
JOURNAL OF COMPUTEK AND SYSTEM SCIENCES 39, 299-322 (1989)

The Strong Exponential Hierarchy Collapses*

LANE A. HEMACHANDRA~

Department of Cornpurer Science,
Cornell University, Ithaca, New York 14853

Received April 20, 1988; revised October 15, 1988

Composed of the levels E (i.e., IJ, DTIME[Z’“]), NE, PNE, NPNE, etc., the strong exponen-
tial hierarchy is an exponential-time analogue of the polynomial-time hierarchy. This paper
shows that the strong exponential hierarchy collapses to PNE, its A2 level.

E#P NE=NpNEyNPNPhtU . .._

The proof stresses the use of partial census information and the exploitation of nondeter-
minism. Extending these techniques, we derive new quantitative relativization results: if the
weak exponential hierarchy’s A, + , and Z, + , levels, respectively E’; and NE’;, do separate,
this is due to the large number of queries NE makes to its ZP database. Our techniques
provide a successful method of proving the collapse of certain complexity classes. (19x9

Academic Pres. Inc

1. INTR~DUCTI~N

1.1. Background

During 1986 and 1987, many structurally defined complexity hierarchies collap-
sed. The proofs of collapse shared a technique, the use of census functions, and
shared a background, the previous work on quantitative relativizations of Mahaney
[Mah82], Book, Long, and Selman [BLS84], and Long [Lon85]. These three
papers use the idea that if you know the strings in a set, you implicitly know the
strings in the complement. Thus, Mahaney shows that:

THEOREM 1 .l [Mah82]. If NP has a sparse Turing complete set (i.e., if there is
a sparse set SE NP such that NP c P”), then the polynomial hierarchy collapses
to PNP,

by showing that for any polynomial p(), a PNP machine can, on input X, explicitly
find all strings of length at most p(1x1) that are in S. Once the PNP machine has

* Presented at the “Second Annual lEEE Computer Society Symposium on Structure in Complexity
Theory,” held June 16-19, 1987, at Cornell University, Ithaca, New York.

+ Supported in part by a Fannie and John Hertz Foundation Fellowship, NSF Research Grants
DCR-8520597 and CCR-8809174, and a Hewlett Packard Corporation equipment grant. Preliminary
versions of these results were presented at the Second Annual Structure in Complexity Theory Con-
ference [Hem87c] and the Nineteenth Annual ACM Symposium on Theory of Computing [Hem87b].
Present address: Department of Computer Science, University of Rochester, Rochester, NY 14627.

299
0022~OOW/89 $3.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82143166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

300 LANE A. HEMACHANDRA

computed these strings, it can easily solve NPNP problems since NP c P’. The
papers of Book, Long, and Selman [BLS84] and Long [Lon85] also exploit
this notion of finding the strings in an oracle set and using those strings to prove
collapses of quantitatively restricted relativized complexity classes.

The work described in this paper develops, as an extension of the ideas of
Mahaney [Mah82], the following paradigm. We find not the names of strings in
the oracle set, but the number of strings, the census function, of the oracle set. We
prove that PNE = NPNE by showing that it is easy to compute the number of strings
in the NE oracle of NPNE that are queried at each level of the NP machine’s
computation tree.

This technique of census functions [Hem86b, Hem87b] is used in many of the
hierarchy collapsing proofs. Census functions are used by Kadin [Kad87] to
improve Mahaney’s result (Theorem l.l), by Toda to collapse the linear-space
alternation hierarchy [Tod87], and by Lange, Jenner, and Kirsig [LJK87] to
collapse the logspace alternation hierarchy. More recently, Wagner and Schoning
extended the direct census techniques used in our Theorem 4.10 and in [Kad87] to
prove the collapse of the logspace oracle hierarchy and provide a lovely extension
to our Lemma 3.1. Immerman has since showed that NSPACE[s(n)] =
co-NSPACE[s(n)] for space constructible s(n) = B(log n), which strengthens the
logspace and linear-space results of [Tod87, LJK87, SW88].

Many of these results have been reproved using alternate techniques. Beige1
proves collapses via the theory of mind changes [Bei87]. Kilian and Maley
[Ki187] and Book, Toda, and Watanabe [Wat87] have also studied simplification
and generalization of hierarchy collapses.

1.2. Overview

We wish to know if the high A and C levels of complexity hierarchies are com-
putationally complex, and if so, why they are complex.

Section 3 looks at the strong exponential hierarchy:

EuNEvNPNE”NPNpNE”

We show that the strong exponential hierarchy collapses to its A2 level, PNE. Our
proof is based on a careful inspection of the computation tree involved in an NPNE
computation. We show how PNE can construct increasingly accurate partial census
information about the number of “yes” responses NE makes to queries from NP in
the action of NPNE. Finally, we have the correct census and collapse the classes.

The main result of Section 3 is:

LEMMA 3.1. PNE = NPNE.

It follows that

E#PNE= NPNE u NPNpNE u . . .

STRONG EXPONENTIAL HIERARCHY COLLAPSES 301

Section 3.1.2 shows that this result does not follow simply from the fact that NE
is a hard set. The section also notes that the combinatorics involved prevents this
technique from collapsing the polynomial hierarchy [St0771 to PNP.

Section 4 uses the census techniques of Section 3 to prove new results on quan-
titative relativization-relativization with restrictions placed on oracle access. We
first review the work on quantitative relativization of Book, Long, and Selman
[BLS84, Lon85]. Then we show how our method of computing partial censusfunc-
tions, instead of the name&y of strings used in previous work, collapses complexity
classes and unifies previous results.

For the main result of Section 4, we study the weak exponential hierarchy, which
is NE given the polynomial hierarchy as a database:

weak exponential hierarchy = NE u NENP u NENpNP u . .

We show that if the weak exponential hierarchy’s Ai and xi levels do separate, this
is due not to the power of the database but to the large number of queries NE
makes to the database.

COROLLARY 4.4, Part 3. E”f = (L 1 L E NE Xi and some NEZf machine accepting
L, for some c and every x, queries its Ci oracle at most 2’l”’ times in its entire
computation tree on input x}, where Cf is the jth level of the polynomial
hierarchy [Sto77].

We also show that if EXPNP is to dominate PNE, . It must use the answers to early
queries to help it pose later ones, as the non-adaptive version of EXPNP is contained
in PNE.

THEOREM 4.10, Part 2. { SI S <:;;th_,ab,e NP} = PNE.

Finally, Section 5 lists open problems and summarizes the implications of our
results.

Thus, we prove that the high levels of the strong exponential hierarchy are no
harder than the low levels and that high levels of the weak exponential hierarchy
separate completely only if NE floods its database with queries.

2. EXPONENTIAL HIERARCHIES

2.1. Definition of the Strong Exponential Hierarchy

Both U, DTIME[2”“] and Uk DTIME[2”k] are commonly referred to as
exponential time (compare [CT861 with [BH77]), though the former is more
common in the literature of structural complexity [Se186, HY84]. We always make
clear which exponential time we are speaking of. Our main result-the strong
exponential hierarchy collapses-holds under either definition.

302 LANE A. HEMACHANDRA

DEFINITION 2.1. ’

CEE = E = u DTIME[2’“]

2:” = NE = u NTIME[2’“]

C;“,,, = NPZzE, for k>l

L\sE =Px,”
k+l , for k31

SEH = strong exponential hierarchy

Similarly, EXP = Uk DTIME[2”‘], NEXP = Uk NTIME[2”k], and SEXPH =
EXP u NEXP u NPNEXP u NPNpNEXP u . . .

2.2. Definition of the Weak Exponential Hierarchy

The weak exponential hierarchy, which was studied by Hartmanis, Immerman,
and Sewelson, is defined as follows.

DEFINITION 2.2. 1. The weak exponential hierarchy, EH [HIS85], is
NEuNENPuNENpNPu

2. The weak EXP hierarchy, EXPH, is NEXP u NEXPNP u
NEXPNPNP u

The weak exponential hierarchy, EH, has characterizations in terms of the alter-
nating Turing machines of Chandra, Kozen, and Stockmeyer [CKS81] and in
terms of quantified formulas. EH is exactly the languages L of the form that for
some k and c:

where R is a polynomial-time predicate and an “E” subscript denotes a 2’” bound
on the quantifier size (e.g., “(3,y)[” is short for “(3y)[(y(<2’“/j”) [HIS85]. In
terms of alternating Turing machines, EH models alternating Turing machines with

’ It might seem natural to define an exponential hierarchy as E “NE v NENEy NENEN’” .
However, by asking long queries to their oracles, these machines can unnaturally boost their power. For
example, NENE contains double exponential time and NENE”’ contains triple exponential time. Thus we
can obtain trivial separations in this hierarchy by using the Hartmanis-Stearns time hierarchy theorem
[HS65]. Even worse, an exponential hierarchy defined this way would not even be contained in
EXPSPACE. What causes this strange behavior is that a polynomial composed with a polynomial yields
a polynomial, but an exponential function composed with an exponential function does not yield an
exponential function. To avoid these anomalous behaviors, exponential hierarchies are defined by
composing a single exponential function with many polynomial functions.

STRONGEXPONENTIALHIERARCHYCOLLAPSES 303

a bounded number of 2”“-sized alternation blocks. Similarly, EXPH models alter-
nating Turing machines with a bounded number of 2”k-sized alternation blocks.

2.3. Properties of the Strong and Weak Exponential Hierarchies

2.3.1. The Strong Exponential Hierarchy and Sensitivity to Padding

SEH is “strong” because in a relativized world A, SEHA is not contained in EHA.
This is simply because from its A$ level (PNE”) on up, SEHA can query strings in
A of length 2”‘, but EHA can only query strings of length 2’“. To understand this,
just reflect on the fact that

since EP = E but PE = EXP, and EXP? E by the time hierarchy theorem of
Hartmanis and Sterns [HS65].

THEOREM 2.3. There is a relativized world A so that SEH* - EHA # Da. Indeed,
in this world PNE’ - EHA # a.

Proof. We make L, E PNEA - EH*, where

LA = {0”)(3y)[y~ A A Iy(= 2+]}

LA is clearly in PNEA, but since no EH* machine can reach strings of length 2”2 on
inputs of length n, we can easily diagonalize against each EH machine. 1

We get the following trivial separation simply from the padding anomaly that
E # EXP c PNE.

FACT 2.4. CSE # ASE 0 2 .

This sensitivity of E and NE oracles to polynomials padding of their input strings
has another consequence. The hierarchy SEXPH (see text following Definition 2.1)
equals SEH. Why? Clearly PNE = PNEXP, NPNEXP = NPNE, and so forth, since if P
(in PNE) just adds polynomial padding to each query string, its NE oracle can
stimulate the NEXP calls of P NEXP This extends the collapsing result of Section 3. .

COROLLARY 3.3. E#PNE=SEH=PNEXP=SEXPH

2.3.2. Downward Separations

If we collapse the polynomial hierarchy at any level, the entire hierarchy collap-
ses to that level; XCp = H p => Cp = PH [Sto77]. This is known as downward separa-
tion. Many other complexity hierarchies, such as the boolean hierarchy over NP
[CGH*88, CGH*] and the random polynomial time hierarchy [Zac86], exhibit
this behavior. One troubling feature of the weak exponential hierarchy is that it

304 LANEA.HEMACHANDRA

does not have downward separation. Hartmanis, Immerman, and Sewelson
[HIS851 display a relativized world A where EA = NEA # NENp”.

On the other hand, the strong exponential hierarchy does have downward
separation of a sort. A subtlety is that we must account for the sensitivity to
padding discussed in the previous section.

THEOREM 2.5 (Downward separation). 1. E = NE + EXP = SEH.

2. NE = CONE * NEXP = SEH.

3. EXP = NEXP C- EXP = SEXPH.

4. NEXP = coNEXP =+ NEXP = SEXPH.

Proof of Theorem 2.5. Part 1. Using Theorem 3.2 and our assumption that
E = NE, EXP c SEH = PNE = PE = EXP. Part 2. When NE = CONE (and thus even
“no” answers to NE queries have certificates), PNE can be simulated by NEXP,
which just guesses the correct oracle answers along with their certificates of correct-
ness. Parts 3 and 4. Similar to the proofs of parts 1 and 2, respectively.

Note that the theorem can be proved directly, without an appeal to Theorem 3.2
[Hem87a, Theorem 3.91. 1

There is no point in stating more general downward separation results. Since we
already know that P NE = SEH with no assumptions needed, the results above are
the only nontrivial downward separations possible in the strong exponential
hierarchy.

3. ON THE STRONG EXPONENTIAL HIERARCHY

3.1. The Strong Exponential Hierarchy Collapses

3.1.1. Proof of Collapse

This section proves that the strong exponential hierarchy collapses to its PNE
level. It suffices to collapse the strong exponential hierarchy’s PNE and NPNE levels.
Then downward separation gives us a quick proof of the hierarchy’s collapse.

LEMMA 3.1. PNE=NPNE.

THEOREM 3.2. PNE=SEH.

COROLLARY 3.3. E#PNE=SEH=PNEXP=SEXPH.

Proof of Theorem 3.2. By Lemma 3.1, A z” = Z SE. Inductively assume (for some
k>2) that AsE=ZfE.Now

CSE k+l =Np~kSE=NpASE=NppNE=NPNE.

STRONG EXPONENTIAL HIERARCHY COLLAPSES 305

The last equality holds because there is an NP machine that takes over the job of
the P machine (in NPpNE) and does all the NE queries itself. Thus, by induction,
CzE = As” for all k, so SEH = PNE. 1

Corollary 3.3 is proven in Section 2.3.1.
The work of our result lies in the proof of Lemma 3.1. We make extensive use of

the power of NE to guess query strings, witnesses, and paths in trees. We now
sketch the proof of Lemma 3.1; a formal proof follows.

First, we wish to place graphically in mind our image of an NPNF computation.
An NP computation tree has branches for each nondeterministic guess made by the
NP machine. The machine is said to accept if any branch accepts [HU79]. For
example, Fig. 1 shows an NP machine checking the satisfiability of the formula
X, A c. The NP machine has nondeterministically guessed all possible assignments
and has found one that satisfies the formula. Throughout this section we assume,
for simplicity of presentation, that our nondeterministic machines have at most two
successor states for any given state.

We view an NPNE computation similarly, except the NP machine can pose
queries to an NE oracle. Each of the nondeterministic paths may, of course, pose
different queries than its brothers do (Fig. 2). We label the depth of the nodes in
computation trees in the standard way (Fig. 2).

Now we describe our strategy. Figure 3 shows the computation tree of an
NPNE machine. Our goal is to accept, with a PNE machine, the same language the
NPNE machine accepts. The PNE machine computes the number of query strings
receiving yes answers from NE at each depth of the tree (we will refer to these as “yes
strings”). For example, there are two yes strings at depth two in Fig. 3.

We do not simply jump in and try to compute the number of yes answers deep
in the tree. To know which strings are even queried deep in the tree, we must first
know the answers to queries more shallow in the tree. Thus we first find the number
of yes responses in the first level of the tree. Then using this knowledge, we find the
number of yes responses at the second level, and so on. At each level we use

FIG. 1. Nondeterministic computation tree.

306 LANE A. HEMACHANDRA

An NP computation tree with oracle calls allowed to an NE oracle.

I

FIG. 2. NPN” computation tree.

Depth = 0

Depth = 1

IY Depth =2

NPNE

computation

cates that s is the
query string, and
k&r, Y or N, in-
dicates whether the
query s to the NE
oracle gets, respec-
tively, a “yes” or a

. tree

I
.

2nk paths
b

Note: Two strings, 110 and 011, receive “yes” answers at depth 2.

FIG. 3. Our strategy.

STRONG EXPONENTIAL HIERARCHY COLLAPSES 307

knowledge of the previous levels to help us do a binary search for the number of
strings at the current level.

For concreteness, suppose our NPNE language is accepted by NP machine N ,,
with NE machine NE,, as its oracle.2 At a typical stage we know, for example, that
the computation tree for NyT21(x) h as exactly 1, 1, 0,4, and 11 yes answers (queries
of strings accepted by NE,,) at levels 0, 1, 2, 3, 4, respectively, and between 8 and
16 at level 5. Our question (asked by P to NE) is:

given x and assuming 1, 1, 0, 4, 11 are the correct number of yes
answers at levels 0, 1, 2, 3, 4, are there at least 12 yes strings
queried at level 5? (**)

This is the kind of question that an NE oracle can answer. The NE computation
guesses the first six levels of N,,‘s computation tree, checks that the tree and
queries written are really the actions that N,, would take given the query answers
guessed, checks that there are 1, 1, 0, 4, 11 alleged yes strings at levels 0, 1, 2, 3,
4, and 3 12 alleged yes strings at level 5, and guesses the proofs that these strings
really are yes stings (i.e., are accepted by NE,,).

If 1, 1, 0, 4, 11 is correct, then the first five levels correspond to the first live levels
of the actual computation tree of NyTE21 (x), and if there are >, 12 yes strings at level
live we will have guessed them.

Eventually we know the number of yes answers at each depth, and a final call of
P to its NE oracle lets NE guess and check the correct computation tree of
NyTE21(x), and search for an accepting path in this tree.

Crucially, we do not need to verify that the no strings deserve “no” responses. We
know the total number of yes answers at each level and have proofs that strings do
indeed get yes answers. Thus, in a guessed tree that gets all the desired yes proofs,
our no strings must indeed deserve “no” answers, as we have ensured that our tree
agrees with the action of N,,. Put another way, our NE oracle, for queries of the
form of (**) above, gives correct answers.

Let us refer to the P and NE machines we use to simulate NPNE as P, and NE,,
i.e., we ensure that L(Pf;lE*) = L(Ny,n2i). F’g 1 ure 4 shows how the trees NE, guesses
increase in the (literal) depth of their accuracy at reflecting the tree of NEE2’(x).
Crucially, P, learns only the number of yes answers at each depth of N~~2~(~)‘~ tree.
This is fortunate; there is no way that P, could remember all the yes names, since
deep in the NY:11 tree there may be as many as 2”” yes strings on a single level.
Our use of increasingly accurate censuses of the number of queries per level is
central to the succes of our result.

We now make precise the proof just sketched.

’ Throughout this paper, we will use the notation MN, where M and N are machines, as a shorthand
for MLCN1. {N,} will be. a standard enumeration of NP machines, such that N, runs in NTIME[n’].
Similarly, {NE,} will be a standard enumeration of NE machines, such that NE, runs in NTIME[Z’“].

308 LANE A. HEMACHANDRA

. . . .
. -. . .

.
- Y Y Y **.*

.
mm...................-

True NPNE tree

. . . .

1 .:’ y N **..

0 .-* N ‘*-.
2 2

. ..-

. . . *
0 *.* *._

1 .-“Y N *-+

.m

(1)

.

. .
0 ;- ‘.*

1 ..’ Y N ‘**.

0 *.* N **.. . . .

. .m

(2)

0 :* N *..
:

3 Y Y Y *...
.-

(3) (4) (5)

The true NPNE tree and five snapshotsshowing a few of the

increasingly correct images of the tree and its partial census

information created in NE’s mind. The numbersdenote the number of

queries on that level receiving a “yes” answer from the NE oracle.

FIG. 4. The true NPN” tree and live snapshots.

Proof of Lemma 3.1 (PNE = NPNE). Let L be an arbitrary language in NPNE.
For concreteness, suppose L = L(NzE21), where N,, is an NP machine running in
NTIME[n”] and NE,, is an NEmachine. We describe machines P, and NE,,
respectively, P and NE machines, so that L = L(PTE*). Thus PNE = NPNE.

Let us first describe NE,,

L(NE,)= (find # x # ll@ # co # cl # c2 # ... # cIhl # c,I. There
exist sets Co, C,, C,_ 1, C, of strings so:

JCi(= ci and vi Cjc L(NE,,),
if one simulates N!:(x), answering each oracle query q at depth i
with a yes if and only if q E Ci, then each y in C, is really queried
at level i in this simulation, and
if final (which can be any string of bits) is 1, there is an accepting
path in the simulation mentioned in 2 above.}

STRONG EXPONENTIAL HIERARCHY COLLAPSES 309

Note that L(NE,) is in NE. The ualue of each L’; is at most 2’““‘, since this is the
maximum width of the computation tree Nf”,E21(x). So by guessing (at most)
/xl” ‘2’““’ strings and then guessing proofs that each is in L(NE,,) and guessing
the paths by which each occurs in the simulation, NE, can easily be implemented
in NTIME[2’““*]. Note that we have padded, so our input size to NE, is greater
than 1x1 18, so NE, runs in NTIME[2”~i”P”“i’“], and thus is in NE. Thus
L(NE,) E NE.

Given that the PNE simulator knows the number of yes answers that appear in
the first k levels of the computation tree of NEEZ1(.u), it can use binary search on
NE, to find the number of yes answers that appear at level k + 1.

Now we describe the action of our machine P, (on input x). P, uses NE, to find
the correct number of yes strings at each level of NY::“(x).

Stage i. Inductively, P, has numbers co, c,, c, ~, , so co, c,, c, ~, are the
correct number of yes strings at levels 0, 1, i - 1 of the actual computation tree
of NzEZ’(x) (Fig. 2). During th is stage P, finds c,, the actual number of yes strings
at level i. This is easy-P, just performs binary search (varying 2) using calls to
NE, of the form

{O#x#l ‘r”8 # c() # ..’ # c, , # 2;

to find the value of c,.
Recall that, when cO, c,, c,_, are correct, NE, says yes if z is a lower bound

for the number of yes answers at level i. Table I gives a sample binary search run.
At the end of it, P, has learned that there are exactly three yes strings at level 3.

It is crucial to notice that when cO, ci_ , are correct, the ci found is correct.
This is because some branch B of NE, will guess the true yes strings C,, C, , .
The queries asked at level i depend only on the fact that the right oracle replies at
levels 0 through i- 1 are known; thus the queries asked at level i on branch B will
be the queries that are asked in the tree of NY!’ (x) at level i. Thus if there are at
least z yes strings queried at level i of the tree of NY:“(x), an extension of B will
guess them and accept.

On the other hand, any branch that does not guess the sets Co, C, l correctly
(it guesses, say, Cb, C: ,) will certainly not accept. At the first level it errs from

TABLE 1

Binary Search over Calls to NE, Discovers that There Are Three Yes
Strings at Level 3 of the Computation Tree of Ny’:zl(11101)

Query NE,‘s answer

(0 # 11101 # l5’8 # 0 # 0 # 1 # 1) Accept
(0 # 11101 # 1s’* # 0 # 0 # 1 # 2) Accept
(0 # 11101 # 15’1 # 0 # 0 # 1 # 4} Reject
{O # 11101 # 151R # 0 # 0 # 1 # 3) Accept

310 LANEA.HEMACHANDRA

the true set of Cj’s (say level m), it will not be able to find all the strings of its
incorrect CL in the simulation tree. Why? Since CL # C,, yet ICh(= IC,I = c,,
some string w in CL is not a yes string of NEE*‘(x) at level m. Since the C: are
correct at levels 0, m - 1, the strings queried at level m in the simulation are
exactly those queried at level m in the tree of N F’(x). So if w is queried at level m,
it is not in L(NE*,) (if it were it would have to be in C,); thus condition 1 of the
definition of L(NE,) is violated and the branch will not accept. If w is not queried
at level m, condition 2 of the definition of L(NE,) is violated and the branch will
not accept. End of Stage i.

Since ci can be at most 2’““’ in value (this is as wide as the tree of NEE*‘(x) gets),
the binary search process at stage i takes at most around 1x(*’ steps, each requiring
writing a string of length at most about 1x1”. 1~1~’ + 1x1 l8 + 1x1. There are at most
I-4 l7 stages, so the total run time of Pl;) is easily polynomial; it runs in
TIME[n4.“+’ 1. Returning to the general case, if N,, runs in TIME[nk], then P,
runs in deterministic TIME[n4k+2].

After stage IX/~‘, the correct values cO, c,~,I~ are known. At this point, a single
call to NE, suffices. P, accepts if and only if NE, accepts 1 # x # l1”1’8 #
co # ,.. # c,,~,H (thus stating that N?‘(x) accepts). 1

3.1.2. Relationship of Our Collapse to Other Collapses and to the Polynomial
Hierarchy

We have just shown that PNE = NPNE, and thus the strong exponential hierarchy
collapses to P NE. Is this collap se of the strong exponential hierarchy trivial in the
same sense that PpspACE = NPPSPACE - - PSPACE is trivial? PSPACE is so powerful
that both PpspACE and NPPSPACE are equal to PSPACE. Do we similarly have
PNE = NE? Relativization techniques help us here. There is a relativized world
where PNEAs NEA. That this is not a side effect of the ability of PNE to reach
length 2”k strings (compared with NE’s reach of 2”) is shown by Theorem 3.4.
Section 2.3.1 discusses this “reach” anomaly in detail.

THEOREM 3.4. There is a recursive oracle A for which

PNEA 3 NEXPA 2 NEA.

Proof Sketch. This is a straightforward diagonalization using the techniques of
Baker, Gill, and Solovay [BGS75]. We separate PNEA from NEXPA by forcing a
coNEA language out of NEXPA. In particular, we diagonalize so that

L, = (O”l(Vy)[lyl =2”= y$NEXPA.

Interlaced with this, we separate NEXPA from NEA simply using the fact that the
former class is sensitive to length 2”k oracle strings. 1

More generally, the collapse does not occur simply because NE is hard. Even
though PNE = NPNE, there are many NE-hard sets, A, for which PA # NPA. This

STRONG EXPONENTIAL HIERARCHY COLLAPSES 311

follows from direct diagonalization and is related to Hartmanis’s results on the re-
relativization of PSPACE [Har85, HH88a]. Specifically, given any NE-complete
set B and any set C, B@ C will be NE-hard, where @ indicates disjoint union;
however, by diagonalization, we can construct a set C so that PeQ c‘ # NPB@ ‘.

On the other hand, our techniques do not collapse the polynomial hierarchy
(NP u NPNP u . . .) to PNP. Suppose we tried to show that PNP = NPNP using the
above methods. NPNP may have exponentially many yes replies given to its lower
NP machine by the upper one. The P machine can record an exponential count, but
the NP machine sitting over it (in PNP) certainly cannot guess an exponentially
large object: the names of the 2”k yes strings in the tree of NPNP.

Of course, if we change the game so that, in NPNP, few queries are made to the
oracle, then the same argument works. This “quantitative relativization” approach
is what is done by Book, Long, and Selman in [BLS84], where they show that a
hierarchy of quantified relativizations collapses. Section 4 of this paper studies
quantified relativizations of the exponential hierarchy, where we will see the partial
census technique of this section put to further use.

3.2. A Comparison of Two Census Techniques

The proof just given originally appeared in [Hem86b, Hem87c]. The technique
is to study NPNE by looking in turn at the levels of the NP computation tree and
computing census functions. We call this the base-machine-census method. Schoning
and Wagner [SWSS] have reproved Lemma 3.1 using the direct census method
introduced in [Hem86b, Theorem 4.101 (which is Theorem 4.10 of this paper) and
[Kad86, Theorem 141. Schoning and Wagner obtain a proof that is quite elegant
and that generalizes Lemma 3.1 to base classes with super-polynomial run times but
with restrictions on the lengths of the oracle queries posed ([SW88, Corollary 63,
[Hem 86b, page 151).

The direct census technique works as follows. Given an NPN” language
L = L(NyEi), a PNE simulator trying to determine if x E L approaches this by first
computing directly the number of strings in L(NE,) of length at most Ix/‘, by
binary search. Since N,‘s computation tree can touch at most 2”’ strings, this census
information can be computed by a PNE machine. Finally, with the census known,
one final call to an NE oracle suffices. This call guesses and checks exactly which
strings are the ones of length at most 1x1’ that are in L and then simulates NyFj.

Both the base-machine-census technique and the direct census technique have
uses in which they prove theorems that are beyond the reach of the other. When
the base machine has a long time bound but touches few strings of the oracle, e.g.,
our Theorems 4.3, 4.5, and 4.8, the base-machine-census method yields stronger
results than the direct census technique. When the base machine has a long time
bound but queries only short strings, the direct census method yields stronger
results [SW88].

i71/39’3-5

312 LANEA.HEMACHANDRA

4. QUANTITATIVE RELATIVIZATION RESULTS

4.1. Definitions

Quantitative relativization means relativization in which the power of the base
machine to query its oracle is restricted. The literature’s terminology uses “quan-
titative” relativization to refer to restricting the number of oracle calls, and
“qualitative” relativization to refer to restricting the form and pattern of oracle calls
[BLS84, BLW]. S ince our restrictions limit the number and pattern of the
queries, both terms apply in part. Thus we will be somewhat informal in our use
of the terms and will sometimes use “quantitative” or “qualitative” to apply to a
bound that is both.

Before studying quantitative relativization, we define our notation.

DEFINITION 4.1. Let A and B be complexity classes, The class ABC./(n)3x is the
class of languages accepted by an oracle Turing machine from a standard enumera-
tion of machines for A with a set from B as its oracle, under the restriction specified
by X with bound f(n). The restrictions we will consider include the following types
and their combinations:

CfWlpath : on input of size n, each path of A’s computation tree (A may be
nondeterministic) queries B about at most f(n) different strings,

Cdn)L: the total number of strings B is queried about throughout A’s entire
computation tree is g(n), and

[h(n)],,,,,iction: there is an h(n) bound on whatever is named by “restriction.”

EXAMPLES AND NOTES. 1. NENP = IJc NENPC22’“11r,e. Since the NE computation
tree is 2’” deep it has less than 2. 22” nodes, so it cannot make more than 2.2*‘”
queries (Fig. 5a).

2. NENPC2C”11W does put some restriction on the querying action of NE
(Fig. 5b). Note that NE NPC’lpath (Fig. 5c) may query 22c” many strings-one on each
of NE’s 22c” computation paths (Fig. 5d).

3. In classes such as NEXP NP NEXP may query NP about strings of length ,
exponential in the input size. Thus it is not obvious and probably not true that
NEXP equals NEXPNP, even though NP s NEXP.

4. Our quantitative classes count strings-not oracle calls. That is, [n21tree
means that for all x we have

I{ y 1 y is queried in the tree on input x} 1 d 1x1 2.

For example, an NE computation tree that queries string y on each of its 2*“”
branches would be charged just “1” in the [.I,,,, measure for this whole set of
queries-not 22C” (Fig. 5d).

Finally, we make it harder to prove our theorems.

STRONG EXPONENTIAL HIERARCHY COLLAPSES 313

b:* A.
2cn .

x .,
: x x x *

* x X x x x **.

At most 2cn

strings are

queried

.

4 22(”

&ii&

b

(is queried 1

1 b: NENp[2rnl Tree (
I I

4 22C” + 4 22cn b
I I

d: NENf’(llpath querying 2zc” strings

Key: x = oraclequery

FIG. 5. Quantitative relativizations

Notation 4.2. Adding a “Y” (e.g., NENPc2’“1y~path) means we are counting just the
number of strings queried that get a “yes” answer from the oracle (and “no”
answers do not count). This makes our theorems harder to prove and stronger; any
theorem we prove with a “Y” also holds without the “Y.” Table II summarizes our
notation.

4.2. Introduction and Background

The census techniques of Section 3.1 will be used to prove new theorems about
quantitative relativizations. We will see, for example, that

ENP = NENP[el,ree

571.39’3-5’

314 LANE A. HEMACHANDRA

TABLE II

Nomenclature of Restricted Relativization

Restrictions

[Qualitative bound],,,

[Qualitative bound] rree

[Qualitative bound] Y. tree

Limit on the number of strings queried on each of
A’s computation paths

Limit on the number of strings queried throughout
A’s computation tree

Limit on the number of strings queried throughout
A’s computation tree that are in B

Qualitative bounds

Log IJ, TIME[c log n]
Poly lJk TIME[nk]
e IJ, TIME[Z”]
EXP Uk TIME[Z’+]

where “e,” from Table II, denotes an exponential bound. Thus the only way NENP
can avoid collapsing to ENP is by using its oracle often. Similarly, we will see that

pNE 2 NEN"CPolYl,ree

Note that the P machine here cannot write down even one of the long queries
(length 2”) the NE machine makes to NP, yet PNE can nonetheless simulate the
action of NENPCpo’yllr=.

This highlights the difference between our techniques and those found in previous
work. Previous quantitative relativization results, centered in the polynomial
hierarchy, require that the base machine obtain the names of all strings queried.
However, our base class P can only use a polynomial amount (n’) of tape. So pre-
vious methods did not prove that PNE 2 NENPCpo’yltm, as each queried name is too
long (length 2’“). Previous methods did not prove that PNE = NPNE, as there are
too many names (the NP tree has 2”‘nodes).

The body of previous work in quantitative relativization contains many gems
[Boo81, SMB83, BLS84, Lon85]. Book, Long, and Selman [BLS84] prove that
Pm = NP ” Np’“PCPoJYIt~e ” Np(NpNPrpoiy’~~)CPol~I~~~~ ” . . . , which provides a polyno_

mial analogue of our PNE = NPNE result. Their paper provides a detailed study of
quantitative relativization in a polynomial setting. Recently, Long [Long51
extended this work by noting that many quantitative relativization results still hold
when we restrict our counting to yes queries.

STRONGEXPONENTIALHIERARCHY COLLAPSES 315

4.3. Quantitative Relativization Theorems

This section proves theorems that give insight into what makes hierarchies non-
trivial. The first and most important theorem shows that the Ck+ , and Ak+ , levels
of EH (Definition 2.2) collapse unless the Xk+ 1 level, NE’f, uses its Cp oracle exten-
sively. This is related to Long’s [Lon85, p. 5953 results that develop collapses
among restricted relativizations of the polynomial hierarchy. One might expect that
in the general case the Ak+, level of the weak exponential hierarchy is strictly
contained in the C,, 1 level (see [Sew83, AW88] for some connections between
collapses of the delta and sigma levels of exponential hierarchies).

THEOREM 4.3. EX: = NE”k”[‘Iy.“ee , for all k > 0.

COROLLARY 4.4. 1. ENP = NENPCelv+=.
2 ENP =NENPleltree

3: E'f = NEnc[eltree,for all k > 0.

Proof Sketch of Theorem 4.3. The method of Section 3.1 works with a subtle
but important modification. In that section, we could guess a whole computation
tree and check it. Here, the computation tree of NE is too huge to do this; it has
around 2*” nodes (where 2”” is the nondeterministic of the NE machine). Luckily,
since there is a [e] Y tree bound we are interested in checking at most 2”” nodes of
this tree. Our new t&k is that we just guess and check the parts of the tree that
are of interest to us.

So now, our C,P machine called by E will just (1) guess the yes strings, (2) guess
the paths in the computation tree of NE”f that lead to them, and (3) verify that the
strings really are accepted by NE’s oracle. Note that (3) is subtle; C,P is closed under
intersection, so checking if all our guessed strings are accepted by NE’s oracle is a
C,P question. We use the same existential block (i.e., the first existential block of E’s
oracle) that tackles (1) and (2) to start on the first existential block of the mem-
bership checking question.

This can all be done in 2”“’ steps, and thus allows E’s Ci oracle to guess and
check ail the portions of the huge NE xi tree that are of interest to it.

Having noted this, the proof follows the method of Lemma 3.1. Our EXc
simulator moves, level by level, down the computation tree of the NE”fcelK1ree
machine it simulates. At each level, it performs a binary search to determine the
exact number of yes answers at that level of the tree. 1

The following theorem shows that NENP machines must make many oracle calls
in order to accept languages outside of PNE. The result is perhaps surprising,
as PNE makes only polynomially many nondeterministic queries, but
NENP[P‘JlYlpath C-.Plt, makes exponentially many queries, any one of which may be
far too long for P to record.

THEOREM 4.5. PNE 2 NENP[PolYlpath CexPl~.wee,

316 LANE A. HEMACHANDRA

COROLLARY 4.6. 1. pNE = NEXpNP[po’Yh~h [exply.trs.
2 pNE = NEXpNP[PolYltree

Proof Sketch of Theorem 4.5. We need a new trick here. Our problem is that
PNE can only store the query census for polynomially many levels. However,
though NE NPEpo’yl~th CexPIY,tree has only polynomially many queries per path, it might
have queries at exponentially many levels (Fig. 6).

Our trick is to associate with each query its query depth: now many queries are
made before it on its path (Fig. 7). PNE will have polynomially many rounds. In
each round i it will found, by binary search, the number of yes answers received by
queries at query depth i.

Since the query depth of the tree of NENP[po’ylpth rexplKtr= is polynomial, and since
getting the right string to ask for a query depth i query depends only on having
queries of query depth less than i correctly answered, the method of Section 3.1 now
works.

Our PNE simulator proceeds as follows. First it performs a binary search to find
the census of yes answers at query depth one. Then it uses this census and another
binary search to find the census of yes answers at query depth two, and so on. Due
to the [poly],,,, restriction in the theorem’s statement, every query is of at most
polynomial query depth. Thus, after polynomially many rounds of binary search
the P machine knows the census of yes answers at each query depth and can finish
off its simulation with one final query to an NE oracle. fl

Proof of Corollary 4.6. These results use the same argument as Theorem 4.5,
but since PNE E NEXPNPtpolyl~r~ E NEXPNPtpo’ylpath [exply.tree, we get equality in this
corollary. [

I

.

FIG. 6. On query per path, but many levels have queries.

STRONG EXPONENTIAL HIERARCHY COLLAPSES 317

1 Kev: ??= Querv; the numeric label indicates the auerv death

FIG. 7. Query depths.

It is easy to see from Corollary 4.6 that NEXPNP is a delicate class. If you restrict
its query access too much, it is weakened to the point of collapsing to PNE.

4.4. More Quantitative Relativization Theorems

We can tailor and extend the techniques we have developed to a range of
problems. This section presents three such problems and briefly outlines the
modifications needed.

4.4.1. Paying Only for the First Occurrence

Note that, within a computation tree, a query consists of both a string queried
and the location in the tree at which the query is made. The first occurrence depth
(Fig. 8 gives examples) of an oracle query in a computation tree is 0 if there are no
queries made along the path between it and the root. Continuing in a breadth-first
left-to-right fashion through the computation tree, an oracle query is of first
occurrence depth i + 1 if (1) the string associated with the query has not already
been assigned a query depth less that i + 1 and (2) the largest query depth of a
query along the path from the query to the root is i (Fig. 8). Intuitively, the first
occurrence depth of a query string is how many times we must expand from the
root our “frontier” of queries to reach the query string.

The following theorem says that once a query is paid for by a nondeterministic
branch, its brother branches get to query the same string for free. The proof of
Theorem 4.7 is essentially the same as that of Theorem 4.5. The PNEXp simulator
uses binary search to find the census of yes answers to queries at first occurrence

318 LANE A. HEMACHANDRA

Key: stt means s= Query string; t= First occurrence depth of s;

t=* indicates that this is not a first occurrence, and thus adds no

depth.

FIG. 8. First-occurrence depths.

depth zero. Then it does the same for queries at first occurrence depth one (the dif-
ference from Theorem 4.5 is that here the simulator may pass by many occurrences
of strings assigned first occurrence depth one-the membership status of these
strings is already known to the simulator), and so on. Finally, when the census
functions for each first occurrence depth are known, a single final query to an NE
oracle determines if the simulator should accept.

One might, in the case without restrictions, expect NEXPNP to be larger
than PNEXP.

THEOREM 4.7. PNEXp = NEXP NPCex~lt, [PolYlsrrtoccurrenoedepth

4.4.2. Many “No” Strings

PNE can query its oracle only a polynomial number of times. It is possible that
PNE can contain NENPCpolyl~tKe, a class that may make up to 2*‘” oracle calls (most
receiving “no” answers)? The following theorem shows that it does. This theorem
is related to Theorem 4.5, but note that below NE is permitted to ask exponentially
many queries on many of its computation paths.

THEOREM 4.8. PNE 3 NENP[po’yl~tree,

COROLLARY 4.9. PNE = NEXPNPCpo’yl y,trec.

Our trick is for PNE to do binary search to find the depth of the first “yes”
response in the run of NENPCpo’yly~~r= (.). Then as before it does binary search to find
the number of yes strings at that level. PNE repeats this level-finding/census-finding

STRONG EXPONENTIAL HIERARCHY COLLAPSES 319

alternation until it has gone through all the levels that have yes responses (it can
detect this).

4.4.3. Qualitative = Quantitative: Truth-Table Classes and Sparse Sets

In the nomenclature discussed at the start of Section 4, truth-table classes
[Yes831 are qualitatively restricted classes, and PNPr’ogl is a quantitatively
restricted class. This section shows that these notions sometimes describe the same
class in different ways.

The following results about truth-table classes are proved not by the method of
Section 3.1, but follow from the weakness of truth-table reductions and the power
of census information. Theorem 4.10, Part 1, though simple to prove, seems rather
fundamental and has been independently noted [Hem86b, Hem86a, KSW86,
Wag88, BH88]. The class the theorem is about, PNPC’ogl, was first discussed by
Papadimitriou and Zachos [PZ83]; more recent studies have shown that PNPrlogl
has many equivalent characterizations [Wag88].

THEOREM 4.10. 1. {Sj S<cuth_tab,e NP} = PNPClogl.

2. (Sl S 6::u,h_tab,e NP} = PNE.

Proof: We prove the second part; the first part is analogous. S <;r?t,,_tab,e NP
means there is an exponential-time machine that answers “XE S?” by making
queries to SAT [GJ79], such that the queries asked of SAT are independent of the
answers received (see Ladner, Lynch, and Selman [LLS75] for a discussion of
d !I”&table).

To prove the E part, we have P perform binary search, using its NE oracle, to
find the number of yes answers, and with one final query to the oracle, we have NE
guess the yes answers and simulate the action of the truth-table reducer.

The 2 part is trivial-the truth-table reducer asks all queries that might be
formed by any of the 2”“” possible sets of oracle answers of the run of PNE. 1

Theorem 4.10 says that if EXPNP is to strictly contain PNE, it mu.st use the
answers to early queries to help it pose later ones. Of course, we do not hope to
show EXPNP 7 PNE, as this implies P # NP. However, we suspect that P # NP and
even EXPNP 2 PNE.

Similarly, we can prove collapsing results for sparse sets, which have historically
played a central role in computational complexity theory [Mah82, HIS85,
HH88b]. A sparse set S is a set so that, for some polynomial p(), for all n there are
at most p(n) strings in S of length at most n. Let SPARSE represent the class of
sparse sets.

THEOREM 4.11. 1. NENP~SPARSE~~NE,

2. N~NE~SPARSE~ pNE[log].

Proof: The two parts have similar proofs. For the second part, as in
Theorem 4.10 above, PNE with O(log n) queries computes the exact number of
strings reachable by the NP machine that are in the sparse NE set. 1

320 LANE A. HEMACHANDRA

5. CONCLUSIONS

Our goal was to find out if exponential hierarchies collapse, or if not, why they
might separate. We have seen that the strong exponential hierarchy collapses, via
a tight analysis of the query census of NPNE. We have viewed the weak exponential

hierarchy as NE with a rich database and seen that the A and C levels of the weak
exponential hierarchy separate only if NE floods its database with queries.

More generally, the census techniques of this paper can be used as a general
procedure for collapsing complexity classes that meet certain counting conditions
[Hem86b, Section 4.31.

The weak exponential hierarchy has crisp characterizations in terms of quan-
tifiers and in terms of alternating Turing machines (Section 2.2). An interesting
open question is: does the strong exponential hierarchy have similar representations
via quantifiers and alternating Turing machines? If so, can we prove the collapse of
the strong exponential hierarchy via quantifier manipulations? Immerman’s
improved collapse of the logspace hierarchy followed from his study of logical
formulas [Imm88].

ACKNOWLEDGMENTS

Juris Hartmanis provided sage advice and important insights. I am grateful to Jin-yi Cai, Dexter
Kozen, Jeffrey Lagarias, Daniel Leivant, Uwe SchGning, Richard Shore, Klaus Wagner, and Osamu
Watanabe for many enlightening conversations and suggestions. Two anonymous, referees and the
editor, Steve Mahaney, made extremely helpful comments on improving the paper’s presentation.

REFERENCES

[AWS8]

[Bei87]

[BGS75]

[BH77]

[BH88]

[BLS84]

[BLS85]

[Boo811

E. ALLENDER AND 0. WATANABE, Kolmogorov complexity and the degrees of tally sets, in
“Proceedings, 3rd Structure in Complexity Theory Conference,” pp. 102-111, IEEE
Computer Society Press, New York, June 1988.
R. BEIGEL, “Bounded Queries to SAT and the Boolean Hierarchy,” Technical Report TR-7,
Johns Hopkins Department of Computer Science, Baltimore, MD, June 1987.
T. BAKER, J. GILL, AND R. SOLOVAY, Relativizations of the P = ? NP question, SIAM J.
Comput. 4, No. 4 (1975), 43142.
L. BERMAN AND J. HARTMANIS, On isomorphisms and density of NP and other complete
sets, SIAM J. Comput. 6, No. 2 (1977), 305-322.
S. Buss AND L. HAY, On truth-table reducibility to SAT and the difference hierarchy over
NP, in “Proceedings, 3rd Structure in Complexity Theory Conference,” pp. 224-233, IEEE
Computer Society Press, New York, June 1988.
R. BOOK, T. LONG, AND A. SELMAN, Quantitative relativizations of complexity classes,
SIAM J. Comput. 13, No. 3 (1984), 461487.
R. BOOK, T. LONG, AND A. SELMAN, Qualitative relativizations of complexity classes,
J. Comput. System Sri. 30 (1985), 395413.
R. BOOK, Bounded query machines: On NP and PSPACE, Theoret. Comput. Sci. 15 (1981),
27-39.

STRONG EXPONENTIAL HIERARCHY COLLAPSES 321

[CGH*] J. CAI, T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDKA. V. SEWELSON, K. WAGNER.
AND G. WECHSUNG, The boolean hierarchy. II. Applications, SIAM J. Compu/. 18, No, I
(1989) 955111.

[CGH*88] J. CAI, T. GUNDERMANN, J. HARTMANIS, L. HEMACHANDRA, V. SEWELSON, K. WAGNER.
AND G. WECHSUNG, The boolean hierarchy. I. Structural properties, SIAM J. Compur. 17,
No. 6 (1988), 1232-1252.
A. CHANDRA, D. KOZEN, AND L. STOCKMEYER, Alternation, J. A.s.wc~. Compur. Ma& 26.
No. 1 (1981).

[CKSsl]

[CT861

[GJ79]

[Har85]

[Hem86a]

[Hem86b]

[Hem87a]

[HemR’lb]

[Hem87c]

[HH88a]

[HH88b]

[HIS851

[HS65]

[HU79]

[HY84]

[Imm88]

[Kad86]

[Kad87]

[Kil87]
[KSW86]

P. CLOTE AND G. TAKEUTI, Exponential time and bounded arithmetic, in “Proceedings, 1st
Structure in Complexity Theory Conference,” pp. 125-143, Lecture Notes in Computer
Science, Vol. 223, Springer-Verlag, New York/Berlin, 1986.
M. GAREY AND D. JOHNSON, “Computers and Intractability: A Guide to the Theory of
NP-Completeness,” Freeman, San Francisco, 1979.
J. HARTMANIS, Solvable problems with conflicting relativizations, Bull. Europeun A.Y.Eo~.
Theoraf. Cornput. Sci. 27 (1985), 4&49.
L. HEMACHANDRA, “Can P and NP Manufacture Randomness?” Technical Report
TR86-795, Cornell Computer Science Department, Ithaca, NY, December 1986.
L. HEMACHANDRA, “THE SKY IS FALLING: The Strong Exponential Hierarchy Collap-
ses,” Technical Report TR86-777, Department of Computer Science, Cornell University.
Ithaca, NY, August 1986.
L. HEMACHANDRA, “Counting in Structural Complexity Theory,” Ph.D. thesis, Cornell
University, Ithaca, NY, May 1987; Cornell Department of Computer Science Technical
Report TR87-840.
L. HEMACHANDRA, The strong exponential hierarchy collapses. in “19th ACM Symposium
on Theory of Computing,” pp. 1 l&122, May 1987.
L. HEMACHANDRA, The strong exponential hierarchy collapses (Abstract), in “Proceedings,
2nd Structure in Complexity Theory Conference,” IEEE Computer Society Press, New
York, June 1987.
J. HARTMANIS AND L. HEMACHANDRA, Complexity classes without machines: On complete
languages for UP, Theoret. Comput. Sci. 58 (1988) 129-142.
J. HARTMANIS AND L. HEMACHANDRA, On sparse oracles separating feasible complexity
classes, Inform. Process. Let?. 28 (1988) 291-295.
J. HARTMANIS, N. IMMERMAN, AND V. SEWELSON, Sparse sets m NP-P: EXPTIME versus
NEXPTIME, Iqform. and Control, 65, Nos. 2/3 (1985) 1599181.
J. HARTMANIS AND R. STEARNS, On the computational complexity of algorithms, 7’r~m.y
Amer. Muth. Sot. 117 (1965) 285-306.
J. HOPCROFT AND J. ULLMAN, “Introduction to Automata Theory, Languages. and Com-
putation,” Addison-Wesley, Reading, MA, 1979.
J. HARTMANIS AND Y. YESHA, Computation times of NP sets of different densities, Theorcr.
Comput. Sci. 34 (1984) 17-32.
N. IMMERMAN, Nondeterministic space is closed under complementation, in “Proceedings,
3rd Structure in Complexity Theory Conference,” p. 112-115, IEEE Computer Society
Press, New York, June 1988.
J. KADIN, “Deterministic Polynomial Time with O(log(n)) Queries,” Technical Report
TR-86-771, Cornell University, Ithaca, NY, August 1986.
J. KADIN, PNP[“‘snl and sparse Turing-complete sets for NP, in “Proceedings, 2nd Structure
in Complexity Theory Conference,” p. 3340, IEEE Computer Society Press, New York,
June 1987.
J. KILIAN, June 1987, personal communication.
J. KGBLER, U. SCHBNING, AND K. WAGNER, “The Difference and Truth-Table Hierarchies
for NP,” Technical Report, Fachberichte Informatik, EWH Rheinland-Pfalz, Koblenz.
West Germany, July 1986.

322 LANE A. HBMACHANDRA

[LJK87]

[LLS75]

[Lon85]

[Mah82]

[PZ83]

[Se1861

[Sew831

[SMB83]

[St0771
[SWSS]

[Tod87]

CWag88 1

[Wat87]
[Yes831

[Zac86]

K. LANGE, B. JENNER, AND B. KIRSIG, The logarithmic alternation hierarchy collapses:
AC; = AI7:, in “Automata, Languages, and Programming (ICALP 1987),” Lecture Notes
in Computer Science, Springer-Verlag, New York/Berlin, 1987.
R. LADNER, N. LYNCH, AND A. SELMAN, A comparison of polynomial time reducibilities,
Theorer. Comput. Sci. 1, No. 2 (1975), 103-124.
T. LONG, On restricting the size of oracles compared with restricting access to oracles,
SIAM .I. Compur. 14, No. 3 (1985), 585-597; Erratum, 17, No. 3 (1988), 628.
S. MAHANEY, Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis, .I. Comput. System Sci. 25, No. 2 (1982), 13&143.
C. PAPADIMITRIOU AND S. ZACHOS, Two remarks on the power of counting, in “Proceedings,
6th GI Conference on Theoretical Computer Science,” pp. 269-276, Lecture Notes in
Computer Science, Vol. 145, Springer-Verlag, New York/Berlin, 1983.
A. SELMAN (ED.), “Proceedings, 1st Structure in Complexity Theory Conference,” Lecture
Notes in Computer Science, Vol. 223, Springer-Verlag, New York/Berlin, June 1986.
V. SEWELSON, “A Study of the Structure of NP,” Ph.D. thesis, Cornell University, Ithaca,
NY, August 1983; Cornell Department of Computer Science Technical Report No. 83-575.
A. SELMAN, X. MEI-RLJI, AND R. BOOK, Positive relativizations of complexity classes, SIAM
J. Comput. 12 (1983), 565-579.
L. STOCKMEYER, The polynomial-time hierarchy, Theorer. Compuf. Sci. 3 (1977), 1-22.
U. SCH~NING AND K. WAGNER, Collapsing oracle hierarchies, census functions, and
logarithmically many queries, in “STACS 1988: 5th Annual Symposium on Theoretical
Aspects of Computer Science,” Lecture Notes in Computer Science, Springer-Verlag, New
York/Berlin, February 1988.
S. TODA, z:, SPACE[n] is closed under complement, J. Compur. System Sci. 35 (1987)
145-152.
K. WAGNER, Bounded query computation, in “Proceedings, 3rd Structure in Complexity
Theory Conference,” pp. 26@277, IEEE Computer Society Press, New York, June 1988.
0. WATANABE, May 1987, personal communication.
Y. YESHA, On certain polynomial-time truth-table reducibilities of complete sets to sparse
sets, SIAM J. Compuf. 12, No. 3 (1983) 411425.
S. ZACHOS, Probabilistic quantifiers, adversaries, and complexity classes: An overview,
in “Proceedings, 1st Structure in Complexity Theory Conference,” pp. 383400, IEEE
Computer Society Press, New York, June 1986.

