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1. Introduction

Our goal in this paper is to describe some of the interesting topology that arises in the
dynamics of entire functions such as the complex exponential familyEλ(z)= λez. We will
see that the important invariant sets for this family possesses a extremely rich topological
structure, including such objects as Cantor bouquets, Knaster continua, hair transplants,
and explosion points.

For a complex analytic functionE, the interesting orbits lie in theJulia set, which we
denote byJ (E). This is the set on which the map is chaotic. For the exponential family,
the Julia set ofEλ has three characterizations:

(1) J (Eλ) is the set of points at which the family of iterates ofEλ, {Enλ} is not a normal
family in the sense of Montel. This is the characterization that is most useful to
prove theorems.

(2) J (Eλ) is the closure of the set of repelling periodic points ofEλ. This is the
dynamical definition of the Julia set.

(3) J (Eλ) is the closure of the set of points whose orbits tend to∞. This is the
characterization that is most useful to compute the Julia set.

We remark that characterization 3 differs from the case of polynomial iterations, where the
Julia set is theboundaryof the set of escaping orbits. The reason for the difference isEλ

has an essential singularity at∞, while polynomials have superattracting fixed points at
∞. The equivalence of (1) and (2) was shown by Baker, see [6]. The equivalence of (1)
and (3) is shown in [19].

In this paper we will concentrate on the dynamics ofEλ whereλ is real. Forλ positive,
the Julia set forEλ undergoes a remarkable transformation asλ passes through 1/e. We
will show below thatEλ possesses an attracting fixed point when 0< λ< 1/e. All points in
the left half plane have orbits that tend to this fixed point. Indeed, the full basin of attraction
of this fixed point is open and dense in the plane.
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Fig. 1. A Julia set forλ < 1/e.

We will show that the complement of the basin,J (Eλ), is a Cantor bouquetfor
0< λ6 1/e. Roughly speaking, a Cantor bouquet has the property that all points in the set
lie on a curve (or “hair”) homeomorphic to a closed half line. Each of these curves inJ (Eλ)

extend to∞ in the right half-plane. All repelling periodic points and points with bounded
orbits lie at the endpoints of the curves, while points that do not lie at the endpoints have
unbounded orbits. Since repelling periodic points are dense inJ (Eλ), the endpoints of the
Cantor bouquet must be dense inJ (Eλ). Indeed, we will show that the set of endpoints is
a totally disconnected set, but that the set of endpoints together with the point at infinity
forms a connected set, a result due to Mayer [24].

In Figs. 1 and 2 we display a computer graphics rendering of the Julia set ofEλ for a
particularλ with 0< λ< 1/e. This image was computed using characterization (3) of the
Julia set: Points are shaded in white and grey if their orbits ever enter the region Rez > 50.
The complement of the Julia set is displayed in black. It appears that this Julia set contains
large open sets, but this in fact is not the case. The Julia set actually consists of uncountably
many curves lying in the Cantor bouquet and extending to∞ in the right half plane. These
curves are packed together so tightly that the resulting set has Hausdorff dimension 2, thus
giving the appearance of an open set. See Fig. 2.

At λ = 1/e,Eλ undergoes a simple saddle-node bifurcation. The attracting fixed point
merges with a repelling fixed point at thisλ-value, producing a neutral fixed point. When
λ > 1/e, this neutral fixed point gives way to a pair of repelling fixed points.

This apparently simple bifurcation has profound global ramifications. Whenλ 6 1/e,
the Julia set is a nowhere dense subset of the right half plane. However, whenλ > 1/e,
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Fig. 2. Magnification of a Julia set forλ < 1/e.

Fig. 3. The Julia set forλ > 1/e.

J (Eλ) suddenly becomes the whole plane. No new repelling periodic points (except the
two fixed points involved in the saddle-node) are born in this bifurcation; all simply move
smoothly asλ crosses through 1/e. Yet somehow, as soon asλ exceeds 1/e, the repelling
periodic points become dense inC.
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In Fig. 3 we display the Julia set forEλ for a particularλ > 1/e. Note the striking
difference between this image and that in Fig. 1.

At this bifurcation, the attracting fixed point and its entire basin of attraction disappear.
Most of the points in the Cantor bouquet remain in the Julia set. However, a new and
interesting topological invariant set arises. We will show that this set is an indecomposable
continuum on which most orbits cycle toward the orbit of 0 and∞.

Whenλ is complex but close to the real axis (Reλ > 1/e), the dynamics ofEλ undergoes
remarkable changes. We will show that in any neighborhoodU of λ > 1/e in the parameter
plane, there is a positive integerN such that for anyn>N there is aλn ∈U for which the
corresponding exponential has an attracting cycle of periodn. HenceEλ is not structurally
stable for anyλ > 1/e.

This paper is a summary of a series of lectures delivered by the author at the Summer
Conference on Topology and Its Applications held at the C.W. Post Campus of Long Island
University in August, 1999.

2. Exponential dynamics

As in the often-studied quadratic familyQc(z) = z2 + c, it is the orbit of 0 that plays
a crucial role in determining the dynamics ofEλ. For the exponential family, 0 is an
asymptotic value (an omitted value) rather than a critical point. Nevertheless, any stable
domain in the complement of the Julia set ofEλ must be associated with the orbit of 0 in
the following sense:

Theorem 2.1. SupposeEλ has an attracting or rationally neutral(parabolic) periodic
point. ThenEnλ(0) must tend to the attracting or neutral cycle. If, on the other hand,
Enλ(0)→∞, thenJ (Eλ)=C.

The proof of the first statement in this theorem is a classical fact that goes back to
Fatou. The second follows from the Sullivan No Wandering Domains Theorem [29], as
extended to the case of the exponential by Goldberg and Keen [21] and Eremenko and
Lyubich [20]. Rather than rely on this big machinery, we will give a bare-hands approach
due to Misiurewicz [26] to show thatJ (Eλ)=C whenλ > 1/e in Section 5.

Consider for the moment the restriction ofEλ to the real line. The exponential family
undergoes a saddle node bifurcation atλ = 1/e since, whenλ = 1/e, the graph ofE1/e

is tangent to the diagonal at 1. See Fig. 4. We haveE1/e(1)= 1 andE′1/e(1) = 1. When
λ < 1/e, the graph ofEλ lies above the diagonal and all orbits (including 0) tend to∞.
Whenλ < 1/e, the graph ofEλ crosses the diagonal twice, at an attracting fixed pointaλ

and a repealing fixed pointrλ. For later use note that 0< aλ < 1< rλ. Note also that the
orbit of 0 tends toaλ, as it must by Fatou’s theorem. See Fig. 4.
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Fig. 4. The graphs ofEλ for λ= 1/e andλ < 1/e.

Fig. 5. The graph ofE(x)= (1/e)ex .

3. Cantor bouquets

In this section, we begin the study of the dynamics ofEλ by considering the case where
λ6 1/e. We show here thatJ (Eλ) is aCantor bouquet.

Here is a rough idea of the construction of a Cantor bouquet. We will “tighten up” these
ideas in following sections.

Let E(z) = (1/e)ez. We haveE(1) = 1 andE′(1) = 1. If x0 ∈ R and x0 < 1, then
En(x0) tends to the fixed point at 1. Ifx0> 1, thenEn(x0)→∞ asn→∞. This can be
shown using the web diagram as shown in Fig. 5.

The vertical line Rez = 1 is mapped to the circle of radius 1 centered at the origin. In
fact,E is a contraction in the half planeH to the left of this line, since∣∣E′(z)∣∣= 1

e
exp(Rez) < 1
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Fig. 6. The preimage ofH consists ofH and the shaded region.

if z ∈H . Consequently, all points inH have orbits that tend to 1. Hence this half plane lies
in the stable set, i.e., in the complement of the Julia set. We will try to paint the picture of
the Julia set ofE by painting instead its complement.

Since the half planeH is forward invariant underE, we can obtain the entire stable
set by considering all preimages of this half plane. Now the first preimage ofH certainly
contains the horizontal lines Imz= (2k + 1)π , Rez> 1, for each integerk, sinceE maps
these lines to the negative real axis which lies inH . Hence there are open neighborhoods
of each of these lines that lie in the stable set. The first preimage ofH is shown in Fig. 6.
The complement ofE−1(H) consists of infinitely many “fingers”. The fingers are 2kπ i
translates of each other, and each is mapped onto the complementary half plane Rez> 1.

We denote the fingers in the complement ofE−1(H) by Cj with j ∈ Z, whereCj
contains the half line Imz = 2jπ , Rez > 1, which is mapped into the positive real axis.
That is, theCj are indexed by the integers in order of increasing imaginary part. Note that
Cj is contained within the strip

−π
2
+ 2jπ 6 Im z6 π

2
+ 2jπ.

Now eachCj is mapped in one-to-one fashion onto the entire half plane Rez > 1.
Consequently eachCj contains a preimage of each otherCk . Each of these preimages
forms a subfinger which extends to the right in the half planeH . See Fig. 7. The
complement of these subfingers necessarily lies in the stable set.

Now we continue inductively. Each subfinger is mapped onto one of the original fingers
byE. Consequently, there are infinitely many sub-subfingers which are mapped to theCj ’s
byE2. So at each stage we remove the complement of infinitely many subfingers from each
remaining finger.

This process is reminiscent of the construction of the Cantor set in the dynamics of
polynomials when all critical points tend to∞. In that construction, the complements of
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Fig. 7. The second preimage ofH in one of the fingersCj .

disks are removed at each stage; here we remove the complement of infinitely many fingers.
As a result, after performing this operation infinitely many times, we do not end up with
points. Rather, as we will see, the intersection of all of these fingers, if nonempty, is a
simple curve extending to∞.

This collection of curves forms the Julia set.E permutes these curves and each curve
consists of a well-defined endpoint together with a “hair” which extends to∞. It is
tempting to think of this structure as a “Cantor set of curves”, i.e., a product of the set
of endpoints and the half-line. However, this is not the case as the set of endpoints is not
closed.

Note that we can assign symbolic sequences to each point on these curves. To do this,
we attach an infinite sequences0s1s2 . . . to each hair in the Julia set via the rule:sj ∈ Z and
sj = k if the j th iterate of the hair lies inCk . The sequences0s1s2 . . . is called theitinerary
of the curve.

For example, the portion of the real line{x |x > 1} lies in the Julia set since all points
(except 1) tend to∞ under iteration, not to the fixed point. These points all have itinerary
000. . . .

One temptation is to say that there is a hair corresponding to every possible sequence
s0s1s2 . . . . This, unfortunately, is not true, as certain sequences simply grow too quickly to
correspond to orbits ofE.

So this isJ (E): a “hairy” object extending toward∞ in the right-half plane. We call
this object aCantor bouquet. We will see that this bouquet has some rather interesting
topological properties as we investigate further.

We remark that the same construction works if 0< λ < 1/e. We still define the half
planeH as the set Rez < 1. As we saw earlier, the point 1 on the real axis sits between
the attracting fixed pointaλ and the repelling fixed pointrλ, and soEλ(1) < 1 and as
a consequenceEλ(H) is strictly contained inH . The construction of the fingers now
proceeds exactly as above.

3.1. Straight brushes

To describe the structure of a Cantor bouquet in more detail, we need to introduce the
notion of astraight brush.
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To each irrational numberζ , we assign an infinite string of integersn0n1n2 . . . as
follows. We will break up the real line into open intervalsIn0n1...nk which have the
following properties

(1) In0...nk ⊃ In0...nk+1.
(2) The endpoints ofIn0...nk are rational.
(3) ζ =⋂∞k=1 In0...nk .
Now there are many ways to do this. We choose the following method based on the

Farey tree. Inductively, we first defineIk = (k, k + 1). GivenIn0...nk we defineIn0...nkj as
follows. Let

In0...nk =
(
α

β
,
γ

δ

)
.

Let p0/q0= (α + γ )/(β + δ), the Farey child ofα/β andγ /δ. We write

α

β
⊕ γ
δ
= p0

q0

to indicate the Farey child of these fractions. Letpn/qn be the Farey child ofpn−1/qn−1

andγ /δ for n > 0, and letpn−1/qn−1 be the Farey child forα/β andpn/qn for n> 0. We
then setIn0...nkj to be the open interval(pj/qj ,pj+1/qj+1).

Example. I0 = (0,1). The Farey child of01 and 1
1 is 1

2, sop0/q0 = 1
2. Thenp1/q1 =

1
2 ⊕ 1

1 = 2
3, p2/q2= 2

3 ⊕ 1
1 = 3

4, andpn/qn = n+1
n+2 for n > 0.

For negativen we have

p−1

q−1
= 0

1
⊕ 1

2
= 1

3
,

p−2

q−2
= 0

1
⊕ 1

3
= 1

4
,

p−n
q−n
= 1

n+ 2
.

Therefore, ifn> 0,

I0n =
(
n+ 1

n+ 2
,
n+ 2

n+ 3

)
and ifn < 0,

I0n =
(

1

−n+ 2
,

1

−n+ 1

)
.

See Fig. 8. Note that we exhaust all of the rationals via this procedure, so each irrational is
contained in a uniqueIn0n1....

We now define a straight brush, a notion due to Aarts and Oversteegen [2].
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Fig. 8. Construction ofI0n.

Definition 3.1. A straight brushB is a subset of[0,∞)×N , whereN is a dense subset
of R−Q. B has the following 3 properties.

(1) B is “hairy” in the following sense. If(y,α) ∈ B, then there exists ayα 6 y such
that (t, α) ∈ B iff t > yα . That is the “hair”(t, α) is contained inB wheret > yα .
yα is called the endpoint of the hair corresponding toα.

(2) Given an endpoint(yα,α) ∈ B there are sequencesβn ↑ α andγn ↓ α in N such
that(yβn, βn)→ (yα,α) and(yγn, γn)→ (yα,α). That is, any endpoint of a hair in
B is the limit of endpoints of other hairs from both above and below.

(3) B is a closed subset ofR2.

The following facts are easily verified:
(1) For any rational numberv and any sequence of irrationalsαn ∈N with αn→ v, it

can be shown that the hairs[yαn,αn] must tend to(∞, v) in [0,∞]×R.
(2) Condition (2) above may be changed to: if(y,α) is any point inB (y need not

be the endpoint of theα-hair), then there are sequencesβn ↑ α, γn ↓ α so that
(yβn, βn)→ (y,α) and(yγn, γn)→ (y,α) in B.

(3) Let (y,α) ∈B and supposey is not the endpointyα . Then(y,α) is inaccessible in
R2 in the sense that there is no continuous curveγ : [0,1]→R2 such thatγ (t) /∈B
for 06 t < 1 andγ (1)= (y,α).

(4) On the other hand, the endpoint(yα,α) is accessible inR2.
These facts show that a straight brush is a remarkable object from the topological point

of view. We view a straight brush as a subset of the Riemann sphere and setB∗ = B ∪∞,
i.e., the straight brush with the point at infinity added. LetE denote the set of endpoints of
B, and letE∗ = E ∪∞. Then we have the following result, due to Mayer [24]:

Theorem 3.2. The setE∗ is a connected set, butE is totally disconnected.

That is, the setE∗ is a connected set, but if we remove just one point form this set, the
resulting set is totally disconnected. Topology really is a weird subject!

The reason for this is that, if we draw the straight line in the plane(γ, t) whereγ is a
fixed rational, and then we adjoin the point at infinity, we find a disconnection ofE . This,
however, is not a disconnection ofE∗. Moreover, the fact that any non-endpoint inB is
inaccessible shows that we cannot disconnectE∗ by any other curve.

Remark. Aarts and Oversteegen have shown that any two straight brushes are ambiently
homeomorphic, i.e., there is a homeomorphism ofR2 taking one brush onto the other. This
leads to a formal definition of a Cantor bouquet.
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Definition 3.3. A Cantor bouquet is a subset ofC that is homeomorphic to a straight brush
(with∞ mapped to∞).

Our main goal in this section is to sketch a proof of the following result. For more details,
see [2].

Theorem 3.4. Suppose0< λ< 1/e. ThenJ (Eλ) is a Cantor bouquet.

We now describe the construction of the homeomorphism between the brush andJ (Eλ).
To do this, we first introduce symbolic dynamics. Recall thatEλ has a repelling fixed point
rλ > 0 inR and that the half plane Rez < rλ lies in the stable set. Similarly the horizontal
strips

−π
2
+ 2kπ < Imz <

π

2
+ (2k)π

are contained in the stable set sinceEλ maps these strips to Rez < 0 which is contained in
Rez < rλ.

Let νλ =− lnλ. SoEλ(νλ)= 1 and soνλ < rλ. Fix ωλ ∈ (νλ, rλ). Then the half plane
Rez < ωλ also lies in the stable set, and we have|E′λ(z)|> 1 in the half plane Rez> ωλ.

We denote bySk the closed halfstrip given by

Rez> ωλ and − π
2
+ 2kπ 6 Im z6 π

2
+ 2kπ.

Note that these strips contain the Julia set since the complement of the strips lies in the
stable set.

Givenz ∈ J (Eλ), we define the itinerary ofz, S(z), as usual by

S(z)= s0s1s2 . . . ,
wheresj ∈ Z andsj = k iff Ejλ(z) ∈ Sk . Note thatS(z) is an infinite string of integers that
indicates the order in which the orbit ofz visits theSk . We will associate toz the irrational
number given by the itinerary ofz (in the decomposition of the irrationals described above).
This will determine the hair in the straight brush to whichz is mapped. See Fig. 9. Thus
we need only define they-value along this hair. This takes a little work.

Given z on a hair, we will construct a sequence of closed rectanglesRk(z) for each
k > 0. By construction, theRk(z) will be nested. EachRk(z) will have sides parallel to
the axes and be contained in some stripSα . Finally eachRk(z) will have heightπ . Since
theRk(z) are nested with respect tok, the intersectionR∞(z) =⋂∞k=0Rk(z) will be a
nonempty rectangle of heightπ that containsz. We then defineh(z) to be the real part of
the left hand edge of this limiting rectangle.

To begin the construction, forz ∈ J (Eλ), we setR0(E
j
λ(z)) to be the square centered

around the line Rez = ReEjλ(z) with sidelengthπ and contained in the stripSα where

α = sj . We assume that Rew > ωλ in R0(E
j
λ(z)) for all w ∈ R0(E

j
λ(z)) and for all j ;

otherwise we choose the rectangle

R0
(
E
j
λ(z)

)∩ {Rez> ωλ}
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Fig. 9. The itinerary ofz is 0,1,−1, . . . .

Fig. 10. Construction ofR0(0) andR0(1).

for the initial box. Observe thatEλ(R0(E
j
λ(z)) ⊃ R0(E

j+1
λ (z)). Indeed, the image

of R0(E
j
λ(z)) is an annulus whose inner radius is e−π/2|Ej+1

λ (z)| and outer radius

eπ/2|Ej+1
λ (z)|. Now eπ/2 > 4 and e−π/2 < 1

4 so the image annulus is much larger than

R0(E
j+1
λ ). See Fig. 10.

It follows that we may find a narrower rectangleR1(E
j
λ(z)) strictly contained in

R0(E
j
λ(z)) having the property that the height ofR1(E

j
λ(z)) is π and the image

Eλ(R1(E
j
λ(z))) just coversR0(E

j+1
λ (z)). That is,R1(E

j
λ(z)) is the smallest rectangle in

R0(E
j
λ(z)) whose image annulus is just wide enough so thatR0(E

j+1
λ (z)) fits inside. See

Fig. 11. Note thatEjλ(z) ∈R1(E
j
λ(z)) for eachj .



144 R.L. Devaney / Topology and its Applications 110 (2001) 133–161

Fig. 11. Construction ofR1(0).

Fig. 12. The intersection ofRj (0).

We now continue inductively by settingRk(E
j
λ(z)) to be the subrectangle ofRk−1(E

j
λ(z))

whose image just coversRk−1(E
j+1
λ (z)). The Rk(E

j
λ(z)) are clearly nested for each

fixed j .

Example. Supposez= rλ. We have thatR0(z) is the square bounded by Rez= rλ ± π/2
(or the rectangle bounded by Rez = rλ + π/2 and Rez = ωλ if rλ is close to 1) and
Imz=±π/2 for eachj . One may check that

⋂∞
k=0Rk(z) is the strip bounded by Rez= rλ

and Rez= ζ where the circle of radiusλeζ passes throughζ ± iπ/2. See Fig. 12.

Supposez has itineraryS(z) = s0s1s2 . . .. Let I (S(z)) denote the irrational number
determined by the sequenceS(z) as above. Then setφ(z)= (h(z), I (S(z))). We now claim
thatφ is a homeomorphism onto a straight brush. The proof is adapted from [17] and [2].

Let Bλ denote the image ofJ (Eλ) underφ. We first show thatφ is a homeomorphism
ontoBλ. We will show later thatBλ is a straight brush.
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We need the following lemma.

Lemma 3.5 (Expansion Lemma).Supposez1, z2 ∈ J (Eλ) andS(z1) = S(z2). If z1 6= z2

then|Ekλ(z1)−Ekλ(z2)| →∞ ask→∞.

Proof. Suppose that|Ekλ(z1)−Ekλ(z2)|6M for all k. There is a well-defined branchLλ,j
of the inverse ofEλ that maps the stripSsj+1 into Ssj andEj+1

λ (zi) to Ejλ(zi). Clearly,
Lλ,j is a contraction for eachj in Rez> rλ. Thus∣∣Lλ,0 ◦ · · · ◦Lλ,j (Ej+1

λ (z1))−Lλ,0 ◦ · · · ◦Lλ,j (Ej+1
λ (z2))

∣∣
tends to 0 since|Ej+1

λ (z1)−Ej+1
λ (z2)| is bounded.

We first claim thatφ is one-to-one. Suppose not. Then there existz1, z2 ∈ J (Eλ) with
z1 6= z2 but φ(z1)= φ(z2)= (t, I (S(z1))). Then the left-hand edges ofR∞(Ejλ(z1)) and

R∞(Ejλ(z2)) are the same for allj . But then |Ejλ(z1) − Ejλ(z2)| 6 2π for all j . This
contradicts the Expansion Lemma.

Next we prove continuity ofφ. If z0 andz1 are close, then the firstn terms of their
itineraries must agree and soI (S(z0)) must be close toI (S(z1)). So suppose there is
a sequencezi → z0 in J (Eλ), but |h(zi) − h(z0)| > δ. Then the difference of the inner
radii of the annuli covered byEλ(R∞(zi)) and Eλ(R∞(z0)) is at leastcδ for some
constantc > 1. Some elementary geometry shows that the distance betweenh(Eλ(zi))

andh(Eλ(z0)) is also larger thancδ > δ. Continuing, we see that the left hand edges of
Rk(zi) must eventually differ fromh(Ekλ(z0)) by at leastπ . This contradicts the fact that
Ekλ(zi)→Ekλ(z0).

The continuity ofφ−1 follows similarly. Henceφ is a homeomorphism onto its image.
It remains to show thatφ(J (Eλ)) is a straight brush.

We first show that the image ofJ (Eλ) underφ projects onto a dense set of irrationals.
Let ζ ∈R−Q. Sayζ = In0n1n2.... Let nk = (n0n1 . . .nk). Thenζk = Ink converges toζ as
k→∞ with itinerarynk . We will produce a point inJ (Eλ) with this itinerary.

Supposem = max06j6nk |nj |. Choosex so thatEλ(x) > x + |m|π + π/2. Let Sk(x)
denote the rectangle inSk with heightπ and satisfyingrλ 6 Rez 6 x. ThenEλ(Sni (x))
coversSnj (x) for any pair of indicesni andnj since the right border ofSni (x) is mapped
to a semi-circle which lies further from the origin thanx ± im. Consider

Lλ,n0 ◦ · · · ◦Lλ,nk−1 ◦Lλ,nk |Sn0(x).

This inverse contractsSn0(x) strictly inside itself. Hence by the Schwarz Lemma, this map
has a unique fixed pointznk andznk has itinerarynk . Note thatznk has periodk+ 1 forEλ
and is repelling.

We single this fact out as a corollary.

Corollary 3.6. Let s = s0 . . . sn be a repeating sequence. Then there is a unique repelling
periodic point inJ (Eλ) that has itinerarys.

The uniqueness part of this result follows from the Expansion Lemma.
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The fact thatφ(J (Eλ)) is hairy follows from the fact that ifφ(z)= (t, s) then for any
t ′ > t , φ−1(t ′, s) is a point inJ (Eλ). Indeed, letR0 denote the square inSs0 with side
lengthπ and left hand boundary on the line Rez = t ′. Eλ(R0) is an annulus that maps
acrossSs1 since we know that a rectangle with side on Rez= t < t ′ has this property. Let
R1 be the square of sidelengthπ that lies inSs1 and meets the image of Rez = t ′ at just
one point. ThenEλ(R0)⊃ R1. Now continue in this fashion, defining the squareRk+1 to
be the square inSsk+1 with side lengthπ just meeting the inner boundary ofEλ(Rk). Then
using the expansion lemma there is a unique pointz′ whose orbit travels through theRi in
order. Note thath(z′)= t ′ by construction.

Corollary 3.7. If s = (s0 . . . sk), then the endpoint of the hair corresponding toI (s) is a
repelling periodic point.

Proof. We have already constructed such a pointzs . If z has itinerarys andh(z) < h(zs),
the above proof shows that the orbit ofz must be bounded. This contradicts the Expansion
Lemma.

We emphasize that, even though most hairs spiral in to their respective endpoints, the
mapφ is still one-to-one.

Remarks.
(1) If s = (s0s1s2 . . .) is a bounded sequence, then the endpoint of the hair also has a

bounded orbit. Ifs is unbounded then the endpoint has an unbounded orbit. This
orbit tends to∞ but does so at a slower rate than points on the corresponding hair.

(2) It can be shown that the construction above works for any exponential for which
there exists an attracting or neutral periodic point. See [19]. However, in the general
case, some of the hairs in the Cantor bouquet may be attached to the same point in
the crown. We discuss this briefly in Section 6. See [8].

(3) McMullen [25] has shown that the Hausdorff dimension of the Cantor bouquet
constructed above is 2 but its Lebesgue measure is zero. This accounts for why
Figs. 1 and 2 seem to have open regions in the Julia set.

3.2. Uniformization of the attracting basin

The basin of attractionΩλ of Eλ is an open, dense, and simply connected subset of
the Riemann sphere. Hence the Riemann Mapping Theorem guarantees the existence of
a uniformizationφλ :D→ Ωλ. Given such a uniformization, it is natural to ask if the
uniformizing map extends to the boundary ofD.

In order to extendφλ to the boundary, we need that the image underφλ of a straight
ray reiθ , whereθ is constant, to converge to a single point asr → 1. It is known that if
the boundary of the uniformizing region is locally connected, then in factφλ does extend
continuously toD. On the other hand, if the boundary of the region is not locally connected,
then not all rays need converge (though a full measure set of them must converge). In our
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case, the boundary ofΩλ is nowhere locally connected (except at∞). However, it is a
fact that all rays do converge. Moreover, they land at precisely the endpoints of the Cantor
bouquet and∞. This means that we can induce a map on the set of endpoints, but that map
is necessarily nowhere continuous [27].

In the case of a straight brush, it is clear that all rays do land at the crown of the bouquet.
A direct proof forEλ is given in [14].

In fact, it can be shown that, if we normalize the Riemann mapφλ so that 0 is mapped
to 0, then the induced mapφ−λ 1◦Eλ ◦ φλ on the unit disk is given by

Tµ(z)= exp

(
i

(
µ+µ
1+ z

))
.

Hereµ is a parameter that lies in the upper half plane and depends uponλ.

4. Indecomposable continua

We now consider the caseλ > 1/e. Since the orbit of 0 tends to∞, the Julia set is now
the entire plane (we will prove this in the next section). For theseλ values, the attracting
basin for the attracting fixed pointaλ disappears. What replaces it is a complicated invariant
set that is an indecomposable continuum. We describe the construction of this set in this
section.

Consider the horizontal strip

S = {z | 06 Im z6 π}
(or its symmetric image underz→ z). The exponential mapEλ takes the boundary ofS
to the real axis and the interior ofS to the upper half plane. Thus,Eλ maps certain points
outside ofS while other points remain inS after one application ofEλ. Our goal is to
investigate the set of points whose entire orbit lie inS. Call this setΛ. The setΛ is clearly
invariant underEλ. There is a natural way to compactify this set in the plane to obtain a
new setΓ . Moreover, the exponential map extends toΓ in a natural way. Our main results
in this section include:

Theorem 4.1. Γ is an indecomposable continuum.

Moreover, we will see thatΛ is constructed in similar fashion to a family of
indecomposable continua known asKnaster continua. See [13] for additional details.

As we will show in Section 4.2, the topology ofΛ is quite intricate. Despite this, we
will show that the dynamics ofEλ onΛ is quite tame. Specifically, we will prove:

Theorem 4.2. The restriction ofEλ to Λ− {orbit of 0} is a homeomorphism. This map
has a unique repelling fixed pointwλ ∈Λ, and theα-limit set of all points inΛ iswλ. On
the other hand, ifz ∈Λ, z 6=wλ, then theω-limit set ofz is either

(1) The point at∞, or
(2) The orbit of0 underEλ together with the point at∞.
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Fig. 13. The Knaster continuum.

Thus we see thatEλ possesses an interesting mixture of topology and dynamics in the
case where the Julia set is the whole plane. In the plane the dynamics ofEλ are quite
chaotic, but the overall topology is tame. On our invariant setΛ, however, it is the topology
that is rich, but the dynamics are tame.

4.1. Topological preliminaries

In this section we review some of the basic topological ideas associated with
indecomposable continua. See [22] for a more extensive introduction to these concepts.

Recall that a continuum is a compact, connected space. A continuum is decomposable
if it is the union of two proper subcontinua. Otherwise, it is indecomposable. A well-
known example of an indecomposable continuum is the Knaster continuum,K. One way
to construct this set is to begin with the Cantor middle-thirds set. Then draw the semi-
circles lying in the upper half plane with center at(1/2,0) that connect each pair of points
in the Cantor set that are equidistant from 1/2. Next draw all semicircles in the lower half
plane which have for eachn> 1 centers at(5/(2 · 3n), 0) and pass through each point in
the Cantor set lying in the interval

2/3n 6 x 6 1/3n−1.

The resulting set is partially depicted in Fig. 13.
For a proof that this set is indecomposable, we refer to [22]. Dynamically, this set

appears as the closure of the unstable manifold of Smale’s horseshoe map (see [4,28]).
Note that the curve passing through the origin in this set is dense, since it passes through

each of the endpoints of the Cantor set. It also accumulates everywhere upon itself. Such
a phenomenon gives a criterion for a continuum to be indecomposable, as was shown by
Curry.

Theorem 4.3. SupposeX is a one-dimensional nonseparating plane continuum which is
the closure of a ray that limits upon itself. ThenX is indecomposable.
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Fig. 14. A different construction of the Knaster continuum.

We refer to [11] for a proof.
Another view of the Knaster continuum which is intimately related to our own

construction is as follows. Begin with the unit squareS0 in the plane. Next remove a
“canal” C1 from S0 whose boundary lies within a distance 1/3 of each boundary point
of S0 as depicted in Fig. 2. Call this setS1. Next remove a new canalC2 from S1. This
time the boundary ofC2 should be within 1/9 of the boundary ofS1 as depicted in Fig. 14.
It is possible to continue this construction inductively in such a way that the resulting set
is homeomorphic to the Knaster continuum.

4.2. Construction ofΛ

Recall that the stripS is given by{z | 06 Im(z)6 π}. Note thatEλ mapsS in one-to-
one fashion onto{z | Im z> 0}− {0}. HenceE−1

λ is defined onS−{0} and, in fact,E−nλ is
defined for alln onS−{orbit of 0}. We will always assume thatE−nλ meansE−nλ restricted
to this subset ofS.

Define

Λ= {z |Enλ(z) ∈ S for all n> 0
}
.

If z ∈Λ it follows immediately thatEnλ(z) ∈ S for all n ∈ Z providedz does not lie on the
orbit of 0. Our goal is to understand the structure ofΛ.

Toward that end we defineLn to be the set of points inS that leaveS at precisely the
nth iteration ofEλ. That is,

Ln =
{
z ∈ S |Eiλ(z) ∈ S for 06 i < n butEnλ(z) /∈ S

}
.

LetBn be the boundary ofLn.
Recall thatEλ maps a vertical segment inS to a semi-circle in the upper half plane

centered at 0 with endpoints inR. Either this semi-circle is completely contained inS
or else an open arc lies outsideS. As a consequence,L1 is an open simply connected
region which extends to∞ toward the right inS as shown in Fig. 15. There is a natural
parametrizationγ1 :R→ B1 defined by

Eλ
(
γ1(t)

)= t + iπ.

As a consequence,

lim
t→±∞Reγ1(t)=∞.
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Fig. 15. Construction of theLn.

If c > 0 is large, the segment Rez = c in S meetsS − L1 in two vertical segmentsv+
andv− with Imv− > Im v+. Eλ mapsv− to an arc of a circle inS ∩ {z | Rez < 0} while
Eλ mapsv+ to an arc of a circle inS ∩ {z | Rez > 0}. As a consequence, ifc is large,v+
meetsL2 in an open interval. SinceL2 = E−1

λ (L1), it follows thatL2 is an open simply
connected subset ofS that extends to∞ in the right half planebelowL1.

Continuing inductively, we see thatLn is an open, simply connected subset ofS that
extends to∞ toward the right inS. We may also parametrize the boundaryBn of Ln by
γn :R→ Bn where

Enλ
(
γn(t)

)= t + iπ

as before. Again

lim
t→±∞Reγn(t)=∞.

Since eachLn is open, it follows thatΛ is a closed subset ofS.

Proposition 4.4. LetJn =⋃∞i=n Bi . ThenJn is dense inΛ for eachn > 0.

Proof. Let z ∈Λ and supposez /∈Bi for anyi. LetU be an open connected neighborhood
of z. Fix n > 0. SinceEiλ(z) ∈ S for all i, we may choose a connected neighborhoodV ⊂U
of z such thatEiλ(V )⊂ S for i = 0, . . . , n.

Now the family of functions{Eiλ} is not normal onV , sincez belongs to the Julia
set ofEλ. Consequently,

⋃∞
i=0E

i
λ(V ) coversC− {0}. In particular, there ism > n such

thatEmλ (V ) meets the exterior ofS. SinceEmλ (z) ∈ S, it follows thatEmλ (V ) meets the
boundary ofS. ApplyingE−mλ , we see thatBm meetsV .

In fact, it follows that for anyz ∈Λ and any neighborhoodU of z, all but finitely many
of theBm meetV . This follows from the fact thatEλ has fixed points outside ofS (in fact
one such point in each horizontal strip of width 2π—see [17]), so we may assume that
Emλ (V ) contains this fixed point for all sufficiently largem. In particular, we have shown:

Proposition 4.5. Letz ∈Λ and suppose thatV is any connected neighborhood ofz. Then
Emλ (V ) meets the boundary ofS for all sufficiently largem.

Proposition 4.6. Λ is a connected subset ofS.
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Fig. 16. EmbeddingΓ in the plane.

Proof. Let G be the union of the boundaries of theLi for all i. SinceΛ is the closure
of G, it suffices to show thatG is connected. Suppose that this is not true. Then we can
writeG as the union of two disjoint setsA andB. One ofA or B must contain infinitely
many of the boundaries of theLi . SayA does. But then, ifb ∈ B, the previous proposition
guarantees that infinitely many of these boundaries meet any neighborhood ofb. Henceb
belongs to the closure ofA. This contradiction establishes the result.

We can now prove:

Theorem 4.7. There is a natural compactificationΓ of Λ that makesΓ into an inde-
composable continuum.

Proof. We first compactifyΛ by adjoining the backward orbit of 0. To do this we identify
the “points” (−∞,0) and(−∞,π) in S: this givesE−1

λ (0). We then identify the points
(∞,π) and limt→−∞ γ1(t). This givesE−2

λ (0). For eachn > 1 we identify

lim
t→∞γn(t)

and

lim
t→−∞γn+1(t)

to yield E−n−1
λ (0). This augmented spaceΓ may easily be embedded in the plane. See

Fig. 16. Moreover, if we extend theBi and the linesy = 0 andy = π in the natural way to
include these new points, then this yields a curve which accumulates everywhere on itself
but does not separate the plane. See the proposition above. By a theorem of Curry [11], it
follows thatΓ is indecomposable.2

As a consequence of this theorem,Λ must contain uncountably many composants (see
[22, p. 213]). In fact, in [17] it is shown thatΛ contains uncountably many curves.

4.3. Dynamics onΛ

In this section we describe completely the dynamics ofEλ onΛ.

Proposition 4.8. There exists a unique fixed pointwλ in S if λ > 1/e. Moreover,wλ is
repelling and, ifz ∈ S − orbit of 0, E−nλ (z)→wλ asn→∞.
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Proof. First consider the equation

λey coty siny = y.
Sincey coty→ 1 asy→ 0 andλe> 1, we haveλey coty siny > y for y small and positive.
Since the left-hand side of this equation vanishes wheny = π , it follows that this equation
has at least one solutionyλ in the interval 0< y < π .

Let xλ = yλ cotyλ. Then one may easily check thatwλ = xλ+ iyλ is a fixed point forEλ
in the interior ofS. Since the interior ofS is conformally equivalent to a disk andE−1

λ is
holomorphic, it follows from the Schwarz Lemma thatwλ is an attracting fixed point for
the restriction ofE−1

λ to S and thatE−nλ (z)→wλ for all z ∈ S.

Remarks.
(1) Thus theα-limit set of any point inΛ iswλ.
(2) The boundλ > 1/e is necessary for this result, since we know thatEλ has two fixed

points on the real axis for any positiveλ < 1/e. These fixed points coalesce at 1 as
λ→ 1/e and then separate into a pair of conjugate fixed points, one of which lies
in S.

We now describe theω-limit set of any point inΛ. Clearly, if z ∈ Bn thenEn+1
λ (z) ∈R

and so theω-limit set of z is infinity. Thus we need only consider points inΛ that do not
lie in Bn. We will show:

Theorem 4.9. Supposez ∈Λ andz 6= wλ, z /∈ Bn for anyn. Then theω-limit set ofz is
the orbit of0 underEλ together with the point at infinity.

To prove this we first need a lemma.

Lemma 4.10. Supposez ∈ Λ, z 6= wλ. ThenEnλ(z) approaches the boundary ofS as
n→∞.

Proof. Leth be the uniformization of the interior ofS takingS to the open unit disk andwλ
to 0. Recall thatE−1

λ is well defined onS and takesS inside itself. Theng = h◦E−1
λ ◦h−1

is an analytic map of the open disk strictly inside itself with a fixed point at 0. This
fixed point is therefore attracting by the Schwarz Lemma. Moreover, if|z| > 0 we have
|g(z)|< |z|. As a consequence, if{zn} is an orbit inΛ, we have|h(zn+1)|> |h(zn)|, and
so |h(zn)| → 1 asn→∞. 2

The remainder of the proof is essentially contained in [17] (see pp. 45–49). In that paper
it is shown that there is a “quadrilateral”Q containing a neighborhood of 0 inR as depicted
in Fig. 17. The setQ has the following properties:

(1) If z ∈Λ−⋃n Bn andz 6=wλ, then the forward orbit ofz meetsQ infinitely often.
(2) Q contains infinitely many closed “rectangles”Rk,Rk+1,Rk+2, . . . for somek > 1

having the property that ifz ∈Rj , thenEjλ(z) ∈Q butEiλ(z) /∈Q for 0< i < j .
(3) If z ∈Q but z /∈⋃∞j=k Rj , thenz ∈ Ln for somen.
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Fig. 17. The return map onQ.

(4) Ejλ(Rj ) is a “horseshoe” shaped region lying belowRj in Q as depicted in Fig. 17.

(5) limj→∞Ejλ(Rj )= {0}.
As a consequence of these facts, any point inΛ has orbit that meets the

⋃
Rj infinitely

often. We may thus define a return map

Φ :Λ∩
(⋃

j

Rj

)
→Λ ∩

⋃
j

Rj

by

Φ(z)=Ejλ(z)
if z ∈Rj . By item (4),Φ(z) lies in someRk with k > j . By item (5), it follows that

Φn(z)→ 0

for anyz ∈Λ∩Q. Consequently, theω-limit set of z contains the orbit of 0 and infinity.
For the opposite containment, suppose that the forward orbit ofz accumulates on a point

q . By the lemma,q lies in the boundary ofS. Now the orbit ofz must also accumulate on
the preimages ofq . If q does not lie on the orbit of 0, then these preimages form an infinite
set, and some points in this set lie on the boundaries of theLn. But these points lie in the
interior of S, and this contradicts the lemma. Thus the orbit ofz can only accumulate in
the finite plane on points on the orbit of 0. Since the “preimage” of 0 is infinity, the orbit
also accumulates at infinity.2

It is known [7] that there are uncountably many curves in theλ-plane having the property
that, if λ lies on one of these curves, thenEnλ(0)→∞. Consequently, for such aλ-value,
the Julia set ofEλ is again the complex plane. For theseλ-values, a variant of the above
construction also yields invariant indecomposable continua in the Julia set. Whether these
continua are homeomorphic to any of those constructed above is an open question. We plan
to discuss these constructions in a later paper.

Douady and Goldberg [18] have shown that ifλ,µ > 1/e, thenEλ andEµ are not
topologically conjugate. Each such map possesses invariant indecomposable continuaΛλ

andΛµ in S, and the dynamics on each are similar, as shown above. In fact, one can show
that each pair of these invariant sets is non-homeomorphic.

As a final remark, Lyubich has shown that eachΛλ is a set of measure 0 inS. Indeed, it
follows from his work [23] that the set of points inC whose orbits have arguments that are
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equidistributed on the unit circle have full measure. InΛλ, the arguments of all orbits tend
to 0 and/orπ , and soΛλ has measure 0 inS.

5. After the explosion

As we have mentioned, whenλ > 1/e, the Julia set ofEλ is the entire plane. In 1981,
Misiurewicz showed thatJ (E1) = C, answering a sixty-year-old question of Fatou. We
present his proof of this fact below, generalizing it to the caseλ > 1/e.

The following proposition highlights one of the differences betweenEλ(z) and
polynomials: points which tend to∞ under iteration ofEλ need not be in the stable set.

Proposition 5.1. Whenλ > 1/e, the real line is contained inJ (Eλ) and hence all
preimages of the real line lie inJ (Eλ).

Proof. LetS denote the strip| Im(z)|6 π . SupposeEjλ(z) ∈R. HenceEnλ(z)→∞. LetU
be a neighborhood ofz. ThenEiλ(U)meets the real line for alli > j . For sufficiently large
n, we have that(Eλ)′(Enλ(z)) > 2. LetBδ be a ball of radiusδ aboutEnλ(z) that is strictly
contained inEnλ(U). ThenEkλ(Bδ) contains a ball of radius 2kδ aboutEn+kλ (z), provided
the successive images of this ball lies inS (so thatEλ is one-to-one). This cannot happen
for all k, however, since eventually these balls must grow to meet the lines Imz = ±π .
Therefore the next iteration ofEλ maps points in this ball to the far left half plane. This
happens for all sufficiently largek. Thus there are points arbitrarily close toEn+kλ (z)whose
images eventually lie in the far left half plane, and so their next images lie in the unit disk
about 0. Thus the family of iterates{Enλ} does not converge uniformly to∞ onU . Hence
the family of iterates ofEλ is not a normal family onU and soz ∈ J (Eλ). 2

Thus to show thatJ (Eλ)=C, it suffices to show that inverse images of the real line are
dense inC. For this, we need several lemmas.

Lemma 5.2. | Im(Enλ(z))|6 |(Enλ)′(z)|.

Proof. If z= x + iy, we have∣∣ Im(Eλ(z))∣∣= λex |siny|6 λex |y| = ∣∣E′λ(z)∣∣∣∣ Im(z)∣∣
so that

| Im(Eλ(z))|
| Im(z)| 6 |E′λ(z)|

if z /∈R. More generally, ifEnλ(z) /∈R, we may apply this inequality repeatedly to find

| Im(Enλ(z))|
| Im(Eλ(z))| =

n−1∏
i=1

| ImEλ(E
i
λ(z))|

| Im(Eiλ(z))|
6
n−1∏
i=1

∣∣E′λ(Eiλ(z))∣∣.
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Since| Im(Eλ(z))|6 |Eλ(z)| = |E′λ(z)| we may write

∣∣ Im(Enλ(z))∣∣6 n−1∏
i=0

∣∣E′λ(Eiλ(z))∣∣= ∣∣(Enλ)′(z)∣∣. 2

Now letW denote the strip{z | | Imz|6 π/3} which is contained inS. Since orbits in
the right half plane tend to diverge from the real axis, it follows that an open set of points
in W ⊂ S have orbits that leaveS and henceW under iteration. The next lemma shows,
however, that the orbits of most of these points must eventually return.

Lemma 5.3. LetU be an open connected set. Then only finitely many of theEnλ(U) can
be disjoint fromW .

Proof. Let us assume that infinitely many of the images ofU are disjoint fromW . If
there is ann for whichEnλ is not a homeomorphism takingU onto its image, then there
existz1, z2 ∈ U , z1 6= z2, for whichEnλ(z1)=Enλ(z2). Consequently, there is aj for which

E
j
λ(z1) = Ejλ(z2)+ 2kπ i for somek ∈ Z − {0}. But thenEjλ(U) must meet a horizontal

line of the formy = 2mπ for m ∈ Z and soEj+1
λ (U) meetsR. HenceEj+αλ (U) meetsR

for all α > 0 and only finitely many of the images ofU can be disjoint fromW . We thus
conclude that eachEnλ must be a homeomorphism onU .

Now suppose there is a sequencenj such that for eachj , E
nj
λ (U) ∩ W = ∅. By the

previous lemma,|(Enjλ )′(z)| > (π/3)j for eachj and all z ∈ U . It follows that, if U
contains a disk of radiusδ > 0, thenE

nj
λ (U) contains a disk of radiusδ(π/3)j . Hence for

j large enough,E
nj
λ (U) must meet a line of the formy = 2π and again we are done.2

We can now prove

Theorem 5.4. J (Eλ)=C.

Proof. By Proposition 5.1, it suffices to show that any open set inC contains some
preimage ofR. To that end, letU be open and connected and supposeEnλ(U) ∩ R = ∅
for eachn. By Montel’s Theorem,{Enλ} is a normal family onU .

By the previous lemma, we have that at most finitely many iterates ofU are disjoint
from W . Since none of the iterates ofU meet the boundary ofS, it follows that all but
finitely many of the iterates ofU lie in S. By replacingU byEnλ(U), we may assume that
all of the iterates ofU lie in S.

Now we invoke the results of the previous section. Theω-limit set of any point inU
must be the orbit of 0 and∞. Hence the orbit ofU must enter any small neighborhood
of 0 infinitely often. But we saw above that, after entering this neighborhood, subsequent
iterates ofU move along the real axis until suddenly jumping above the exit setL1. But
this image lies outside the stripW . Since this happens infinitely often, we have infinitely
many images ofU that do not meetW . This contradiction establishes the theorem.2
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6. Hair transplants

In this section we will considerλ-values for whichλ is negative. We will see that there is
a unique bifurcation that occurs atλ=−e. On the real line this is a simple period doubling
bifurcation. But in the plane this simple bifurcation has global ramifications, though they
are not as spectacular as occurred in the saddle-node bifurcation.

Whenλ=−e,Eλ has a fixed point at−1 andE′−e(−1)=−1. Forλ <−e,Eλ has a sin-
gle repelling fixed pointrλ on the real axis; when−e< λ< 0 this fixed point is attracting.

Proposition 6.1. Supposeλ < −e. ThenEλ has a unique attracting2-cycle on the
negative real axis. Moreover, the orbit of any point on the real axis(exceptrλ) tends to
this2-cycle.

Proof. Consider the graph of

y(x)=E2
λ(x)= λeλex .

We havey ′(x) > 0 and

lim
x→∞y(x)= 0, lim

x→−∞y(x)= λ.
Moreover

y ′′(x)= y(x)(λex)(λex + 1).

Hencey ′′(x) < 0 if λex + 1< 0 whereasy ′′(x) > 0 if λex + 1> 0. Thus there is a unique
inflection point fory.

Now Eλ(−1) = λe−1 < −1 sinceλ < −e. Hencerλ < −1 since the graph ofEλ
decreases. Therefore

y ′′(rλ) < 0

and soy ′′ < 0 for x > rλ. It follows that the graph ofy crosses the diagonal exactly once
in each of the intervals(−∞, rλ) and (rλ,∞). This yields the 2-cycle, which must be
attracting sincey ′ lies between 0 and 1 at each point. The graph ofy shows that the intervals
(rλ,∞) and(λ, rλ) are mapped inside themselves byE2

λ, and so all orbits exceptrλ tend
to the 2-cycle. 2

Thus we have a typical period-doubling bifurcation whenλ=−e. In the complex plane,
this bifurcation is accompanied by a “hair transplant”. By this we mean: Whenλ > −e
the Julia set is a Cantor bouquet. Asλ approaches−e, a repelling 2-cycle approaches the
attracting fixed point, dragging with it the attached hairs. See Fig. 18. Whenλ =−e, the
fixed point becomes neutral and it now has a pair of hairs attached. Whenλ <−e, the fixed
point becomes repelling, but retains the two hairs—they have been transplanted from the
3-cycle to the fixed point.

For the remainder of this section we will consider only the caseλ = −e. We will see
how two hairs can be attached to a single point. We writeE(z)=E−e(z) for simplicity.

LetH be the half plane Rez6−1. ThenEλ(H) is the disk 0< |z|6 1.
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Fig. 18. The Julia sets forλ=−2.5 andλ=−3.5.

Proposition 6.2. E2(H)⊂H .

Proof. Consider the vertical line Rez=−1+ it for−π 6 t 6 π . We claim that Re(E2(1+
it)) <−1 if t 6= 0. Indeed, we have

y(t)=ReE2(1+ it)=−ee−cost cos(sint).

Then

y ′(t)=−ee−cost(sin(t − sint)
)
.

If 0 < t < π , sin(t − sint) > 0 and soy ′(t) < 0. If −π < t < 0, sin(t − sint) < 0 and so
y ′(t) > 0. Thereforey(t) decreases fromy(0)=−1 to y(π)=−e2 ast increases from 0
to π , and, similarly,y(t) increases from−e2 to−1 ast runs from−π to 0.

SinceE2(H) is contained inside the simple closed curve bounded byE2(1+ it), we
have the result. 2

SinceE2(H)⊂H it follows that all orbits inH andE(H) tend to the neutral fixed point
at−1. These two regions are called attracting petals.

ConsiderE−1(H). This set consists of infinitely many “fingers” that surround the
horizontal line Imz = 2kπ , Rez > −1. We denote each finger byFk , where−1+ 2kπ i
is the preimage of−1 lying in Fk . SinceE(Fk)=H , it follows that all points inFk have
orbits tending to−1. Note thatF0 contains the diskE(H) and in fact the segment[−1,∞)
in the reals. See Fig. 19.

Now considerE−1(F0). CertainlyE−1(F0) ⊃ H sinceH is mapped toE(H) ⊂ F0.
E−1(F0) also contains the straight lines Imz= (2k+1)π , Rez>−1, since these lines are
mapped to the half line(−∞,−e) which is properly contained inH . Finally,E−1(F0) is
simply connected and contains all preimages of anyz ∈ F0 (except 0).E−1(F0) resembles
a “glove” since it separates each of the fingers as shown in Fig. 20.
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Fig. 19. The fingersFk .

Fig. 20. The gloveE−1(F0).

Let G denote the gloveE−1(F0). Then all points in the interior ofG ∪ (⋃n Fn) lie in
the stable set forE as all orbits tend to−1. Note that−1 and its preimages lie on the
boundary ofG∪ (⋃n Fn). These points do not lie in the stable set as rationally indifferent
fixed points always lie inJ (E).

Now consider the component of the complement ofG that containsF0. F0 divides this
region into two open sets,S±, S+ lying aboveF0, S− below. Using arguments as in
Section 3 one can check that, there is a unique hairγ± in J (E) that lies inS± ∩ {Rez > γ }
for γ sufficiently large. Indeed,E(γ+)= γ− andE(γ−)= γ+. The existence of these hairs
in the far right half plane may be verified by considering rectanglesR±(t) centered at
t ± iπ/2 and having vertical heightπ . Note thatE mapsR+(t) to the half plane Imz6 0
while R− is mapped to the upper half plane. Constructing strings of such rectangles give
points whose orbits hop back and forth betweenS+ andS−.
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One checks easily that the bounded regions

S± ∩ {Rez6 η}
are mapped completely over each other, asE(S+)⊃ S− andE(S−)⊃ S+. Hence we can
pull the hairsγ± back by a branch of the inverse ofE in each ofS+ andS−. The only
place that these pulled back hairs can limit is the fixed point at−1. Hence we see that,
whenλ=−e, the neutral fixed point has two hairs attached.

What happens is this: as long asEλ has an attracting fixed point, all repelling periodic
points have unique hairs attached. But asλ tends to−e alongR−, a repelling 2-cycle
merges with the attracting fixed point to produce the neutral fixed point at−1. This
bifurcation is a “hair transplant”.

Note that there are infinitely many preimages of−1 underE−1,E−2, . . . . Hence there
are infinitely many other points inJ (E) that have 2 hairs attached.

6.1. Other examples

For complexλ-values, one often encounters Julia sets with multiple hairs attached.
For example, in Fig. 21, we display the Julia set whenλ = 5+ iπ . It is relatively easy

to check that this exponential admits an attracting 3-cycle. Note that there seem to be three
hairs attached at various points in the plane.

In Fig. 22, we display the Julia set whenλ= 10+ 3π i. This map also has an attracting
cycle of period 3. Note that different hairs now seem to be attached. In contrast, the Julia
set forλ= 3.14i (Fig. 23) shows that the structure of the attached hairs can be extremely
complicated.

Fig. 21. The Julia set forλ= 5+ π i.
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Fig. 22. The Julia set forλ= 10+ 3π i.

Fig. 23. The Julia set forλ= 3.14i.

One can use a “kneading invariant” to characterize which hairs are attached in caseEλ

admits an attracting cycle. See [7]. The full story here, however, is not yet complete.
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