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1. Ovoips AND SPREADS OF FINITE CLASSICAL POLAR SPACES
Let P be a finite classical polar space of rank (or index) r, r = 2 [4]. An
ovoid O of P is a pointset of P, which has exactly one point in common with
every totally isotropic subspace of rank » [12]. A spread S of P is a set of
maximal totally isotropic subspaces, which constitutes a partition of the
pointset [12].
We shall use the following notation:

W.(q): the polar space arising from a symplectic polarity of PG(n, ), n odd;
0O(2#n, q): the polar space arising from a non-singular quadric @ in PG(2n, g);
Ot(@2n -+ 1, g): the polar space arising from a non-singular hyperbalic
quadric @+ [8]in PG(2r + 1, q);

Q-(2n 41, q): the polar space arising from a non-singular elliptic quadric
Q- [8]in PG(2n +- 1, q);

H(n, g%: the polar space arising from a non-singular hermitian variety. H [8]
in PG(n, g%).

The following results are known:

(a) W.{q), n odd, has always a (regular) spread ([10], [9]). Wi(¢g)bas an
ovoid iff ¢ is even [11]; every ovoid of Wy(q), ¢ even, is an ordinary ovoid of
PG(3, ¢) and every ordinary ovoid of PG(3, g), ¢ evén, is an ovoid of some
Wlg) [13). W.(q), » odd and n > 3, has no ovoid {12].

(b). Q+(dn -~ 1, ¢) has no spreads [9]. O*(m, ¢), ¢ even, m odd and
m % 4n + 1, has always a spread [9]. OF(3, g) has spreads and ovoids
(trivial). Q+(5, ¢) has always ovoids (if we consider O+ as the Klein quadric,
these ovoids correspond to the ordinary spreads of PG(3, ¢)). O+(7, q) has a
spread, and consequently Q*(7, ¢) has an ovoid [15].

Q(2n, q), g even, has always a spread [9]. Q(2n, g), n > 2 and g even, has
no ovoids [12]. Since Q(4, q) is the dual of W(g) [14], the polar space O, ¢)
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has always an ovoid, and has a spread iff ¢ is even. Since Q*(7, g) has a
spread, we see by intersection that also Q(6, g) has a spread. Finally Q(6, g),
g = 32»+1 has an ovoid [12].

Q—(2n + 1, g), n > 1, has no ovoid [12]. Q—(m, q), g even and m odd,
has always a spread [9]. Since (6, ¢) has a spread, we see by intersection
that also Q—(5, g) has a spread. Moreover Q~(5, g) is the dual of H(3, ¢%)
(J2], [14]), hence the existence of spreads of Q—(5, ¢) also follows from the
existence of ovoids of H(3, ¢%) (see (c)).

(c) H(n, g%, neven and n > 2, has no ovoid [12]. H(3, ¢*) has ovoids
(any hermitian curve on H is an ovoid of H(3, ¢?)). Since H(3, ¢?) is the dual
of 0-(5, q) (2], [14]), the polar space H(3, ¢*) has no spread.

2. OVOIDS AND SPREADS OF GENERALIZED HEXAGONS OF ORDER #

A generalized hexagon [6] of order » (>1) is an incidence structure
S = (P, B, I), with an incidence relation satisfying the following axioms:

(i) each point (resp. line) is incident with n + 1 lines (resp. points);
(@ [Pl=I[Bl=1+n+nr+n+n+n=y
(i) 6 is the smallest positive integer & such that S has a circuit con-
sisting of k points and & lines.

As usual the distance of two elements «, f & P U B is denoted by A(x, f)
or A(B, «) [6].

If ¥ is a set of points (resp. lines) such that A(x, y) = 6 (resp. M(L, M) = 6)
for all distinct x,yeV (resp. L, Me V), then | V| < v/m®+n-+1) or
| V] <n®+ 1. If | V]| =n®- 1, then we say that ¥ is an ovoid (resp.
spread) of the hexagon S [6].

In [6] we remarked that the classical generalized hexagon H{(g) (of order ¢)
arising from G,(g) has always a spread. This followed from a result of P. Fong,
who proved that G,(¢) has a subgroup isomorphic to SUs(g) which has an
orbit of length ¢® -+ 1 on the lines of H(g) and which is doubly transitive
on this orbit. We also proved [6] that a generalized hexagon S of order ¢
has an ovoid (resp. spread) if S admits a polarity. J. Tits informed us that it is
possible to prove that the generalized hexagon H(q) of order ¢, g = 3%+,
admits a polarity. Since H(g) has an ovoid iff Q(6, ¢) has an ovoid [12], there
follows that H{g), g even, has no ovoid.

In the presentation of J. Tits of the classical generalized hexagon of order g,
the set P is the pointset of Q(6, ¢) and the set B is a subset of the lineset of
0(6, 9) [15]. For x, y € P, x + y, we have A(x, y) << 4iff x and y are.on a line
of the polar space (6, g) (see also [17]). Now it is easy to show that all the
lines of H(g) containing the point x are in a plane of the quadric Q. Indeed,
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let us consider the lines L, M of H(g) containing x. If ye L, z € M, x # y and
x % z, then M ¥, z) = 4 and so yz is a line of Q. Consequently the plane LM
is on Q. Let u be a point of the plane LM, u ¢ L, u ¢ M. Then xuis a line of O,
and so A(x, %) < 4. Let us assume that A(x, #) = 4 and call w the point
defined by A(x, w) = A(u, w) = 2. If w is in the plane LM, then we L or
we M, say we M. Then, if y e L — {x}, we have X y, u) = 6, a contradiction.
If w is not in the plane LM, then the planes LM, Lw, Mw, uxw are on Q,
and so the threespace LMw is on @, a contradiction. Hence A(x, ) = 2, te.,
the g -- 1 lines of H(q) containing x are the ¢ - 1 lines through x of the plane
LM of 0. So with the ¢° 4 ¢*-+ ¢ -+ q* + g + 1 points of H(q) there
correspond ¢° + q* + ¢® + g%+ ¢ + 1 planes of Q. These planes will be
called the H{g)-planes.

We consider a PG(5, q) in PG(6, q), for which PG(5, g} N Q is an elliptic
quadric @-. Now we count in two ways the number of ordered pairs (line L
of H(g), point of O~ on L). There results ofg + 1) 4-(¢* + ¢* + 4+ ¢* +
g+ 1— ) =(q+ D%g®+ 1), where « is the number of lines of H{g)
on O-. Hence o = g3 + 1. No two of these ¢® + 1 lines intersect, since
otherwise their plane (which is an H{(g)-plane) is on Q-, a coniradiction.
Consequently these lines constitute a spread of 0-(5, .g). Moreover any two
of these lines are at distance 6 in H(g). So they also constitute a spread of
H(g). This provides an elementary proof that H(g) has always a spread.

Let us suppose that H(g) admits a polarity (then 3 | ¢) and call O (resp. T)
the corresponding ovoid (resp. spread). We remark that the ¢ - 1 H(g)-
planes which correspond to the points of O coustitute a spread. of Q(6, )
{this provides a proof that (6, ¢) has a spread for g = 32**1), Let us assume
that the spread T is of the type described in the preceding paragraph. Then O
is contained in a PG(5, q), where PG(5, g) N O is anelliptic quadric ¢~
Since O is an ovoid of ‘H(g), it is an ovoid of 06, ¢) [12], and conseéquently
also of Q(5, ), a contradiction. Hence for ¢ = 3! the hexagon H(g) has
at least two types of spreads. '

3. A MopeL or THE CLASSICAL GENERALIZED QUADRANGLE WITH § == £2
=1

Consider the polar space Q(6, g), and let PG(5, ¢) be such that PG(5, ) N @
is an elliptic quadric @~ of PG(5, q). Let T be a spread of @(5,¢) and
suppose that the regulus (on Q) defined by each two elements of T is con-
tained in T (then T is a spread corresponding to an hermitian curve on 2
non-singular hermitian variety H in PG(3, ¢%)). Define as follows the
incidence structure S = (P, B, 1): points of type (i) are the points of § — ¢,
and points ‘of type (ii) are the linzs of T lines are the planes of Q containing
an element of 7; 1 is the natural incidence.
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THEOREM. The incidence structure S is isomorphic.-to the generalized
quadrangle H(3, 7).

Proof. Any point of type (ii) of S is incident with ¢ -+ 1 lines of S. Now
we consider a point x of type (i). If ¥ is the tangent hyperplane of Q at x,
then the number of lines of S incident with x equals the number of lines of T
in V. So we are looking for the number of elements of 7 in a PG4, g) C
PG(5, g). Now any spread of Q-(5,¢) has exactly ¢ + 1 elements in a
PG(4, g) C PG(5, q). Hence any point of S is incident with ¢ 4- 1 lines of S.
Also any two points of S are incident with at most one line of S. Next we
remark that any line of S is incident with ¢* + 1 points of S, and that any
two lines of S are incident with at most one point of S.

Next we consider a point L € T of type (ii) and a line PG(2, ¢) of S, where
L ¢ PG(2, q). If PG(4, q) is the polar space of L with respect to Q and if
{y} = PG4, q) © PG(2, q), then Ly is the unique line of S which is incident
with the point L of S and concurrent with the line PG(2, g) of S. Now we
consider a point x of type (i) and a line PG(2, q) of S, where. L = PG(2, q) N
O~ and x ¢ PG(2, q). Suppose that Lx,..., L,,1x, L; € T, are the g -+ 1 lines
of § containing x. Then L, ,..., L,.; constitute a regulus, i.e., are contained
in a threespace. If L €{L, ,..., Ly}, then Lx is the unique line of S which is
incident with the point x of S and concurrent with the line PG(2, g) of S.
Consider now the case Lé&{L,,..., Ly }. If PG(3, ) is the threespace
containing L, ,..., L,1, and if {£} = xPG(3, q) N PG(2, ¢), then z is the
unique point of S which is incident with the line PG(2, g) and collinear with
the point x.

Hence S is a generalized quadrangle with parameters s = g% t = ¢.

Finally we show that S is of classical type. Let (6, ) be embedded in the
polar space @+(7, g) and let ¥, be one of the families of generating three-
spaces of the quadric O+, If L is a point of type (ii) of S and if 7y , 7y ,.., 7g0q
are the ¢ -+ 1 elements of B incident with L, then the ¢ -+ 1 elements of V'
containing my , my ,..., 7,y €vidently are the ¢ 4 1 elements of V! containing
L. Now we consider a point x of type (i) of S and the g - 1 elements &,
&y 5oy 441 Of B which are incident with x (remark that the g -+ 1 lines of T
defined by &, , &, ,..., §4.q are the elements of a regulus, i.e., are contained in a
PG(3, ). We show that the ¢ + 1 elements a2, a,l,..., ap,; of V3! containing
&, & ,..., &q are the g 4+ 1 elements of V! contalnlng some line M,
xeM, of 0+(7, q). Let PG¥(4, q) be the polar space of £; with respect to the
quadric Q. Then PGY(4, g) N Ot = at U % where o, belongs to the
family V4’ of generating threespaces of Q+. Moreover PG'(4, ) contains a
plane mr, the polar plane of the fourdimensional space xPG(3, ¢) with respect
to QF, and = N @+ consists of two lines M and N. One of these lines, say M,
is contained in the spaces o, and the other line N is contained in the spaces
o Hence the g 4 1 elements of V! containing &, & ..., 440 are the
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g -~ 1 elements of V3! containing some line M of Q*(7, g). Consequently to
every point of type (i) of S there corresponds a line M of Q+(7, g).

The set of all elements of ¥,! which contain an element of B, is denoted by
B’. And P’ is the union of T and the set of the lines M of Q*(7, ¢) which
correspond to the points of type (i) of S. If I is the natural incidence, then

= (P, B, T') evidently is a generahzed quadrangle isomorphic to §. By
trlahty [15] 8" is the dual of a generalized quadrangle S” with parameters
s = g, t = g whose points are points of a projective space of order ¢ and
whose lines are lines of that projective space. By the theorem of Buekenhout-
Lefévre [5] S” is isomorphic to O(5, g), and consequently ', and thus S,
is isomorphic to H(3, g%.

4. SPREADS OF THE POLAR SPACE Q(5, q)

To an hermitian curve on a non-singular hermitian variety H of PG(3, ¢%)
there corresponds a spread of Q—(5, ¢). Such a spread will be called regular.
In 1 we also remarked that any spread of Q(6, q) defines by intersection a
spread of Q=(5, q).

THEOREM. - A spread T of Q=(5, q) corresponding to a: spread of Q(6, q),
is never regular.

Proof. Let T* be a spread of Q(6, ¢) and 7 the corresponding spread of
0-(3, q). Suppose that T is regular, i.e., suppose that the regulus (on Q7)
defined by each two elements of T is contained in 7. Then by 3 the spread 7'
defines a classical generalized quadrangle § = (P, B,I) with parameters
s = g% t = q. Evidently T* is a spread of S, a contradiction since H(3, g%
has no spread. We conclude that T is not regular.

CorOLLARY.  Q7(5, q) has at least two types of spreads, and dually H(3, q%)
has at least two types of ovoids.

5. Perrect CODES

In a graph (assumed to be connected, undirected, and without loops or
multiple’ edges), the distance d(c, B) between two vertices « and f is the
length of the shortest path joining them. For a positive integer ¢, a perfect
e-code is a nonempty subset C of the vertex set with the property that any
vertex lies at distance at most e from a unique vertex in C. Biggs [1] has shown
that necessary conditions for the existence.of a perfect 1-code in a regular
graph of valency k on v vertices are that k 4 1 divides v and that —1 is.an



92 J. A. THAS

eigenvalue of the adjacency matrix of the graph. These results have been
extended to perfect e-codes in metrically regular graphs by Delsarte [7] (see
also Biggs [1]). (Metrically regular graphs are defined in [7]).

The point graph (resp. line graph) of a generalized hexagon S = (P, B, I)
is defined to have vertex set P (resp. B), vertices « and S being adjacent
whenever Aa, B) = 2. These graphs are metrically regular and satisfy the
necessary conditions for the existence of a perfect 1-code. Indeed, it is easy
to see that a perfect 1-code is the same thing as an ovoid (resp. spread).
These perfect 1-codes were discovered by Cameron, Thas and Payne [6]
and to their knowledge this was the first infinite class of perfect e-codes,
apart from the Hamming codes, the classical repetition codes, and more
generally the perfect e-codes in the metrically regular antipodal graphs of
diameter 2¢ 4 1 [1]. In Thas [10] a new such infinite class of perfect 1-codes
is described in the following way. Consider the polar space Wy(q). The
vertices of the graph I' are the totally isotropic subspaces of rank 3, two
vertices « and f (o 5% f) being adjacent whenever o N 8 is a line. The graph
is metrically regular and satisfies the necessary conditions for the existence
of a perfect 1-code. Now it is easy to see that a perfect 1-code is the same
thing as a spread of Wy(q).

Define as follows the incidence structure S* = (P*, B*, [*): P* is the set
of the H(g)-planes (see 2); B* is the set of all lines of H(g); if = e P* and
L e B* then wI*Liff L C 7, Evidently $* is a generalized hexagon isomorphic
to H(g). The point graph of §* is denoted by I'*. If O is an ovoid of H(g),
then the corresponding ovoid O* of S* is a spread of Q(6, ¢). Next, let I'"" be
the graph with vertices the totally isotropic subspaces of rank 3 of Q(6, ¢),
two vertices o and 8 (o =% B) being adjacent iff « N B is a line. Then I is
metrically regular with the same parameters as the graph I arising from
Wi(q) and described in the preceding paragraph. Since Q(6, ¢) is isomorphic
to Wy(q)iff g is even [12], it follows easily that I" is isomorphic to I" iff ¢ is
even. Again a perfect 1-code of I" is the same thing as a spread of Q(6, g).
So for any g there arises a perfect 1-code of I, and hence we have a new
infinite class of perfect 1-codes. Finally we remark that I'* is a subgraph of
(I =@+ g+ q+ D, I"|=(g* -+ 1)(g* -+ 1)(g + 1)) and that
a set consisting of ¢® + 1 vertices of I'™* is a perfect 1-code of I'* iff it is a
perfect 1-code of I".
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