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Composed of the levels E (i.e., IJ, DTIME[Z’“]), NE, PNE, NPNE, etc., the strong exponen- 
tial hierarchy is an exponential-time analogue of the polynomial-time hierarchy. This paper 
shows that the strong exponential hierarchy collapses to PNE, its A2 level. 

E#P NE=NpNEyNPNPhtU . .._ 

The proof stresses the use of partial census information and the exploitation of nondeter- 
minism. Extending these techniques, we derive new quantitative relativization results: if the 
weak exponential hierarchy’s A, + , and Z, + , levels, respectively E’; and NE’;, do separate, 
this is due to the large number of queries NE makes to its ZP database. Our techniques 
provide a successful method of proving the collapse of certain complexity classes. ( 19x9 
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1. INTR~DUCTI~N 

1.1. Background 

During 1986 and 1987, many structurally defined complexity hierarchies collap- 
sed. The proofs of collapse shared a technique, the use of census functions, and 
shared a background, the previous work on quantitative relativizations of Mahaney 
[Mah82], Book, Long, and Selman [BLS84], and Long [Lon85]. These three 
papers use the idea that if you know the strings in a set, you implicitly know the 
strings in the complement. Thus, Mahaney shows that: 

THEOREM 1 .l [ Mah82]. If NP has a sparse Turing complete set (i.e., if there is 
a sparse set SE NP such that NP c P”), then the polynomial hierarchy collapses 
to PNP, 

by showing that for any polynomial p( ), a PNP machine can, on input X, explicitly 
find all strings of length at most p( 1x1) that are in S. Once the PNP machine has 
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computed these strings, it can easily solve NPNP problems since NP c P’. The 
papers of Book, Long, and Selman [BLS84] and Long [Lon85] also exploit 
this notion of finding the strings in an oracle set and using those strings to prove 
collapses of quantitatively restricted relativized complexity classes. 

The work described in this paper develops, as an extension of the ideas of 
Mahaney [Mah82], the following paradigm. We find not the names of strings in 
the oracle set, but the number of strings, the census function, of the oracle set. We 
prove that PNE = NPNE by showing that it is easy to compute the number of strings 
in the NE oracle of NPNE that are queried at each level of the NP machine’s 
computation tree. 

This technique of census functions [Hem86b, Hem87b] is used in many of the 
hierarchy collapsing proofs. Census functions are used by Kadin [Kad87] to 
improve Mahaney’s result (Theorem l.l), by Toda to collapse the linear-space 
alternation hierarchy [Tod87], and by Lange, Jenner, and Kirsig [LJK87] to 
collapse the logspace alternation hierarchy. More recently, Wagner and Schoning 
extended the direct census techniques used in our Theorem 4.10 and in [Kad87] to 
prove the collapse of the logspace oracle hierarchy and provide a lovely extension 
to our Lemma 3.1. Immerman has since showed that NSPACE[s(n)] = 
co-NSPACE[s(n)] for space constructible s(n) = B(log n), which strengthens the 
logspace and linear-space results of [Tod87, LJK87, SW88]. 

Many of these results have been reproved using alternate techniques. Beige1 
proves collapses via the theory of mind changes [Bei87]. Kilian and Maley 
[Ki187] and Book, Toda, and Watanabe [Wat87] have also studied simplification 
and generalization of hierarchy collapses. 

1.2. Overview 

We wish to know if the high A and C levels of complexity hierarchies are com- 
putationally complex, and if so, why they are complex. 

Section 3 looks at the strong exponential hierarchy: 

EuNEvNPNE”NPNpNE” . . . . 

We show that the strong exponential hierarchy collapses to its A2 level, PNE. Our 
proof is based on a careful inspection of the computation tree involved in an NPNE 
computation. We show how PNE can construct increasingly accurate partial census 
information about the number of “yes” responses NE makes to queries from NP in 
the action of NPNE. Finally, we have the correct census and collapse the classes. 

The main result of Section 3 is: 

LEMMA 3.1. PNE = NPNE. 

It follows that 

E#PNE= NPNE u NPNpNE u . . . 
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Section 3.1.2 shows that this result does not follow simply from the fact that NE 
is a hard set. The section also notes that the combinatorics involved prevents this 
technique from collapsing the polynomial hierarchy [St0771 to PNP. 

Section 4 uses the census techniques of Section 3 to prove new results on quan- 
titative relativization-relativization with restrictions placed on oracle access. We 
first review the work on quantitative relativization of Book, Long, and Selman 
[BLS84, Lon85]. Then we show how our method of computing partial censusfunc- 
tions, instead of the name&y of strings used in previous work, collapses complexity 
classes and unifies previous results. 

For the main result of Section 4, we study the weak exponential hierarchy, which 
is NE given the polynomial hierarchy as a database: 

weak exponential hierarchy = NE u NENP u NENpNP u . . 

We show that if the weak exponential hierarchy’s Ai and xi levels do separate, this 
is due not to the power of the database but to the large number of queries NE 
makes to the database. 

COROLLARY 4.4, Part 3. E”f = (L 1 L E NE Xi and some NEZf machine accepting 
L, for some c and every x, queries its Ci oracle at most 2’l”’ times in its entire 
computation tree on input x}, where Cf is the jth level of the polynomial 
hierarchy [Sto77]. 

We also show that if EXPNP is to dominate PNE, . It must use the answers to early 
queries to help it pose later ones, as the non-adaptive version of EXPNP is contained 
in PNE. 

THEOREM 4.10, Part 2. { SI S <:;;th_,ab,e NP} = PNE. 

Finally, Section 5 lists open problems and summarizes the implications of our 
results. 

Thus, we prove that the high levels of the strong exponential hierarchy are no 
harder than the low levels and that high levels of the weak exponential hierarchy 
separate completely only if NE floods its database with queries. 

2. EXPONENTIAL HIERARCHIES 

2.1. Definition of the Strong Exponential Hierarchy 

Both U, DTIME[2”“] and Uk DTIME[2”k] are commonly referred to as 
exponential time (compare [CT861 with [BH77]), though the former is more 
common in the literature of structural complexity [Se186, HY84]. We always make 
clear which exponential time we are speaking of. Our main result-the strong 
exponential hierarchy collapses-holds under either definition. 
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DEFINITION 2.1. ’ 

CEE = E = u DTIME[2’“] 

2:” = NE = u NTIME[2’“] 

C;“,,, = NPZzE, for k>l 

L\sE =Px,” 
k+l , for k31 

SEH = strong exponential hierarchy 

Similarly, EXP = Uk DTIME[2”‘], NEXP = Uk NTIME[2”k], and SEXPH = 
EXP u NEXP u NPNEXP u NPNpNEXP u . . . 

2.2. Definition of the Weak Exponential Hierarchy 

The weak exponential hierarchy, which was studied by Hartmanis, Immerman, 
and Sewelson, is defined as follows. 

DEFINITION 2.2. 1. The weak exponential hierarchy, EH [HIS85], is 
NEuNENPuNENpNPu . . . . 

2. The weak EXP hierarchy, EXPH, is NEXP u NEXPNP u 
NEXPNPNP u . . . . 

The weak exponential hierarchy, EH, has characterizations in terms of the alter- 
nating Turing machines of Chandra, Kozen, and Stockmeyer [CKS81] and in 
terms of quantified formulas. EH is exactly the languages L of the form that for 
some k and c: 

where R is a polynomial-time predicate and an “E” subscript denotes a 2’” bound 
on the quantifier size (e.g., “(3,y)[” is short for “(3y)[(y( <2’“/j”) [HIS85]. In 
terms of alternating Turing machines, EH models alternating Turing machines with 

’ It might seem natural to define an exponential hierarchy as E “NE v NENEy NENEN’” . 
However, by asking long queries to their oracles, these machines can unnaturally boost their power. For 
example, NENE contains double exponential time and NENE”’ contains triple exponential time. Thus we 
can obtain trivial separations in this hierarchy by using the Hartmanis-Stearns time hierarchy theorem 
[HS65]. Even worse, an exponential hierarchy defined this way would not even be contained in 
EXPSPACE. What causes this strange behavior is that a polynomial composed with a polynomial yields 
a polynomial, but an exponential function composed with an exponential function does not yield an 
exponential function. To avoid these anomalous behaviors, exponential hierarchies are defined by 
composing a single exponential function with many polynomial functions. 



STRONGEXPONENTIALHIERARCHYCOLLAPSES 303 

a bounded number of 2”“-sized alternation blocks. Similarly, EXPH models alter- 
nating Turing machines with a bounded number of 2”k-sized alternation blocks. 

2.3. Properties of the Strong and Weak Exponential Hierarchies 

2.3.1. The Strong Exponential Hierarchy and Sensitivity to Padding 

SEH is “strong” because in a relativized world A, SEHA is not contained in EHA. 
This is simply because from its A$ level (PNE”) on up, SEHA can query strings in 
A of length 2”‘, but EHA can only query strings of length 2’“. To understand this, 
just reflect on the fact that 

since EP = E but PE = EXP, and EXP? E by the time hierarchy theorem of 
Hartmanis and Sterns [HS65]. 

THEOREM 2.3. There is a relativized world A so that SEH* - EHA # Da. Indeed, 
in this world PNE’ - EHA # a. 

Proof. We make L, E PNEA - EH*, where 

LA = {0”)(3y)[y~ A A Iy( = 2+]} 

LA is clearly in PNEA, but since no EH* machine can reach strings of length 2”2 on 
inputs of length n, we can easily diagonalize against each EH machine. 1 

We get the following trivial separation simply from the padding anomaly that 
E # EXP c PNE. 

FACT 2.4. CSE # ASE 0 2 . 

This sensitivity of E and NE oracles to polynomials padding of their input strings 
has another consequence. The hierarchy SEXPH (see text following Definition 2.1) 
equals SEH. Why? Clearly PNE = PNEXP, NPNEXP = NPNE, and so forth, since if P 
(in PNE) just adds polynomial padding to each query string, its NE oracle can 
stimulate the NEXP calls of P NEXP This extends the collapsing result of Section 3. . 

COROLLARY 3.3. E#PNE=SEH=PNEXP=SEXPH 

2.3.2. Downward Separations 

If we collapse the polynomial hierarchy at any level, the entire hierarchy collap- 
ses to that level; XCp = H p => Cp = PH [Sto77]. This is known as downward separa- 
tion. Many other complexity hierarchies, such as the boolean hierarchy over NP 
[CGH*88, CGH*] and the random polynomial time hierarchy [Zac86], exhibit 
this behavior. One troubling feature of the weak exponential hierarchy is that it 
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does not have downward separation. Hartmanis, Immerman, and Sewelson 
[HIS851 display a relativized world A where EA = NEA # NENp”. 

On the other hand, the strong exponential hierarchy does have downward 
separation of a sort. A subtlety is that we must account for the sensitivity to 
padding discussed in the previous section. 

THEOREM 2.5 (Downward separation). 1. E = NE + EXP = SEH. 

2. NE = CONE * NEXP = SEH. 

3. EXP = NEXP C- EXP = SEXPH. 

4. NEXP = coNEXP =+ NEXP = SEXPH. 

Proof of Theorem 2.5. Part 1. Using Theorem 3.2 and our assumption that 
E = NE, EXP c SEH = PNE = PE = EXP. Part 2. When NE = CONE (and thus even 
“no” answers to NE queries have certificates), PNE can be simulated by NEXP, 
which just guesses the correct oracle answers along with their certificates of correct- 
ness. Parts 3 and 4. Similar to the proofs of parts 1 and 2, respectively. 

Note that the theorem can be proved directly, without an appeal to Theorem 3.2 
[Hem87a, Theorem 3.91. 1 

There is no point in stating more general downward separation results. Since we 
already know that P NE = SEH with no assumptions needed, the results above are 
the only nontrivial downward separations possible in the strong exponential 
hierarchy. 

3. ON THE STRONG EXPONENTIAL HIERARCHY 

3.1. The Strong Exponential Hierarchy Collapses 

3.1.1. Proof of Collapse 

This section proves that the strong exponential hierarchy collapses to its PNE 
level. It suffices to collapse the strong exponential hierarchy’s PNE and NPNE levels. 
Then downward separation gives us a quick proof of the hierarchy’s collapse. 

LEMMA 3.1. PNE=NPNE. 

THEOREM 3.2. PNE=SEH. 

COROLLARY 3.3. E#PNE=SEH=PNEXP=SEXPH. 

Proof of Theorem 3.2. By Lemma 3.1, A z” = Z SE. Inductively assume (for some 
k>2) that AsE=ZfE.Now 

CSE k+l =Np~kSE=NpASE=NppNE=NPNE. 
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The last equality holds because there is an NP machine that takes over the job of 
the P machine (in NPpNE) and does all the NE queries itself. Thus, by induction, 
CzE = As” for all k, so SEH = PNE. 1 

Corollary 3.3 is proven in Section 2.3.1. 
The work of our result lies in the proof of Lemma 3.1. We make extensive use of 

the power of NE to guess query strings, witnesses, and paths in trees. We now 
sketch the proof of Lemma 3.1; a formal proof follows. 

First, we wish to place graphically in mind our image of an NPNF computation. 
An NP computation tree has branches for each nondeterministic guess made by the 
NP machine. The machine is said to accept if any branch accepts [HU79]. For 
example, Fig. 1 shows an NP machine checking the satisfiability of the formula 
X, A c. The NP machine has nondeterministically guessed all possible assignments 
and has found one that satisfies the formula. Throughout this section we assume, 
for simplicity of presentation, that our nondeterministic machines have at most two 
successor states for any given state. 

We view an NPNE computation similarly, except the NP machine can pose 
queries to an NE oracle. Each of the nondeterministic paths may, of course, pose 
different queries than its brothers do (Fig. 2). We label the depth of the nodes in 
computation trees in the standard way (Fig. 2). 

Now we describe our strategy. Figure 3 shows the computation tree of an 
NPNE machine. Our goal is to accept, with a PNE machine, the same language the 
NPNE machine accepts. The PNE machine computes the number of query strings 
receiving yes answers from NE at each depth of the tree (we will refer to these as “yes 
strings”). For example, there are two yes strings at depth two in Fig. 3. 

We do not simply jump in and try to compute the number of yes answers deep 
in the tree. To know which strings are even queried deep in the tree, we must first 
know the answers to queries more shallow in the tree. Thus we first find the number 
of yes responses in the first level of the tree. Then using this knowledge, we find the 
number of yes responses at the second level, and so on. At each level we use 

FIG. 1. Nondeterministic computation tree. 
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An NP computation tree with oracle calls allowed to an NE oracle. 

I 

FIG. 2. NPN” computation tree. 

Depth = 0 

Depth = 1 

IY Depth =2 

NPNE 

computation 

cates that s is the 
query string, and 
k&r, Y or N, in- 
dicates whether the 
query s to the NE 
oracle gets, respec- 
tively, a “yes” or a 

. tree 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2nk paths 
b 

Note: Two strings, 110 and 011, receive “yes” answers at depth 2. 

FIG. 3. Our strategy. 
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knowledge of the previous levels to help us do a binary search for the number of 
strings at the current level. 

For concreteness, suppose our NPNE language is accepted by NP machine N ,, 
with NE machine NE,, as its oracle.2 At a typical stage we know, for example, that 
the computation tree for NyT21(x) h as exactly 1, 1, 0,4, and 11 yes answers (queries 
of strings accepted by NE,,) at levels 0, 1, 2, 3, 4, respectively, and between 8 and 
16 at level 5. Our question (asked by P to NE) is: 

given x and assuming 1, 1, 0, 4, 11 are the correct number of yes 
answers at levels 0, 1, 2, 3, 4, are there at least 12 yes strings 
queried at level 5? (**) 

This is the kind of question that an NE oracle can answer. The NE computation 
guesses the first six levels of N,,‘s computation tree, checks that the tree and 
queries written are really the actions that N,, would take given the query answers 
guessed, checks that there are 1, 1, 0, 4, 11 alleged yes strings at levels 0, 1, 2, 3, 
4, and 3 12 alleged yes strings at level 5, and guesses the proofs that these strings 
really are yes stings (i.e., are accepted by NE,,). 

If 1, 1, 0, 4, 11 is correct, then the first five levels correspond to the first live levels 
of the actual computation tree of NyTE21 (x), and if there are >, 12 yes strings at level 
live we will have guessed them. 

Eventually we know the number of yes answers at each depth, and a final call of 
P to its NE oracle lets NE guess and check the correct computation tree of 
NyTE21(x), and search for an accepting path in this tree. 

Crucially, we do not need to verify that the no strings deserve “no” responses. We 
know the total number of yes answers at each level and have proofs that strings do 
indeed get yes answers. Thus, in a guessed tree that gets all the desired yes proofs, 
our no strings must indeed deserve “no” answers, as we have ensured that our tree 
agrees with the action of N,,. Put another way, our NE oracle, for queries of the 
form of (**) above, gives correct answers. 

Let us refer to the P and NE machines we use to simulate NPNE as P, and NE,, 
i.e., we ensure that L(Pf;lE*) = L(Ny,n2i). F’g 1 ure 4 shows how the trees NE, guesses 
increase in the (literal) depth of their accuracy at reflecting the tree of NEE2’(x). 
Crucially, P, learns only the number of yes answers at each depth of N~~2~(~)‘~ tree. 
This is fortunate; there is no way that P, could remember all the yes names, since 
deep in the NY:11 tree there may be as many as 2”” yes strings on a single level. 
Our use of increasingly accurate censuses of the number of queries per level is 
central to the succes of our result. 

We now make precise the proof just sketched. 

’ Throughout this paper, we will use the notation MN, where M and N are machines, as a shorthand 
for MLCN1. {N,} will be. a standard enumeration of NP machines, such that N, runs in NTIME[n’]. 
Similarly, {NE,} will be a standard enumeration of NE machines, such that NE, runs in NTIME[Z’“]. 
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0 *.* *._ 

1 .-“Y N *-+ 

. . . . . . . . . . . . . . . . . . . ..m 

(1) 

. . . . . . . . . . . . . . . . . . . . . . 
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0 ;- ‘.* 

1 ..’ Y N ‘**. 

0 *.* N **.. . . . 

. . . . . . . . . . . . . . . . . . . . . .m 

(2) 

0 :* N *.. 
: 

3 Y Y Y *... 
. . . . . . . . . . . . . . . . . . . ..- 

(3) (4) (5) 

The true NPNE tree and five snapshotsshowing a few of the 

increasingly correct images of the tree and its partial census 

information created in NE’s mind. The numbersdenote the number of 

queries on that level receiving a “yes” answer from the NE oracle. 

FIG. 4. The true NPN” tree and live snapshots. 

Proof of Lemma 3.1 ( PNE = NPNE). Let L be an arbitrary language in NPNE. 
For concreteness, suppose L = L(NzE21), where N,, is an NP machine running in 
NTIME[n”] and NE,, is an NEmachine. We describe machines P, and NE,, 
respectively, P and NE machines, so that L = L(PTE*). Thus PNE = NPNE. 

Let us first describe NE,, 

L(NE,)= (find # x # ll@ # co # cl # c2 # ... # cIhl # c,I. There 
exist sets Co, C,, . . . . C,_ 1, C, of strings so: 

JCi( = ci and vi Cjc L(NE,,), 
if one simulates N!:(x), answering each oracle query q at depth i 
with a yes if and only if q E Ci, then each y in C, is really queried 
at level i in this simulation, and 
if final (which can be any string of bits) is 1, there is an accepting 
path in the simulation mentioned in 2 above.} 
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Note that L(NE,) is in NE. The ualue of each L’; is at most 2’““‘, since this is the 
maximum width of the computation tree Nf”,E21(x). So by guessing (at most) 
/xl” ‘2’““’ strings and then guessing proofs that each is in L(NE,,) and guessing 
the paths by which each occurs in the simulation, NE, can easily be implemented 
in NTIME[2’““*]. Note that we have padded, so our input size to NE, is greater 
than 1x1 18, so NE, runs in NTIME[2”~i”P”“i’“], and thus is in NE. Thus 
L(NE,) E NE. 

Given that the PNE simulator knows the number of yes answers that appear in 
the first k levels of the computation tree of NEEZ1(.u), it can use binary search on 
NE, to find the number of yes answers that appear at level k + 1. 

Now we describe the action of our machine P, (on input x). P, uses NE, to find 
the correct number of yes strings at each level of NY::“(x). 

Stage i. Inductively, P, has numbers co, c,, . . . . c, ~, , so co, c,, . . . . c, ~, are the 
correct number of yes strings at levels 0, 1, . . . . i - 1 of the actual computation tree 
of NzEZ’(x) (Fig. 2). During th is stage P, finds c,, the actual number of yes strings 
at level i. This is easy-P, just performs binary search (varying 2) using calls to 
NE, of the form 

{O#x#l ‘r”8 # c() # ..’ # c, , # 2; 

to find the value of c,. 
Recall that, when cO, c,, . . . . c,_, are correct, NE, says yes if z is a lower bound 

for the number of yes answers at level i. Table I gives a sample binary search run. 
At the end of it, P, has learned that there are exactly three yes strings at level 3. 

It is crucial to notice that when cO, . . . . ci_ , are correct, the ci found is correct. 
This is because some branch B of NE, will guess the true yes strings C,, . . . . C, , . 
The queries asked at level i depend only on the fact that the right oracle replies at 
levels 0 through i- 1 are known; thus the queries asked at level i on branch B will 
be the queries that are asked in the tree of NY!’ (x) at level i. Thus if there are at 
least z yes strings queried at level i of the tree of NY:“(x), an extension of B will 
guess them and accept. 

On the other hand, any branch that does not guess the sets Co, . . . . C, l correctly 
(it guesses, say, Cb, . . . . C: ,) will certainly not accept. At the first level it errs from 

TABLE 1 

Binary Search over Calls to NE, Discovers that There Are Three Yes 
Strings at Level 3 of the Computation Tree of Ny’:zl( 11101) 

Query NE,‘s answer 

(0 # 11101 # l5’8 # 0 # 0 # 1 # 1) Accept 
(0 # 11101 # 1s’* # 0 # 0 # 1 # 2) Accept 
(0 # 11101 # 15’1 # 0 # 0 # 1 # 4} Reject 
{O # 11101 # 151R # 0 # 0 # 1 # 3) Accept 
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the true set of Cj’s (say level m), it will not be able to find all the strings of its 
incorrect CL in the simulation tree. Why? Since CL # C,, yet ICh( = IC,I = c,, 
some string w in CL is not a yes string of NEE*‘(x) at level m. Since the C: are 
correct at levels 0, . . . . m - 1, the strings queried at level m in the simulation are 
exactly those queried at level m in the tree of N F’(x). So if w is queried at level m, 
it is not in L(NE*,) (if it were it would have to be in C,); thus condition 1 of the 
definition of L(NE,) is violated and the branch will not accept. If w is not queried 
at level m, condition 2 of the definition of L(NE,) is violated and the branch will 
not accept. End of Stage i. 

Since ci can be at most 2’““’ in value (this is as wide as the tree of NEE*‘(x) gets), 
the binary search process at stage i takes at most around 1x(*’ steps, each requiring 
writing a string of length at most about 1x1”. 1~1~’ + 1x1 l8 + 1x1. There are at most 
I-4 l7 stages, so the total run time of Pl;) is easily polynomial; it runs in 
TIME[n4.“+’ 1. Returning to the general case, if N,, runs in TIME[nk], then P, 
runs in deterministic TIME[n4k+2]. 

After stage IX/~‘, the correct values cO, . . . . c,~,I~ are known. At this point, a single 
call to NE, suffices. P, accepts if and only if NE, accepts 1 # x # l1”1’8 # 
co # ,.. # c,,~,H (thus stating that N?‘(x) accepts). 1 

3.1.2. Relationship of Our Collapse to Other Collapses and to the Polynomial 
Hierarchy 

We have just shown that PNE = NPNE, and thus the strong exponential hierarchy 
collapses to P NE. Is this collap se of the strong exponential hierarchy trivial in the 
same sense that PpspACE = NPPSPACE - - PSPACE is trivial? PSPACE is so powerful 
that both PpspACE and NPPSPACE are equal to PSPACE. Do we similarly have 
PNE = NE? Relativization techniques help us here. There is a relativized world 
where PNEAs NEA. That this is not a side effect of the ability of PNE to reach 
length 2”k strings (compared with NE’s reach of 2”) is shown by Theorem 3.4. 
Section 2.3.1 discusses this “reach” anomaly in detail. 

THEOREM 3.4. There is a recursive oracle A for which 

PNEA 3 NEXPA 2 NEA. 

Proof Sketch. This is a straightforward diagonalization using the techniques of 
Baker, Gill, and Solovay [BGS75]. We separate PNEA from NEXPA by forcing a 
coNEA language out of NEXPA. In particular, we diagonalize so that 

L, = (O”l(Vy)[lyl =2”= y$NEXPA. 

Interlaced with this, we separate NEXPA from NEA simply using the fact that the 
former class is sensitive to length 2”k oracle strings. 1 

More generally, the collapse does not occur simply because NE is hard. Even 
though PNE = NPNE, there are many NE-hard sets, A, for which PA # NPA. This 



STRONG EXPONENTIAL HIERARCHY COLLAPSES 311 

follows from direct diagonalization and is related to Hartmanis’s results on the re- 
relativization of PSPACE [Har85, HH88a]. Specifically, given any NE-complete 
set B and any set C, B@ C will be NE-hard, where @ indicates disjoint union; 
however, by diagonalization, we can construct a set C so that PeQ c‘ # NPB@ ‘. 

On the other hand, our techniques do not collapse the polynomial hierarchy 
(NP u NPNP u . . . ) to PNP. Suppose we tried to show that PNP = NPNP using the 
above methods. NPNP may have exponentially many yes replies given to its lower 
NP machine by the upper one. The P machine can record an exponential count, but 
the NP machine sitting over it (in PNP) certainly cannot guess an exponentially 
large object: the names of the 2”k yes strings in the tree of NPNP. 

Of course, if we change the game so that, in NPNP, few queries are made to the 
oracle, then the same argument works. This “quantitative relativization” approach 
is what is done by Book, Long, and Selman in [BLS84], where they show that a 
hierarchy of quantified relativizations collapses. Section 4 of this paper studies 
quantified relativizations of the exponential hierarchy, where we will see the partial 
census technique of this section put to further use. 

3.2. A Comparison of Two Census Techniques 

The proof just given originally appeared in [Hem86b, Hem87c]. The technique 
is to study NPNE by looking in turn at the levels of the NP computation tree and 
computing census functions. We call this the base-machine-census method. Schoning 
and Wagner [SWSS] have reproved Lemma 3.1 using the direct census method 
introduced in [ Hem86b, Theorem 4.101 (which is Theorem 4.10 of this paper) and 
[Kad86, Theorem 141. Schoning and Wagner obtain a proof that is quite elegant 
and that generalizes Lemma 3.1 to base classes with super-polynomial run times but 
with restrictions on the lengths of the oracle queries posed ([SW88, Corollary 63, 
[Hem 86b, page 151). 

The direct census technique works as follows. Given an NPN” language 
L = L(NyEi), a PNE simulator trying to determine if x E L approaches this by first 
computing directly the number of strings in L(NE,) of length at most Ix/‘, by 
binary search. Since N,‘s computation tree can touch at most 2”’ strings, this census 
information can be computed by a PNE machine. Finally, with the census known, 
one final call to an NE oracle suffices. This call guesses and checks exactly which 
strings are the ones of length at most 1x1’ that are in L and then simulates NyFj. 

Both the base-machine-census technique and the direct census technique have 
uses in which they prove theorems that are beyond the reach of the other. When 
the base machine has a long time bound but touches few strings of the oracle, e.g., 
our Theorems 4.3, 4.5, and 4.8, the base-machine-census method yields stronger 
results than the direct census technique. When the base machine has a long time 
bound but queries only short strings, the direct census method yields stronger 
results [SW88]. 

i71/39’3-5 
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4. QUANTITATIVE RELATIVIZATION RESULTS 

4.1. Definitions 

Quantitative relativization means relativization in which the power of the base 
machine to query its oracle is restricted. The literature’s terminology uses “quan- 
titative” relativization to refer to restricting the number of oracle calls, and 
“qualitative” relativization to refer to restricting the form and pattern of oracle calls 
[BLS84, BLW]. S ince our restrictions limit the number and pattern of the 
queries, both terms apply in part. Thus we will be somewhat informal in our use 
of the terms and will sometimes use “quantitative” or “qualitative” to apply to a 
bound that is both. 

Before studying quantitative relativization, we define our notation. 

DEFINITION 4.1. Let A and B be complexity classes, The class ABC./(n)3x is the 
class of languages accepted by an oracle Turing machine from a standard enumera- 
tion of machines for A with a set from B as its oracle, under the restriction specified 
by X with bound f(n). The restrictions we will consider include the following types 
and their combinations: 

CfWlpath : on input of size n, each path of A’s computation tree (A may be 
nondeterministic) queries B about at most f(n) different strings, 

Cdn)L: the total number of strings B is queried about throughout A’s entire 
computation tree is g(n), and 

[h(n)],,,,,iction: there is an h(n) bound on whatever is named by “restriction.” 

EXAMPLES AND NOTES. 1. NENP = IJc NENPC22’“11r,e. Since the NE computation 
tree is 2’” deep it has less than 2. 22” nodes, so it cannot make more than 2.2*‘” 
queries (Fig. 5a). 

2. NENPC2C”11W does put some restriction on the querying action of NE 
(Fig. 5b). Note that NE NPC’lpath (Fig. 5c) may query 22c” many strings-one on each 
of NE’s 22c” computation paths (Fig. 5d). 

3. In classes such as NEXP NP NEXP may query NP about strings of length , 
exponential in the input size. Thus it is not obvious and probably not true that 
NEXP equals NEXPNP, even though NP s NEXP. 

4. Our quantitative classes count strings-not oracle calls. That is, [n21tree 
means that for all x we have 

I{ y 1 y is queried in the tree on input x} 1 d 1x1 2. 

For example, an NE computation tree that queries string y on each of its 2*“” 
branches would be charged just “1” in the [ .I,,,, measure for this whole set of 
queries-not 22C” (Fig. 5d). 

Finally, we make it harder to prove our theorems. 
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FIG. 5. Quantitative relativizations 

Notation 4.2. Adding a “Y” (e.g., NENPc2’“1y~path) means we are counting just the 
number of strings queried that get a “yes” answer from the oracle (and “no” 
answers do not count). This makes our theorems harder to prove and stronger; any 
theorem we prove with a “Y” also holds without the “Y.” Table II summarizes our 
notation. 

4.2. Introduction and Background 

The census techniques of Section 3.1 will be used to prove new theorems about 
quantitative relativizations. We will see, for example, that 

ENP = NENP[el,ree 

571.39’3-5’ 
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TABLE II 

Nomenclature of Restricted Relativization 

Restrictions 

[Qualitative bound],,, 

[Qualitative bound] rree 

[Qualitative bound] Y. tree 

Limit on the number of strings queried on each of 
A’s computation paths 

Limit on the number of strings queried throughout 
A’s computation tree 

Limit on the number of strings queried throughout 
A’s computation tree that are in B 

Qualitative bounds 

Log IJ, TIME[c log n] 
Poly lJk TIME[nk] 
e IJ, TIME[Z”] 
EXP Uk TIME[Z’+] 

where “e,” from Table II, denotes an exponential bound. Thus the only way NENP 
can avoid collapsing to ENP is by using its oracle often. Similarly, we will see that 

pNE 2 NEN"CPolYl,ree 

Note that the P machine here cannot write down even one of the long queries 
(length 2”) the NE machine makes to NP, yet PNE can nonetheless simulate the 
action of NENPCpo’yllr=. 

This highlights the difference between our techniques and those found in previous 
work. Previous quantitative relativization results, centered in the polynomial 
hierarchy, require that the base machine obtain the names of all strings queried. 
However, our base class P can only use a polynomial amount (n’) of tape. So pre- 
vious methods did not prove that PNE 2 NENPCpo’yltm, as each queried name is too 
long (length 2’“). Previous methods did not prove that PNE = NPNE, as there are 
too many names (the NP tree has 2”‘nodes). 

The body of previous work in quantitative relativization contains many gems 
[Boo81, SMB83, BLS84, Lon85]. Book, Long, and Selman [BLS84] prove that 
Pm = NP ” Np’“PCPoJYIt~e ” Np(NpNPrpoiy’~~)CPol~I~~~~ ” . . . , which provides a polyno_ 

mial analogue of our PNE = NPNE result. Their paper provides a detailed study of 
quantitative relativization in a polynomial setting. Recently, Long [Long51 
extended this work by noting that many quantitative relativization results still hold 
when we restrict our counting to yes queries. 
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4.3. Quantitative Relativization Theorems 

This section proves theorems that give insight into what makes hierarchies non- 
trivial. The first and most important theorem shows that the Ck+ , and Ak+ , levels 
of EH (Definition 2.2) collapse unless the Xk+ 1 level, NE’f, uses its Cp oracle exten- 
sively. This is related to Long’s [Lon85, p. 5953 results that develop collapses 
among restricted relativizations of the polynomial hierarchy. One might expect that 
in the general case the Ak+, level of the weak exponential hierarchy is strictly 
contained in the C,, 1 level (see [Sew83, AW88] for some connections between 
collapses of the delta and sigma levels of exponential hierarchies). 

THEOREM 4.3. EX: = NE”k”[‘Iy.“ee , for all k > 0. 

COROLLARY 4.4. 1. ENP = NENPCelv+=. 
2 ENP =NENPleltree 

3: E'f = NEnc[eltree,for all k > 0. 

Proof Sketch of Theorem 4.3. The method of Section 3.1 works with a subtle 
but important modification. In that section, we could guess a whole computation 
tree and check it. Here, the computation tree of NE is too huge to do this; it has 
around 2*” nodes (where 2”” is the nondeterministic of the NE machine). Luckily, 
since there is a [e] Y tree bound we are interested in checking at most 2”” nodes of 
this tree. Our new t&k is that we just guess and check the parts of the tree that 
are of interest to us. 

So now, our C,P machine called by E will just (1) guess the yes strings, (2) guess 
the paths in the computation tree of NE”f that lead to them, and (3) verify that the 
strings really are accepted by NE’s oracle. Note that (3) is subtle; C,P is closed under 
intersection, so checking if all our guessed strings are accepted by NE’s oracle is a 
C,P question. We use the same existential block (i.e., the first existential block of E’s 
oracle) that tackles (1) and (2) to start on the first existential block of the mem- 
bership checking question. 

This can all be done in 2”“’ steps, and thus allows E’s Ci oracle to guess and 
check ail the portions of the huge NE xi tree that are of interest to it. 

Having noted this, the proof follows the method of Lemma 3.1. Our EXc 
simulator moves, level by level, down the computation tree of the NE”fcelK1ree 
machine it simulates. At each level, it performs a binary search to determine the 
exact number of yes answers at that level of the tree. 1 

The following theorem shows that NENP machines must make many oracle calls 
in order to accept languages outside of PNE. The result is perhaps surprising, 
as PNE makes only polynomially many nondeterministic queries, but 
NENP[P‘JlYlpath C-.Plt, makes exponentially many queries, any one of which may be 
far too long for P to record. 

THEOREM 4.5. PNE 2 NENP[PolYlpath CexPl~.wee, 
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COROLLARY 4.6. 1. pNE = NEXpNP[po’Yh~h [exply.trs. 
2 pNE = NEXpNP[PolYltree 

Proof Sketch of Theorem 4.5. We need a new trick here. Our problem is that 
PNE can only store the query census for polynomially many levels. However, 
though NE NPEpo’yl~th CexPIY,tree has only polynomially many queries per path, it might 
have queries at exponentially many levels (Fig. 6). 

Our trick is to associate with each query its query depth: now many queries are 
made before it on its path (Fig. 7). PNE will have polynomially many rounds. In 
each round i it will found, by binary search, the number of yes answers received by 
queries at query depth i. 

Since the query depth of the tree of NENP[po’ylpth rexplKtr= is polynomial, and since 
getting the right string to ask for a query depth i query depends only on having 
queries of query depth less than i correctly answered, the method of Section 3.1 now 
works. 

Our PNE simulator proceeds as follows. First it performs a binary search to find 
the census of yes answers at query depth one. Then it uses this census and another 
binary search to find the census of yes answers at query depth two, and so on. Due 
to the [poly],,,, restriction in the theorem’s statement, every query is of at most 
polynomial query depth. Thus, after polynomially many rounds of binary search 
the P machine knows the census of yes answers at each query depth and can finish 
off its simulation with one final query to an NE oracle. fl 

Proof of Corollary 4.6. These results use the same argument as Theorem 4.5, 
but since PNE E NEXPNPtpolyl~r~ E NEXPNPtpo’ylpath [exply.tree, we get equality in this 
corollary. [ 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

FIG. 6. On query per path, but many levels have queries. 
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1 Kev: ??= Querv; the numeric label indicates the auerv death 

FIG. 7. Query depths. 

It is easy to see from Corollary 4.6 that NEXPNP is a delicate class. If you restrict 
its query access too much, it is weakened to the point of collapsing to PNE. 

4.4. More Quantitative Relativization Theorems 

We can tailor and extend the techniques we have developed to a range of 
problems. This section presents three such problems and briefly outlines the 
modifications needed. 

4.4.1. Paying Only for the First Occurrence 

Note that, within a computation tree, a query consists of both a string queried 
and the location in the tree at which the query is made. The first occurrence depth 
(Fig. 8 gives examples) of an oracle query in a computation tree is 0 if there are no 
queries made along the path between it and the root. Continuing in a breadth-first 
left-to-right fashion through the computation tree, an oracle query is of first 
occurrence depth i + 1 if (1) the string associated with the query has not already 
been assigned a query depth less that i + 1 and (2) the largest query depth of a 
query along the path from the query to the root is i (Fig. 8). Intuitively, the first 
occurrence depth of a query string is how many times we must expand from the 
root our “frontier” of queries to reach the query string. 

The following theorem says that once a query is paid for by a nondeterministic 
branch, its brother branches get to query the same string for free. The proof of 
Theorem 4.7 is essentially the same as that of Theorem 4.5. The PNEXp simulator 
uses binary search to find the census of yes answers to queries at first occurrence 
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Key: stt means s= Query string; t= First occurrence depth of s; 

t=* indicates that this is not a first occurrence, and thus adds no 

depth. 

FIG. 8. First-occurrence depths. 

depth zero. Then it does the same for queries at first occurrence depth one (the dif- 
ference from Theorem 4.5 is that here the simulator may pass by many occurrences 
of strings assigned first occurrence depth one-the membership status of these 
strings is already known to the simulator), and so on. Finally, when the census 
functions for each first occurrence depth are known, a single final query to an NE 
oracle determines if the simulator should accept. 

One might, in the case without restrictions, expect NEXPNP to be larger 
than PNEXP. 

THEOREM 4.7. PNEXp = NEXP NPCex~lt, [PolYlsrrtoccurrenoedepth 

4.4.2. Many “No” Strings 

PNE can query its oracle only a polynomial number of times. It is possible that 
PNE can contain NENPCpolyl~tKe, a class that may make up to 2*‘” oracle calls (most 
receiving “no” answers)? The following theorem shows that it does. This theorem 
is related to Theorem 4.5, but note that below NE is permitted to ask exponentially 
many queries on many of its computation paths. 

THEOREM 4.8. PNE 3 NENP[po’yl~tree, 

COROLLARY 4.9. PNE = NEXPNPCpo’yl y,trec. 

Our trick is for PNE to do binary search to find the depth of the first “yes” 
response in the run of NENPCpo’yly~~r= ( .). Then as before it does binary search to find 
the number of yes strings at that level. PNE repeats this level-finding/census-finding 
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alternation until it has gone through all the levels that have yes responses (it can 
detect this). 

4.4.3. Qualitative = Quantitative: Truth-Table Classes and Sparse Sets 

In the nomenclature discussed at the start of Section 4, truth-table classes 
[Yes831 are qualitatively restricted classes, and PNPr’ogl is a quantitatively 
restricted class. This section shows that these notions sometimes describe the same 
class in different ways. 

The following results about truth-table classes are proved not by the method of 
Section 3.1, but follow from the weakness of truth-table reductions and the power 
of census information. Theorem 4.10, Part 1, though simple to prove, seems rather 
fundamental and has been independently noted [Hem86b, Hem86a, KSW86, 
Wag88, BH88]. The class the theorem is about, PNPC’ogl, was first discussed by 
Papadimitriou and Zachos [PZ83]; more recent studies have shown that PNPrlogl 
has many equivalent characterizations [Wag88]. 

THEOREM 4.10. 1. {Sj S<cuth_tab,e NP} = PNPClogl. 

2. (Sl S 6::u,h_tab,e NP} = PNE. 

Proof: We prove the second part; the first part is analogous. S <;r?t,,_tab,e NP 
means there is an exponential-time machine that answers “XE S?” by making 
queries to SAT [GJ79], such that the queries asked of SAT are independent of the 
answers received (see Ladner, Lynch, and Selman [LLS75] for a discussion of 
d !I”&table ). 

To prove the E part, we have P perform binary search, using its NE oracle, to 
find the number of yes answers, and with one final query to the oracle, we have NE 
guess the yes answers and simulate the action of the truth-table reducer. 

The 2 part is trivial-the truth-table reducer asks all queries that might be 
formed by any of the 2”“” possible sets of oracle answers of the run of PNE. 1 

Theorem 4.10 says that if EXPNP is to strictly contain PNE, it mu.st use the 
answers to early queries to help it pose later ones. Of course, we do not hope to 
show EXPNP 7 PNE, as this implies P # NP. However, we suspect that P # NP and 
even EXPNP 2 PNE. 

Similarly, we can prove collapsing results for sparse sets, which have historically 
played a central role in computational complexity theory [Mah82, HIS85, 
HH88b]. A sparse set S is a set so that, for some polynomial p( ), for all n there are 
at most p(n) strings in S of length at most n. Let SPARSE represent the class of 
sparse sets. 

THEOREM 4.11. 1. NENP~SPARSE~~NE, 

2. N~NE~SPARSE~ pNE[log]. 

Proof: The two parts have similar proofs. For the second part, as in 
Theorem 4.10 above, PNE with O(log n) queries computes the exact number of 
strings reachable by the NP machine that are in the sparse NE set. 1 
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5. CONCLUSIONS 

Our goal was to find out if exponential hierarchies collapse, or if not, why they 
might separate. We have seen that the strong exponential hierarchy collapses, via 
a tight analysis of the query census of NPNE. We have viewed the weak exponential 

hierarchy as NE with a rich database and seen that the A and C levels of the weak 
exponential hierarchy separate only if NE floods its database with queries. 

More generally, the census techniques of this paper can be used as a general 
procedure for collapsing complexity classes that meet certain counting conditions 
[Hem86b, Section 4.31. 

The weak exponential hierarchy has crisp characterizations in terms of quan- 
tifiers and in terms of alternating Turing machines (Section 2.2). An interesting 
open question is: does the strong exponential hierarchy have similar representations 
via quantifiers and alternating Turing machines? If so, can we prove the collapse of 
the strong exponential hierarchy via quantifier manipulations? Immerman’s 
improved collapse of the logspace hierarchy followed from his study of logical 
formulas [Imm88]. 
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