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1. Introduction

Our goal in this paper is to describe some of the interesting topology that arises in the
dynamics of entire functions such as the complex exponential fafily) = Ae*. We will
see that the important invariant sets for this family possesses a extremely rich topological
structure, including such objects as Cantor bouquets, Knaster continua, hair transplants,
and explosion points.

For a complex analytic functio, the interesting orbits lie in thdulia set which we
denote byJ (E). This is the set on which the map is chaotic. For the exponential family,
the Julia set of; has three characterizations:

(1) J(Ey) is the set of points at which the family of iteratesif, { E7} is not a normal
family in the sense of Montel. This is the characterization that is most useful to
prove theorems.

(2) J(E,) is the closure of the set of repelling periodic points Bf. This is the
dynamical definition of the Julia set.

(3) J(Ey) is the closure of the set of points whose orbits tendxto This is the
characterization that is most useful to compute the Julia set.

We remark that characterization 3 differs from the case of polynomial iterations, where the
Julia set is thévoundaryof the set of escaping orbits. The reason for the differendg, is

has an essential singularity &, while polynomials have superattracting fixed points at
oo. The equivalence of (1) and (2) was shown by Baker, see [6]. The equivalence of (1)
and (3) is shown in [19].

In this paper we will concentrate on the dynamicggfwherea is real. Fori positive,
the Julia set folE; undergoes a remarkable transformation.gsmsses through/g. We
will show below thatE; possesses an attracting fixed pointwhen0 < 1/e. All points in
the left half plane have orbits that tend to this fixed point. Indeed, the full basin of attraction
of this fixed point is open and dense in the plane.
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Fig. 1. A Julia set fon. < 1/e.

We will show that the complement of the basin(E,), is a Cantor bouquetfor
0 < 1 < 1/e. Roughly speaking, a Cantor bouquet has the property that all points in the set
lie on a curve (or “hair”) homeomorphicto a closed half line. Each of these curvegin)
extend tooco in the right half-plane. All repelling periodic points and points with bounded
orbits lie at the endpoints of the curves, while points that do not lie at the endpoints have
unbounded orbits. Since repelling periodic points are dengéin ), the endpoints of the
Cantor bouquet must be densefifiE,). Indeed, we will show that the set of endpoints is
a totally disconnected set, but that the set of endpoints together with the point at infinity
forms a connected set, a result due to Mayer [24].

In Figs. 1 and 2 we display a computer graphics rendering of the Julia $&t fufr a
particulara with 0 < A < 1/e. This image was computed using characterization (3) of the
Julia set: Points are shaded in white and grey if their orbits ever enter the region R&

The complement of the Julia set is displayed in black. It appears that this Julia set contains
large open sets, but this in fact is not the case. The Julia set actually consists of uncountably
many curves lying in the Cantor bouquet and extendingptn the right half plane. These
curves are packed together so tightly that the resulting set has Hausdorff dimension 2, thus
giving the appearance of an open set. See Fig. 2.

At A = 1/e, E; undergoes a simple saddle-node bifurcation. The attracting fixed point
merges with a repelling fixed point at thisvalue, producing a neutral fixed point. When
A > 1/e, this neutral fixed point gives way to a pair of repelling fixed points.

This apparently simple bifurcation has profound global ramifications. Wheril /e,
the Julia set is a nowhere dense subset of the right half plane. However whérie,
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Fig. 2. Magnification of a Julia set far< 1/e.

Fig. 3. The Julia set fox > 1/e.

J(E;) suddenly becomes the whole plane. No new repelling periodic points (except the
two fixed points involved in the saddle-node) are born in this bifurcation; all simply move
smoothly as\ crosses through/z. Yet somehow, as soon asexceeds Je, the repelling
periodic points become denseh
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In Fig. 3 we display the Julia set fdt, for a particularr > 1/e. Note the striking
difference between this image and that in Fig. 1.

At this bifurcation, the attracting fixed point and its entire basin of attraction disappear.
Most of the points in the Cantor bouquet remain in the Julia set. However, a new and
interesting topological invariant set arises. We will show that this set is an indecomposable
continuum on which most orbits cycle toward the orbit of 0 and

Whenax is complex but close to the real axis (Re- 1/e), the dynamics of; undergoes
remarkable changes. We will show that in any neighboriidad 1 > 1/e in the parameter
plane, there is a positive integ8rsuch that for any. > N there is a\,, € U for which the
corresponding exponential has an attracting cycle of periétencek), is not structurally
stable for any. > 1/e.

This paper is a summary of a series of lectures delivered by the author at the Summer
Conference on Topology and Its Applications held at the C.W. Post Campus of Long Island
University in August, 1999.

2. Exponential dynamics

As in the often-studied quadratic famil9.(z) = z2 + ¢, it is the orbit of 0 that plays
a crucial role in determining the dynamics &f,. For the exponential family, O is an
asymptotic value (an omitted value) rather than a critical point. Nevertheless, any stable
domain in the complement of the Julia seti)f must be associated with the orbit of 0 in
the following sense:

Theorem 2.1. SupposeE; has an attracting or rationally neutralparabolic) periodic
point. ThenE?’ (0) must tend to the attracting or neutral cycle. If, on the other hand,
E}(0) — oo, thenJ(E;) =C.

The proof of the first statement in this theorem is a classical fact that goes back to
Fatou. The second follows from the Sullivan No Wandering Domains Theorem [29], as
extended to the case of the exponential by Goldberg and Keen [21] and Eremenko and
Lyubich [20]. Rather than rely on this big machinery, we will give a bare-hands approach
due to Misiurewicz [26] to show that(E,) = C wheni > 1/e in Section 5.

Consider for the moment the restriction Bf to the real line. The exponential family
undergoes a saddle node bifurcatioriat 1/e since, wherk = 1/e, the graph offy/e
is tangent to the diagonal at 1. See Fig. 4. We hyg(l) =1 andE’l/e(l) =1. When
A < 1/e, the graph off, lies above the diagonal and all orbits (including 0) tendxto
When < 1/e, the graph ok, crosses the diagonal twice, at an attracting fixed pgint
and a repealing fixed poimj,. For later use note that9 a; < 1 < r;. Note also that the
orbit of 0 tends tay,, as it must by Fatou's theorem. See Fig. 4.
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Fig. 4. The graphs of; for A =1/e andx < 1/e.
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Fig. 5. The graph ofz (x) = (1/e)€*.

3. Cantor bouquets

In this section, we begin the study of the dynamic&gfoy considering the case where
A < 1/e. We show here that(E,) is aCantor bouquet

Here is a rough idea of the construction of a Cantor bouquet. We will “tighten up” these
ideas in following sections.

Let E(z) = (1/e)¢*. We haveE(1l) =1 andE’'(1) = 1. If xo € R andxp < 1, then
E"(x0) tends to the fixed point at 1. My > 1, thenE" (xg) — co asn — oo. This can be
shown using the web diagram as shown in Fig. 5.

The vertical line Re = 1 is mapped to the circle of radius 1 centered at the origin. In
fact, E is a contraction in the half plang to the left of this line, since

1
|E'(2)| = A exp(Rez) <1
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Fig. 6. The preimage off consists of and the shaded region.

if z € H. Consequently, all points iH have orbits that tend to 1. Hence this half plane lies
in the stable set, i.e., in the complement of the Julia set. We will try to paint the picture of
the Julia set o by painting instead its complement.

Since the half plané? is forward invariant undef, we can obtain the entire stable
set by considering all preimages of this half plane. Now the first preimagg aértainly
contains the horizontal lines Im= (2k 4+ 1), Rez > 1, for each integek, sinceE maps
these lines to the negative real axis which lieginHence there are open neighborhoods
of each of these lines that lie in the stable set. The first preimaggisfshown in Fig. 6.

The complement of2~1(H) consists of infinitely many “fingers”. The fingers arkn2
translates of each other, and each is mapped onto the complementary half pfapd Re

We denote the fingers in the complementfofl(H) by C; with j € Z, whereC;,
contains the half line Im= 2z, Rez > 1, which is mapped into the positive real axis.
That is, theC; are indexed by the integers in order of increasing imaginary part. Note that
C;j is contained within the strip

7 T
—§+2jn<|mz<§+2jn.

Now eachC; is mapped in one-to-one fashion onto the entire half plane Rd..
Consequently eacli’; contains a preimage of each oth&. Each of these preimages
forms a subfinger which extends to the right in the half pldifie See Fig. 7. The
complement of these subfingers necessarily lies in the stable set.

Now we continue inductively. Each subfinger is mapped onto one of the original fingers
by E. Consequently, there are infinitely many sub-subfingers which are mappedigshe
by E2. So at each stage we remove the complement of infinitely many subfingers from each
remaining finger.

This process is reminiscent of the construction of the Cantor set in the dynamics of
polynomials when all critical points tend t. In that construction, the complements of
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Fig. 7. The second preimage &f in one of the fingerg”;.

disks are removed at each stage; here we remove the complement of infinitely many fingers.
As a result, after performing this operation infinitely many times, we do not end up with
points. Rather, as we will see, the intersection of all of these fingers, if nonempty, is a
simple curve extending teo.

This collection of curves forms the Julia sét.permutes these curves and each curve
consists of a well-defined endpoint together with a “hair” which extendsctolt is
tempting to think of this structure as a “Cantor set of curves”, i.e., a product of the set
of endpoints and the half-line. However, this is not the case as the set of endpoints is not
closed.

Note that we can assign symbolic sequences to each point on these curves. To do this,
we attach an infinite sequenggss . . . to each hair in the Julia set via the rul¢:e Z and
s; =k if the jth iterate of the hair lies i€',. The sequencesisz. .. is called thétinerary
of the curve.

For example, the portion of the real life | x > 1} lies in the Julia set since all points
(except 1) tend tec under iteration, not to the fixed point. These points all have itinerary
000....

One temptation is to say that there is a hair corresponding to every possible sequence
sos1s2. ... This, unfortunately, is not true, as certain sequences simply grow too quickly to
correspond to orbits of..

So this isJ(E): a “hairy” object extending towardo in the right-half plane. We call
this object aCantor bouquetWe will see that this bouquet has some rather interesting
topological properties as we investigate further.

We remark that the same construction works & Q. < 1/e. We still define the half
planeH as the set Re< 1. As we saw earlier, the point 1 on the real axis sits between
the attracting fixed poin&;, and the repelling fixed point,, and soE; (1) < 1 and as
a consequencé; (H) is strictly contained inH. The construction of the fingers now
proceeds exactly as above.

3.1. Straight brushes

To describe the structure of a Cantor bouquet in more detail, we need to introduce the
notion of astraight brush
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To each irrational numbegs, we assign an infinite string of integengniny... as
follows. We will break up the real line into open intervalg,,. ,, which have the
following properties

(1) Ino...nk D) Ino...nk+1-

(2) The endpoints of,,.,, are rational.

(3) ; = ml?il Ino...nk-

Now there are many ways to do this. We choose the following method based on the
Farey tree. Inductively, we first define = (k, k + 1). Givenl,, ,, we definel,, ,,; as
follows. Let

oy
I"O-~-"k = (Ev E)

Let po/go= (@ + y)/(B + ), the Farey child of/8 andy /§. We write
o Y _Po

B8 qo
to indicate the Farey child of these fractions. lpgt/¢, be the Farey child op,,—1/¢,—1
andy /8 forn > 0, and letp,,_1/q,—1 be the Farey child fo&/8 andp, /g, forn > 0. We
then setl,,.. ., ; to be the openinterval;/q;, pj+1/q;+1)-

Example. Io = (0,1). The Farey child of? and } is 3, s0 po/qo = 3. Then p1/q1 =
%@%=%,p2/q2=%@%z%,andpn/qnzz%forn>0.

For negative: we have

p-1 0 1 1
g1 12 3
p—2 0O 1 1
— 1%377
p—n 1
G-n n+2

Therefore, ifn > 0,
I — n+l n+2
On = n+2"n+3
and ifn <O,

(1 1
o=\ 2 Shra)

See Fig. 8. Note that we exhaust all of the rationals via this procedure, so each irrational is
contained in a uniqué,,, ...
We now define a straight brush, a notion due to Aarts and Oversteegen [2].
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Fig. 8. Construction of,.

Definition 3.1. A straight brushB is a subset of0, co) x N, where\ is a dense subset
of R — Q. B has the following 3 properties.

(1) B is “hairy” in the following sense. I{y, @) € B, then there exists §, < y such
that (¢, @) € B iff t > y,. That is the “hair’(¢, ) is contained inB wherer > y,.
yq is called the endpoint of the hair correspondingto

(2) Given an endpointy,, @) € B there are sequenc@s 1 o andy, | « in N such
that(yg,. 1) = (Va. @) @and(yy,, y») = (Yo, @). Thatis, any endpoint of a hair in
B is the limit of endpoints of other hairs from both above and below.

(3) Bis aclosed subset &2

The following facts are easily verified:

(1) For any rational number and any sequence of irrationals € N with «, — v, it
can be shown that the hairg,, , o, ] must tend ta(co, v) in [0, co] x R.

(2) Condition (2) above may be changed to(yf «) is any point inB (y need not
be the endpoint of the-hair), then there are sequenggs?t «, y, | « so that
(V8. Bn) = (v, ) and(yy,, ya) = (y,) in B.

(3) Let(y, ) € B and suppose is not the endpoing,. Then(y, «) is inaccessible in
R? in the sense that there is no continuous cyrvg0, 1] — R? such that/ (1) ¢ B
for0O<t <landy(1) = (y,a).

(4) On the other hand, the endpoint,, «) is accessible ifR?2.

These facts show that a straight brush is a remarkable object from the topological point
of view. We view a straight brush as a subset of the Riemann sphere aBtiseB U oo,
i.e., the straight brush with the point at infinity added. Eatenote the set of endpoints of
B, and letf* = £ U co. Then we have the following result, due to Mayer [24]:

Theorem 3.2. The set£* is a connected set, bétis totally disconnected.

That is, the seE* is a connected set, but if we remove just one point form this set, the
resulting set is totally disconnected. Topology really is a weird subject!

The reason for this is that, if we draw the straight line in the plgne) wherey is a
fixed rational, and then we adjoin the point at infinity, we find a disconnectiéh dhis,
however, is not a disconnection &f. Moreover, the fact that any non-endpoint&nis
inaccessible shows that we cannot disconéédty any other curve.

Remark. Aarts and Oversteegen have shown that any two straight brushes are ambiently
homeomorphic, i.e., there is a homeomorphisi®taking one brush onto the other. This
leads to a formal definition of a Cantor bouquet.
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Definition 3.3. A Cantor bouquet is a subset@fthat is homeomorphic to a straight brush
(with co mapped tax).

Our main goal in this section is to sketch a proof of the following result. For more details,
see [2].

Theorem 3.4. Suppos® < A < 1/e. ThenJ(E,) is a Cantor bouquet.

We now describe the construction of the homeomorphism between the brugliand
To do this, we first introduce symbolic dynamics. Recall thahas a repelling fixed point
r, > 0in R and that the half plane Re< r,, lies in the stable set. Similarly the horizontal
strips

—% 42k <Imz < % + o

are contained in the stable set sirgemaps these strips to Re< 0 which is contained in
Rez < ry.
Letv, = —Ini. SOE, (vy) =1 and sov, < r;. FiX wy € (v;,r;). Then the half plane
Rez < w; also lies in the stable set, and we haie(z)| > 1 in the half plane Re> w,.
We denote bys, the closed halfstrip given by

Rez > w; and —%+2kn<|mz§%+2kn.

Note that these strips contain the Julia set since the complement of the strips lies in the
stable set.
Givenz € J(E,), we define the itinerary of, S(z), as usual by

S(z) = sos152...,

wheres; € Z ands; = k iff E{ (z) € Sx. Note thatS(z) is an infinite string of integers that
indicates the order in which the orbit glvisits thesS;. We will associate tq the irrational
number given by the itinerary af(in the decomposition of the irrationals described above).
This will determine the hair in the straight brush to whicks mapped. See Fig. 9. Thus
we need only define thg-value along this hair. This takes a little work.

Given z on a hair, we will construct a sequence of closed rectanB}gs) for each
k > 0. By construction, the&k,(z) will be nested. EaclR,(z) will have sides parallel to
the axes and be contained in some s§jp Finally eachR (z) will have heightr. Since
the R (z) are nested with respect g the intersectionR(z) = (e Rk (z) will be a
nonempty rectangle of height that containg. We then definé(z) to be the real part of
the left hand edge of this limiting rectangle. _

To begin the construction, fare J(Ej), we setRo(E{ (z)) to be the square centered
around the line Re= ReE-,{' (z) with sidelengthr and contained in the stri§, where
o =s;. We assume that Re > w, in Ro(E;('(z)) for all w e RO(E;(' (z)) and for all j;
otherwise we choose the rectangle

Ro(EJ (2)) N {Rez > w;)



e |n|t|a OX. &, (Ro(E; ( )) ( ()) Indeed, the image
( ( ) i nnulus Whose inner é2| ( )] and outer radius
e/ | 1 )| e”/2 >4 and e™2 <1 s0 the image annulus is much larger than
Ro(Ej )
It foIIo angle ( /\( 7)) strictly contained in

ws t at we ma
Ro(E ( )) g the property that the hei ht dfl(E/{(z)) is 7 and the image
E; (R ( ( ))) ( ( ». T (E){(z)) is the smallest rectangle in
Ro(E ( )) mage annulus is jUSt Wide enough so Rtﬁ(TE‘){+l(z)) fits inside. See
Fig.

£/ (2) € Ri(EL(2)) fo
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\ . \RO(EA(Z))

\

/
_

R1(z)

Fig. 11. Construction oR1(0).

Fig. 12. The intersection a; (0).

We now continue inductively by settiﬂg((E{ (z)) to be the subrectangle Bﬁc_l(E{ ()

whose image just coverRk,l(Ef’l(z)). The Rk(E‘){(z)) are clearly nested for each
fixed j.

Example. Suppose = r;. We have thaRp(z) is the square bounded by Re- r; + /2
(or the rectangle bounded by Re-r, + /2 and Re = w, if r; is close to 1) and
Imz = +7/2 for eachj. One may check thdf);2 ;, R« (z) is the strip bounded by Re=r;,
and Re; = ¢ where the circle of radiuse passes through+in/2. See Fig. 12.

Supposez has itineraryS(z) = sos1s2.... Let 1(S(z)) denote the irrational number
determined by the sequengé;) as above. Then sét(z) = (h(z), I (S(z))). We now claim
that¢ is a homeomorphism onto a straight brush. The proof is adapted from [17] and [2].

Let B;, denote the image of (E;) underg. We first show thap is a homeomorphism
onto B;. We will show later thatB;, is a straight brush.
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We need the following lemma.

Lemma 3.5 (Expansion Lemma)Suppose 1, z2 € J(E;) and S(z1) = S(z2). If z1 # 22
then|EX (z1) — EX(z2)| — o0 ask — oo.

Proof. Suppose thaitE’){(zl) - El)f(12)| < M forall k. There is a well-defined brandl, ;

of the inverse ofE; that maps the strimj+1 into Ss; and E;('H(zi) to E,( (z;). Clearly,
L,.; is a contraction for eachin Rez > r,. Thus

o »
|Lioo---oL; j(E 7 (z1) = Ligo---o Ly j(E] ™ (22))]

tends to 0 sinc¢E! " (z1) — E/ " (z)| is bounded.

We first claim thatp is one-to-one. Suppose not. Then there exist € J(E;) with
21 # 22 but¢(z1) = ¢(z2) = (1, I(S(z1))). Then the left-hand edges & (E; (z1)) and
Roo(E{(zz)) are the same for alj. But then|E{(z1) — E;{(ZZ)| < 2r for all j. This
contradicts the Expansion Lemma.

Next we prove continuity of. If zo andz; are close, then the first terms of their
itineraries must agree and 9@S(zg)) must be close td (S(z1)). So suppose there is
a sequence; — zo in J(E,), but |h(z;) — h(zo)| > §. Then the difference of the inner
radii of the annuli covered b\, (Rx(z;)) and E; (Rx(z0)) is at leastcs for some
constantc > 1. Some elementary geometry shows that the distance betw@eriz;))
andh(E, (zo)) is also larger thars > §. Continuing, we see that the left hand edges of
Ry (z;) must eventually differ fromh(E’;(zo)) by at leastr. This contradicts the fact that
E}(zi) = E}(20).

The continuity ofgp—1 follows similarly. Hencep is a homeomorphism onto its image.
It remains to show thag (J (E})) is a straight brush.

We first show that the image of(E)) underg projects onto a dense set of irrationals.
Let; e R — Q. Say¢ = Lignyn,.... Letng = (non1...ng). Theng, = I, converges tq as
k — oo with itineraryn; . We will produce a point iV (E,) with this itinerary.

Supposen = maxg j<n, [1j]. Choosex so thatEj (x) > x + |m|r + /2. Let Si(x)
denote the rectangle iy, with heightz and satisfying, < Rez < x. ThenE; (S, (x))
coverssS,; (x) for any pair of indices:; andn; since the right border of,,, (x) is mapped
to a semi-circle which lies further from the origin thant im. Consider

Lk,no 0---0 L)L,nk,l o Lk,nk |Sno(x)-

This inverse contracts,, (x) strictly inside itself. Hence by the Schwarz Lemma, this map
has a unique fixed poinf, andz;, has itineraryz,. Note thatz;, has period + 1 for E;,
and is repelling.

We single this fact out as a corollary.

Corollary 3.6. Lets =5p...s, be a repeating sequence. Then there is a unique repelling
periodic pointinJ (E;) that has itinerarys.

The uniqueness part of this result follows from the Expansion Lemma.
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The fact thatp (J(E})) is hairy follows from the fact that i (z) = (¢, s) then for any
¢ >1t, ¢~ s) is a point inJ(E,). Indeed, letRy denote the square iy, with side
lengthz and left hand boundary on the line Re-¢'. E;(Rp) is an annulus that maps
acrossS;, since we know that a rectangle with side onzRet < " has this property. Let
R1 be the square of sidelengththat lies inS;, and meets the image of Re= " at just
one point. TherE, (Ro) D R1. Now continue in this fashion, defining the squég 1 to
be the square if;,,, with side lengthr just meeting the inner boundary &f (Ry). Then
using the expansion lemma there is a unique pgimthose orbit travels through th® in
order. Note that(z") = ¢ by construction.

Corollary 3.7. If s = (50...s%), then the endpoint of the hair corresponding/t@) is a
repelling periodic point.

Proof. We have already constructed such a pejntf z has itinerary andh(z) < h(zs),
the above proof shows that the orbitzofmust be bounded. This contradicts the Expansion
Lemma.

We emphasize that, even though most hairs spiral in to their respective endpoints, the
map¢ is still one-to-one.

Remarks.

(1) If s = (sos1s2...) is a bounded sequence, then the endpoint of the hair also has a
bounded orbit. Ifs is unbounded then the endpoint has an unbounded orbit. This
orbit tends toco but does so at a slower rate than points on the corresponding hair.

(2) It can be shown that the construction above works for any exponential for which
there exists an attracting or neutral periodic point. See [19]. However, in the general
case, some of the hairs in the Cantor bouquet may be attached to the same point in
the crown. We discuss this briefly in Section 6. See [8].

(3) McMullen [25] has shown that the Hausdorff dimension of the Cantor bouquet
constructed above is 2 but its Lebesgue measure is zero. This accounts for why
Figs. 1 and 2 seem to have open regions in the Julia set.

3.2. Uniformization of the attracting basin

The basin of attractio?, of E; is an open, dense, and simply connected subset of
the Riemann sphere. Hence the Riemann Mapping Theorem guarantees the existence of
a uniformizationg, : D — £2,. Given such a uniformization, it is natural to ask if the
uniformizing map extends to the boundaryof

In order to extendp, to the boundary, we need that the image ungleof a straight
ray ré?, wheref is constant, to converge to a single pointras- 1. It is known that if
the boundary of the uniformizing region is locally connected, then ingaaoes extend
continuously taD. On the other hand, if the boundary of the region is not locally connected,
then not all rays need converge (though a full measure set of them must converge). In our
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case, the boundary a®, is nowhere locally connected (exceptaf). However, it is a
fact that all rays do converge. Moreover, they land at precisely the endpoints of the Cantor
bouquet andw. This means that we can induce a map on the set of endpoints, but that map
is necessarily nowhere continuous [27].

In the case of a straight brush, it is clear that all rays do land at the crown of the bouquet.
A direct proof forE,_is given in [14].

In fact, it can be shown that, if we normalize the Riemann iago that 0 is mapped
to 0, then the induced majg 1o Ej o ¢, on the unit disk is given by

_ St
Tu(2) = exp<|(—1+ . ))

Hereu is a parameter that lies in the upper half plane and dependsiupon

4. Indecomposable continua

We now consider the case> 1/e. Since the orbit of 0 tends te, the Julia set is now
the entire plane (we will prove this in the next section). For thesalues, the attracting
basin for the attracting fixed poinj, disappears. What replaces itis a complicated invariant
set that is an indecomposable continuum. We describe the construction of this set in this
section.

Consider the horizontal strip

S={z|0<Imz <7}

(or its symmetric image under— 7). The exponential mag, takes the boundary of

to the real axis and the interior 6fto the upper half plane. Thug, maps certain points
outside ofS while other points remain ir$ after one application of;. Our goal is to
investigate the set of points whose entire orbit liSirCall this setA. The setA is clearly
invariant underk,. There is a natural way to compactify this set in the plane to obtain a
new setl". Moreover, the exponential map extenddtdn a natural way. Our main results

in this section include:

Theorem 4.1. I" is an indecomposable continuum.

Moreover, we will see thatA is constructed in similar fashion to a family of
indecomposable continua knownlésaster continuaSee [13] for additional details.

As we will show in Section 4.2, the topology of is quite intricate. Despite this, we
will show that the dynamics af; on A is quite tame. Specifically, we will prove:

Theorem 4.2. The restriction ofE; to A — {orbit of 0} is a homeomorphism. This map
has a unique repelling fixed point; € A, and thex-limit set of all points inA is w;. On
the other hand, it € A, z # w;, then thew-limit set ofz is either

(1) The point atoo, or

(2) The orbit of0 underE; together with the point ato.
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Fig. 13. The Knaster continuum.

Thus we see thak, possesses an interesting mixture of topology and dynamics in the
case where the Julia set is the whole plane. In the plane the dynamics afe quite
chaotic, but the overall topology is tame. On our invariantsdtowever, it is the topology
that is rich, but the dynamics are tame.

4.1. Topological preliminaries

In this section we review some of the basic topological ideas associated with
indecomposable continua. See [22] for a more extensive introduction to these concepts.
Recall that a continuum is a compact, connected space. A continuum is decomposable
if it is the union of two proper subcontinua. Otherwise, it is indecomposable. A well-
known example of an indecomposable continuum is the Knaster continkiu@ne way
to construct this set is to begin with the Cantor middle-thirds set. Then draw the semi-
circles lying in the upper half plane with center(af2, 0) that connect each pair of points
in the Cantor set that are equidistant froff2 1Next draw all semicircles in the lower half
plane which have for each> 1 centers at5/(2 - 3*), 0) and pass through each point in
the Cantor set lying in the interval

2/3"<x <13t

The resulting set is partially depicted in Fig. 13.
For a proof that this set is indecomposable, we refer to [22]. Dynamically, this set
appears as the closure of the unstable manifold of Smale’s horseshoe map (see [4,28]).
Note that the curve passing through the origin in this set is dense, since it passes through
each of the endpoints of the Cantor set. It also accumulates everywhere upon itself. Such
a phenomenon gives a criterion for a continuum to be indecomposable, as was shown by
Curry.

Theorem 4.3. SupposeX is a one-dimensional nonseparating plane continuum which is
the closure of a ray that limits upon itself. Th&nis indecomposable.
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Fig. 14. A different construction of the Knaster continuum.

We refer to [11] for a proof.

Another view of the Knaster continuum which is intimately related to our own
construction is as follows. Begin with the unit squaigin the plane. Next remove a
“canal” C1 from So whose boundary lies within a distancg3lof each boundary point
of Sp as depicted in Fig. 2. Call this s6f. Next remove a new candl, from S;. This
time the boundary of'» should be within 1/9 of the boundary 8f as depicted in Fig. 14.

It is possible to continue this construction inductively in such a way that the resulting set
is homeomorphic to the Knaster continuum.

4.2. Construction ofA

Recall that the strify is given by{z | 0 < Im(z) < w}. Note thatE, mapsS in one-to-
one fashion ontdz | Imz > 0} — {0}. HenceE;l is defined or§ — {0} and, in fact,E; " is
defined for allz on S — {orbit of 0}. We will always assume thdt, " meansE, " restricted
to this subset of.

Define

A={z| E}(z) e Sforalln>0}.

If z € A it follows immediately thatE} (z) € S for all n € Z providedz does not lie on the
orbit of 0. Our goal is to understand the structuretof

Toward that end we defing, to be the set of points if that leaveS at precisely the
nth iteration ofE; . That s,

Ly={zeS|Ei(z)eSfor0<i <nbutE}(z) ¢ S}.

Let B, be the boundary of.,,.

Recall thatE, maps a vertical segment ifi to a semi-circle in the upper half plane
centered at 0 with endpoints iR. Either this semi-circle is completely containedSn
or else an open arc lies outside As a consequencd,; is an open simply connected
region which extends too toward the right inS as shown in Fig. 15. There is a natural
parametrizationy; : R — Bj defined by

Ey(1(0) =1 +im.
As a consequence,

[_IlToo Rey1(t) = oo.
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@ o

Fig. 15. Construction of th&,,.

If ¢ > 0is large, the segment Be=c in S meetsS — L1 in two vertical segments,
andv_ with Imv_ > Imuv,. E, mapsv_ to an arc of a circle ir§ N {z | Rez < 0} while
E; mapsv, to an arc of a circle irf N {z | Rez > 0}. As a consequence, dfis large, v
meetsLy in an open interval. Sincés = E;l(Ll), it follows that L, is an open simply
connected subset ¢fthat extends tao in the right half plandelow L.

Continuing inductively, we see thdt, is an open, simply connected subsetSothat
extends taxo toward the right inS. We may also parametrize the bounda#yof L, by
vn R — B, where

El(yn()) =1 +im
as before. Again
lim Rey,(t) = cc.
t—*+o0

Since eacll, is open, it follows thatA is a closed subset ¢f.
Proposition 4.4. Let J, = J;2,, B;. ThenJ, is dense inA for eachn > 0.

Proof. Letz € A and suppose ¢ B; for anyi. Let U be an open connected neighborhood
of z. Fixn > 0. SinceEf\ (z) € Sforall i, we may choose a connected neighborhdad U
of z such thatg} (V) c Sfori =0,...,n.

Now the family of functions{Ei} is not normal onV, sincez belongs to the Julia
set of ;. Consequentlyl J:2, Ef\(V) coversC — {0}. In particular, there i&: > n such
that E}" (V) meets the exterior of. Since E{'(z) € S, it follows that E}" (V) meets the
boundary ofS. Applying E; ", we see thaB,, meetsV .

In fact, it follows that for any; € A and any neighborhood of z, all but finitely many
of the B,, meetV. This follows from the fact thak, has fixed points outside ¢f (in fact
one such point in each horizontal strip of width2-see [17]), so we may assume that
E}" (V) contains this fixed point for all sufficiently large. In particular, we have shown:

Proposition 4.5. Letz € A and suppose thdt is any connected neighborhoodzofThen
E (V) meets the boundary Sffor all sufficiently largemn.

Proposition 4.6. A is a connected subset §f
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/ A !

Fig. 16. Embedding" in the plane.

Proof. Let G be the union of the boundaries of tlig for all i. Since A is the closure
of G, it suffices to show tha; is connected. Suppose that this is not true. Then we can
write G as the union of two disjoint set$ and B. One of A or B must contain infinitely
many of the boundaries of the . SayA does. But then, ib € B, the previous proposition
guarantees that infinitely many of these boundaries meet any neighborhbod&fceb
belongs to the closure of. This contradiction establishes the result.

We can now prove:

Theorem 4.7. There is a natural compactificatioi' of A that makesl™ into an inde-
composable continuum.

Proof. We first compactifyA by adjoining the backward orbit of 0. To do this we identify
the “points” (—oo, 0) and (—oo, ) in S: this givesE;l(O). We then identify the points
(00, ) and lim_, _oo y1(¢). This givesE;z(O). For eachn > 1 we identify

lim (1)
t—00
and
lim  y,41(2)
t——00

to yield E;"*l(O). This augmented spadé may easily be embedded in the plane. See
Fig. 16. Moreover, if we extend th®; and the linesyy =0 andy = 7 in the natural way to
include these new points, then this yields a curve which accumulates everywhere on itself
but does not separate the plane. See the proposition above. By a theorem of Curry [11], it
follows thatI" is indecomposable. O

As a consequence of this theoremmust contain uncountably many composants (see
[22, p. 213]). In fact, in [17] it is shown that contains uncountably many curves.

4.3. Dynamics om
In this section we describe completely the dynamic&pbn A.

Proposition 4.8. There exists a unique fixed poiwf, in S if A > 1/e. Moreover,w, is
repelling and, ifz € S — orbit of 0, E; " (z) — w; asn — oo.
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Proof. First consider the equation
1€ siny = y.

Sincey coty — 1 asy — 0 andie > 1, we havere’ °°% siny > y for y small and positive.
Since the left-hand side of this equation vanishes whenr, it follows that this equation
has at least one solution in the interval O< y < 7.

Letx, = y, coty,. Then one may easily check thaf = x; + iy, is a fixed point forE,,
in the interior ofS. Since the interior o is conformally equivalent to a disk arid;l is
holomorphic, it follows from the Schwarz Lemma thaf is an attracting fixed point for
the restriction ofE;l to S and thatt, " (z) — w; forall z € .

Remarks.
(1) Thus thex-limit set of any point inA is w,.
(2) The bound. > 1/e is necessary for this result, since we know thahas two fixed
points on the real axis for any positive< 1/e. These fixed points coalesce at 1 as
A — 1/e and then separate into a pair of conjugate fixed points, one of which lies
in S.

We now describe the-limit set of any point inA. Clearly, ifz € B, then E;’Jrl(z) eR
and so theo-limit set of z is infinity. Thus we need only consider points.inthat do not
lie in B,. We will show:

Theorem 4.9. Suppose € A andz # w;, z ¢ B, for anyn. Then thew-limit set ofz is
the orbit of0 underE;, together with the point at infinity.

To prove this we first need a lemma.

Lemma 4.10. Suppose € A, z # w,. ThenE}(z) approaches the boundary ¢f as
n — oQ0.

Proof. Leth be the uniformization of the interior ¢ftakingS to the open unit disk and,,

to 0. Recall that; * is well defined ors and takess inside itself. Therg =ho E; o h™t

is an analytic map of the open disk strictly inside itself with a fixed point at 0. This
fixed point is therefore attracting by the Schwarz Lemma. Moreovét| it 0 we have
lg(2)| < |z|. As a consequence, §t,} is an orbit in A, we have|i(z,+1)| > |h(z,)], and

SO |h(zy)| — 1lasn —oco. O

The remainder of the proof is essentially contained in [17] (see pp. 45-49). In that paper
itis shown that there is a “quadrilateral’ containing a neighborhood of 0 R as depicted
in Fig. 17. The seQ has the following properties:
(1) If ze A -, B, andz # wy, then the forward orbit of meetsQ infinitely often.
(2) Q contains infinitely many closed “rectangleB;, Ry+1, Ry+2, . .. for somek > 1
having the property that if € R, thenE;{ (z) €0 butEf\(z) ¢ QforO<i<j.
(3) If z € Q butz ¢ U7, R), thenz € L, for somen.
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[ W)

Fig. 17. The return map o@.

4) E'){(Rj) is a “horseshoe” shaped region lying bel&win Q as depicted in Fig. 17.

(5) lim;_ o0 E)j\ (Rj) =1{0}.

As a consequence of these facts, any pointihas orbit that meets tHeJ R; infinitely
often. We may thus define a return map

@:Am(URj>—>AmURj

J J
by
®(2)=EL(2)
if ze Rj. By item (4),®(z) lies in someR; with k > j. By item (5), it follows that
®"(z) >0

foranyz € AN Q. Consequently, the-limit set of z contains the orbit of 0 and infinity.

For the opposite containment, suppose that the forward orbiaotumulates on a point
q. By the lemmay lies in the boundary of. Now the orbit ofz must also accumulate on
the preimages qf. If ¢ does not lie on the orbit of 0, then these preimages form an infinite
set, and some points in this set lie on the boundaries of.thd&ut these points lie in the
interior of S, and this contradicts the lemma. Thus the orbit @fan only accumulate in
the finite plane on points on the orbit of 0. Since the “preimage” of 0 is infinity, the orbit
also accumulates at infinity.0O

Itis known [7] that there are uncountably many curves inth@ane having the property
that, if 1 lies on one of these curves, thék{(0) — oo. Consequently, for suchavalue,
the Julia set off;, is again the complex plane. For thes@alues, a variant of the above
construction also yields invariant indecomposable continua in the Julia set. Whether these
continua are homeomorphic to any of those constructed above is an open question. We plan
to discuss these constructions in a later paper.

Douady and Goldberg [18] have shown thatifx > 1/e, thenE, and E,, are not
topologically conjugate. Each such map possesses invariant indecomposable cantinua
andA, in S, and the dynamics on each are similar, as shown above. In fact, one can show
that each pair of these invariant sets is non-homeomorphic.

As a final remark, Lyubich has shown that eathis a set of measure 0 if\. Indeed, it
follows from his work [23] that the set of points il whose orbits have arguments that are
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equidistributed on the unit circle have full measureAln the arguments of all orbits tend
to 0 and/orr, and soA; has measure 0 ifi.

5. After the explosion

As we have mentioned, when> 1/e, the Julia set oF); is the entire plane. In 1981,
Misiurewicz showed that’ (E1) = C, answering a sixty-year-old question of Fatou. We
present his proof of this fact below, generalizing it to the casel/e.

The following proposition highlights one of the differences betweenz) and
polynomials: points which tend teo under iteration of£; need not be in the stable set.

Proposition 5.1. Wheni > 1/e, the real line is contained in/(E;) and hence all
preimages of the real line lie it (E).

Proof. Let S denote the striplm(z)| < 7. SupposeE{ (z) e R. HenceE] (z) — oo. LetU

be a neighborhood af ThenEf\(U) meets the real line for all> j. For sufficiently large
n, we have thatE;)'(E} (z)) > 2. Let Bs be a ball of radiug aboutE? (z) that is strictly
contained inE? (U). ThenEX(Bs) contains a ball of radius‘@ aboutE? *(z), provided
the successive images of this ball liesSir{so thatE; is one-to-one). This cannot happen
for all k, however, since eventually these balls must grow to meet the linesdntr.
Therefore the next iteration df; maps points in this ball to the far left half plane. This
happens for all sufficiently largle Thus there are points arbitrarily cIoserQ*k (z) whose
images eventually lie in the far left half plane, and so their nextimages lie in the unit disk
about 0. Thus the family of iterat¢€ } does not converge uniformly tso on U. Hence
the family of iterates of,, is not a normal family oV and soz € J(E;). O

Thus to show that (E;) = C, it suffices to show that inverse images of the real line are
dense inC. For this, we need several lemmas.

Lemma 5.2. | Im(E{(2))| < [(E}) (2)].

Proof. If z=x +iy, we have
| IM(E(2))| = 2€e'| siny| < Ae'|y| = | E}(2)|| Im(2)|

so that

| IM(E(z))]
[Im(2)]

if z ¢ R. More generally, ifE} (z) ¢ R, we may apply this inequality repeatedly to find

<|E @)

[Im(E3 (2)] l—[ |1Im E)»(El @l

n—1
<[ T|EL(EL2))].

i=1 i=1
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Since| IM(E;.(z))| < |Ex(2)| = | E{ (2)| we may write

n—1
[Im(E; )| < [[IELE )] =|(E}Y (@] O
i=0

Now let W denote the strigz | | Imz| < 7/3} which is contained irf. Since orbits in
the right half plane tend to diverge from the real axis, it follows that an open set of points
in W C S have orbits that leav8 and hence/ under iteration. The next lemma shows,
however, that the orbits of most of these points must eventually return.

Lemma 5.3. Let U be an open connected set. Then only finitely many ofth@/) can
be disjoint fromw.

Proof. Let us assume that infinitely many of the imagestofare disjoint fromw. If
there is am for which E7 is not a homeomorphism taking onto its image, then there
existzi, z2 € U, z1 # 22, for which E¥ (z1) = E¥ (z2). Consequently, there isjafor which
E{(zl) = E{(zz) + 2kri for somek € Z — {0}. But thenE{(U) must meet a horizontal
line of the formy = 2mn for m € Z and soE‘A"H(U) meetsR. HenceE-,('“L“(U) meetsR
for all « > 0 and only finitely many of the images 6f can be disjoint from/. We thus
conclude that each} must be a homeomorphism éh

Now suppose there is a sequengesuch that for eacly, EK”(U) N W =¢. By the
previous IemmaJ(EZ")’(z)l > (mw/3)/ for eachj and allz € U. It follows that, if U
contains a disk of radius> 0, thenE;j (U) contains a disk of radius(z/3)/. Hence for
Jj large enoughE;” (U) must meet a line of the form= 27 and again we are done

We can now prove
Theorem 5.4. J(E;) =C.

Proof. By Proposition 5.1, it suffices to show that any open seCirtontains some
preimage ofR. To that end, letV be open and connected and supp&$el) NR = ¢
for eachn. By Montel's Theorem{E} is a normal family or/.

By the previous lemma, we have that at most finitely many iteratd$ afe disjoint
from W. Since none of the iterates 6f meet the boundary af, it follows that all but
finitely many of the iterates df’ lie in S. By replacingU by E} (U), we may assume that
all of the iterates ot/ lie in S.

Now we invoke the results of the previous section. Themit set of any point inU
must be the orbit of 0 ando. Hence the orbit ot/ must enter any small neighborhood
of 0 infinitely often. But we saw above that, after entering this neighborhood, subsequent
iterates ofU move along the real axis until suddenly jumping above the exiLseBut
this image lies outside the strijy. Since this happens infinitely often, we have infinitely
many images ot/ that do not meeW. This contradiction establishes the theorerm
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6. Hair transplants

In this section we will consider-values for whichk is negative. We will see that there is
a unigue bifurcation that occursiat= —e. On the real line this is a simple period doubling
bifurcation. But in the plane this simple bifurcation has global ramifications, though they
are not as spectacular as occurred in the saddle-node bifurcation.

When) = —e, E; has afixed pointat1 andE’ ,(—1) = —1. Fori < —e, Ej has asin-
gle repelling fixed point, on the real axis; where < A < 0 this fixed point is attracting.

Proposition 6.1. Supposer < —e. Then E;, has a unique attracting-cycle on the
negative real axis. Moreover, the orbit of any point on the real g&iseptr;,) tends to
this 2-cycle.

Proof. Consider the graph of
y(x) = E2(x) = 1.
We havey’(x) > 0 and
lim y(x)=0, lim yx)=~x.
X—>00 X——00
Moreover
y'(x) = y(x)(re) (e +1).

Hencey”(x) < 0 if Ae* +1 < 0 whereas”(x) > 0 if Ae* + 1 > 0. Thus there is a unique
inflection point fory.

Now E;(—1) = re 1 < —1 sinceir < —e. Hencer; < —1 since the graph of;
decreases. Therefore

y'(r) <0

and soy” < 0 for x > r,. It follows that the graph of crosses the diagonal exactly once
in each of the interval§—oo, r;) and (r,, o). This yields the 2-cycle, which must be
attracting since’ lies between 0 and 1 at each point. The graphstiows that the intervals
(r;, 00) and (i, ry) are mapped inside themselvesEff, and so all orbits excepj, tend

to the 2-cycle. O

Thus we have a typical period-doubling bifurcation whes —e. In the complex plane,
this bifurcation is accompanied by a “hair transplant”. By this we mean: When-e
the Julia set is a Cantor bouquet. Asipproaches-e, a repelling 2-cycle approaches the
attracting fixed point, dragging with it the attached hairs. See Fig. 18. Whenr-e, the
fixed point becomes neutral and it now has a pair of hairs attached. ¥henre, the fixed
point becomes repelling, but retains the two hairs—they have been transplanted from the
3-cycle to the fixed point.
For the remainder of this section we will consider only the case—e. We will see
how two hairs can be attached to a single point. We wite) = E_o(z) for simplicity.
Let H be the half plane Re< —1. ThenE; (H) is the disk O< |z] < 1.
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Fig. 18. The Julia sets for= —2.5 andx = —3.5.

Proposition 6.2. E2(H) C H.

Proof. Consider the vertical line Re= —1+ir for —z < r < 7. We claim that ReE2(1+
it)) < —1if t #0. Indeed, we have

y(1) = ReE2(1+ir) = —ee % cogsinr).
Then
y'(t) = —ee ¥ (sin(t — sint)).

If0 <t <, sin(r — sinr) > 0 and soy’(¢r) < 0. If —7 <1 < 0, sint — sins) < 0 and so
y/(1) > 0. Thereforey(t) decreases from(0) = —1 to y(r) = —€? ast increases from 0
to 7, and, similarly,y(¢) increases from-€? to —1 ast runs from—z to 0.

Since E2(H) is contained inside the simple closed curve bounded Bl + it), we
have the result. O

SinceE2(H) c H it follows that all orbits inH andE (H) tend to the neutral fixed point
at—1. These two regions are called attracting petals.

Consider E"1(H). This set consists of infinitely many “fingers” that surround the
horizontal line Iy = 2k, Rez > —1. We denote each finger b, where—1 + 2kri
is the preimage of-1 lying in F;. SinceE (Fy) = H, it follows that all points inF; have
orbits tending to-1. Note thatFy contains the disle (H) and in fact the segmeft-1, co)
in the reals. See Fig. 19.

Now considerE~1(Fp). Certainly E-1(Fp) > H since H is mapped toE(H) C Fo.
E~1(Fp) also contains the straight lines k= (2k + 1), Rez > —1, since these lines are
mapped to the half ling—oco, —e) which is properly contained il . Finally, E~1(Fp) is
simply connected and contains all preimages of aayFy (except 0).E~1(Fo) resembles
a “glove” since it separates each of the fingers as shown in Fig. 20.
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Fig. 19. The fingersg,.
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Fig. 20. The gIovaE*l(Fo)_
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Let G denote the gloveZ—1(Fp). Then all points in the interior ofs U (U, Fn) liein
the stable set foE as all orbits tend te-1. Note that—1 and its preimages lie on the
boundary ofG U (| J,, F,). These points do not lie in the stable set as rationally indifferent
fixed points always lie iV (E).

Now consider the component of the complemen@athat containgp. Fp divides this
region into two open setsSy, Sy lying above Fp, S_ below. Using arguments as in
Section 3 one can check that, there is a uniquejhain J(E) that lies inS+ N {Rez > y}
for y sufficiently large. Indeed; (y4) = y— andE(y-) = y+. The existence of these hairs
in the far right half plane may be verified by considering rectan@le$) centered at
t +ix/2 and having vertical height. Note thatE mapsR. (¢) to the half plane In3 <0
while R_ is mapped to the upper half plane. Constructing strings of such rectangles give
points whose orbits hop back and forth betwe&grandS_.
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One checks easily that the bounded regions
St N{Rez < n}

are mapped completely over each otherEds,) > S_ andE(S-) D S;. Hence we can
pull the hairsyL back by a branch of the inverse éfin each ofS, andS_. The only
place that these pulled back hairs can limit is the fixed point At Hence we see that,
wheni = —e, the neutral fixed point has two hairs attached.

What happens is this: as long &% has an attracting fixed point, all repelling periodic
points have unique hairs attached. Butiatends to—e alongR™, a repelling 2-cycle
merges with the attracting fixed point to produce the neutral fixed poirtlatThis
bifurcation is a “hair transplant”.

Note that there are infinitely many preimages-df underE—1, E=2, .... Hence there
are infinitely many other points i (E) that have 2 hairs attached.

6.1. Other examples

For complexi-values, one often encounters Julia sets with multiple hairs attached.

For example, in Fig. 21, we display the Julia set whea 5+ ix. It is relatively easy
to check that this exponential admits an attracting 3-cycle. Note that there seem to be three
hairs attached at various points in the plane.

In Fig. 22, we display the Julia set whén= 10+ 3xi. This map also has an attracting
cycle of period 3. Note that different hairs now seem to be attached. In contrast, the Julia
set fora = 3.14i (Fig. 23) shows that the structure of the attached hairs can be extremely
complicated.

1.

iz

o Fan vlli;!:il!:{ ; W

Fig. 21. The Julia set for =5+ =i.
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..

Fig. 23. The Julia set fox = 3.14i.

One can use a “kneading invariant” to characterize which hairs are attached if;,case
admits an attracting cycle. See [7]. The full story here, however, is not yet complete.
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