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1. OVOIDS AND SPREADS OF FINITE CLASSICAL POLAR SPACES 

Let P be a finite classical polar space of rank (or index) r, r > 2 [4]. An 
ovoid 0 of P is a pointset of P, which has exactly one point in common with 
every totally isotropic subspace of rank r [12]. A spread S of P is a set of 
maximal totally isotropic subspaces, which constitutes a partition of the 
pointset [12]. 

We shall use the following notation: 

w’,(q): the polar space arising from a symplectic polarity of PG(n, q), n odd; 

Q(2n, 4): the polar space arising from a non-singular quadric Q in PG(2n, 4); 

Q*(2n + 1, 4): the polar space arising from a non-singular hyperbolic 
quadric Q+ [S] in PG(2n + 1, q); 

Q-(2n + 1, q): the polar space arising from a non-singular elliptic quadric 
Q- [S] in PG(2n + 1, q); 

H(n, q2): the polar space arising from a non-singular hermitian variety 41 IS] 
in PG(n, 43. 

The following results are known: 

(a) FF’&), y1 odd, has always a (regular) spread ({lo], [9]). W&q) has an 
ovoid iff q is even [ll]; every ovoid of W,(q), q even, is an ordinary ovoid of 
PG(3,q) and every ordinary ovoid of PG(3, q), q even, is an ovoid of some 
~&I) ]131. W,(q), n odd and n > 3, has no ovoid E12]. 

(b) Q+(~Fz + 1, q) has no spreads [9]. Q+(m, q), q even, m odd and 
m # 472 + 1, has always a spread [9]. Q+(3, q) has spreads and ovoids 
(trivial). Q-(5, q) has always ovoids (if we consider Q+ as the Klein quadric, 
these ovoids correspond to the ordinary spreads of PG(3, q)). Q+(7, q) has a 
spread, and consequently Q+(7, q) has an ovoid 1151. 

Q(2rz, q), q’ even, has always a spread [9]. Q(2n, q), n > 2 and q even, has 
no ovoids [la]. Since Q(4, q) is the dual of ITS(q) [14], the polar space Q(4, q) 
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has always an ovoid, and has a spread iff q is even. Since Q+(7, q) has a 
spread, we see by intersection that also Q(6, q) has a spread. Finally Q(6, q), 
q = 32h+1, has an ovoid [12]. 

Q-(2n + 1, q), n > 1, has no ovoid [12]. Q-(nz, q), q even and m odd, 
has always a spread [9]. Since Q(6, q) has a spread, we see by intersection 
that also Q-(5, q) has a spread. Moreover Q-(5, q) is the dual of H(3, q2) 
([2], [14]), hence the existence of spreads of Q-(5, q) also follows from the 
existence of ovoids of H(3, q2) (see (c)). 

(c) H(n, q2), n even and n > 2, has no ovoid [12]. H(3, q2) has ovoids 
(any hermitian curve on His an ovoid of H(3, q2)). Since H(3, qz) is the dual 
of Q-(5, q) ([2], [14]), the polar space H(3, qz) has no spread. 

2. OVOIDS AND SPREADS OF GENERALIZED HEXAGONS OF ORDER n 

A generalized hexagon [6] of order n (al) is an incidence structure 
S = (P, B, I), with an incidence relation satisfying the following axioms: 

(i) each point (resp. line) is incident with IZ + 1 lines (resp. points); 

(ii) 1 P 1 = 1 B 1 = 1 + n + n2 + n3 + n* + n5 = v; 

(iii) 6 is the smallest positive integer k such that S has a circuit con- 
sisting of k points and k lines. 

As usual the distance of two elements a!, p E P u B is denoted by h(ol, p) 
or XA 4 PI. 

If V is a set of points (resp. lines) such that h(x, y) = 6 (resp. )I(L, M) = 6) 
for all distinct X, y E V (resp. L, ME V), then I Iv I < v&z” + n + 1) or 
IV1 <n3+1. If IV/ =n3+1, then we say that Vis an ovoid (resp. 
spread) of the hexagon S [6]. 

In [6] we remarked that the classical generalized hexagon H(q) (of order q) 
arising from G,(q) has always a spread. This followed from a result of P. Fong, 
who proved that G,(q) has a subgroup isomorphic to SU,(q) which has an 
orbit of length q3 + 1 on the lines of H(q) and which is doubly transitive 
on this orbit. We also proved [6] that a generalized hexagon S of order q 
has an ovoid (resp. spread) if S admits a polarity. J. Tits informed us that it is 
possible to prove that the generalized hexagon H(q) of order q, q = .32h+1, 
admits a polarity. Since H(q) has an ovoid iff Q(6, q) has an ovoid [12], there 
follows that H(q), q even, has no ovoid. 

In the presentation of J. Tits of the classical generalized hexagon of order q, 
the set P is the pointset of Q(6, q) and the set B is a subset of the lineset of 
Q(6, q) [15]. For x, y E P, x # y, we have X(x, y) < 4iff x and y are on a line 
of the polar space Q(6, q) (see also [17]). Now it is easy to show that all the 
lines of H(q) containing the point x are in a plane of the quadric Q. Indeed, 
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let us consider the lines L, A4 of H(q) containing x. If y E L, z E M, x i: y and 
x f z, then A( y, z) = 4 and so yz is a line of Q. Consequently the plane LM 
is on Q. Let u be a point of the plane LM, u # L, u $ M. Then xu is a Iine of Q, 
and so h(x, u) < 4. Let us assume that X(X, U) = 4 and call IV the point 
defined by X(X, W) = X(u, w) = 2. If w  is in the plane LM, then w  EL or 
w E n/r, say w  E IVY. Then, if y E L - (x>, we have A( y, U) = 6, a contradiction. 
If w  is not in the plane LM, then the planes LM, Lw, Mw, uxw are on Q, 
and so the threespace LMw is on Q, a contradiction. Hence X(X, u) = 2, i.e., 
the q f 1 lines of H(q) containing x are the q + 1 lines through x of the plane 
LM of Q. So with the q5 + q4 + q3 + q2 + q + 1 points of H(q) there 
correspond q5 + q4 + q 3 + q2 + q + 1 planes of Q. These planes will be 
called the H(q)-planes. 

We consider a PG(5, q) in PG(6, q), for which PG(5, q) n Q is an elliptic 
quadric Q-. Now we count in two ways the number of ordered pairs (line L 
of H(q), point of Q- on L). There results a(q + 1) + (q5 $ q4 + q3 -t q2 + 
4 + 1 - a) = (q + l)2(q3 + l), where CL is the number of lines of H(q) 
on Q-. Hence 01 = q3 + 1. No two of these q3 + 1 lines intersect, since 
otherwise their plane (which is an N(q)-plane) is on Q-, a contradiction. 
Consequently these ,lines constitute a spread of Q-(5,.q). M[oreover any two 
of these lines are at distance 6 in H(q). So they also constitute a spread of 
H(q). This provides an elementary proof that H(q) has always a spread, 

Let us suppose that H(q) admits a polarity (then 3 / q) and call 0 (resp. 7”) 
the corresponding ovoid (resp. spread). We remark that the q3 + 1 H(q)- 
planes which correspond to the points of 0 constitute a spread of Q(6, q) 
{this provides a proof that Q(6, q) has a spread for q = lS2”+l). Let us assume 
that the spread T is of the type described in the preceding paragraph. Then 
is contained in a PG(5, q), where PG(5, q) n Q is an elliptic quadric Q-. 
Since 0 is an ovoid of H(q), it is an ovoid of Q(6, q) [12], and consequently 
also of Q-(5, q), a contradiction. Hence for q = Yh+l the hexagon H(q) has 
at least two types of spreads. 

3. A MODEL OF THE GLAS~ICAL GENERALIZED QUADRANGLE WTM s = t2 

0 > 11 

Consider the polar space Q(6, q), and let PG(5, q) be such that PG(5, q) n 
is an elliptic quadric Q- of PG(5, q). Let T be a spread of Q-35, q) and 
suppose that the regulus (on Q-) defined by each two elements of g is con- 
tained in T (then T is a spread corresponding to an hermitian curve on a 
non-singular hermitian variety H in PG(J, q*)). Define as follows the 
incidence structure S = (P, B, I): points of type (i) are the points of Q - Q-? 
and pointsof type (ii) are the lines of 7-; lines are the planes of Q containing 
an element of T, I is the natural incidence. 
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THEOREM. The incidence structure S is isomorphic to the generalized 
quadrangle H(3, q2). 

ProoJ: Any point of type (ii) of S is incident with q + 1 lines of S. Now 
we consider a point x of type (i). If V is the tangent hyperplane of Q at x, 
then the number of lines of S incident with x equals the number of lines of T 
in V. So we are looking for the number of elements of T in a PG(4, q) C 
PG(5, q). Now any spread of Q-(5, q) has exactly q + 1 elements in a 
PG(4, q) C PG(5, q). Hence any point of S is incident with q + 1 lines of S. 
Also any two points of S are incident with at most one line of S. Next we 
remark that any line of S is incident with q2 + 1 points of S, and that any 
two lines of S are incident with at most one point of S. 

Next we consider a point L E T of type (ii) and a line PG(2, q) of S, where 
L p PG(2, q). If PG(4, q) is the polar space of L with respect to Q and if 
( u} = PG(4, q) n PG(2, q), then Ly is the unique line of S which is incident 
with the point L of S and concurrent with the line PG(2, q) of S. Now we 
consider a point x of type (i) and a line PG(2, q) of S, where L = PG(2, q) n 
Q- and x $ PG(2, q). Suppose that L,x,..., L4+1x, Li E T, are the q + 1 lines 
of S containing x. Then L1 ,..., L,,, constitute a regulus, i.e., are contained 
in a threespace. If L E {L, ,..., La+l}, then Lx is the unique line of S which is 
incident with the point x of S and concurrent with the line PG(2, q) of S. 
Consider now the case L 6 {L, ,..., L,,,}. If PG(3, q) is the threespace 
containing Ll ,..., L,,, , and if (z> = xPG(3, q) n PG(2, q), then z is the 
unique point of S which is incident with the line PG(2, q) and collinear with 
the point x. 

Hence S is a generalized quadrangle with parameters s = q2, t = q. 
Finally we show that S is of classical type. Let Q(6, q) be embedded in the 

polar space Qf(7, q) and let V31 be one of the families of generating three- 
spaces of the quadric Qf. If L is a point of type (ii) of S and if n1 , z-2 ,..., rrPtl 
are the q + 1 elements of B incident with L, then the q -t- 1 elements of V31 
containing rr,, rr2 ,..., v*+~ evidently are the q + 1 elements of V31 containing 
L. Now we consider a point x of type (i) of S and the q -f- 1 elements & , 
6 &+1 2 ,.**, of B which are incident with x (remark that the q + 1 lines of T 
defined by &, t2 ,..., c$+~ are the elements of a regulus, i.e., are contained in a 
PG(3, q)). We show that the q + 1 elements 01~l, a21,..., OI:.(-~ of V,’ containing 
(1 > f2 ,***v Ll are the q + 1 elements of V,l containing some line M, 
x E A&, of Q+(7, q). Let PGci)(4, q) be the polar space of & with respect to the 
quadric Q+. Then PGci)(4, q) n Q+ = oli1 u ai2, where c+j belongs to the 
family V,j of generating threespaces of Qf. Moreover PGfi)(4, q) contains a 
plane V, the polar plane of the fourdimensional space xPG(3, q) with respect 
to Qf, and rr n Q+ consists of two lines M and N. One of these lines, say M, 
is contained in the spaces ail, and the other line N is contained in the spaces 
01;~. Hence the q + 1 elements of Val containing f1 , f2 ,..., f,,, are the 
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q + 1 elements of V,l containing some line M of Qf(7, q). Consequently to 
every point of type (i) of S there corresponds a line M of Q+(7,4). 

The set of all elements of V,l which contain an element of B, is denoted by 
B’. And P’ is the union of T and the set of the lines A4 of Q-+(7,4) which 
correspond to the points of type (i) of S. If I’ is the natural incidence, then 
S’ = (P’, B’, I’) evidently is a generalized quadrangle isomorphic to S. By 
triality (151 5’ is the dual of a generalized quadrangle S” with parameters 
s = 4, t = q2, whose points are points of a projective space of order q and 
whose lines are lines of that projective space. By the theorem of Buekenhout- 
Lefevre [5] S” is isomorphic to Q-(5, q), and consequently S’, and thus S, 
is isomorphic to H(3, @). 

4. SPREADS OF THE POLAR SPACE Q2-(5,q) 

To an hermitian curve on a non-singular hermitian variety H of PG(3; ~1~) 
there corresponds a spread of Q-(5, cl). Such a spread will be called regular. 
In 1 we also remarked that any spread of Q(6, s) defines by intersection a 
spread of Q-(5,4). 

THEOREM. A spread T of Q-(5, q) corresponding to a spread of Q(6, q), 
is never regular. 

ProoJ Let T* be a spread of Q(6, q) and T the corresponding spread of 
Q-(5, q). Suppose that T is regular, i.e., suppose that the regulus (on Q-) 
defined by each two elements of T is contained in T. Then by 3 the spread T 
defines a classical generalized quadrangle S = (P, B, I) with parameters 
s = q”, t = q. Evidently T* is a spread of S, a contradiction since H(3, q2) 
has no spread. We conclude that T is not ,regular. 

COROLLARY. Q-(5, q) has at least two types of spreads, and dually H(3, $1 
has at least two types of ovoids. 

5. PERFECT CODES 

In a graph (assumed to be connected, undirected, and without loops or 
multiple edges), the distance d(a, ,8) between two vertices 01 and ,@ is the 
length of the shortest path joining them. For a positive integer e, a perfect 
e-code is a nonempty subset C of the vertex set with the property that any 
vertex lies at distance at most e from a unique vertex in C. Biggs [l] has shown 
that necessary conditions for the existence of a perfect l-code in a regular 
graph of valency k on v vertices are that k + 1 divides v and that -1 is an 
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eigenvalue of the adjacency matrix of the graph. These results have been 
extended to perfect e-codes in metrically regular graphs by Delsarte [7] (see 
also Biggs [l]). (Metrically regular graphs are defined in [7]). 

The point graph (resp. line graph) of a generalized hexagon S = (P, B, I) 
is defined to have vertex set P (resp. B), vertices CL and fl being adjacent 
whenever h(ol, /I) = 2. These graphs are metrically regular and satisfy the 
necessary conditions for the existence of a perfect l-code. Indeed, it is easy 
to see that a perfect l-code is the same thing as an ovoid (resp. spread). 
These perfect l-codes were discovered by Cameron, Thas and Payne [6] 
and to their knowledge this was the first infinite class of perfect e-codes, 
apart from the Hamming codes, the classical repetition codes, and more 
generally the perfect e-codes in the metrically regular antipodal graphs of 
diameter 2e + I [l]. In Thas [lo] a new such infinite class of perfect l-codes 
is described in the following way. Consider the polar space IV&). The 
vertices of the graph r are the totally isotropic subspaces of rank 3, two 
vertices o(. and /3 (LX # p) being adjacent whenever 01 A ,6 is a line. The graph 
is metrically regular and satisfies the necessary conditions for the existence 
of a perfect l-code. Now it is easy to see that a perfect l-code is the same 
thing as a spread of W,(q). 

Define as follows the incidence structure S* = (P*, B*, I*): P* is the set 
of the H(q)-planes (see 2); B* is the set of all lines of H(g); if 71 E P* and 
L E B*, then rrI*L iff L C 71, Evidently S* is a generalized hexagon isomorphic 
to H(q). The point graph of S* is denoted by r*. If 0 is an ovoid of H(q), 
then the corresponding ovoid 0” of S* is a spread of Q(6, q). Next, let r’ be 
the graph with vertices the totally isotropic subspaces of rank 3 of Q(6, q), 
two vertices 01 and ,8 (a f p) being adjacent iff LX n /I is a line. Then r’ is 
metrically regular with the same parameters as the graph r arising from 
F&(q) and described in the preceding paragraph. Since Q(6, q) is isomorphic 
to W5(q) iff q is even [12], it follows easily that r is isomorphic to r’ iff q is 
even. Again a perfect l-code of r’ is the same thing as a spread of Q(6, q). 
So for any q there arises a perfect l-code of I”, and hence we have a new 
infinite class of perfect l-codes. Finally we remark that r* is a subgraph of 
r,(j r* I = (q3 + l)(q2 + q + l), j r’ j = (q3 + l)(q2 + l)(q + 1)) and that 
a set consisting of q3 + 1 vertices of J’* is a perfect l-code of r* iff it is a 
perfect l-code of r’. 
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