) into k(a).  Since k(W) = t¢, there is an 
x ~ N so thaz k(f)(x)  = ~. Also there is a/3 < a so that j (x )  =/3. Since 
k(x) = x, k ( f l (x )  = k(/~) and k(13) = a. Then/3 is moved by k, which is 
a contradiction. 

Since ~ ~ 2 v<~ and M is X-closed we have (2~<~) ÷M = (2"<~) + . Hence 
(2~<K) +g  = (2:'<~) ÷ > (2~<~) +g° (by the remarks at the end of  2.5); 
thus k((2v<K) ÷M° ) > (2v<~) ÷M° . 

A theorem of  Solovay states that every measurable cardinal ~ has a 
normal meast~re # so that ~((~ < x: t~ is not measurable-) = 1. Another  
way of  expressing this is that  ~: is not measurable in the ul trapower o f  
the universe with respect to p. The tbllowing proposition is an analogous 
result for the case when ~ is ~,-supercompact. 
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2.7, Proposition. Suppose  ~: is X-supcrcompact. There is a normal meas 
ure Is on p~X such that ~ is not  X-supercompact in the transitive collap:.e 
o f  the ultrapower o f  the tmi~,erse wi 'h  respect to #. 

Proof.  We get the desired measure # by taking p normal on p~ X such 
that ](~:) is minimal, ( H e r e / :  ! : - ,  M ~: V°~X/la.) 

Suppose that M ~ (ta* is a normal measure on p~ X and for 
/* : V -,- M* ~ I :p~ x/la*,/*(~:) = 7), Since M is closed under X <~- 
sequences, ta* is a normal measure oa  p~X and/'(k:) = 3' for the canon- 
icalj '  : V-* M' ~ VP~'/la*. But 7 <  (2h<~) +M < ](k:), which is a contra- 
diction. 

§2, The existence of a strongly cmrpact cardinal that is not super- 
compact 

Let ~: be a measurable cardinal and/.t a fine measure on p~ t~. Then 

two important properties that hold for any such ~: and/a are that there 

is a function q : p~ :  -* p ~  such th;~t q,(/a) is a normal measure on 
p~ ~: and that clos (/~) = t~ + . "Hlese had been two of the more cogent 
arguments by analogy for the conje zture that every strongly compact  
cardinal is supercompact.  

We generalize these properties to the conte ,t o f  p~ X as follows: 

2.8. Definition. Suppose that ~: is X-strongly compact.  We say that 

A(~:, X) holds if for every fine measure ~ on p~X, there is a q : p~X -, 
p~X such that q , ( # )  is a normal measure on p~X; and that B(x, X) 

holds if for every fine measure ~a or,, p~ X, c|os (ta) > X. 
Let us first note that B(~:, X) implies A(~, X'L Suppose that/a is a 

fine measure on p~ X with clos (/a) ,-, X. Let j : V ~ M ~- VP~X/ta be the 
canonical embedding and let q be ~ function with domain p~X such 
that r'q-n = ] [k l .  An easy check establishes that q , ( # )  is a normal 
measure on PK X. 

In subsection 2.2, we pl3ve thai B(~:, X) fails whenever ~: is k- 
strongly compact  and X > ~:. We d~9 not  know ifA(~:, k) ever holds 
for X > ~:. But we prove in subsection 2~3 that it fails whenever ~: is 
strongly compact  and ~ is a limit o f  strongly compact  cardinals. In 
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subsection 2.1 we study the concept o f  a minimal fine measure on p~ ~,, 
which is related to the question of  the relative strength o f  A(~:, ~,) and 

X). 

§ 2.1. Minimal f ine measures 

2.9. Defini,~h)n. A fine measure/a en p ~ ,  is minimal if for all functions 
q from p~;~ into p~;k such that q,(/a) is a fine measure on p ~ , ,  q is in- 
jective on a set o f  measure one (i.e., there is a subset A of  pKk such that 
/a(A) = 1 and for all x and y in A i fx  g: y, q(x) ~ q(3')). 

The relation of  minimality to the conjectures A(~, k) and B(~, k) 
turns on the fact that for every minimal measure/a on p~;k the existence 
of a functi(~n q from p~k into p~;k such that q,(/a) is a normal measure 
on PK A, im plies that clos (/a) > k. For the elementary embedding 
k : M 0 -* M discussed in 2.5 (where M ~ VP~'//a and M 0 ~- V~X/q , ( la ) )  

is in fact an isomorphism. Hence clos ~ )  -- clos (q,(/a)) = 0,<~) + . 
A recent result of  Solovay states that the class o f  S 1"additive meas- 

ures is well-founded with respect to the Keisler ordering on measures 
(this ordering is discussed in [ 7] ). It follows that if  ~: is ~.-strongly com- 
pact, there is a minimal fine measure on p~X. 

For regular cardinals ?~ we will show how to obtain "canonical"  mini- 
mal measures from fine measures on p~X. We will also prove that  if ~ is 
regular or the cofinality of  ~. is less than ~:, then every normal measure 
on p~X is minimal. 

Remark. Let ~: be a regular cardinal and ~, > ~: so that 2 <~ < ;k. If  A is 
any u rbounded  subset of  p ~ ,  then pK~, = Uxe a p(x) and Ip(x)l < ;k 
for every x ~ A. It follows that IAI = X<~. This observation, due to 
Solovay [ 19], will be tacitly used throughout  the chapter. 

The next proposition establishes a criterion for minimality. 

2.10. Proposition. Let  ~ be a regular cardinal, la a J~ne measure on p~X, 
] : V-~ M ~- vP~X/II, and S " p ~ - *  ~ s o  tha tr ' s  -~ = sup ( f iX]) .  I f S  is 

in]ective o~! a set o f  measure one. iz is minimal. 

Proof. Let 4 be a subset o f  p,~X of  measure one so that S is injective on 
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A, and let q be a flmction from p ~ ,  into pK~, so that q,( /D is a fine 
measure on PK X. Define a function g : p~ ;~ --, ~, by 

[ SO') if there is a y ~n A such that 
g(x) =~ S(y) < S(x) al~d q(v) = q(x), 

0 otherwise 

for all x in p~ , .  
Suppose gC:) > 0 a.e. Since g(x) < S(x) a.e., there is an a < ~, so that 

for E = {x ~ A: 0 < g(x) < t~ ), p(E) = 1. The cardinality of q [E] is X <u, 
because it is an unbounded suoset of  p~ X, But q [ E] c_ q [ {y ~ A : 
sO') < a ) 1 ,  which has cardina~ity ~< ~. 

We conclude that g(x) = 0 a.e. The set {x e A: g(x) = O) has measure 
one with respect to p and q is injective on it. 

By a theorem of  Solovay [ ~ 8],  every stationary subset of  a regular 
cardinal ~, is the disjoint union of  v stationary subsets. Henceforth we 
will assume that for every regular cardinal ~, a function A x from ~, into 
the family of  all s t a t iona~  subsets of  X has been chosen so that 
Oc,<x A~(a) --- {~ < ~: cf(c~', = w} and for all ~ and/~ in ~, i f a  ¢/3,  
A(a} n A(/3) = 6. We omit the subscript ")," when no confusion results. 

2,10. Definition, Let ~ be a regular cardinal, 'l a fine measure on p~h, 
j : V ~  M ~- VP~x/p, and s a function from pKX into ;k so that  r-s-I = 
sup (j[X]). The minimal cover for p is the function q from p~X into 
p~X defined by q(x) = {a < s(x): Aa(a) n s(x) is a stationary subset 
of s(x)) for all x in p~ ;k. q depends on the function A x, which is the 
reason that we assumed that an A x has been fixed for every regular 
cardinal ;k. In addition q depends almost everywhere with respect to/a 

on the function s, 
Solovay defined the function q (he does not use the term "minimal 

cover") and used it to show that ;k <~ = ?~, which he later proved using a 
simpler technique [ 19]. Our interest in the function revived when we 
noted its potential use in connection with the conjecture A(~:, ;k). 

The next  theorem and its cov3~laries are also due to Solovay. 

2,11, Theorem,(Solovay).  Let ~ be a regular cardinal and la a fine meas- 
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ure on p~3`. I f  q is the minimal cover for p. q .(l~) is a pne  measure on 
p~3`. I f  in addition clos Oz) > 3 .̀ q.(iz) is normal. 

Proof. Let ] : V-* M ~ VPK~/I~ and s a funct ion from p~ 3  ̀into ~, so 
that  %-7 = sup (j[3`]). 

Suppose there is an ~ in 3  ̀so tha t / z ({x  ~ pkX: t~E q(x)})  - 0. Then 

/~({x ~ PK3`: A~((~) n s(x) is not  stat ionary ill S(X)}) = 1 , 

M ~ (](A~)U(a)) n rs 'a is not  ~ stat ionary subset o f r - s ' l ) .  

Let U be in M so that  

M ~ ( U i s  a closed unbounded  subset o f r s  a and U n  ](Ax)(](~)) = 0) 

Define U* = {a < 3`:/(a) ~ U } .  
We show that U* is an (,>-closed unbounded  subset of  3`. To show 

that  U* is unbounded ,  let 7 < 3  ̀and let ("tn; n < to) be an increasing 
sequence of  ordinals greater than 3, and less than 3  ̀so that for all n < to, 
[A~t,)),ATn+l)] ,a U =  0. Set "y~ = U ,<~  %) and 8 = On< ~ ](%~). Then 
<](%~); n < to) is i n M  and 5 is inE.  Since 

J(%~) = j (  u,,<,~ %) = ,,<~, j (%) = ~,  

6"is in U*. The to-closure of  U* is got ten  by a similar and simpler argu- 
ment .  

Since U* is an to-closed unbounded  subset o f  3  ̀and A~,(t~) is a sta- 
t ionary subset of  {tz < 3`: cf((~) = to) ,  U* n Ax(~) q= ~. But i f~  is in 
A},(t~) n U*, then 1(/~) is in/(Ax)(](a)) n U, which is a contradict ion.  It 
follows that  q.(~t) is a fine measure on PK 3`, 

Now suppose that  d o s  (/~) > 3,. Let t : p ,  3  ̀-~ PK 3  ̀be such that  
rt-1 = i[3`] and f : p ,  3  ̀--> 3  ̀so that f(.x') E q(x)  a.e. Then  M ~ ()-t -1 is an 
(,3-closed unbounded  subset o f  'r's'7 and ](Ax)(r'P) n r-s-t is a stationary 
subset of  {a < ~-a: cf(t~) = to)) .  If  ](t~) ~ / ( A ~ ) ( r f  a )  n r-t'a: then 
t~ ~ A},0%x')) a.e. and f ( x )  = {~ a.e., where t~ ~ Ao. Thus  rq-~ C j[3`]. The  
first part  of  th~ p roo f  shows that  ][3`] c_ r-q-]. It follows that  -q-~ = ][3`] 
and that  q , ( p )  ~s normal. 

Corollary (Solovay [ 19] ). Let K be strongly compact, Then 

( ~  i f  cf(3`)~  K, 

3`<~ = X ÷ iS c f ( 3 ` ) <  ~. 

For  a proof ,  see Solovay [ 19].  
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Corollary (Solovay). Suppose that i~t addition to the hypotheses o f  the 
theorem, la is normal on p~X. Then .,l(x) = x a.e. and s is in]ective on a 
set o f  measure one. 

Proof. The fl~eorem shows that r-_)a = ][M, Since t-(x. x ~ p~ X) -n = ][X], 
q(x) =x  a.e, I fx  and y are in p~X so t h a t x  v~ y, q(x) =x  and q ( y ) = y ,  
then s(x) ~s sO,), 

2.14. Theorem. Let X be a regular cardinal and la a fine measure on p~ X. 
l f  q is the minimal cover .(or Is, q,(la) is a minimal f ine measure on p~ X. 

Proof. Let]o • V - ~  M 0 ~- vP~X/ la , / l  : V ~ M  t ~ v P ~ X / q , ( l a ) ,  r s ~  = 

sup (]0[X]), l-Sl"lq*(~) = sup (ij[X]), and q t : P~ X-* p~ X the minimal 
cover for q,(ta), The theorem wilt follow from Proposition 2.10 if we 
show that ql (x) ~: x a.e. with respect to q,0a).  

We first show that s I (x) = sup (x) a.e. with respect to q,(ta). That 
q,(ta) ({x ~ p~X: s t (x )  sup (x)}) = 1, follows from the fact that q,(ta) 
is a fine measure on p~X. Suppose s t (x) < sup (x) a.e. with respect to 
q,(ta). Then s l ( q ( x ) ) <  sup tq(x))a .e ,  with respect to ta. Since ]0[X] c_ 
r-qn c r - s ~  ' So(X ) = sup (q(x)) a.e. with respect to #. Thus there is an 

< X so that s I (q(x)) < ~ a.e. with respect to p. But then 

q,( la) t{x  e p~X: Sl(X) < e~} ) = 1, 

which contradicts the definition of  s t . 

Now q(x) = {~ < s0(x): A~,(~) n So(X) is stationary in s0(x)} = 
{~ < sup (q(x)): Ax(a)  n sup (q(x)) is stationary in sup (q(x))) almost 
everywhere with respect to #. Translating we have x = {o~ < sup(x): 
Ax(a ) n sup (x) is stationary, in sup (x)} a.e. with respect to q , (p ) ,  
i.e., ql  (x) = x a e. with respect to q,(ta), which was to be shown. 

2.15. Corollary. Suppose X is a regular cardinal so that A(~, X) holds. 

Then for  any fine measure ta on pK3,, i f  q is the minimal cover for  la, 
q,(la) is a normal measure on p~ h. 

The term "minima! cover" may be a bit misleading. For  although 
we will not  prove it, under  certain conditions on the cardinal ~: and 
the regular cardinal ~, there is a fine measure ta on p~X so that q.Oa) 
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is not  a normal measure on p ~ ,  (where q is the minimal cover for ta), 
but  there is a function q '  from p,:X into p~X so that q~(~t) is a normal 
measure on p~ X. 

2.16. PropGsition. Suppose that either X is a regular cardinal or the co- 
finality o f  3, is less than K. Ztwn every normal measure on p~ X is minb 
real 

Proof. For ?~ regular, the theorem follows from Proposition 2.10 and 
the corollate to 2.11. 

Suppose that cf(X) < K, that/a is a normal me~sure on p~ X, and that 

]: V-~M ~- vP~X/la. Since X <~ = X + and clos (bt) = X +÷, there is a function 
r from p~X to p~X + so that ~.-a =j[X+]. M ~ (j(X) n i[X +] =/[X]). Hence 
there is subset E ofp~X of  measure one so that for all x in E, r ( x ) n  X = x 
r is injective on E and r,(/~) is a normal measure on p~ ~,* isomorphic 
to/a. 

The minimality ofbt will follow if we prove that for every q : p~ h+ 
pKX so that q , ( r , (b0)  is a fine measure on p~),, q is injective on a set 
of  measure one with respect to r,(/a). The argument needed is the one 
used in Proposition 2.10 and uses the fact that for every subset E o f  
p~X + so that r , (#) (E)  = 1, Iq[E] t = X <~ = X +. 

We do not know whether  Proposition 2.16 is true for singular cardi- 
nals X with cofinality greater than or equal to ~:. 

§ 2.2. The failure o f  the conjecture B(~:, X) 

2.17. Theorem. Let  ~c be X-supercompact and X ~ v ~ ~:. There is a f ine 
measure la on PK ~ so that clos (/a) = (v <~)+. 

Corollary. Let  ~ be ;k-strongly compact  and X > g. Then B(g, h) fails. 

To prove the theorem we first recall a technique of  Keisler and prove 
a lemma. 

2.18. Definition (Keisler). Let D and U be measures on the sets X and 
Y, respectively. The product  o l D  with U is the measu~  DX U on X× Y 
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defined by: 

(DX U) (A) = 1 

for all subsets A o fXX Y. 

iff U((y~ Y: D({x~X: (x ,y)~A})= 1}) = 1, 

Keisler showed [ 5 ] that  for any first-order structure '2i, ~lXXr/D X U ~- 
(~X /D)r /U. 

A special case of  the following lemma was proved independent ly  by 
Ketonen in his dissertation [ lO].  His p roof  is much  different.  

2.19. Lemma.  Suppose X and v are card#zals ;a ~, and/ao and/al are fine 
measures on p~ X and p~ v, respectively. Then clos (#0 X/a t ) = clos (PI). 

Proof .  Let 

]0: V'~ MO = vP~X//aO , ]1 : V ~ M 1 ~ rP~:V //al  , 

1" V-~ M ~  vP~XP"~//a0 X/al , k "MooM~-MP~V/lal 

be the usual canonical embeddings.  
Suppose that  d o s  (/a I) > p, for some cardinal p. Let p : p~v-+ PKP 

be so that/1 [P ] = ,-pT~ ~, and define q : p~ ;k × p~ v -* p~ p by q(x, y )  = 

P0')  for all (x y)  ~n p~XX p~v. 
If we show that  ~q'n =][P],  it will follow by the usual ul t rapower 

arguments that  clos (/a0 X/a I ) > P. It is clear that  ][p I c_ r-qn. 
To show that C-qn c ][0], k,t f b e  a funct ion from p,  XX p~v into P 

so that  f (x ,y )  is in p(y) for almost all (x, y)  in p~XX pKv, There is an 
A, subset ofpKv,  so that /a  I (A) = 1 and so that  for all y in A there is 
an Ay a subset o fp~X with/a0(Ay) = t andf(x,y)  e ply) for a l lx  in 
Ay. It follows that  for every y in A there is an o 5, in ply) and a subset 
Ay of Ay so that  #0(Ay)  = 1 and f ( x , y )  = ay for a l lx  in Ay. Then 
there is an A', a subset of  A, and an a in p so that  # I (A ' )  = 1 and t~y = a 
for all y in A'. Then f ( x , y )  = a for almost all (x, y) in p,~), × p , p .  

Now srppose  that  clos (/% "</a 1 ) is greater than the cardinal p. Let q 
be a funct ion from p~v into PKP so that  kip] = r-q-ira. An easy check 
shows that  Jl [P] = r'q'~m and that  clos (Pt)  > P- 

Proof  o f  T h e o r e m  2 .17 .  Let/a0 be a fine measure on  p~X, #t  a normal  
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measure on pgv, and let pK~, = Uy~pg~ Ay so that for all x and y in p,~,, 
Ay is unbounded and i fx  ~ y, A x n Ay = ~. Define a function q from 
p~;kX pKv into p ~ .  so that q is injective and for all x and y in p,~, and 
pKX respectively, x C__ q(x ,y)  E Ay.  The measure ~ = q,(/a 0 X # l )  is a fine 
measure on pK?~, and by the lemma, clos (#) = clos (p o ×ta i) = clos (# l ) = 

+ . 

§ 2.3. The failure o f  the conjecture A(K, X) 

2.20. Theorem. Suppose ~ is a s#tgular strong limit cardinal o f  cofinality 
greater than or equal to K, and K is ~-strongly compact. 77zen A(K, X) 

fails. 

Proof. We may asstune that K is ~.-supercompact. By Proposition 2.7, 
there is a normal measure/a on p~X so that i f j  : l~" -~ M ~ l'l'~x//a is the 
canonical embedding associated with/a. M I = (K is not  ),-supercompact). 

By our assumptions on ~, M ~ (K is v-supercompact for every cardinal 
v greater than K and less than ~,). It follows from work of  Ketonen and 
others [7] that if a is a singular cardinal o f  cofinality ;a tc and K is/3- 
strongly compact  for all cardinals ~ greater than ~ and less than ~, then 
K is a-strongly compact.  Hence M 1 = (K is ~,-strongly compact) .  Let U 
be a fine measure on pK~ in M. Since M is ;~<~-closed, the existence o f  
a function q from p~ X into p~ ~, such that q , (U)  is a normal measure on 
PK ~, would imply that ~: is ~,-supercompact in M which is a contradic- 
tion. 

2.21. Theorem. Suppose K is a measurable cardinal which is a limit o f  
strongly compact cardinals. Then K is strongly compact. I f  the cofinalio" 
o f  X is less than K or ~ is regular. A(K, X) fails. 

Proof. Suppose • is a regular cardinal greater than K and U is a fine 
measure on p~K so that U({7 < K: q¢ is strongly compac t ) )  = 1. For  
every strongly compact  cardinal "), less than K, select a minimal fine 
measure/a-t on p-tk so that if]~ : V--, ?,t v is the canonical embedding 
associated with Vv and q~ is the minimal cover for ta v , then 
r'(sup (x); x • p.t),)'~u~ = sup if,t[),]) and q~(x) = x a.e. 

The measure la on p,~ ~,, defined for all subsets A o f  p~ ~, so that  
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v(A) -- 1 iff U({3' < g: vv(A n p.,~,) = l }) = 1, is a fine n'teasure on p~).. 
L e t /  V-~ M -  V /la be the usual eml~eddmg. 

Suppose f  is a function from p~;~ into ~. so that f (x)  < sup (x) for all 
x in pc),. Then for almost all y in ~ (with respect to U), there is an a v 

in X so that/av({x ~ p ~ :  f ( x )  < % }) = 1. Then 

It follows that ~)sup (x) ;x  ~ p~.)-l~ = sup (/[~]). 
Now let 7 be the minimal cover for/a. By our choice o f  the/a~'s and 

the preceding observation, q(x) = x a.e. with respect to ta. Since 
r'~x n ~ ;x  ~ p~X~ "q~ is not an ordinal,/a is not a nomaal measure on p~k. 
By Theorems 2.20 and 2.21,/a is a minimal fine measure on p~.~. and 
clos (/a) ~< ),. Then A(~, ~) fails. 

Suppose cf (k)  < ~. DeEne q : p~X+ -~ pK), by q(y)  = y c~ k for all y 
qa p~ ~,÷, and let ta be a fine measure on p~ ~,+ so that ta is minimal and 
clos (/~) < *. The existence of  a function r from p~ ~ into PK X such that 
(r ," q).(ta) is a normal measure of p~ ~. irr~plies, by the argument used in 
2.16, the existence of a function s from p~;k into p~;k + such that 
(s o r o q ) ,  (~t) is a normal measure on p~ ~+, which contradicts our  
assumptions on/a. 

The observation that a cardinal is strongly compact  if it is both a 
measurable cardinal and a limit of  strongly compact  cardinals is the 
most important argument of  this section. 

2.22. Theorem. Supp(:se there is a measurable cardinal that is a limit o f  
strongly compacts. Tizen there is a strongly compact cardinal ~ such 
that the set o f  measurable cardinals less than ~ is a non-stationary sub- 
set o.t'v~. A forttori, ~: is not 2~-supercompact. 

Proof. Let ~: be the least measurable cardinal that is a limit of  strongly 
compacts, and let A be th ? set of  measurable cardinals less than g. By 
Theorem 2.21, g is strongly compact.  

Define a function f from A into ~ so that for every a in A, f (a )  = 
sup (~ < 6:/3 is strongly compact}.  By our  assumption on ~ , f ( a )  < 
for all a in A, and there is no tmbounded s~bset B o f  A such that f i s  
constant on B. Thus A is not stationary. 
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is not  2 K-supercompact, because by a theorem of  Solovay, every 
cardinal 5 that is 28-supercomIiact has a normal measure concentrating 
on measurable cardinals [ 15 ].  

The existence of  a measurable cardinal that is a limit o f  strongly com- 

pacts is a consequence of  the axiom of  extendibility, 

2.23. Definition. A cardinal x is extendible if for every ~ > ~ there is a 
/3> ~ and an elementary embedding ] : (R(a);  ~ > ~ (R(~); ~> such that 

is the least ordinal moved by / a n d / ( r )  > ~. 

The concept of  extendibility is due to Reinhardt and Solovay [ 15 ]. 

2.24. Theorem. I f  g is an extendible cardinal the set {3, < to: 3, is strong- 
ly compact and 3" is not  2~-supercompact } is an unbounded subset o f  K, 

Lemma. Suppose ~ is supercompact and [3 is a cardinal lcss than t~ such 
that for  all "y. greater than [3 and less than ~, f3 is 7-supercompact, Then 
[3 is supercompact, 

Proof. Let 3,0 be a cardinal greater than a and 71 a cardinal greater than 
2 vo<a . Suppose ta is a normal measure on Pa3,1 and / : F ~ M = F pa*a//a, 
the canonical embedding, Then M ~ (j(t3) is ~'-supercompact for all 

cardinals ~" between jl,/3) and ](a)),  Since ](t3) = t3 and 1(~) > ~'i, there i~ 
a set U such that M ~ (U is a normal measure on Pt33"0 ), Since 
clos ~ )  > 3q, U is a normal measure on Pa3,0" 

Lemma. Suppose K is extendible. Then K has a normal measure la con- 
centratmg on supercompact cardinals. 

Proof. K is supercompact by a theorem o f  Reinhardt and Solovay [ 15 l. 
Let t~ be a limit ordinal greater than K and ] an elementary embedding 
from (R(,Q; ~ ) into (R(/3); ~ )  so that ~ is the least ordinal moved b y /  
and j ( r )  > t~. Define a normal measure # on ~: by/~(A) = 1 iff t~ E j(A), 
for all subsets A of  ~:. Let A = {3, < ~:: "r is &supercompact  for all 8 
greater than 3' and less than ~:}. Since K is supercompact,  K ~ ](A). Also 
by the previous lemma, if 7 is in A, 3, is supercompact.  
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To complete the p roof  o f  the theorem, note that if ~" is an ordinal less 
than ~: and 3'~ is the least measurable cardinal greater than ~" that is the 
limit o f  strongly compact  cardinals, then by the arguments of  2.21 and 
2,22, 3'~ is strongly compact  and 7~ is not 2~-supercompact .  

We note without  p roof  that if there is an elementary embedding 

/" : (V; ~)~ ,  (M;~)  such that ~: is the least ordinal moved b y / a n d  M is 
a transitive class closed under ~,-sequences for every, cardinal u less than 

l(~:), then (R(~:); ~ ~ ~ (there is a class of  extendible cardinals). 

We close this subsection with a :'heorem that was of  greater interest 
before we discovered 2.21 and 2.22. Magidor has shown in his disserta- 
tion [91 that if ~: is stroagly compact  and there is a cardinal ~ greater 
than ~: such that k is the least cardinal greater than g with a non-normal 
fine measure/~ on p~k so that r-(x n g ; x  ~ p~k) -q~' = ~: and/a assigns 

measure one to the closed unbounded subsets of p~ k, then k is ineffable 
(improved to "k  is measurable" by Solovay), In order to motivate our 
theorem we ,,,tare a special case o f  Magidor's result in our terminology: 
Suppose 2 ~ -- g+. There is a function w from g+X ~:~ into p~x+ so that 
for every fi~ae measure/a on p ~ + ,  if/s(~ ((w}))  = 1 and r'(x n g; 
x ~ p~h~÷) -q~' = ~:, then/a is normal. 

2.25. Theorem. Le t  ~. be strongly compact ,  k > g, and wa : k --> p ~k  

for  every ~ < ~. There is a f ine measure V, on pKk so that  r-(x n g; 

X E p ~ k ~  ~ = g a n d / a ( C ( { w ~ } ) )  = 1 for  every ~ < ~. 

Proof.  Select a fine measure/a 0 on p~k so that/a0(C.((w~))) = 1 for all 
a < g. [ By the strong compactness of  g, every g-additive filter on a set 

X can be extended to ~, k:-additive ultrafi!ter on X] .  Let/0 : V ~ M o 
V p~'x/ta 0 be the canonical embedding associated with/.t o and 

c = ~ ( x , x  ~ p~k~  uo . Since clos (ta o) > g. ( / (wa] ;a  < g) is inM 0 and 

M 0 I= ( c ~  fl~<~ e ( ( / ( w ~ ) ) ) ) .  
Working in M o , we d ~fine "/3 is a descendant of  a "  iff there is an 

n < t~, ot o . . . . .  ~n < / o ( k ) ,  and i o , ..., in_ 1 < ~:, such that "o = ¢*, an = 3, 
and o~k+ 1 is in ]o (Wik )(a k ) for all k < n. Define c o = (a e c: there is a 3 
greater than or  equal to ~ and less than ](~:), such that/3 is a descendant 

o f ~ )  and let r'q~UO = c - -c  o , for some function q from p~k into p~;~. 
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For every a < ~t and t3 < K,/0 (a) ~ c - c o and c - c o is in C. ~ ({/0 (wa)}). 
The former assertion follows from the fact that for every function w 
from ;k into pKh and for every "s' < ~.,/0 (w)(]0(3')) =/0(w(~i)) =/0[w(7)] ,  
since Iw(7)l < ~:; so the only descendants o f j  0 (a) are in/o I),]. The latter 
assertion follows from the fact if 5 is in c and ~, is in](wa)(~) n Co, then 

8 is in c 0. 
Now let # = q,(/a 0), / : V -~  M ~ VP~X/ta, and let k be the elementary 

embedding from M into M 0 induced by q. Since k (r'(x A ~; x ~ p~ ),)'7~ ) = 
r ( q ( x )  n ~; x ~ PK X)7"°  = (c  - c o ) N ]0 (~:) = ~,  r-ix A e.; x ~ p .  ~0 ~ "  = ~:. 

To show that p (e({wa }))= 1 for every a < to, we need only prove that 
r ( x ; x  E p~)- lu  is in] (e({wa}))  for every ~ < t¢. This follows from the 
fact that I'-q-aUo is i n l0 ( e ({w ~ })) for every a < ~¢. 

§ 3. A consistency result 

Assume throughout this section that M is a countable standard model 
of ZFC. We will develop a method of  preserving in suitable Cohen ex- 
tensions of  M the strong compactness of  certain cardinals in M. Using 
this method,  we will then outline a proof  that the consistency of  "ZFC + 
there is a measurable cardinal that is the limit of  strongly compact car- 
dinals" implies the consistency of  "ZFC + there is exactly one strongly 
compact cardinal and no supercompacts". 

Following the announcement  of  Theorem 2.22 and shortly after we 
proved our results of this section, Magidor announced the much 
stronger result that the consistency of  "ZFC + there is a strongly com- 
pact cardinal" implies the consistency of "ZFC + the first strongly 
compact cardinal is the first measurable". In addition, using tile tech- 
niques of  this section, Jacques Stern has shown that the existence of  
an extendible cardinal implies the consistency of  "ZFC + there are 
exactly two strongly compact cardinals + the first strongly compact is 
supercompact and the second is no t"  and the consistency of  "ZFC + 
there exist at least two strongly ~:ompact cardinals + the first two 
strongly compacts are not supercompact". 

We will assume that the reader is well acquainted with the theory 
of Boolean valued models in Scott [ 161, Solovay and Tennenbaum [ 201, 
and Jech [2]. Unless otherwise noted, we adopt the notation o f  the latter 
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paper. The last part  of  this section requires the Silver forcing techniques 
developed in [ 13]. 

§ 3 . ! .  Preserving strong compactness ~,n Cohen extensions 

We now work in M. Let 9 =  (P; ~ ) be a non-empty  par t ia l lyordered  
set and for p ~ P, define [p] "- (q ~ P: q ~< p }. Let r be the topology on 
P generated by the family ( [p]  : p ~ P ) ,  and define BM(9)  to be the 
complete  Boolean algebra of all regular open subsets of  P with respect 
to the topology r. l f ¢ (v  0 . . . . .  On_ ~) is a formula of ZF and x o . . . .  , Xn_ ~ 
are e lements  of  M (~MO' ~), tl¢(x0, .... x .  _ ~ )11 (~M(m)) is the Boolean value 
of the s ta tement  ~(X 0 . . . . .  x . _  ~ ). We generally omit  the superscript 
"(B~(~)) '' 

2.26. Definit ion. Let 6(v o, v : ,  v2, v 3) be a tormula of  ZF so that 
~ ( 9 ,  ~ ,  i, v) iff 9 and c~ are partially ordered sets, v is an ordinal, i is 
a complete  embedding of  B ( ~ )  into B(C~) so that  for all x in V fB(q~)) 
with llx ~ ult = 1, sup ( l l i ,0 ' )  = x+l: y ~ V (B(:~))} = 1, where i ,  is the 
mapping from V tBt~)) into  V tB(~)) induced by i [27] .  

Suppose 9, oR, i and v are in M so that  M ~ ~k( 9 ,  oR, i, v). If H is 
an M-generic ultrafilter on BM(c~), then i -1 [HI is an M-generic ultra- 
filter on BM(9) and all subsets of  v in M[H] are inM[ i  - l  [tt] ]. 

The contex t  o f  Definit ion 2.26 is founa in many  situations. For  
example,  if 90 and 91 are partially ordered sets so that  90 has the 
v +-chain condi t ion an,J 91 is v-closed, a lemma due to Easton [ 1 ] 
shows that  there is an i so that ~k( 90 , 90 ® 9 l , i, v) is true, where 
90 ® 91 is the cartesian product  of  90 and 91 . [ 9~ = (R; ~ ) is "y- 
closed iff for every funct ion f from 7 into R with f(/3) <~ f ( a )  for all 

~ ~ < ? ,  there is a q in R, so that  q ~ .f(a) for all a < ~t.] Also, if 0 
is a partially ordered set and 91 is a set so that  V Bf~0) ~ [ 91 is a non- 
empty  par::ially ordered set that  is ~-closed], then  there is an i so that  
~k(90, 90 ~ 5~, i, v) is true, where 9 o ~ 91 is defined in Chapter  4. 

Suppose that  in M, '~, k and u are cardinals with k ~ 22~' ~. ~,/a 0 is 
a fine measure on p~k,  ] : M -~ ](M)= MP~/lao is the usual elementary 
embedding,  and ? is a partially ordered set in ](M) so that  IBM(9)I ~< 2 K . 
Suppose also that  in ](M) there is an i so that ](M) ~ ~(9 , ] (9) ,  i, 
IF(x; x E p~ k> -~'o t) and t h a t / ~ t ( 9 )  = B]tM)(5~). 
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Let G be an M-generic ultrafilter on BM(7) and H an M-generic uitra- 
filter on BM(](9)) so that i -1 [HI B i t M ) ( ] ( 9 ) ) ]  = G and/[G] c H. 

2.27. Theorem. In M / G ] ,  g / s  v-strongly compact. 

Proof. In M let #1 be a fine measure on p~v defined so that for every 

subset A ofp~v,  p l (A)  = 1 i f f / Jo( (y  E pc),: y n v E A }) = 1. Let 
c o =r-(x;x ~ pK~) "l~o and c I = r(x n u;x E p~) - luo .  Then for every 

subset A of  p~ v,/a 1 (A) = 1 iff  c I ~ / ( A ) .  We will show that in M/G l,  
there is a fine measure on p~ v extending/a 1 . 

Le tH*  = H  r B/(~3(](9)). Since/(M) ~ ~ ( 9 , / ( 9 ) ,  i, Ic01), every sub- 
set of  I col in / (M)[H*I is in j(M)[G]. Since/(M) is a class o f  M definable 
from #o,/(M)[G] is contained i n M [ G ] .  Then every subset o f c  0 in 
/(M)[H*] is i n M [ G ] .  

In M/HI,  define a map k • M/G] -*/(M)[H*] as follows. Let x be 
in M/G]. Then there is an x_" inM Bgt~) so that ia(6") = x, where it; is 
as in [2] the interpretation ofM(BMt'~) ) by G. Let k(x) = iH, fj(x_)), 
where in,  is the interpretation ofj(M)(B/(M)t.:(~))) by H*. To see that 
k is well defined, let ~ and x_' be in M (BM(~)) so that it;(x_) = " x' Ic(  ) = x .  

Then there is a p in P so that [p ] is in G and [p ] < tlx - x'l!. So in/(M), 
[/(p)] < II/(x) --/(-S')II. Since [/(p)] is in H by assumption, iH, q(.x_)) = 
JH, q(x_')). 

Siznilarly, s ince / i s  elementary,  we can show that k is an elementary. 
embedding. An easy check establishes that k extends/ .  

In M/HI,  define a measure #~ on the family of  all subsets of  p~ v in 
M/G] so that for every subset A o fp~v  in M/G],/a~(A) = i i f f c  I ~ k(A) 
The theorem will follow if we show tha~ ~a~* is in M[GI.  

In M let e be a map from ), onto r = (~B~/(~,)) BM(9),  and l e tg  be a 

function with domain PK ~ s0 that gO') = e r y for all y in p,, ;k. [Note 
that i c ( r )=  P (P0 ' ) )n  MIGI .] Then/ (M) = (r-g-~o is a function from c o 
into/(r)).  In / (M)[H*] ,  define a func t ion . f :  c o --- 2 so that 

1 i f c  I ~ iH,(r-g-lUo(~)), 

f ( a )  = 0 otherwise 

for all a in c o . 

/ t ~ is in M, and since all subsets o f c  0 in / (M)[H*]  are i n M [ G l  , f i s  
also in M/G].  For every ~ in X,/a~(it; (e(a))) = t i f f  there is a [pl in G 
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so that [p] ~; tle(~) is a subset o f  the fmnily of all subsets of  ~ of  cardi- 

nality less than ~11 and fq(oO) = I. Hence/2~ is in zli[G]. 

We mention without  p roof  that in M[G],  every mess on p~ X has a 
solution. [The notion of  a mess on p~k is defined and studied by Jech 

in [31.1 
Suppose that ~: is a strongly compact  cardinal in M, 7' a partially 

ordered subset o f  R0¢), and G an M-generic ultrafllter on BM(7") so that 
for every v > ~: there is a cardinal X > v and a fine measure/2 on p~X 
with the following properties: 

(i) There is a function f : ~¢ --- ~: and an i in I(M) so that 

](M) [ $ ( 9 , j ( 9 ) ,  i, I> Ir(x;x e . 

(ii) There is an M-generic ultrafil*~er H on BM(j(9)) so that i - 1  [ H ]  = G 

and jIG] ~ H. Then by Theorem 2.27, t¢ is strongly compact  in M[G] .  
The stipulations on ~, :9, and G are generally easily met. It is the 

existence of  the function f that poses a problem. 

2.28. Definition. A fine measure/2 on p~X has the o-property iff there 

is a f l m c t i o n f  : x -~ t~ so that/2({x ~ p,X: f(~:x) ~> Ixl}) = 1. For  such/2 

and J" we write 0(/2, f ) .  
Let X > ~:. Suppose that ta~ is fine on p~ ~ and that f is a function 

from ~ into ~ so that o(/2,f).  Let r-(gx;X ~ p~h) -l";  = x and define q on 
p~X so that q(x)  = (x - ~:) t3 ~:x for all x ~ p~k. Then/a 0 = q,(/2~) is fine 
oll p~X, r-(x tq ~:;x ~ p~k. ~-l~o = ~:, and a(/2o,f).  I f g  < v < X and t21 is 

the proiection of  V0 on p~v (i.e., fo rA c pKv,/21 (A) ~: 1 iff/a0((x E pc;k: 
x n v ~ A}) = 1), then r-(x c~ ~:; x ~ p~v) "qvt = ~ and a(V t , f ) .  It is now 
easy to check that if the preceding discussion took  place in the M of  
Theorem ~ "~ ,..,~7 and if in addit ion/20, /2: ,  and p~ are: related as in the 
p roof  of  that theorem, then in M[G],  r-(x c~ e,; x E pKv) TuI = ~: and 

o(uL f ) .  

§3.2. Tt, e e-properO' 

We digress to briefly consider the property o. 
We do not know whether  for  every strongly compact  cardinal ~ and 
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X > K, there is a fine measure It on p,,X with the a-property.  In fact we 
conjecture that  this is not  always the case. However if  ~ is super¢ompact,  
we prove in [14] that for every cardinal X ~ h: there is a normal measure 

It on PK X and a function f : ~ -~ ~: so that It((x ~ PK X: f(r.  x)  = lxt }) = 1. 
The following proposit ion due to Solovay shows that under certain 

conditions on ~:, there is a normal measure It on p~ h without  the o- 

property.  

2.29. Proposition. Suppose j : ( V; ~ ) -+ (M; ~ ) is an elementary embed- 
cling so that M is a transitive class closed under a-sequences f o r  every 
cardinal ~ < j(~:), and ~: is the least ordinal moved.by j. Then there is a 
cardinal X < ](r) and a normal measure It on p~ X without the o-property. 

Proof. Let X be any cardinal less than/(~:) and greater than the supremum 

of  the set {/(f)(~): f :  ~ -* ~:} (By the closure properties of  M,/U¢) is 
inaccessible and X exists.) Define a normal measure It on p~ X so that for 
every subset A of  p~;~, It(A) = 1 iffj[X] ~ / ( A ) .  Then note that if 

f :  ~-* ~, It({x ~ p~X: f ( I t c n x l ) <  t x l ) )  = 1. 

We note  that the existence o f  a supercompact  cardinal K and a cardi- 
nal X > r so that there is a normal measure on p,,X without  the o- 
property constitutes a much stronger cardinal axiom than that o f  
supercompactness. For  it can be shown, for example,  that under  these 
assumptions, there is a normal measure on g concentrating on super- 
compact  cardinals. 

It turns out  however that fine measures on p~ X wi thout  the o-property 
are easy to come by. 

2.30. Proposition. I f r  is strongly compact and X > ~. there is a f ine 
measure It on p~ X without  tile o-properO,. 

Proof. Let It0 be a fine measure on p~ X, Itl a normal measure on ~: and 
q an injective function from p~XX ~ into p~X so t h a t x  c__ q(x,  a) for 
every (x, t~) in pK;k× ~. Then as in the p r o o f  o f  Theorem 2.17, 

It = q . (~o  X #1) is a fine measure on p,cX. 
Define k : pKX -* g sO that k(q(x,  a))  = t~ for every (x, a )  in p~ X X g. 

By the normality o f  p l ,  rkmu = ~:. 
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Let f :  ~ -* g .  Since 

0a0Xtat)({(x,a) ~ p~),X .~: lxl > f (~ ) ) )  = 1, 

then ta({x ~ p,,),: f (k(x))  < I xl }) = 1. 
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We finally note that for certain strongly compact cardinals x there is 
always a fine measure on p~k with the e-property. 

2.31. Proposition. Let  ~ be a measurable cardinal, that is, a limit o f  

strongly compacts. There is a funct ion f f rom ~ into ~ so that for  ever), 

> ~ there is a f ine measure la on PK ~ so that /a((x ~ p~ X: f (nx )  >~ Ixl )) = 1 

Proof. Let U be a normal measure on ~: and define f for every a < x by 
~ a )  = (least strongly compact  cardinal greater than ~x). By the normality 
of  U, there is a subset E of ~: so that U(E) = 1 and for all a </3 in E, 

For every 3t in E, let ta.~ be a fine measure o n  pf(v)~k, and define a fine 
measure p on p~ ~. so that for every subset A o f  p~ k, 

ta(A) = 1 iff U({a ~ E: laa(A c~ p/,(~)X) = 1 )) = 1. 

For  every "r in E, let D v = {x E p.t.(,t);k: Ixl > 3'). Then/a(O,r~eD~ t) = 1. 
For every x in O.r~ E D~, let s(x)  be the uniqv - 7 in E so that x ~ D. t . 
Then r-s-7~ = ~: and ta((x O ~ e D v :  lxt < f ( s ( x ) ) ) )  = 1. 

§ 3.3. A model  in which :i~e first strongly compact is not  supercompact 

We are now ready to give a sketch of  a model of  ZFC in which there 
is exactly one strongly compact  cardir~al and the unique strongly, com- 
pact K is not ~:+-supercompact, 

Let M be a countable standard model of  ZFC ir  which ~: is the least 
measurable cardinal that is the limit of  supercompacts. We may assume 
that the G.C.H. is true in M (A Silver forcing argument for the satisfac- 
tion of  the G.C,H. in a COien extension preserves supercompactness 
and measurability, Silver forcing is discussed in [13] :) 

Let M 1 be a Cohen extension of  M using Silver forcing to ensure that 
T = v ÷÷ for those cardinals v in M that are 2 v-supercompact, Super- 
compac tne~  is preserved in the extension and the Kunen-Par is  method 
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[8] shows that ~ is measurable and that 2 ~ = ~+ inM I . 

In M I , there is a normal measure ~ on ~ so that if E = (7 < K: 7 is 

an inaccessible limit of supercompacts and 7 is not measurable}, then 

U*(E) = I. 

Let M 2 be a Cohen extension of M l using Silver forcing to ensure 

that 2 "* = u +++ for precisely those 9 that are measurable in M l and for 

which 2 v = v + in M 1 . Supercompactness  is again preserved, and the 

K u n e n - P a r i s  m e t h o d  shows tha t  in M 2 there  is a normal  measure U 
on ~: so that  U(E)  = 1. Also in M 2 , 2 ~ = ~:+, 2 ~" = ~+++, and 2 v* = 3"++ 

for all 3' in E. 

For  3" in E let I"(7) be the least supercompact  greater  than  % and let 
A be a cofinal  subset o f  K so tha t  no  point  in 2. is a l imit  po in t  o f  A, 

A n [% f(3")] = 0 for  all 3" in E, and for every v in A,  9 is measurable 

aad 2 ~ = 9 ++ . 

For  every 9 in A se!ect a normal  measure  U~, on  9. Let  m(A ) be the 

set of  all funct ions  o wi th  doma in  A so that  for every ~, in A,  o(v) = (r, B> 

where r is a finite sequence o f  e lements  of  9 and U~(B) = 1, and the 

first coordinate  o f  o(9)  is the e m p t y  sequence for  all bu t  a finite num-  

ber  o f  9's. Define a partial ordering ~<* on these func t ions  so tha t  

o 0 ~<* tr 1 i f f  for  all 9 in A if Oo(U) = (r o, B o) and 01(v)  = (r  I , B 1 >, 
then  B 1 c_ Bo ' r l  ex tends  r 0 , and the ordinals in r I bu t  no t  in r 0 are in 
B o. 9 = (m(A);  ~*> is the set o f  Magidor condi t ions  wi th  respect to  

A [20] .  

Magidor shows that  if  ~ < 9 and v is in A, then  in every genet ic  ex- 

tension M 3 o f  ME, every subset o f  a in M 3 is in M~ which  is the Cohen  
extension o f M  2 obta ined by forcing wi th  the condi t ions  m(A t3 9) = 

(p:  there is a o in r e ( A )  so that  p = a t' A n 9}. It fol lows from the  dis- 

cussion in subsection 3.2, tha t  in M 3 , ~: is s t rongly compac t  and tha t  

for every ;~ > r there is a f ine measure/a  on p~X so tha t / a ( (x  ~ p ~ :  

f(Kx) > Ix l ) )  = 1. 
Magidor shows that  in M 3 if  9 is in A,  then  cof(v) = ~o and v is a 

strong limit cardinal so that  2 ~ = v ++ . But  a theorem o f  Solovay [32] 
shows tha t  if a is s t rongly compac t  and/3 > a is a singular s t rong limit 

cardinal, then  2 a = ~ .  It fol lows tha t  in M 3 there are no s t rongly com- 
pact cardinals less than  ~. 

Now let M 4 be a Cohen extension o f M  3 using Easton forcing [ 1 ] to 
ensure tha t  2 a = e+* for all inaccessible cardinals a less than  ~ and  not  

in U~e E [7,f(3')]- 
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Again by the results o f  subsect ion 2, K is strot~gly compac t  in M 4. 
Since {/3 < ~::/$ is z~ singular strong limit  cardinal and 2 t~ =/3 ÷÷ ) is cofinal 

in ~: in M 4 , ~ is the first s trongly compact .  

Now suppose tha t  ~: is ~:+-supercompact in M 4 and let/~ be a normal  

measure on p~ ~¢+ a n d / :  M 4 -~ j(M 4) ~ VPs~'//a. Then / (M4)  ~ 2 g = k: + 
g* /~+++, - + and 2 ~ Then/~({x ~ p~ ~.: ~ x  = ~:x, ~:x is inaccessible, and 

.+ 

_'9~ ;~ ~:+÷+'t)-x ~ - I. But if  ~ x i s in  E, "-~'~ = ~:x+4 and if~: x is no t  i n E ,  

_'~x = gx ++ , which is a contradic t ion .  

Note  tha t  the above gives an exmaaple o f  a s trongly compact  cardinal 

g so that  "~ = ~:+ and " ~  = ~:+++ ,. ,. but  for every nonua l  measure/a  on g, 

#({a<~::  2 ~ a  +÷ o r . .  =a++))  = 1 .  

References 

[ 1 ] W.B, Eas~on, Powers of regular ~ardinals, Ann. Math, Logic I (1970) 139-178. 
t2] T,J. Jech, Lectures in Set "l]le~ry, Lecture Notes in Matt~ematics 217 (Springer, Berlin, 

1971). 
[3] TJ ,  Jech, Some combinatorial problems concerning uncountable cardinals, to appear. 
14] R.B. Jensen and K. Kunen, Some combinatorial properties of L and V, mimeographed. 
[5] E.J. Keisler, Lin~it ultrapowers, Trans. Am. Math. Soc. 107 (1963) 382. 
[6] H.J. Keisler and A. Tarski, From accessible to inaccessible cardinals, Fundamenta Mathe- 

maticae 53 (1964) 225-308. 
[71 J. Ketonen, Doctoral Dissertation, University of Wisconsi., Madison, W,~sc. (1971). 
[8] K. Kunen and J.B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 

2 (1971) 359-377. 
,9] M, Magidor, Dissertation, University of Jerusalem (1972). 

[ 10] M. Magidor, Combinatorial characterization of supercompact cardinals, to appear. 
[ 11 ] M. Magidor. The first strongly compact can be the first measurable, mimeographed. 
[ 12 ] M. Magidor, The first supercompact can be the first strongly compact, mimeographed. 
[ 13 ] TX,  Menas, Consistency results concerning supercompactness, to appear 
[14] T.K. Menas, A partition property of p~h, to appear. 
[15] W. Reinhardt and R. Solovay, Strong axioms of infinity and elementary embeddings, to 

appeax. 
116] D. Scott and R. Solovay, Boolean-valued models for set theory,Proc. 1967 UCLA 

Summer Institute, to appear. 
[ 17 ] J.R. Shoenfield, Umamified t\-~rcing, in: Axiomatic Set Theory (A ~M .S., Providence, R.I., 

1971). 
118] R. So!ovay, Real-valued i~easur ble cardinals, in: Axiomatic Set Theory (A,M.S., Ptovi- 

flence, RJ,, 1971). 
[ 19] R. Soiovay, Strongly compact, cardinals and the G.C.H., to appear in: the Proceedings of 

the 1971 Tarski Symposium. 
[20] R,M. Solocay and S, Tennenbaum, Iterated Cohen extensions and Souslin's problem, 

Ann, of Math. 94 (1971), 
I21 [ J, Stern, The ~cond strongly compact cardinal, mimeographed, 


