JOURNAL OF COMBINATORIAL THEORY, Series A 29, 87-93 (1980)

Polar Spaces, Generalized Hexagons and Perfect Codes

J. A. THAS

Seminar of Higher Geometry, University of Ghent, Krijgslaan 271, B-9000 Gent, Belgium Communicated by F. Buekenhout

Received December 4, 1978

1. OVOIDS AND SPREADS OF FINITE CLASSICAL POLAR SPACES

Let P be a finite classical polar space of rank (or index) $r, r \ge 2$ [4]. An ovoid O of P is a pointset of P, which has exactly one point in common with every totally isotropic subspace of rank r [12]. A spread S of P is a set of maximal totally isotropic subspaces, which constitutes a partition of the pointset [12].

We shall use the following notation:

 $W_n(q)$: the polar space arising from a symplectic polarity of PG(n, q), n odd; Q(2n, q): the polar space arising from a non-singular quadric Q in PG(2n, q); $Q^+(2n + 1, q)$: the polar space arising from a non-singular hyperbolic quadric Q^+ [8] in PG(2n + 1, q);

 $Q^{-}(2n + 1, q)$: the polar space arising from a non-singular elliptic quadric Q^{-} [8] in PG(2n + 1, q);

 $H(n, q^2)$: the polar space arising from a non-singular hermitian variety H [8] in $PG(n, q^2)$.

The following results are known:

(a) $W_n(q)$, *n* odd, has always a (regular) spread ([10], [9]). $W_3(q)$ has an ovoid iff *q* is even [11]; every ovoid of $W_3(q)$, *q* even, is an ordinary ovoid of PG(3, q) and every ordinary ovoid of PG(3, q), *q* even, is an ovoid of some $W_3(q)$ [13]. $W_n(q)$, *n* odd and n > 3, has no ovoid [12].

(b) $Q^+(4n + 1, q)$ has no spreads [9]. $Q^+(m, q)$, q even, m odd and $m \neq 4n + 1$, has always a spread [9]. $Q^+(3, q)$ has spreads and ovoids (trivial). $Q^+(5, q)$ has always ovoids (if we consider Q^+ as the Klein quadric, these ovoids correspond to the ordinary spreads of PG(3, q)). $Q^+(7, q)$ has a spread, and consequently $Q^+(7, q)$ has an ovoid [15].

Q(2n, q), q even, has always a spread [9]. Q(2n, q), n > 2 and q even, has no ovoids [12]. Since Q(4, q) is the dual of $W_3(q)$ [14], the polar space Q(4, q)

has always an ovoid, and has a spread iff q is even. Since $Q^+(7, q)$ has a spread, we see by intersection that also Q(6, q) has a spread. Finally Q(6, q), $q = 3^{2h+1}$, has an ovoid [12].

 $Q^{-}(2n + 1, q)$, n > 1, has no ovoid [12]. $Q^{-}(m, q)$, q even and m odd, has always a spread [9]. Since Q(6, q) has a spread, we see by intersection that also $Q^{-}(5, q)$ has a spread. Moreover $Q^{-}(5, q)$ is the dual of $H(3, q^2)$ ([2], [14]), hence the existence of spreads of $Q^{-}(5, q)$ also follows from the existence of ovoids of $H(3, q^2)$ (see (c)).

(c) $H(n, q^2)$, *n* even and n > 2, has no ovoid [12]. $H(3, q^2)$ has ovoids (any hermitian curve on *H* is an ovoid of $H(3, q^2)$). Since $H(3, q^2)$ is the dual of $Q^{-}(5, q)$ ([2], [14]), the polar space $H(3, q^2)$ has no spread.

2. Ovoids and Spreads of Generalized Hexagons of Order n

A generalized hexagon [6] of order $n \ (\geq 1)$ is an incidence structure S = (P, B, I), with an incidence relation satisfying the following axioms:

- (i) each point (resp. line) is incident with n + 1 lines (resp. points);
- (ii) $|P| = |B| = 1 + n + n^2 + n^3 + n^4 + n^5 = v;$

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k lines.

As usual the distance of two elements $\alpha, \beta \in P \cup B$ is denoted by $\lambda(\alpha, \beta)$ or $\lambda(\beta, \alpha)$ [6].

If V is a set of points (resp. lines) such that $\lambda(x, y) = 6$ (resp. $\lambda(L, M) = 6$) for all distinct $x, y \in V$ (resp. $L, M \in V$), then $|V| \leq v/(n^3 + n + 1)$ or $|V| \leq n^3 + 1$. If $|V| = n^3 + 1$, then we say that V is an ovoid (resp. spread) of the hexagon S [6].

In [6] we remarked that the classical generalized hexagon H(q) (of order q) arising from $G_2(q)$ has always a spread. This followed from a result of P. Fong, who proved that $G_2(q)$ has a subgroup isomorphic to $SU_3(q)$ which has an orbit of length $q^3 + 1$ on the lines of H(q) and which is doubly transitive on this orbit. We also proved [6] that a generalized hexagon S of order q has an ovoid (resp. spread) if S admits a polarity. J. Tits informed us that it is possible to prove that the generalized hexagon H(q) of order $q, q = 3^{2h+1}$, admits a polarity. Since H(q) has an ovoid iff Q(6, q) has an ovoid [12], there follows that H(q), q even, has no ovoid.

In the presentation of J. Tits of the classical generalized hexagon of order q, the set P is the pointset of Q(6, q) and the set B is a subset of the lineset of Q(6, q) [15]. For $x, y \in P, x \neq y$, we have $\lambda(x, y) \leq 4$ iff x and y are on a line of the polar space Q(6, q) (see also [17]). Now it is easy to show that all the lines of H(q) containing the point x are in a plane of the quadric Q. Indeed,

let us consider the lines L, M of H(q) containing x. If $y \in L$, $z \in M$, $x \neq y$ and $x \neq z$, then $\lambda(y, z) = 4$ and so yz is a line of Q. Consequently the plane LM is on Q. Let u be a point of the plane LM, $u \notin L$, $u \notin M$. Then xu is a line of Q, and so $\lambda(x, u) \leq 4$. Let us assume that $\lambda(x, u) = 4$ and call w the point defined by $\lambda(x, w) = \lambda(u, w) = 2$. If w is in the plane LM, then $w \in L$ or $w \in M$, say $w \in M$. Then, if $y \in L - \{x\}$, we have $\lambda(y, u) = 6$, a contradiction. If w is not in the plane LM, then the planes LM, Lw, Mw, uxw are on Q, and so the threespace LMw is on Q, a contradiction. Hence $\lambda(x, u) = 2$, i.e., the q + 1 lines of H(q) containing x are the q + 1 lines through x of the plane LM of Q. So with the $q^5 + q^4 + q^3 + q^2 + q + 1$ points of H(q) there correspond $q^5 + q^4 + q^3 + q^2 + q + 1$ planes of Q. These planes will be called the H(q)-planes.

We consider a PG(5, q) in PG(6, q), for which $PG(5, q) \cap Q$ is an elliptic quadric Q^- . Now we count in two ways the number of ordered pairs (line L of H(q), point of Q^- on L). There results $\alpha(q + 1) + (q^5 + q^4 + q^3 + q^2 + q + 1 - \alpha) = (q + 1)^2(q^3 + 1)$, where α is the number of lines of H(q)on Q^- . Hence $\alpha = q^3 + 1$. No two of these $q^3 + 1$ lines intersect, since otherwise their plane (which is an H(q)-plane) is on Q^- , a contradiction. Consequently these lines constitute a spread of $Q^-(5, q)$. Moreover any two of these lines are at distance 6 in H(q). So they also constitute a spread of H(q). This provides an elementary proof that H(q) has always a spread.

Let us suppose that H(q) admits a polarity (then 3 | q) and call O (resp. T) the corresponding ovoid (resp. spread). We remark that the $q^3 + 1$ H(q)planes which correspond to the points of O constitute a spread of Q(6, q)(this provides a proof that Q(6, q) has a spread for $q = 3^{2h+1}$). Let us assume that the spread T is of the type described in the preceding paragraph. Then Ois contained in a PG(5, q), where $PG(5, q) \cap Q$ is an elliptic quadric Q^- . Since O is an ovoid of H(q), it is an ovoid of Q(6, q) [12], and consequently also of $Q^{-}(5, q)$, a contradiction. Hence for $q = 3^{2h+1}$ the hexagon H(q) has at least two types of spreads.

3. A Model of the Classical Generalized Quadrangle with $s = t^2$ (t > 1)

Consider the polar space Q(6, q), and let PG(5, q) be such that $PG(5, q) \cap Q$ is an elliptic quadric Q^- of PG(5, q). Let T be a spread of $Q^-(5, q)$ and suppose that the regulus (on Q^-) defined by each two elements of T is contained in T (then T is a spread corresponding to an hermitian curve on a non-singular hermitian variety H in $PG(3, q^2)$). Define as follows the incidence structure S = (P, B, I): points of type (i) are the points of $Q - Q^-$, and points of type (ii) are the lines of T; lines are the planes of Q containing an element of T; I is the natural incidence.

J. A. THAS

THEOREM. The incidence structure S is isomorphic to the generalized quadrangle $H(3, q^2)$.

Proof. Any point of type (ii) of S is incident with q + 1 lines of S. Now we consider a point x of type (i). If V is the tangent hyperplane of Q at x, then the number of lines of S incident with x equals the number of lines of T in V. So we are looking for the number of elements of T in a $PG(4, q) \subset PG(5, q)$. Now any spread of $Q^{-}(5, q)$ has exactly q + 1 elements in a $PG(4, q) \subset PG(5, q)$. Hence any point of S is incident with q + 1 lines of S. Next we remark that any line of S is incident with $q^2 + 1$ points of S, and that any two lines of S are incident with at most one point of S.

Next we consider a point $L \in T$ of type (ii) and a line PG(2, q) of S, where $L \notin PG(2, q)$. If PG(4, q) is the polar space of L with respect to Q and if $\{y\} = PG(4, q) \cap PG(2, q)$, then Ly is the unique line of S which is incident with the point L of S and concurrent with the line PG(2, q) of S. Now we consider a point x of type (i) and a line PG(2, q) of S, where $L = PG(2, q) \cap Q^-$ and $x \notin PG(2, q)$. Suppose that $L_1x, \dots, L_{q+1}x, L_i \in T$, are the q + 1 lines of S containing x. Then L_1, \dots, L_{q+1} constitute a regulus, i.e., are contained in a threespace. If $L \in \{L_1, \dots, L_{q+1}\}$, then Lx is the unique line of S which is incident with the point x of S and concurrent with the line PG(2, q) of S. Consider now the case $L \notin \{L_1, \dots, L_{q+1}\}$. If PG(3, q) is the threespace containing L_1, \dots, L_{q+1} , and if $\{z\} = xPG(3, q) \cap PG(2, q)$, then z is the unique point of S which is incident with the line PG(2, q) and collinear with the point x.

Hence S is a generalized quadrangle with parameters $s = q^2$, t = q.

Finally we show that S is of classical type. Let Q(6, q) be embedded in the polar space $Q^+(7, q)$ and let V_3^1 be one of the families of generating threespaces of the quadric Q^+ . If L is a point of type (ii) of S and if $\pi_1, \pi_2, ..., \pi_{q+1}$ are the q + 1 elements of B incident with L, then the q + 1 elements of V_{3}^{1} containing $\pi_1, \pi_2, ..., \pi_{q+1}$ evidently are the q+1 elements of V_3^1 containing L. Now we consider a point x of type (i) of S and the q + 1 elements ξ_1 , $\xi_2,...,\xi_{q+1}$ of B which are incident with x (remark that the q+1 lines of T defined by ξ_1 , ξ_2 ,..., ξ_{q+1} are the elements of a regulus, i.e., are contained in a PG(3, q)). We show that the q + 1 elements $\alpha_1^1, \alpha_2^1, \dots, \alpha_{q+1}^1$ of V_3^1 containing $\xi_1, \xi_2, ..., \xi_{q+1}$ are the q+1 elements of V_3^1 containing some line M, $x \in M$, of $Q^+(7, q)$. Let $PG^{(i)}(4, q)$ be the polar space of ξ_i with respect to the quadric Q^+ . Then $PG^{(i)}(4,q) \cap Q^+ = \alpha_i^1 \cup \alpha_i^2$, where α_i^j belongs to the family V_3^{i} of generating threespaces of Q^+ . Moreover $PG^{(i)}(4, q)$ contains a plane π , the polar plane of the fourdimensional space xPG(3, q) with respect to Q^+ , and $\pi \cap Q^+$ consists of two lines M and N. One of these lines, say M, is contained in the spaces α_i^1 , and the other line N is contained in the spaces α_i^2 . Hence the q+1 elements of V_3^1 containing $\xi_1, \xi_2, ..., \xi_{q+1}$ are the

q + 1 elements of V_3^1 containing some line M of $Q^+(7, q)$. Consequently to every point of type (i) of S there corresponds a line M of $Q^+(7, q)$.

The set of all elements of V_3^1 which contain an element of B, is denoted by B'. And P' is the union of T and the set of the lines M of $Q^+(7, q)$ which correspond to the points of type (i) of S. If I' is the natural incidence, then S' = (P', B', I') evidently is a generalized quadrangle isomorphic to S. By triality [15] S' is the dual of a generalized quadrangle S'' with parameters s = q, $t = q^2$, whose points are points of a projective space of order q and whose lines are lines of that projective space. By the theorem of Buekenhout-Lefèvre [5] S'' is isomorphic to $Q^-(5, q)$, and consequently S', and thus S, is isomorphic to $H(3, q^2)$.

4. Spreads of the Polar Space $Q^{-}(5, q)$

To an hermitian curve on a non-singular hermitian variety H of $PG(3, q^2)$ there corresponds a spread of $Q^{-}(5, q)$. Such a spread will be called regular. In 1 we also remarked that any spread of Q(6, q) defines by intersection a spread of $Q^{-}(5, q)$.

THEOREM. A spread T of $Q^{-}(5, q)$ corresponding to a spread of Q(6, q), is never regular.

Proof. Let T^* be a spread of Q(6, q) and T the corresponding spread of $Q^-(5, q)$. Suppose that T is regular, i.e., suppose that the regulus (on Q^-) defined by each two elements of T is contained in T. Then by 3 the spread T defines a classical generalized quadrangle S = (P, B, I) with parameters $s = q^2$, t = q. Evidently T^* is a spread of S, a contradiction since $H(3, q^2)$ has no spread. We conclude that T is not regular.

COROLLARY. $Q^{-}(5, q)$ has at least two types of spreads, and dually $H(3, q^2)$ has at least two types of ovoids.

5. Perfect Codes

In a graph (assumed to be connected, undirected, and without loops or multiple edges), the distance $d(\alpha, \beta)$ between two vertices α and β is the length of the shortest path joining them. For a positive integer e, a perfect e-code is a nonempty subset C of the vertex set with the property that any vertex lies at distance at most e from a unique vertex in C. Biggs [1] has shown that necessary conditions for the existence of a perfect 1-code in a regular graph of valency k on v vertices are that k + 1 divides v and that -1 is an eigenvalue of the adjacency matrix of the graph. These results have been extended to perfect *e*-codes in metrically regular graphs by Delsarte [7] (see also Biggs [1]). (Metrically regular graphs are defined in [7]).

The point graph (resp. line graph) of a generalized hexagon S = (P, B, I)is defined to have vertex set P (resp. B), vertices α and β being adjacent whenever $\lambda(\alpha, \beta) = 2$. These graphs are metrically regular and satisfy the necessary conditions for the existence of a perfect 1-code. Indeed, it is easy to see that a perfect 1-code is the same thing as an ovoid (resp. spread). These perfect 1-codes were discovered by Cameron, Thas and Payne [6] and to their knowledge this was the first infinite class of perfect e-codes, apart from the Hamming codes, the classical repetition codes, and more generally the perfect e-codes in the metrically regular antipodal graphs of diameter 2e + 1 [1]. In Thas [10] a new such infinite class of perfect 1-codes is described in the following way. Consider the polar space $W_5(q)$. The vertices of the graph Γ are the totally isotropic subspaces of rank 3, two vertices α and β ($\alpha \neq \beta$) being adjacent whenever $\alpha \cap \beta$ is a line. The graph is metrically regular and satisfies the necessary conditions for the existence of a perfect 1-code. Now it is easy to see that a perfect 1-code is the same thing as a spread of $W_5(q)$.

Define as follows the incidence structure $S^* = (P^*, B^*, I^*)$: P^* is the set of the H(q)-planes (see 2); B^* is the set of all lines of H(q); if $\pi \in P^*$ and $L \in B^*$, then πI^*L iff $L \subseteq \pi$. Evidently S^* is a generalized hexagon isomorphic to H(q). The point graph of S^* is denoted by Γ^* . If O is an ovoid of H(q), then the corresponding ovoid O^* of S^* is a spread of O(6, q). Next, let Γ' be the graph with vertices the totally isotropic subspaces of rank 3 of Q(6, q), two vertices α and β ($\alpha \neq \beta$) being adjacent iff $\alpha \cap \beta$ is a line. Then Γ' is metrically regular with the same parameters as the graph Γ arising from $W_5(q)$ and described in the preceding paragraph. Since Q(6, q) is isomorphic to $W_5(q)$ iff q is even [12], it follows easily that Γ is isomorphic to Γ' iff q is even. Again a perfect 1-code of Γ' is the same thing as a spread of Q(6, q). So for any q there arises a perfect 1-code of Γ' , and hence we have a new infinite class of perfect 1-codes. Finally we remark that Γ^* is a subgraph of $\Gamma'(|\Gamma^*| = (q^3 + 1)(q^2 + q + 1), |\Gamma'| = (q^3 + 1)(q^2 + 1)(q + 1))$ and that a set consisting of $q^3 + 1$ vertices of Γ^* is a perfect 1-code of Γ^* iff it is a perfect 1-code of Γ' .

References

- N. L. BIGGS, Perfect codes and distance-transitive graphs, in "Combinatorics," Proc. British Combinat. Conf. 1973, (T. P. McDonough and V. C. Mavron, Eds.), pp. 1–8, Cambridge Univ. Press, Cambridge, 1974.
- 2. A. A. BRUEN AND J. W. P. HIRSCHFELD, The Hermitian surface, *Geometriae Dedicata*, 7 (1978), 333–353.

POLAR SPACES

- A. A. BRUEN AND J. A. THAS, Partial spreads, packings and Hermitian manifolds, Math. Z. 151 (1976), 207–214.
- 4. F. BUEKENHOUT AND E. SHULT, On the foundations of polar geometry, *Geometriae Dedicata* 3 (1974), 155–170.
- F. BUEKENHOUT AND C. LEFEVRE, Generalized quadrangles in projective spaces, Arch. Math. 25 (1974), 540–552.
- P. J. CAMERON, J. A. THAS, AND S. E. PAYNE, Polarities of generalized hexagons and perfect codes, *Geometriae Dedicata* 5 (1976), 525–528.
- 7. P. DELSARTE, An algebraic approach to the association schemes of coding theory, *Philips Res. Rep. Suppl.* **10** (1973).
- 8. P. DEMBOWSKI, "Finite Geometries," Springer-Verlag, Berlin/New York, 1968.
- R. H. DYF, Partitions and their stabilizers for line complexes and quadrics, Ann. Mat. Ser. (4) 114 (1977), 173-194.
- J. A. THAS, Two infinite classes of perfect codes in metrically regular graphs, J. Combinatorial Theory Ser. B 23 (1977), 236-238.
- 11. J. A. THAS, On 4-gonal configurations, Geometriae Dedicata 2 (1973), 317-326.
- 12. J. A. THAS, Ovoids and spreads of finite classical polar spaces, *Geometriae Dedicata*, in press.
- 13. J. A. THAS, Ovoidal translation planes, Arch. Math. 23 (1972), 110-112.
- J. A. THAS AND S. E. PAYNE, Classical finite generalized quadrangles: A combinatorial study, Ars Combinatoria 2 (1976), 57–110.
- J. TITS, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 14-60.
- 16. J. TITS, private communication.
- 17. A. YANUSHKA, Generalized hexagons of order (t, t), Israel J. Math. 23 (1976), 309-324.