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Abstract——1In this paper, we obtain some oscillation criteria for the second-order quasi-linear
neutral delay difference equation

A [an—l |A (zn-—l +pn—1-’rn-—l—a)|a_l A (-T'n-l +I7n—137n—1~—a)] + (Inf(l'n—‘r) =0,

where a > 0, 7 > 0, and 0 > 0 are constants, {an}, {pn}, {an} are nonnegative sequences and
f € C(R,R). © 2002 Elsevier Science Ltd. All rights reserved.

KeywordS—Quasi-linear neutral delay difference equation, Oscillation.

1. INTRODUCTION

In this paper, we are concerned with the oscillatory behavior of solutions of second-order quasi-
linear neutral delay difference equation of the form

A [an-l |A ($n—1 '\Lpn—lmn—l—d)'a_l A (-’L'n—-l +pn—11'n—1—a):| +qnf (1'n~-r) =0, (1)

where n = 1,2,3,...,a is a positive constants, 7 and ¢ are nonnegative integers. Throughout
this paper, we assume the following.

(a) 0<p, <lforn=0,1,2,....

(b) {gn}5%, is a nonnegative sequence with infinitely many positive terms.

(€) an >0,n=0,1,2,..., and T"%°(1/al/*) = co.

(d) There exists a differential function ¢ : R — R such that

m%(;)27>0, ¢ (z) >e>0, zd(x)>0, for z # 0.

By a solution of (1), we mean a nontrivial sequence {z,} which is defined for n > —~ max{o, 7}
and satisfies equation (1) for n = 1,2,3,.... A solution {z,} of equation (1) is said to be
oscillatory if for every N > 0, there exists an n > N such that z,z,41 < 0, otherwise, it is
nonoscillatory. Equation (1) is oscillatory if all its solutions are oscillatory.
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Many authors have investigated the special case of equation (1). For example, Li and Yeh [2],
Agarwal, Manuel and Thandapani {2,3] have considered the following neutral delay difference
equation:

Alap 18 (Zn-1 4+ Pro1ZTn-1-0)} + gnf(Tn-r) =0, n=1,23,.... (2)
Thandapani, Manuel and Agarwal [4] have studied the quasi-linear difference equation

A [a,,_l [Azn_y|* ! Awn_l] banf(za) =0, n=1,23,.... (3)

Szafranski and Szmanda [5] and Lalli and Grace [6] have investigated the delay difference equation

Alan-18%p 1] + gnf (Zn_k) =0, n=123.... (4)

The purpose here is to develop oscillation theory for such a general case of (1). Theorems 1-3
obtained here include and extend all the results in {1]. Theorem 4 is new, up to now, even for
equations (2)-(4).

2. MAIN RESULTS

In order to prove our theorems, we use the following lemmas. The first is due to Hardy,
Littlewood and Polya [7].

LEMMA 1. If X and Y are nonnegative, then
X0+ (@-1DY?—qXY" 20, ¢>1,

where equality holds if and if X =Y.

LEMMA 2. Ifz,y € R, x > 0, then

1
y(z +2y) ~ RS |z + 2y|**! < max {2y2, ay““/“} .
PROOF. Let G(z,y) = y(z + 2y) — 1/((a + 1)) |z + 2y|> L.

(i) If y €0, then G(z,y) < 242
(ii) If y > 0, then

1
- 2)*,
a+1)°($+ y)

¢4 a—
—m($+2y) 1 <0.

Ge(z,y) =y~ (

GezlT,y) =

Hence, let G (z9,y) = 0, then G(z,y) < G(xg, y) = ay®+*/*. The proof is complete.

THEOREM 1. Let {H,,, | m > n > 0} be a double sequence satisfying the following two
conditions.
(i) Hpyn =0, form >0,
Hy,. >0, form>n>0.

(ii) ANoHpp =Hppy1 — Hppn <0, form >n > 0.
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Suppose that {hy» | m > n > 0} is a double sequence with
AHom,n = —hmny/Hmn, forallm >n > 0.

If there exists a positive sequence {£, | &, >0, n =1,2,3,...} such that

m—1

lim_sup HmO Z Hpnén [wn + an—rBulim,n ﬁﬁ Inm,ni"“} =o0, (5

where
Y = Yqn416% (1 = Pr1-1)" — A(@n-1-+Bn-1), (6)
hrny/Hmn bt o 5 _ A o

T T e 2%,

Then equation (1) is oscillatory.

PROOF. Assume that {z,} is a nonoscillatory solution of equation (1) and let 2z, = Tp +PpnTn-o
for n =0,1,2,.... Then by Conditions (a)-(d) and equatlon (1), it is not difficult to prove that
znAzn is eventually positive. Without loss of generauny, we assume that Zn-r >0, Az, >0, and
Tp-g—r >0, for n > N, for some positive integer N. Now observe that from (1), we have

A fan-11820-11"7" Aznoa] + gaf (@ner) =0. (8)
Using Condition (d) in (8), we get
Alan-1(Azn-1)"] + 142" (zn-7 ~ Pa-rTn-r-¢) <0,
which, in view of the fact that z, > =, > 0 and 2y is increasing, from Condition (d) yields
Alfan-1(Azn-1)%) + Ygne® (1 ~ pn-r)” 75, <0,

for n > N. Define

A
=&, [M + an—l——rﬂn-l] y n> N,
n—1
then
Aw, < Bén Wnt1 +&n l:"'YQn+15a (1 = pni-r)®
&n+1
atl/a
« wn+1
(- i) 48 “n-l-fﬂn-l)} ©)
A a w a+l/a
= ‘En Wny1 + gn ~Yn — Ta < ntl _ an—-rﬁn) s
Ent1 a;/% \€n+1

for n > N, where 1, is defined in (6). Therefore,

TEH Awy, < Z B, %jH 3 [w (w"“ - T
et m,n n = et n+1Hmn o m,nin n a,yll/ar £n+1 an—rﬂn) }7
ie.,

m~1

Z Hmnbn (¥n + nm,nan—~rﬂn)

n=k (10)

it Wn41 & Wn41 atl/e
< Hp pwi + E Honnbn ‘nm nl < . - an—rﬁn) = 7o (___n - a’!l—‘)’ﬁn) i\ ,
+

n=k ,11_1_ £n+1
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where 7, is defined in (7). Taking

B a®/e+l [wn_“ . p ]
t '1_ _l = T ln—7Mn| .,
an/_a: §n+1

a® aa/a+1

—mmlﬂmnl

according to Lemma 1, we obtain

Wn+1 2] Wn41 atl/e An—r atl
m,n —@n-rPn ) — o = Qn—7r0n < mﬁ 7m,n|

Ent1 &nt+1

n—71

Hence, from (10), we get

m-—1
Gn— 1
Z Hpnbn [d’n + Mmnln—rBn — — Inm n|a+ J < Hpp pwi.
v s 1 s = )
— (a+ 1)

Then, using Lemma 2, we get

m—1
An—r
E Hm,nfn [% + nm,nan—rﬂn -l 'nm,nla+l]
n=0

(11)

(o4 1)att
N-1
< Hppo lwn| + Z Hp 0én [wn + @y max {Qﬁg’aﬁa+l/a}} )
n=0
Hence,
1 m-1 .
i n—T1 a+1
m_sup m,0 :L:B Hunntn (w" + an—rBnmn — @+ 1)t [7m,n ) < 00,

which contradicts (5). This contradiction completes the proof.

THEOREM 2. Let {Hy,n} and {hyn} be as in Theorem 1, and let

0 < inf { lim inf Hm’"} < o0,
n>0 | m—oo Hyo

m-—1
. a+1
lim sup E Hum nbnOn—r [Mmnl < oo
m—o0 H,o =

Suppose that there exists a sequence {c;}32, satisfying

m—1

. 1 An—r a+1
nlin;o Sup Z - g_;k Hpy, ién [wn + @n—rBnlimn = (@t 1)oFt |77m,n 2> ¢k

s

and

. . + a+1l/a
Z / ([ o an+1—rﬁn+l] ) = o0,

where

+
Cnt1 Cn+1
[ - an+1-—‘rﬁn+1] = max { ~Ony1-70nt1, 0 ¢,
En+1 En+1

Yy, Is defined in (6), and Ny pn, Bn are defined in (7), then equation (E) is oscillatory.

(14)
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PROOF. Suppose that {z,,} is an eventually positive solution of equation (1). As in the proof of
Theorem 1, (10) holds for all m > k > N. Hence,

m-—1

lim_sup Hl‘ > Hnbe [wn + s BT — @—f-r—l')—q | < w0k,
for k > N. It follows from (14) that
cr < wy, for every k > N, (17)
and 1
dm sup g Z Hne (i neBtn) = o (18)
Define

w
Hm n€n ‘nm n\ ( nil an~-rﬁn> )
n+1

at+l/a
Wn+1
Hpnbn— l/a ( an—‘rﬁn) ,

Um

nt1
form=N+1,N+2,.... Then (10) and (18) imply that

lim inf [um — Usm)

, 1 et (19)
<wy — lim sup > Hn, nén (Y + @n—rPrlimn) S WN — N < 0.
m—00 m,N =N
We shall next prove that
=) at+l/a
w

S [——’ii - an_fﬁn] < cc. (20)
n=N On—r £n+1

If we suppose that (20) fails, there exists an N1 > N such that

m a+1/a A/[
Z f;za [wn+1 _ G»n-—v-ﬁn:\ > _._1., for all m > Ny, (21)
n=N @n—r Ent1 *

where M, is an arbitrary positive number and M; is a positive constant such that

. .. Hm
mf{ lim inf i

n>0

"} > M, > 0. (22)

m—0o0 m.0
)

Therefore,

W1 a+l/a
Um = Hm " Z Hm nén—7 l/a ( - an—rﬁn)

§n+1
m—1 n-1 atl/a
Ek [ Wett
2 S e [z e Creet
m—1 [zn: wk+1 a+l/a
> - - ak—rﬁk) } A2-FImn
1 )
n=N k=N @ /a §’°+1
P

—A2Hmn
MleN nle( 2 )

MyHm N,
- Mle,O '
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for all m > Ni. By (22), there is an Ny > Ny such that Hm N, /Hmo = M1, for all m > N3, and

accordingly v, > Ms, for all m > Nj. Since M; is arbitrary,

lim v, = c0.
m-—00

Further, consider a sequence {my}2; such that limg_,o My = oo and
kllrgo [Umy, = Um,] = Jim inf [V, — U] -
Then, from (19), there exists a constant M such that
Uy, — Um,, S M, for k=0,1,2,....

Since (23) ensures that
lim vy, = oo,
k—oo

this and (24) implies
lim up,, = oo.
k~—o00

By taking into account (25), from (24), we derive for k sufficiently large,

Ume 1> _ﬂ_ > _l_
U U, 2
Therefore,
Um, 1
— > -, for all large k,
Vm,, 2
which together with (26) implies
a+l
lim —%- = 0.

k—o0 ’U%k

On the other hand, by Holder’s inequality, we have

1 M — 1 w
Z Hpyo nn [ nl ( e an—rﬁn)

Um, =
HmkN =N

IA

n=N Qy_

1 mr—1 1/a+1
a+1
x —a—a_H-mk,“ Z Hony, n€n@n—r |Tmynl ) )

N n=N

and accordingly,

1 my—1
ugt 1
I a+1
o« = oeH 2 Hmk,ngnan Tlnm n‘
vm;,- o my,N n=N

So, because of (28), we have

my—1
1 k=

a+l
lim > — § Hy, n€nln_- |7m., nl = 00,
k—oo Hmk N
n=N

ie.,
m—1

Z Hynbnln_r \nm nta+1 0,

lim
m—00 m U,

- afa+l
« mi:l Hmk,"§" l:wn_H 4 p ]a+1/a
Hmk.,N = , £n+1 noTen

(23)

27
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which contradicts condition (13). Then (20) holds. Hence, by (17},

- + a+l/a Wnst at+l/a
Z l/a (l: nt —an+1—fﬁn+1] ) Z l/a ( ot —‘an+1—‘rﬁn+1) < 00,

n=0 An—r n=0 Ent1

which contradicts (15). This completes the proof.
THEOREM 3. Let {Hy, .} and {h,,} be as in Theorem 1, and let (12) hold. Suppose that

m~1

lim lnf Z Hm,ngn (’wn + an—‘rﬂnnm,n) < 007 (28)
n=0

m—oo

)

and there exists a sequence {c;}32, satisfying (16) and for k > 0,

lim inf
m-—o0

(a+1)a+?

)

An—r
Z Hm,k{n {wn + an-—‘rﬁnnm,n - |77m,n|a+1 2 ck, (29)
n=k

where n, Bnlim.n are as in Theorem 1, then equation (E) is oscillatory.

PROOF. Suppose that {z,} is an eventually positive solution of equation (1). As in the proof of
Theorem 2, (17) holds for all m > k£ > N. Using (28), we conclude that

m—1
lim sup [vm — U] < wy — lim inf Z Hp nbn (%n + Mmntn-—rB8n) < oo
m—oo m-—00 mN T

It follows from condition (29) that

m—1

B 1 a
T Z Hm,n&n [wn + an—'rﬁnnm,n R a+1}
m—oo m'o ne0

co < lim inf (a+1-)o:+1| Dmn)|

m-1
< "}1_{1’100 inf 2 " Z Hm,nﬁn ['l/Jn + an—rﬂn"?m,n]
. . An—r a+1
—",lll—l’.nmlnf Z Hm'n,ﬁn +1)C!+1 Inm ’nl

so that (28) implies

m—1
. . a+1
lim inf E Hop n&nln_r |1, nl <.

Consider a sequence {my}32, with limg_.o My = 0o satisfying
klln;o [VUmy — Umy] = n{gn@ SUp [Um — Um] .

Then, using the procedure of the proof of Theorem 2, we conclude that (20) is satisfied. The
remainder of the proof proceeds as in the proof of Theorem 2.

THEOREM 4. Assume that there exist two sequences {&n | &, > 0, n = 1,2,3,...} and {F, |
n=1,2,3,...} such that

F, + A¢, >0, forn=1,2,3,..., (30)
m—1 [n-1
lim_sup Z [H i1+ F
n=0 Li=0 . (31)
- Ag’na B — A(an-1-+Pn-1) ___On-r <Fn + A, _
n ‘n n—1n tn (Ot T 1)a+1 €n = y
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where

A&,
%,

Un = Yqny16® (1 _pn+1—‘r)a AN (an—l—‘rﬁn—l) > Brn = (32)

Then equation (1) is oscillatory.

PRroOOF. Assume that {r,} is a nonoscillatory of equation (1). As in the proof of Theorem 1,
(9) holds for n > N. Let y, = wn/€n — Gn—1-70n—1, then y, > 0. From (9), we get

(0%
Awp, < —€ntn + an—TﬂnAén - Fnyn+1 + (Fn + Afn) Yn+1 — Eanysi-ll/a’
n—1
ie.,
Ent1Yn+1 — Enn + A (an—l—‘rﬂn—l)
oln  atl/e (33)

< =nthn + Gn_rPnAén - Fotyni + (Fn + A'fn) Ynt+1 — —I/—Qy.n“

n—T1

Using Lemma 1, we obtain for n > N,

by a+l/a Qn—71 F, + Agn o+l
(Fro + A&n) Yny1 — Ta Yntl = (@t or ( € .

n—r

Hence, from (33), we obtain

§n+1 + Fn Aé’n A (an—-l—rﬂn—l) An—r Fn + Afn o+l
——E—:—~yn+1 —Yn < —Yp — £, On—rfBp — £ - (OL n 1)a+1 < cn ) ,
ie.,
n—1
A [(H &H;_ Fi) Yn
i=0 ¢
n—1 a+1
§i+1 + F; [_ _Agn _ A(an—l—rﬂn——l) _ An—r (Fn +A€n> *
= <E) & ) ¥ €n an=rbn n (a+ 1)atl én '
m—1 ~1
n=N L[i=0 5: 6’"‘ gn
An—r (Fn+A§n>a+l
- (o + 1)oH én
Al NI 1 Fi+ &1 Ay
< H‘*—g—‘ YN ~ H_—f_—_ Ym < H—T— YN,
i=0 * 1] t i=0 :

which contradicts (30). This completes the proof.

REMARK 1. In the case when ¢(z) = z, a = 1, our main results, Theorems 1-3, reduce to all
the results of [1].

REMARK 2. In the case when p, =0, a =1, ¥ = 1, Theorem 1 improves Theorem 2 of [5].

REMARK 3. In the case when p, =0, 7 = 0, f(z) = |2|*~ 1z, Theorems 1-3 improve the discrete
analogue of the results in [8], which studies the continuous case of equation (3).

REMARK 4. To the authors’ knowledge, Theorem 4 is new, even for equations (2)-(4).
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