Polar Spaces, Generalized Hexagons and Perfect Codes

J. A. Thas
Seminar of Higher Geometry, University of Ghent, Krijgslaan 271, B-9000 Gent, Belgium
Communicated by F. Buekenhout

Received December 4, 1978

1. Ovoids and Spreads of Finite Classical Polar Spaces

Let P be a finite classical polar space of rank (or index) $r, r \geqslant 2$ [4]. An ovoid O of P is a pointset of P, which has exactly one point in common with every totally isotropic subspace of rank r [12]. A spread S of P is a set of maximal totally isotropic subspaces, which constitutes a partition of the pointset [12].

We shall use the following notation:
$W_{n}(q)$: the polar space arising from a symplectic polarity of $P G(n, q), n$ odd; $Q(2 n, q)$: the polar space arising from a non-singular quadric Q in $P G(2 n, q)$; $Q^{+}(2 n+1, q)$: the polar space arising from a non-singular hyperbolic quadric $Q^{+}[8]$ in $P G(2 n+1, q)$;
$Q-(2 n+1, q)$: the polar space arising from a non-singular elliptic quadric Q^{-}[8] in $P G(2 n+1, q)$;
$H\left(n, q^{2}\right)$: the polar space arising from a non-singular hermitian variety $H[8]$ in $P G\left(n, q^{2}\right)$.

The following results are known:
(a) $W_{n}(q), n$ odd, has always a (regular) spread ([10], [9]). $W_{3}(q)$ has an ovoid iff q is even [11]; every ovoid of $W_{3}(q), q$ even, is an ordinary ovoid of $P G(3, q)$ and every ordinary ovoid of $P G(3, q), q$ even, is an ovoid of some $W_{3}(q)$ [13]. $W_{n}(q), n$ odd and $n>3$, has no ovoid [12].
(b) $Q^{+}(4 n+1, q)$ has no spreads [9]. $Q^{+}(m, q), q$ even, m odd and $m \neq 4 n+1$, has always a spread [9]. $Q^{+}(3, q)$ has spreads and ovoids (trivial). $Q^{+}(5, q)$ has always ovoids (if we consider Q^{+}as the Klein quadric, these ovoids correspond to the ordinary spreads of $P G(3, q)) . Q^{+}(7, q)$ has a spread, and consequently $Q^{+}(7, q)$ has an ovoid [15].
$Q(2 n, q), q$ even, has always a spread [9]. $Q(2 n, q), n>2$ and q even, has no ovoids [12]. Since $Q(4, q)$ is the dual of $W_{3}(q)$ [14], the polar space $Q(4, q)$
has always an ovoid, and has a spread iff q is even. Since $Q^{+}(7, q)$ has a spread, we see by intersection that also $Q(6, q)$ has a spread. Finally $Q(6, q)$, $q=3^{2 n+1}$, has an ovoid [12].
$Q^{-}(2 n+1, q), n>1$, has no ovoid [12]. $\left.Q^{-(} m, q\right), q$ even and m odd, has always a spread [9]. Since $Q(6, q)$ has a spread, we see by intersection that also $Q^{-}(5, q)$ has a spread. Moreover $Q^{-}(5, q)$ is the dual of $H\left(3, q^{2}\right)$ ([2], [14]), hence the existence of spreads of $Q^{-}(5, q)$ also follows from the existence of ovoids of $H\left(3, q^{2}\right)$ (see (c)).
(c) $H\left(n, q^{2}\right), n$ even and $n>2$, has no ovoid [12]. $H\left(3, q^{2}\right)$ has ovoids (any hermitian curve on H is an ovoid of $H\left(3, q^{2}\right)$). Since $H\left(3, q^{2}\right)$ is the dual of $Q^{-}(5, q)$ ([2], [14]), the polar space $H\left(3, q^{2}\right)$ has no spread.

2. Ovoids and Spreads of Generalized Hexagons of Order n

A generalized hexagon [6] of order $n(\geqslant 1)$ is an incidence structure $S=(P, B, \mathrm{I})$, with an incidence relation satisfying the following axioms:
(i) each point (resp. line) is incident with $n+1$ lines (resp. points);
(ii) $|P|=|\boldsymbol{B}|=1+n+n^{2}+n^{3}+n^{4}+n^{5}=v$;
(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines.

As usual the distance of two elements $\alpha, \beta \in P \cup B$ is denoted by $\lambda(\alpha, \beta)$ or $\lambda(\beta, \alpha)$ [6].

If V is a set of points (resp. lines) such that $\lambda(x, y)=6(\operatorname{resp} . \lambda(L, M)=6)$ for all distinct $x, y \in V$ (resp. $L, M \in V)$, then $|V| \leqslant v /\left(n^{3}+n+1\right)$ or $|V| \leqslant n^{3}+1$. If $|V|=n^{3}+1$, then we say that V is an ovoid (resp. spread) of the hexagon $S[6]$.

In [6] we remarked that the classical generalized hexagon $H(q)$ (of order q) arising from $G_{2}(q)$ has always a spread. This followed from a result of P. Fong, who proved that $G_{2}(q)$ has a subgroup isomorphic to $S U_{3}(q)$ which has an orbit of length $q^{3}+1$ on the lines of $H(q)$ and which is doubly transitive on this orbit. We also proved [6] that a generalized hexagon S of order q has an ovoid (resp. spread) if S admits a polarity. J. Tits informed us that it is possible to prove that the generalized hexagon $H(q)$ of order $q, q=3^{2 h+1}$, admits a polarity. Since $H(q)$ has an ovoid iff $Q(6, q)$ has an ovoid [12], there follows that $H(q), q$ even, has no ovoid.

In the presentation of J. Tits of the classical generalized hexagon of order q, the set P is the pointset of $Q(6, q)$ and the set B is a subset of the lineset of $Q(6, q)$ [15]. For $x, y \in P, x \neq y$, we have $\lambda(x, y) \leqslant 4$ iff x and y are on a line of the polar space $Q(6, q)$ (see also [17]). Now it is easy to show that all the lines of $H(q)$ containing the point x are in a plane of the quadric Q. Indeed,
let us consider the lines L, M of $H(q)$ containing x. If $y \in L, z \in M, x \neq y$ and $x \neq z$, then $\lambda(y, z)=4$ and so $y z$ is a line of Q. Consequently the plane $L M$ is on Q. Let u be a point of the plane $L M, u \notin L, u \notin M$. Then $x u$ is a line of Q, and so $\lambda(x, u) \leqslant 4$. Let us assume that $\lambda(x, u)=4$ and call w the point defined by $\lambda(x, w)=\lambda(u, w)=2$. If w is in the plane $L M$, then $w \in L$ or $w \in M$, say $w \in M$. Then, if $y \in L-\{x\}$, we have $\lambda(y, u)=6$, a contradiction. If w is not in the plane $L M$, then the planes $L M, L w, M w, u x w$ are on Q, and so the threespace $L M w$ is on Q, a contradiction. Hence $\lambda(x, u)=2$, i.e., the $q+1$ lines of $H(q)$ containing x are the $q+1$ lines through x of the plane $L M$ of Q. So with the $q^{5}+q^{4}+q^{3}+q^{2}+q+1$ points of $H(q)$ there correspond $q^{5}+q^{4}+q^{3}+q^{2}+q+1$ planes of Q. These planes will be called the $H(q)$-planes.

We consider a $P G(5, q)$ in $P G(6, q)$, for which $P G(5, q) \cap Q$ is an elliptic quadric Q^{-}. Now we count in two ways the number of ordered pairs (line L of $H(q)$, point of Q^{-}on $\left.L\right)$. There results $\alpha(q+1)+\left(q^{5}+q^{4}+q^{3}+q^{2}+\right.$ $q+1-\alpha)=(q+1)^{2}\left(q^{3}+1\right)$, where α is the number of lines of $H(q)$ on Q^{-}. Hence $\alpha=q^{3}+1$. No two of these $q^{3}+1$ lines intersect, since otherwise their plane (which is an $H(q)$-plane) is on Q^{-}, a contradiction. Consequently these lines constitute a spread of $Q^{-(5, q) . ~ M o r e o v e r ~ a n y ~ t w o ~}$ of these lines are at distance 6 in $H(q)$. So they also constitute a spread of $H(q)$. This provides an elementary proof that $H(q)$ has always a spread.

Let us suppose that $H(q)$ admits a polarity (then $3 \mid q$) and call O (resp. T) the corresponding ovoid (resp. spread). We remark that the $q^{3}+1 H(q)$ planes which correspond to the points of O constitute a spread of $Q(6, q)$ (this provides a proof that $Q(6, q)$ has a spread for $q=3^{2 n+1}$). Let us assume that the spread T is of the type described in the preceding paragraph. Then O is contained in a $P G(5, q)$, where $P G(5, q) \cap Q$ is an elliptic quadric Q^{-}. Since O is an ovoid of $H(q)$, it is an ovoid of $Q(6, q)$ [12], and consequently also of $Q^{-(5, q)}$, a contradiction. Hence for $q=3^{2 h+1}$ the hexagon $H(q)$ has at least two types of spreads.

3. A Model of the Classical Generalized Quadrangle with $s=t^{2}$ $(t>1)$

Consider the polar space $Q(6, q)$, and let $P G(5, q)$ be such that $P G(5, q) \cap Q$ is an elliptic quadric Q^{-}of $P G(5, q)$. Let T be a spread of $Q^{-}(5, q)$ and suppose that the regulus (on Q^{-}) defined by each two elements of T is contained in T (then T is a spread corresponding to an hermitian curve on a non-singular hermitian variety H in $P G\left(3, q^{2}\right)$). Define as follows the incidence structure $S=(P, B, \mathrm{I})$: points of type (i) are the points of $Q-Q^{-}$, and points of type (ii) are the lines of T; lines are the planes of Q containing an element of $T ; I$ is the natural incidence.

Theorem. The incidence structure S is isomorphic to the generalized quadrangle $H\left(3, q^{2}\right)$.

Proof. Any point of type (ii) of S is incident with $q+1$ lines of S. Now we consider a point x of type (i). If V is the tangent hyperplane of Q at x, then the number of lines of S incident with x equals the number of lines of T in V. So we are looking for the number of elements of T in a $P G(4, q) \subset$ $P G(5, q)$. Now any spread of $Q^{-}(5, q)$ has exactly $q+1$ elements in a $P G(4, q) \subset P G(5, q)$. Hence any point of S is incident with $q+1$ lines of S. Also any two points of S are incident with at most one line of S. Next we remark that any line of S is incident with $q^{2}+1$ points of S, and that any two lines of S are incident with at most one point of S.

Next we consider a point $L \in T$ of type (ii) and a line $P G(2, q)$ of S, where $L \not \subset P G(2, q)$. If $P G(4, q)$ is the polar space of L with respect to Q and if $\{y\}-P G(4, q) \cap P G(2, q)$, then $L y$ is the unique line of S which is incident with the point L of S and concurrent with the line $P G(2, q)$ of S. Now we consider a point x of type (i) and a line $P G(2, q)$ of S, where $L=P G(2, q) \cap$ Q^{-}and $x \notin P G(2, q)$. Suppose that $L_{1} x, \ldots, L_{q+1} x, L_{i} \in T$, are the $q+1$ lines of S containing x. Then L_{1}, \ldots, L_{q+1} constitute a regulus, i.e., are contained in a threespace. If $L \in\left\{L_{1}, \ldots, L_{q+1}\right\}$, then $L x$ is the unique line of S which is incident with the point x of S and concurrent with the line $P G(2, q)$ of S. Consider now the case $L \notin\left\{L_{1}, \ldots, L_{q+1}\right\}$. If $P G(3, q)$ is the threespace containing L_{1}, \ldots, L_{q+1}, and if $\{z\}=x P G(3, q) \cap P G(2, q)$, then z is the unique point of S which is incident with the line $P G(2, q)$ and collinear with the point x.

Hence S is a generalized quadrangle with parameters $s=q^{2}, t=q$.
Finally we show that S is of classical type. Let $Q(6, q)$ be embedded in the polar space $Q^{+}(7, q)$ and let $V_{3}{ }^{1}$ be one of the families of generating threespaces of the quadric Q^{+}. If L is a point of type (ii) of S and if $\pi_{1}, \pi_{2}, \ldots, \pi_{q+1}$ are the $q+1$ elements of B incident with L, then the $q+1$ elements of $V_{3}{ }^{1}$ containing $\pi_{1}, \pi_{2}, \ldots, \pi_{\alpha+1}$ evidently are the $q+1$ elements of $V_{3}{ }^{1}$ containing L. Now we consider a point x of type (i) of S and the $q+1$ elements ξ_{1}, $\xi_{2}, \ldots, \xi_{q+1}$ of B which are incident with x (remark that the $q+1$ lines of T defined by $\xi_{1}, \xi_{2}, \ldots, \xi_{q+1}$ are the elements of a regulus, i.e., are contained in a $P G(3, q))$. We show that the $q+1$ elements $\alpha_{1}{ }^{1}, \alpha_{2}{ }^{1}, \ldots, \alpha_{q+1}^{1}$ of $V_{3}{ }^{1}$ containing $\xi_{1}, \xi_{2}, \ldots, \xi_{\alpha+1}$ are the $q+1$ elements of $V_{3}{ }^{1}$ containing some line M, $x \in M$, of $Q^{+}(7, q)$. Let $P G^{(i)}(4, q)$ be the polar space of ξ_{i} with respect to the quadric Q^{+}. Then $P G^{(i)}(4, q) \cap Q^{+}=\alpha_{i}{ }^{1} \cup \alpha_{i}{ }^{2}$, where $\alpha_{i}{ }^{j}$ belongs to the family $V_{3}{ }^{j}$ of generating threespaces of Q^{+}. Moreover $P G^{(i)}(4, q)$ contains a plane π, the polar plane of the fourdimensional space $x P G(3, q)$ with respect to Q^{+}, and $\pi \cap Q^{+}$consists of two lines M and N. One of these lines, say M, is contained in the spaces κ_{i}^{1}, and the other line N is contained in the spaces $\alpha_{i}{ }^{2}$. Hence the $q+1$ elements of $V_{3}{ }^{1}$ containing $\xi_{1}, \xi_{2}, \ldots, \xi_{q+1}$ are the
$q+1$ elements of $V_{3}{ }^{1}$ containing some line M of $Q^{+}(7, q)$. Consequently to every point of type (i) of S there corresponds a line M of $Q^{+}(7, q)$.

The set of all elements of $V_{3}{ }^{1}$ which contain an element of B, is denoted by B^{\prime}. And P^{\prime} is the union of T and the set of the lines M of $Q^{+}(7, q)$ which correspond to the points of type (i) of S. If I^{\prime} is the natural incidence, then $S^{\prime \prime}=\left(P^{\prime}, B^{\prime}, I^{\prime}\right)$ evidently is a generalized quadrangle isomorphic to S. By triality [15] S^{\prime} is the dual of a generalized quadrangle $S^{\prime \prime}$ with parameters $s=q, t=q^{2}$, whose points are points of a projective space of order q and whose lines are lines of that projective space. By the theorem of BuekenhoutLefeyre [5] $S^{\prime \prime}$ is isomorphic to $Q^{-}(5, q)$, and consequently S^{\prime}, and thus S, is isomorphic to $H\left(3, q^{2}\right)$.

4. Spreads of the Polar Space $Q^{-}(5, q)$

To an hermitian curve on a non-singular hermitian variety H of $P G\left(3 ; q^{2}\right)$ there corresponds a spread of $Q^{-}(5, q)$. Such a spread will be called regular. In 1 we also remarked that any spread of $Q(6, q)$ defines by intersection a spread of $Q^{-}(5, q)$.

Theorem. A spread T of $Q-(5, q)$ corresponding to a spread of $Q(6, q)$, is never regular.

Proof. Let T^{*} be a spread of $Q(6, q)$ and T the corresponding spread of $Q^{-}(5, q)$. Suppose that T is regular, i.e., suppose that the regulus (on Q^{-}) defined by each two elements of T is contained in T. Then by 3 the spread T defines a classical generalized quadrangle $S=(P, B, \mathrm{I})$ with parameters $s=q^{2}, t=q$. Evidently T^{*} is a spread of S, a contradiction since $H\left(3, q^{2}\right)$ has no spread. We conclude that T is not regular.

Corollary. $\quad Q^{-}(5, q)$ has at least two types of spreads, and dually $H\left(3, q^{2}\right)$ has at least two types of ovoids.

5. Perfect Codes

In a graph (assumed to be connected, undirected, and without loops or multiple edges), the distance $d(\alpha, \beta)$ between two vertices α and β is the length of the shortest path joining them. For a positive integer e, a perfect e-code is a nonempty subset C of the vertex set with the property that any vortex lies at distance at most c from a unique vertex in C. Biggs [1] has shown that necessary conditions for the existence of a perfect 1 -code in a regular graph of valency k on v vertices are that $k+1$ divides v and that -1 is an
eigenvalue of the adjacency matrix of the graph. These results have been extended to perfect e-codes in metrically regular graphs by Delsarte [7] (see also Biggs [1]). (Metrically regular graphs are defined in [7]).

The point graph (resp. line graph) of a generalized hexagon $S=(P, B, \mathrm{I})$ is defined to have vertex set P (resp. B), vertices α and β being adjacent whenever $\lambda(\alpha, \beta)=2$. These graphs are metrically regular and satisfy the necessary conditions for the existence of a perfect 1-code. Indeed, it is easy to see that a perfect 1 -code is the same thing as an ovoid (resp. spread). These perfect 1 -codes were discovered by Cameron, Thas and Payne [6] and to their knowledge this was the first infinite class of perfect e-codes, apart from the Hamming codes, the classical repetition codes, and more generally the perfect e-codes in the metrically regular antipodal graphs of diameter $2 e+1$ [1]. In Thas [10] a new such infinite class of perfect 1-codes is described in the following way. Consider the polar space $W_{5}(q)$. The vertices of the graph Γ are the totally isotropic subspaces of rank 3, two vertices α and $\beta(\alpha \neq \beta)$ being adjacent whenever $\alpha \cap \beta$ is a line. The graph is metrically regular and satisfies the necessary conditions for the existence of a perfect 1 -code. Now it is easy to see that a perfect 1 -code is the same thing as a spread of $W_{5}(q)$.

Define as follows the incidence structure $S^{*}=\left(P^{*}, B^{*}, \Gamma^{*}\right): P^{*}$ is the set of the $H(q)$-planes (see 2); B^{*} is the set of all lines of $H(q)$; if $\pi \in P^{*}$ and $L \in B^{*}$, then $\pi I^{*} L$ iff $L \subset \pi$. Evidently S^{*} is a generalized hexagon isomorphic to $H(q)$. The point graph of S^{*} is denoted by Γ^{*}. If O is an ovoid of $H(q)$, then the corresponding ovoid O^{*} of S^{*} is a spread of $Q(6, q)$. Next, let Γ^{\prime} be the graph with vertices the totally isotropic subspaces of rank 3 of $Q(6, q)$, two vertices α and $\beta(\alpha \neq \beta)$ being adjacent iff $\alpha \cap \beta$ is a line. Then Γ^{\prime} is metrically regular with the same parameters as the graph Γ arising from $W_{5}(q)$ and described in the preceding paragraph. Since $Q(6, q)$ is isomorphic to $W_{5}(q)$ iff q is even [12], it follows easily that Γ is isomorphic to Γ^{\prime} iff q is even. Again a perfect 1 -code of Γ^{\prime} is the same thing as a spread of $Q(6, q)$. So for any q there arises a perfect 1 -code of Γ^{\prime}, and hence we have a new infinite class of perfect 1 -codes. Finally we remark that Γ^{*} is a subgraph of $\Gamma^{\prime}\left(\left|\Gamma^{*}\right|=\left(q^{3}+1\right)\left(q^{2}+q+1\right),\left|\Gamma^{\prime}\right|=\left(q^{3}+1\right)\left(q^{2}+1\right)(q+1)\right)$ and that a set consisting of $q^{3}+1$ vertices of Γ^{*} is a perfect 1 -code of Γ^{*} iff it is a perfect 1 -code of Γ^{\prime}.

References

1. N. L. Biggs, Perfect codes and distance-transitive graphs, in "Combinatorics," Proc. British Combinat. Conf. 1973, (T. P. McDonough and V. C. Mavron, Eds.), pp. 1-8, Cambridge Univ. Press, Cambridge, 1974.
2. A. A. Bruen and J. W. P. Hirschfeld, The Hermitian surface, Geometriae Dedicata, 7 (1978), 333-353.
3. A. A. Bruen and J. A. Thas, Partial spreads, packings and Hermitian manifolds, Math. Z. 151 (1976), 207-214.
4. F. Buekenhout and E. Shult, On the foundations of polar geometry, Geometriae Dedicata 3 (1974), 155-170.
5. F. Buekenhout and C. Lefevre, Generalized quadrangles in projective spaces, Arch. Math. 25 (1974), 540-552.
6. P. J. Cameron, J. A. Thas, and S. E. Payne, Polarities of generalized hexagons and perfect codes, Geometriae Dedicata 5 (1976), 525-528.
7. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973).
8. P. Dembowskr, "Finite Geometries," Springer-Verlag, Berlin/New York, 1968.
9. R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Ser. (4) 114 (1977), 173-194.
10. J. A. Thas, Two infinite classes of perfect codes in metrically regular graphs, J. Combinatorial Theory Ser. B 23 (1977), 236-238.
11. J. A. Thas, On 4-gonal configurations, Geometriae Dedicata 2 (1973), 317-326.
12. J. A. Thas, Ovoids and spreads of finite classical polar spaces, Geometriae Dedicata, in press.
13. J. A. Thas, Ovoidal translation planes, Arch. Math. 23 (1972), 110-112.
14. J. A. Thas and S. E. Payne, Classical finite generalized quadrangles: A combinatorial study, Ars Combinatoria 2 (1976), 57-110.
15. J. Tirs, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 14-60.
16. J. TrTs, private communication.
17. A. Yanushra, Generalized hexagons of order (t, t), Israel J. Math. 23 (1976), 309-324.
