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SUMMARY
Carcinoma-associated fibroblasts (CAFs) that express a-smooth muscle actin (aSMA) contribute to cancer
progression, but their precise origin and role are unclear. Using mouse models of inflammation-induced
gastric cancer, we show that at least 20% of CAFs originate from bone marrow (BM) and derive frommesen-
chymal stem cells (MSCs). aSMA+ myofibroblasts (MFs) are niche cells normally present in BM and increase
markedly during cancer progression. MSC-derived CAFs that are recruited to the dysplastic stomach
express IL-6, Wnt5a and BMP4, show DNA hypomethylation, and promote tumor growth. Moreover, CAFs
are generated fromMSCs and are recruited to the tumor in a TGF-b- and SDF-1a-dependent manner. There-
fore, carcinogenesis involves expansion and relocation of BM-niche cells to the tumor to create a niche to
sustain cancer progression.
INTRODUCTION

Tumors consist of cancer cells and diverse stromal cells that

constitute the tumor microenvironment and contribute to tumor

progression. Stem cells or their immediate progeny can give

rise to various tumor-contributing cells through a dysregulated

self-renewal process (Wicha et al., 2006), but the origin of

many niche cells critical for tumor growth (Li and Neaves,

2006) has not been established. Much of the tumor stroma

consists of cancer-associated fibroblasts (CAFs) that express

a-smooth muscle actin (aSMA). CAFs closely resemble myofi-

broblasts (MFs) that are present in the gastrointestinal mucosa.
Significance
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C

Clinical evidence supports the contribution of stroma to the

development of a variety of tumors (Coussens and Werb,

2002). In general there is a higher incidence of tumor formation

in tissues with chronically inflamed stroma, particularly

Helicobacter pylori gastritis, which is associated with gastric

cancer (Houghton and Wang, 2005).

Phenotypically, CAFs resemble normal gastrointestinal MFs in

that they express aSMA and other MF markers such as vimentin

or FSP1; biologically they are different, and it remains puzzling

why CAFs would appear only in the setting of cancer, but not

in the normal adult organs. Tumors that have a desmoplastic

stroma, consisting of more stromal cells disrupting the tissue
changes in the stromal microenvironment. We demonstrate
iated gastric cancer originates from MSCs and that MFs
e rise to their own niche cells, which might apply to other
MFs increase in the BM niche and blood during progression
st stages of tumor development are characterized by remod-
em cell niche to the tumor site where it promotes tumor
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homogeneity, often have a poorer prognosis (Maeshima et al.,

2002). CAFs isolated from breast cancer tissue promote prolifer-

ation of cancer cell lines, increase angiogenesis to a greater

extent, and have a distinct gene expression pattern compared

to normal fibroblasts (Allinen et al., 2004). CAFs isolated from

prostate cancer direct tumor progression of initiated prostatic

epithelium and can transform nontumorigenic human prostatic

epithelial cell lines into tumorigenic ones (Hayward et al.,

2001). CAFs express increased levels of the chemokine SDF-1

(Orimo et al., 2005) and genes such as Gremlin-1 that are not

expressed in most normal tissues (Sneddon et al., 2006). Finally,

we recently showed that CAFs were more hypomethylated than

normal gastric stromal cells (Jiang et al., 2008).

CAFs have altered biology compared to normal MFs and seem

to accumulate in tumors. A number of studies have explored the

origins of CAFs, which include resident fibroblasts (Orimo et al.,

2005), smooth muscle cells, endothelial cells, epithelial cells

(through EMT), fibrocytes, and bone marrow (BM)-derived cells

such as mesenchymal stem cells (MSCs) (Direkze et al., 2003;

Karnoub et al., 2007). Chronic inflammation associated with

increased cancer risk (Forbes et al., 2004) and tumor xenografts

(Ishii et al., 2003) recruit BM-derived MFs. In gastric tumors of

patients that received gender-mismatched BM transplants

(BMTs), many CAFs are bone marrow derived (Worthley et al.,

2009). However, the precise BM cell type that gives rise to

CAFs remains unclear.

Several studies have pointed to MSCs as a potential source of

CAFs (Guo et al., 2008). MSCs, when mixed with weakly meta-

static human breast carcinoma cells, increase the metastatic

abilities of cancer cells (Karnoub et al., 2007). MSCs exposed

to tumor-conditioned medium assume a CAF-like phenotype,

including sustained expression of SDF-1 and the ability to

promote tumor cell growth (Mishra et al., 2008). MSCs are

defined as pluripotent stem cells that contribute to normal

bone, adipose, cartilage, and muscle (Pittenger et al., 1999).

MSCs originate in the BM but can be found throughout the

body; they are often involved in tissue remodeling after injury

or chronic inflammation. BM-derived cells (BMDCs) are often

recruited to carcinogenic sites by cytokines such as IL-1b

(Houghton et al., 2004; Tu et al., 2008), and indeed, CAFs

promote further cell recruitment through secretion of chemo-

kines such as SDF-1 (Orimo et al., 2005). MSCs are among the

BMDCs that have been shown to be recruited to tumors and to

promote their growth. Although some studies have suggested

that MSCs can differentiate into CAFs, the differentiation of

MSCs into CAFs or MFs has, to our knowledge, not been de-

monstrated conclusively (Stappenbeck and Miyoshi, 2009). In

this study we aimed to investigate the cellular origin and role of

CAFs within the BM and analyzed their function in normal BM

and in the tumor microenvironment.

RESULTS

aSMA+ MFs Increase with Gastric Dysplasia and
Contribute to a Desmoplastic Tumor Microenvironment
To understand the changes that occur in stromal cells during

gastric cancer progression, we analyzed aSMA-RFP transgenic

mice that express RFP under the direction of the aSMApromoter

and collagen-a1-EGFP transgenic mice that express EGFP
258 Cancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc.
under the control of the collagen-a1 promoter (Magness et al.,

2004). A tissue-specific expression pattern for the 3 kb aSMA

promoter fragment-driven RFP relative to endogenous aSMA

expression was confirmed in gastric mucosa (Figure 1D; see

Figure S1A available online). Both sets of mice were infected

with Helicobacter felis (H. felis), resulting in chronic gastritis,

atrophy, metaplasia, and dysplasia (Figure S1B). In uninfected

mice, few aSMA-RFP+ MFs were present in gastric tissue,

whereas collagen-a1/EGFP+ stromal cells were abundant

(Figures 1A and 1B). Twelve to 18 months after infection,

collagen-a1/EGFP+ fibroblasts and aSMA-RFP+ fibroblasts

increased with chronic inflammation and cancer progression

(Figures 1A–1C). Although collagen-a1-EGFP+ fibroblasts were

abundant at early, they increased only slightly at late stages of

neoplasia; aSMA-RFP+ fibroblasts were scarce early after

infection but increased markedly at later stages, particularly

during dysplasia, suggesting that aSMA-RFP+ fibroblasts

contribute to the neoplastic process. They were defined as

MFs by their expression of endogenous aSMA and vimentin

(data not shown). Similarly, aSMA/collagen-a1 double-positive

cells increased with dysplasia (Figures S1C and S1D), especially

in invasive or highly dysplastic regions (Figure S1E). Additionally,

we crossed the aSMA-RFP mice with IL-1b/aSMA-RFP mice,

which express human IL-1b specifically in the stomach and

develop spontaneous gastric inflammation and cancer

(Tu et al., 2008). The expression of aSMA and RFP increased

by 6 and 12 months in IL-1b/aSMA-RFP mice (Figure 1D).

We isolated fibroblastic cells from stomachs of aSMA-RFP

mice and specifically cultured the MFs using glutamine

withdrawal (McKaig et al., 1999) (Figure S1F). Sorting after four

population doublings (PDs) revealed that 33% of the cells from

uninfected WT mice and 70% from mice with dysplasia

expressed RFP (Figure 1E), suggesting that aSMA/RFP+ CAFs

have a growth advantage over aSMA/RFP�WTMFs, correlating

with in vivo results. Gastric RFP+ MFs of uninfected mice grew

for up to 25 PDs. In contrast, gastric RFP+ CAFs from long-

term H. felis-infected mice grew much faster and up to 80 PDs.

Interestingly, we observed that RFP+ cells, when cultured with

sorted RFP� cells, appeared to be surrounded by RFP� cells

(Figure S1G), suggesting the possibility that RFP+ cells might

be providing a niche for RFP� cells. In addition, RFP+ CAFs iso-

lated from long-term infected mice with dysplasia expressed

increased amounts of TGF-b, IL-6, and TNF-a compared to

WT RFP+ MFs (Figure S1H).

BMDCs Contribute to aSMA+ CAFs in an Inflammation-
Related Model of Gastric Carcinogenesis
To determine how BMDCs contribute to stromal cells in an

inflammation-dependent model of cancer, IL-1b mice were irra-

diated and transplanted with EGFP� (UBC-EGFP), RFP�
(aSMA-RFP), or double-labeled (UBC-EGFP/aSMA-RFP) BM,

and animals were observed for 12–14 months. Engraftment of

MSCs was initially confirmed through isolation (Figure S2A)

and characteristic differentiation (Figure S2B) of GFP+ MSCs

isolated from BM 4 months after transplant, consistent with

previously published studies (Wang et al., 2009), confirming

that mouse BM MSCs can be transplanted (Simmons et al.,

1987; Yokota et al., 2006). In vitro culture revealed that one-third

of MSCs were GFP+ and, thus, donor derived (Figure S2A).



Figure 1. BM-Derived aSMA-Expressing

Cells Contribute to the Tumor Microenvi-

ronment

(A) aSMA staining (upper panel) and endogenous

aSMA-RFP (middle panel) or endogenous coll-

gen-a1 (lower panel) expression in stomachs of

aSMA-RFP/collagen-a1-GFP double-transgenic

mice and following 12 or 18 months of H. felis

infection.

(B) Relative number of aSMA (red) or collagen

(green)-expressing cells in the stomach of

aSMA-RFP/collagen-a1-GFP double-transgenic

mice without and with 12 or 18 months of H. felis

infection (*p < 0.05 compared to WT and

#p < 0.05 compared to 12 months).

(C) Western blot for aSMA and b-tubulin in gastric

tissue of WT, IL-1b transgenic mice, and WT mice

with 18 months of H. felis infection.

(D) aSMA staining in a dysplastic region in 12-

month-old IL-1b transgenic mice and 95% coloc-

alization of endogenous RFP expression and

aSMA in stomachs of 12-month-old IL-1b/aSMA-

RFP mice.

(E) FACS analysis of RFP+ gastric MFs at eight

PDs, isolated from uninfected aSMA-RFP mice

(WT MFs) or H. felis (18 months)-infected aSMA-

RFP mice (18-month H. felis).

All data are represented as mean ± SEM (see also

Figure S1).
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Transplantation of aSMA-RFP BM revealed abundant engraft-

ment in the BM of RFP+ cells after 18 months (Figure S2C).

In IL-1b or H. felis-infected mice that received labeled BM, the

development of dysplasia was preceded by the influx of a large

number of labeled cells (Figure 2A; Figure S2D). Although a large

proportion of the EGFP+ cells were immune cells (e.g., lympho-

cytes and myeloid cells), 12 months after BMT in IL-b mice, and

18 months after BMT in H. felis-infected mice, approximately

20% of aSMA+ cells in regions of gastric dysplasia were

EGFP+ (Figures 2A and 2C; Figure S2D), whereas few if any

double-positive (aSMA+/EGFP+) cells were found in uninfected

WT mice. To quantify the BMDCs, we transplanted BM from

UBC-GFP/aSMA-RFP mice into WT H. felis-infected, IL-1b, or
Cancer Cell 19, 257–272,
control mice. IHC and FACS revealed

that in mice with dysplasia, 20% of the

GFP+BMDCswere alsoRFP+ (Figure 2B;

Figure S2E). These findings point to a role

for aSMA+/EGFP+ cells in inflammation-

induced carcinogenesis.

We isolated and cultured MFs and

CAFs from the stomachs of EGFP+ BM-

transplanted 12-month-old WT and

IL-1b mice to determine the contribution

of BMDCs to the MF population (Fig-

ure S2F). After four PDs, more than 70%

of CAFs from IL-1b mice (with dysplasia)

were EGFP+, indicating their BM origin.

Culture of RFP+/GFP+ CAFs (Figure 2F)

from double-transgenic donors further

confirmed that aSMA+ cells were BM

derived. After sorting, the vast majority
of EGFP� cells survived only a few PDs, whereas EGFP+

CAFs proliferated and could be cultured for at least 80 PDs

and expressed MF markers (aSMA, vimentin), but not epithelial

markers (E-cadherin; data not shown). No cells in the MF or

CAF populations were positive for CD31, CD45, CD3e, CD11b,

CD45R/B220, Ly6G, Ly-6C, or TER-119 based on FACS analysis

(data not shown), indicating no contamination with leukocytes.

BM-derived CAFs expressed significantly higher mRNA levels

of TNF-a, IL-6, SDF-1, and TGF-1b (Figures S2G and S2H),

compared to WT MFs.

These data suggest that a significant population of CAFs in the

tumor microenvironment of inflammation-induced gastric

cancer is BM derived and contributes to tumor promotion.
February 15, 2011 ª2011 Elsevier Inc. 259



Figure 2. A Significant Portion of Gastric

CAFs Originate from the BM

(A) GFP (lower panel) or RFP (upper panel) expres-

sion and costaining for aSMA and DAPI in stom-

achs of WT or 12 and 18-month-old mice with

H. felis infection (arrows indicate aSMA and GFP

or RFP coexpression) after UBC-GFP- or aSMA-

RFP-labeled BMTs.

(B) FACS of freshly isolated gastric MFs from WT

mice with double-labeled BMTs after 18 months

of H. felis infection.

(C) FACS data on BM cell contribution to the tumor

microenvironment in WT, IL-1b, and H. felis-

infected WT mice harboring gastritis or dysplasia.

Green, non-aSMA+BMDCs; red, aSMA+ BMDCs;

gray, all non-BMDCs (*p < 0.05).

(D and E) Endogenous RFP and GFP expression in

stomach of 18-month-old H. felis-infected WT

mice after UBC-GFP/aSMA-RFP� double-

labeled BM transplantation.

(F) Endogenous RFP and GFP expression in

in vitro culture of isolated MFs from stomachs of

18-month-old H. felis-infected WT mice after

UBC-GFP/aSMA-RFP� double-labeled BM

transplantation.

(G) Gene expression data after FACS of GFP(�)

and GFP(+) CAFs from a BM-transplanted H. felis-

infected IL-1b mouse. qRT-PCR for expression

of GFP, CXCL1, CCL5, SSP1, CXCR4, MMP9,

IL-6, IL-1b, SDF-1a, and TNFa (copies are calcu-

lated per 10,000 copies of GAPDH; *p < 0.05

compared to all other cells).

All data are represented as mean ± SEM (see also

Figure S2 and Table S1).
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Because resident CAFs could only be cultured for two to three

passages and, thus, could not be used for extensive comparison

to BM-derived CAFs, we additionally isolated total RFP(+) gastric

CAFs (HF-CAF) from aSMA-RFP mice and compared them to
260 Cancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc.
GFP(+) BM-derived gastric CAFs (BM-

CAFs). Only 20% of HF-CAFs were BM

derived.We compared their gene expres-

sion directly after FACS (Figure S2I and

Table S1). BM-CAFs expressed higher

levels of inflammatory genes (IL-6, IL-1b,

IL-33) and a number of tumor and stem

cell-associated factors (CCL5, SPP1,

Notch3, MMP9, CD47, CXCR4,

PARP10) compared to HF-CAFs. To

confirm that this gene expression signa-

ture represents the BM-derived fraction

of the CAFs, we separated BM-trans-

planted GFP+ gastric CAFs from resident

GFP� gastric CAFs from H. felis-infected

IL-1bmice after short-term in vitro culture

by FACS and analyzed their gene expres-

sion. BM-CAFs demonstrated an expres-

sion profile of selected inflammatory

genes similar to what we observed using

microarray (Figure 2G). We compared the

gene expression signature of our BM-

derived CAFs with a previously reported
inflammatory gene signature for skin CAFs (Erez et al., 2010).

Four out of the seven key inflammatory signature genes

proposed by Erez et al. (2010) were also upregulated (p < 0.05)

in our gene list (CXCL1, IL-1b, IL-6, SPP1) (Figure S2I and
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Table S1). Additionally, we identified 20 out of 60 genes with

a significant (p < 0.05) log fold change within the Erez gene list

that were identically up or downregulated in our comparison of

BM-CAFs versus HF-CAFs. These findings suggest the possi-

bility that this inflammatory gene signature might be largely

determined by the BM-derived CAFs.

Expansion of aSMA+ MFs in the BM of Mice with Gastric
Dysplasia
To characterize the BM lineage that gives rise to aSMA+ CAFs,

we screened BM from aSMA-RFP mice with and without H. felis

infection and BM from aSMA-RFP/IL-1b mice for aSMA+ cells.

FACS analyses showed rare aSMA-RFP+ cells in the BM of unin-

fected control mice (0.02% ± 0.007%) (Figure 3A; Table S2) but

a significant stepwise increase in aSMA-RFP+ cells in the BM

from aged IL-1b transgenic mice (1.2% ± 0.18%) and mice

with long-term (18 months) H. felis infection (0.9% ± 0.1%),

both with gastric dysplasia (Figure 3A), suggesting that

long-term chronic inflammation and/or dysplasia is required for

remodeling of the BM. In a model of accelerated gastric cancer

(H. felis in combination with N-methyl-N-nitrosourea [MNU];

Tomita et al. [2010]), we confirmed the dependence of BM

aSMA cell expansion on dysplasia (Figure 3A). Histopathological

analysis confirmed a marked increase of RFP+ and aSMA+ cells

in BM after 14 months of H. felis infection (Figure 3B). Although

RFP+/aSMA+ cells were occasionally surrounded by small

groups of CD34+ hematopoietic stem cells (Figure S3A), we

could not confirm any significant correlation in the localization

of these cell types. Whereas undetectable in uninfected control

mice, we observed in the peripheral blood (0.009%) of mice

with dysplasia rare RFP+ cells (Table S2), which expressed

high levels of aSMA (Figure S3B). In addition the MSC and

CAF cultures from dysplastic stomachs were morphologically

very similar. Colony-forming units (CFUs) were consistently

observed when we cultured gastric CAFs in MSC-specific media

(Figure S3C). These data indicate that accumulation of differen-

tiated aSMA+ BMDCs in the BM and blood correlates temporally

with the development of gastric dysplasia.

MSCs are a possible source for MFs, so we established MSC

cultures from whole BM from uninfected aSMA-RFP mice. The

cultured, adherent cells were shown to be MSCs by their ability

to form CFUs (Figure 3C) and differentiation into adipocytes and

osteoblasts (Figures 3D and 3E). MSCs displayed longevity and

grew exponentially for up to 80 dayswithout signs of senescence

or differentiation (Figure 4B) and with a normal karyotype (Fig-

ure S3D). Interestingly, MSC cultures also contained cells that

expressed the RFP. Although histopathological evaluation

showed a moderate number of aSMA/RFP+ cells in the BM,

only 0.02% of fresh eluted whole BM expressed RFP by FACS,

suggesting limitations to this extraction technique for stromal

cells (Table S2). Nevertheless, 1.1% of cells after growth for

several days in culture on plastic dishes and 50%ormore of cells

after several PDs expressed RFP (Table S2), indicating that my-

ofibroblastic differentiation is highly favored under these in vitro

conditions. IHC demonstrated that the RFP+ cells expressed

high levels of endogenous aSMA, FSP1, and vimentin, but low

levels of collagen (Figures 3F and 3G). These data confirm that

murine BM-derived MSCs can differentiate into aSMA+ cells

that resemble CAFs.
C

In the Heterogeneous MSC Population, aSMA(–) MSCs
Give Rise to aSMA+ MFs that Function as Niche Cells
With continuous culture, MSCs contained a large proportion of

aSMA-RFP+ cells, indicating the heterogeneous nature, similar

to the BM-derived CAF population isolated from the stomach.

FACS analysis of heterogeneous MSC cultures (Table S2)

revealed that the majority of cells expressed RFP (71%) at six

PDs but that this RFP+ population declined with more PD.

When we compared the number of RFP+ cells after six PDs,

we found significantly more RFP+ cells in MSCs derived from

IL-1b/aSMA-RFP mice or H. felis-infected aSMA-RFP mice,

consistent with the higher number of RFP+ cells in the BM

(Figure 3A).

MFs are characterized by expression of aSMA, vimentin, and

FSP1, in contrast to fibroblasts, which express collagen-a1, or

stem cells, which rarely express these markers. RFP+ cells puri-

fied from the heterogeneous RFP+/�MSCs by FACS expressed

all three MF markers and, thus, are distinct from RFP� cells that

did not express aSMA (Figures 3F and 3G). Collagen expression

was higher in the RFP� population, and aSMA expression was

higher in the RFP+ population (Figure 3F); consistent with the

concept that the RFP+ cells represent more differentiated MFs

and that the RFP� population also differentiates into, or

contains, a fibroblast-like cell type.

Analysis of the BM-derived MSCs showed that the RFP� cells

contained the trueMSC. Up to 80%of the unsortedMSCs (which

we will refer to herein as RFP+/� cells) and up to 80% of the

once-sorted RFP� cells differentiated into adipocytes and

osteoblasts when grown in differentiation-specific media (Fig-

ure 3D), whereas only�20% of RFP+ cells were able to differen-

tiate into these cell types. RFP� cells generated more CFUs (17

CFUs), whereas RFP+ cells formed very few (five CFUs): RFP+/�
cultures were even more efficient at colony formation (42 CFUs)

(Figure 3C). RFP� cells were CD44+ but did not express Sca-1,

and only 2.4% expressed c-kit, but upon differentiation into

a mixed RFP+/� population, the cells expressed higher levels

of c-kit and Sca-1; thus, these latter markers are characteristic

for the RFP+ cells (Figure S3E), consistent with recent publica-

tions (Wang et al., 2009) indicating a dynamic change in cell

surface-marker expression upon culture of MSCs.

We next established a lineage relationship in the production of

aSMA+ cells fromMSCs and demonstrated that RFP+ cells were

derived from RFP� cells (schematic illustration in Figure 4D).

After a first sorting and isolation of RFP� cells, cultures of

RFP� cells generated new RFP+ cells and RFP� cells in the

same proportion with increasing numbers of RFP+ cells over

time (Figure 4A). Sorted RFP+ cells generated more RFP+ cells,

but not RFP� cells (Figure 4A); after ten PDs they became sen-

escent (Figure 4B). Interestingly, after 80 days of in vitro culture,

RFP� and RFP+/� cells became tetraploid (Figure S3F) but

maintained a normal karyotype in contrast to previous reports

(Izadpanah et al., 2008). These data suggest that RFP� cells

give rise to RFP+ cells, but not vice versa (Figure 4E; Movie S1).

RFP� cells showed superior self-renewal properties

compared to RFP+ cells (Figure 4B), consistent with the RFP�
cells being the progenitor to RFP+ cells. To generate pure

RFP� cells, we carried out multiple (three to five) sortings of

RFP� cells until we could not detect any RFP/aSMA+ cells in

the population. When MSC cultures were maintained in an
ancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc. 261



Figure 3. In a Mixed Population of MSCs, the aSMA-RFP– Cells Contain the Stem Cells, and RFP+ Cells Express a Typical MF Marker

(A) FACS for aSMA-RFP+ cells in freshly isolated whole BM of 6, 9, 12, 15, and 18-month-old aSMA-RFP+ mice with (red) or without H. felis infection, 6, 12, and

15-month-old IL-1b/aSMA-RFP+ transgenic mice (green), and 6, 9, and 12-month-old aSMA-RFP+ mice with H. felis infection and MNU treatment (purple).

(B) aSMA and RFP staining of the BM of C57/B6 (lower row) or aSMA-RFP (upper row) mice before (control) and after 14 months of H. felis infection. Arrows

indicate cells staining positive.

(C) CFUs from 1000 plated RFP+ (red), RFP� (green), or RFP+/� (black) cells were counted after 14 days culture.

(D) Adipocyte (brown) and osteoblast (orange) differentiation of RFP+, RFP�, or RFP+/� cells wasmeasured after 14 days culture in differentiation medium. After

oil red O or alizarin red S staining, percentage (%) of differentiated cells was calculated.

(E) Representative pictures of RFP+/� cells after differentiation experiments (left as control) and after adipocyte (middle, with oil redO staining) or osteoblast (right

with alizarin red S staining) differentiation.

(F) Quantitative expression of aSMA or collagen in RFP+ (red), RFP� (green), or RFP+/� (black) cells at passage 5 after a single RFP sorting. (G) Representative

pictures of aSMA, FSP1, collagen, and vimentin staining in RFP+, RFP�, or RFP+/� cells. *p < 0.05; **p < 0.01.

Data are represented as mean ± SEM (see also Figure S3).
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Figure 4. aSMA-RFP– Stem Cells Give Rise to Their aSMA-RFP+ Niche Cells

(A) After sorting of aSMA-RFP+MSCs after six PDs, RFP� cells (upper panel) and RFP+ cells (lower panel) were cultured separately, and RFP expression of each

population was determined. Pictures below the FACS blots represent each respective population.

(B) PDs of RFP+ (red), RFP� (green), and RFP+/� (black) cells after multiple sorting to eliminate RFP+ cells (light green). RFP expression status is shown in the red

bar below the graph (‘‘*’’ indicates potential tetraploidy after more than 80 days in in vitro culture).

(C) Elimination of RFP+ cells through TK ablation. Freshly isolated MSCs (adherent BM cultures) from aSMA-RFP mice were transfected with an aSMA-TK

construct and treated with 50 mMGCV. Remaining RFP� cells only proliferated after the treatment and gave rise to any RFP+ cells when cultured on feeder cells

(lower panel). Data are represented as mean ± SEM.

(D) Schematic illustration of the results. MSCs (RFP� cells) give rise to MSCs and MFs (RFP+ cells). After sorting, RFP+ cells become senescent after few PDs.

RFP� cells can give rise to its niche cells, RFP+ MFs, and generate a heterogeneous MSC population, consisting of RFP+ and RFP� cells.

(E) Representative time-lapse microscopy images of a RFP� cell (black arrow) giving rise to RFP� (black arrow) and RFP+ (red arrow) cells in a population of

RFP+/� cells. Elapsed time (from start of the microscopy, 12 hr after seeding) is indicated.

See also Movie S1, Table S2, and Figure S4.
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RFP� state, the cells became senescent after a few passages,

indicating that RFP+ cells are needed for RFP� cell survival.

Multiple-sorted RFP� cells could be prevented from senes-

cence by the addition of RFP+ cells (data not shown), suggesting

that the senescence phenotype was not due to cell damage from

sorting but, instead, due to the absence of secreted factors by

RFP+ cells. To confirm these observations we transfected

RFP+/� cells with a 3 kb aSMA-thymidine kinase (TK) construct

(Figure S4) in order to eliminate aSMA+ cells from the population.

Freshly isolated RFP+/�MSCs, transfected with aSMA-TK, and

treated for 10 days with gancyclovir (50 mM GCV), showed

a complete and irreversible loss of RFP+ cells, followed by loss

of RFP� cells (Figure 4C). In contrast, freshly isolated and
C

aSMA-TK transfected RFP+/� cells grown on fetal fibroblasts

(FEFs) (Okawa et al., 2007) survived and generated new RFP+

cells 1–2 days after GCV treatment (Figures 4C; Figure S4B).

These data indicate that RFP� stem cells can only survive in

a heterogeneous population of RFP� and RFP+ cells and that

the RFP+ cells probably function as niche cells for the RFP�
stem cells from which they derived.

TGF-b Induces aSMA Expression in RFP– MSCs through
CXCR4/SDF1a and Upregulates Gremlin-1
To investigate mechanisms by which BM- and MSC-derived

MFs are induced during progression to dysplasia, we examined

the effect of growth factors on RFP+ MF production.
ancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc. 263



Figure 5. Regulation of the Stem Cell Niche in the BM and Tumor

(A) Percentages of RFP+ cells in populations of RFP+ (red), RFP� (green), and RFP+/� (black) cells after incubation with TGF-b or PDGF.

(B) Results of ELISA for SDF-1a expression in RFP+, RFP�, RFP+/�, and WT gastric MFs with and without incubation with TGF-b or PDGF.

(C) Gene expression data from BM MSC cultures (RFP+, RFP�, RFP+/�), CAFs, and WT MFs. qRT-PCR for expression of IL-6, SDF-1a, TGF-b, BMP4, Wnt5a,

Shh, Dkk1, Gremlin 1, and CXCR4 from in vitro culture of RFP�, RFP+, RFP+/� cells, gastric RFP+ CAFs, andWT gastric MFs as a control (copies are calculated

per 10,000 copies of GAPDH; *p < 0.05 compared to all other cells, #p < 0.05 compared to RFP� cells, $p < 0.05 compared to RFP+ cells, +p < 0.05 compared to

MFs [Dunnett test for multiple comparisons]).
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We stimulated unsorted or sorted MSC cultures with TGF-b or

PDGF, which have been strongly linked to MF differentiation. In

all cell populations (RFP+, RFP�, and RFP+/� cells), RFP/

aSMA expression was strongly stimulated by TGF-b and to

a lesser extent by PDGF, with the greatest effect on the RFP�
population (Figure 5A; Figure S5A). In addition, growth factor

stimulation resulted in more rapid proliferation of RFP+ cells

(Figures S5A and S5B).

Next, we examined factors expressed byRFP+ cells thatmight

contribute to the BM niche and tumor microenvironment. IL-6

has been associated with the development of gastrointestinal

cancer (Grivennikov et al., 2009). BM-CAFs and WT MFs

expressed high levels of IL-6 compared to parental MSCs (Fig-

ure 5C, a finding confirmed by ELISA (data not shown)). RFP+

cells also expressed higher levels of BMP4 and Wnt5A (factors

known to contribute to the stem cell niche) and exhibited

a CAF-like gene expression pattern (Figure 5C). This inflamma-

tory gene expression profile correlated with analyses of BM-

derived GFP+ gastric CAFs compared to the total gastric CAF

population (Table S1). SDF-1a, which has been associated with

stromal-dependent cancer progression, was highly expressed

in RFP� cells compared to WT MF or RFP+ cells (Figures 5B

and 5C). Thus, it seems likely that SDF-1a is expressed by

MSCs rather than CAFs and may represent a mechanism by

whichMSCs regulateMFproliferation or recruitment to the niche.

Therefore, we examined the effect of TGF-b stimulation on

SDF-1a production by MSC. Incubation with TGF-b increased

SDF1a production 5-fold in RFP� cells (Figure 5B), but not in

RFP+ cells or WT MFs. TGF-b-mediated induction of prolifera-

tion and differentiation in MSCs was inhibited by the CXCR4

antagonist AD3100 (data not shown) because CXCR4 was

mainly expressed on RFP� and RFP+/� cells (Figure 5C).

AMD3100 reduced TGF-b-induced differentiation of RFP+/�
cells into RFP+ cells in a dose-dependent matter (Figure 5D;

Figure S5C). Thus, TGF-b can induce MF differentiation of

MSCs in part through upregulation of SDF1a in MSCs. Migration

of cancer cells induced by BM-derived gastric IL-1b-MFs was

significantly increased compared to WT MFs, and this effect

could be inhibited by blocking CXCR4 (Figure S5D).

The BMPantagonist Gremlin-1was upregulated during gastric

carcinogenesis (Figure 5F) but was expressed at low levels in

RFP� and RFP+ cells (Figure 5E). Interestingly, though,

Gremlin-1 was upregulated in RFP+/� cells, suggesting that

Gremlin-1 is induced by an interaction between RFP+ and

RFP� cells. Gremlin-1 was highly expressed in CAFs, but not

in WT MFs (Figures 5C and 5E), and TGF-b upregulated

Gremlin-1 expression in RFP� cells, but not in RFP+ cells (Fig-

ure 5E). In RFP+/� cells, Gremlin1 could only be detected in

RFP� cells (Figure 5G), and aSMA andGremlin-1 did not overlap
(D) Quantitative analysis of the dose-dependent effect on RFP expression in RFP+

CXCR4 inhibitor AMD3100.

(E) qRT-PCR for Gremlin-1 expression in RFP+, RFP�, and RFP+/� cells with (r

(F) Representative picture of Gremlin-1 staining of WT mouse stomach (left) an

(middle), and invasive gastric cancer in 14-month-old IL-1b mice (right).

(G) Representative pictures of Gremlin-1 staining (green) of RFP+/� and RFP� c

(H) Representative double staining for Gremlin-1 (red) and aSMA (green) in gastr

(I and J) Representative picture of Gremlin1 (I) and Nestin1 (J) staining in 12-mon

All data are represented as mean ± SEM (see also Figure S5).

C

in CAFs in gastric dysplasia (Figure 5H), indicating that Gremlin-1

is likely a marker of MSCs in their niche in the BM and tumor

microenvironment. IHC revealed that the majority of Gremlin-

1+ cells in IL-1b-mice transplanted with EGFP-BM were GFP+

(Figure 5I), indicating that Gremlin-1+ cells were largely BM

derived. A recent study (Mendez-Ferrer et al., 2010) reported

Nestin1 as amarker for MSCs in the BM, whereMSCs contribute

to the BM niche for HSCs. We observed colocalization of

a subpopulation of Nestin1+ andGFP+BM-transplanted stromal

cells in gastric dysplasia (Figure 5J), confirming that BM-derived

MSCs are present in the dysplastic stomach. Sonic hedgehog

(Shh), which regulates stem cells, and Dickkopf-1 (DKK1), an

inhibitor of the Wnt pathway, were also expressed mainly in

RFP+/� cells, reflecting an active niche environment (Figure 5C).

BM-DerivedMFs fromGastric Dysplasia orMSCs Induce
Invasive Growth of Gastric Tumor Cells in a 3D
Organotypic Model
Given the evidence that CAFs originate from BM-MSCs and are

recruited to the stomach at early stages of dysplasia, we inves-

tigated interactions between tumor cells and CAFs. When

cocultured with the human gastric cancer cells, AGS, RFP�,

RFP+, and RFP+/� cells all increased the expression of RFP/

aSMA (Figure 6A), along with the MFmarkers FSP1 and vimentin

(data not shown). In contrast, expression of collagen was down-

regulated in RFP� and RFP+/� cells to approximately the level

found in RFP+ MFs (Figure 6A). Thus, coculture with tumor cells

induces differentiation of MSCs toward the myofibroblastic

lineage. In coculture experiments, SDF-1a levels were signifi-

cantly decreased in all stromal cell populations (Figure 6B),

particularly in the RFP� cells, consistent with increased differen-

tiation of MSCs into aSMA+ MFs.

To study the biologic effects of BM- and MSC-derived MFs on

tumor cells, we used a 3D organotypic cell culture system: AGS

cells were laid onto an extracellular matrix (ECM) gel mixture

with MSC-derived cell populations (RFP�, RFP+, and RFP+/�
cells), normalWTgastricMFs, gastricCAFs, orBM-CAFs (Figures

6C and 6D). When placed on WT MFs, AGS cells grew with

minimal signs of invasion, as expected for a well-differentiated,

weak tumorigenic cell line in organotypic culture (Figure 6D).

In contrast, when cultured on pooled gastric CAFs, tumor cell

invasion into ECM could be detected (Figure 6D). However,

AGS cells cultured on the RFP+ cells (19 invasion sides/cm), the

RFP+/� cells (eight invasion sides/cm), and the IL-1bBM-derived

CAFs (seven invasion sides/cm) revealed high levels of invasion

into ECM (Figures 6C and 6D). In contrast, nearly no invasion

was observed when AGS cells were cultured on RFP� cells.

Given recent findings that widespread hypomethylation char-

acterizesCAFs fromhuman gastric tumors and froma transgenic
/� after 48-hr incubation with TGF-b and 100 ng/ml (left) or 1 mg/ml (right) of the

ed) and without (blue) 48-hr incubation with TGF-b.

d mouse stomach with gastric dysplasia after 14 months of H. felis infection

ells (left, RFP [red] is endogenous aSMA-RFP).

ic dysplasia in 18-month-old H. felis-infected mice.

th-old GFP-BM transplanted IL-1b mice. *p < 0.05.
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Figure 6. MF Differentiation of MSCs Promotes In Vitro Tumor Invasion

(A) Percent (%) change of aSMA and collagen expression in RFP�, RFP+, and RFP+/� cells cocultured with AGS or MKN45 gastric tumor cells (see Figure 3D for

controls; *p < 0.05).

(B) Results of ELISA for SDF-1a expression in RFP+, RFP�, and RFP+/� cells in single or coculture with AGS gastric tumor cells.

(C) Quantification of invasions per 1 cm from organotypic culture experiments in RFP�, RFP+, and RFP+/� cells of WT MFs and IL-1b-BM MFs grown in a 3D

collagen/Matrigel matrix with AGS on top (*p < 0.05 compared to WT MFs and #p < 0.05 compared to RFP+/� or IL-1b MFs).

(D) Representative pictures of organotypic culture with AGS cells growing on top of a 3D collagen/Matrigel matrix that contains different cell populations. Upper

panel shows RFP+ cells (arrows indicate invasion sites) with representative pictures of the staining for human epithelial antigen (hEA) to detect human AGS cells

(middle) or aSMA to detect the aSMA-RFP expressing cells in the matrix (arrows at right). Middle panel indicates AGS cells on RFP� (left) or RFP+/� (middle)

cells, and on RFP+/� cells after incubationwith 5-azacytidine (35 ml/ml) for 10 days. Lower-left panel shows IL-1bBMMFs; lower-middle panel illustrates isolated

gastric CAFs from mice after 18 months of H. felis infection; and lower-right panel indicates WT, uninfected gastric MFs.

(E) Relative methylation in the cytosine extension assay of RFP+/� and RFP+ cells compared to RFP+/� cells treated with TGF-b for 48 hr.

(F) FACS for RFP expression in RFP+/� cells before (left) and after (right) incubation with 5-azacytidine for 10 days and six PDs. *p < 0.05.

All data are represented as mean ± SEM.
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mouse model of multistage gastric carcinogenesis (Jiang et al.,

2008), we examined the role of methylation in development of

RFP+ cells. We observed significantly (p < 0.05) higher levels of

DNA methylation in RFP+/� than in RFP+ cells (Figure 6E), sup-

porting the concept that development of RFP+ MFs is regulated

in part by hypomethylation. Incubation of mixed RFP+/� MSCs

with 5-aza-dC induced DNA demethylation, increased the

proportion of RFP+ cells (Figure 6F), and increased the degree

of tumor cell invasion in the organotypic model (Figure 6D). Inter-

estingly, TGF-b also induced hypomethylation in RFP+/� cells

(Figure 6E). These findings indicate that hypomethylation of

RFP+/� cells from the BM can contribute to the development
266 Cancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc.
of a CAF phenotype, might be sufficient to further transform non-

tumorigenic tumor cells, and contributes to tumor invasion.

BM- andMSC-DerivedMFs Induce Tumor Growth In Vivo
When Injected Locally or at a Distance
To confirm the findings from the organotypicmodel, we analyzed

the effects of BM- and MSC-derived MFs in xenograft tumor

models. When 105 MKN45 cells were injected, there was only

minor tumor growth after 6 weeks, but tumors were observed

with 106 MKN45 cells, or when 105 MKN45 cells were coinjected

with stromal cells (Figures S6A and S6B). Coinjection of 105

MKN45 cells with FEFs, or RFP� MSCs, resulted in small
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tumors. Large tumors were observed when 105 MKN45 cells

were coinjected with RFP+, RFP+/�, or IL-1b-BM-CAFs (Figures

S7B and S7D). The nontumorigenic AGS cells formed tumors

only in combination with RFP+ or IL-1b-BM-CAFs using the

same number of cells (105 or 106, Figure S6C). Preliminary exper-

iments with mouse pancreatic cancer cells and CAFs confirmed

those findings (data not shown). These in vivo data support the

conclusions from organotypic assays that BM- and MSC-

derived RFP+ cells contribute to tumor growth and have proper-

ties that are distinct from normal fibroblasts and MFs.

To further examine the in vivo importance of MSCs to the CAF

population, we injected MKN45 cells into both flanks of a mouse

but injected only one flank with IL-1b-BM-CAFs (GFP+), WT

MFs, gastric CAFs (HF-MF), or RFP+, RFP�, or RFP+/� cells.

Flanks injected with cancer cells along with RFP� cells or WT

MFs developed small tumors, whereas the opposite flanks in-

jectedwith only cancer cells did not develop tumors (Figure S6D).

Coinjection of cancer and RFP+ cells resulted in formation of

large tumors on the flank of coinjections and small tumors on

the other flank. Interestingly, coinjection of cancer cells and

RFP+/� cells, gastric CAFs (HF-MF), or IL-1b-BM-MF cells

resulted in formation of large tumors on both flanks (Figures 7A

and 7B). These findings indicate that CAFs that contain MSCs

andmyofibroblastic cells are likely able to promote tumor growth

at distant sites. When we injected one flank with 105 MKN cells

and IL-1b-BM-CAFs (without tumor cells) on the opposite flank,

we observed increased tumor growth as with injections on the

same flank (Figures 7B and 7C). Similar results were observed

with IL-1b-BM-MFs injected intraperitoneally (Figure S6E). IHC

for aSMA showed an increased number of MFs in the large

tumors with coinjections of RFP+ or RFP+/� cells, compared to

those of RFP� cells, FEFs, or WT MFs (Figures 7A and 7B). RFP

or GFP expression was detected in large tumors on both flanks

by IHC (Figure 7A, white arrows) and PCR (Figure S6F); RFP and

GFP primarily colocalized with aSMA expression in mice that

received coinjections of tumor and RFP+ and RFP+/� cells, or

IL-1b-BM-CAFs. Interestingly, not all GFP-labeled IL-1b-BM-

MFs expressed aSMA (Figures 7A and 7B, orange arrows),

consistent with the notion that these CAF preparations were

similar to the RFP+/� population, containing MFs and MSCs.

To determine if endogenous BMDCs also contributed to the

observed tumor growth, we performed experiments with WT

C57/B6 mice transplanted with BM from aSMA-RFP mice or

UBC-GFP mice (Figure S6H). Chimeric mice with the UBC-GFP

BMweregiven injectionsofRFP+/�cells togetherwith syngeneic

105 TC-1murine cancer cells in one flank and TC-1 cells alone on

the other. Mice with aSMA-RFP BM received coinjections of

GFP+ IL-1b-BM-MFs and TC-1 cells in one flank and only TC-1

cells in the other (Figure S6H). Again, we observed increased

tumor growth with coinjections (data not shown), compared to

only tumor cells; and stromal cells were recruited to the tumors.

Tumors contained multiple BM-derived GFP+ or RFP+ cells,

including aSMA+ MF-shaped cells (Figure S6H). Interestingly,

coinjection of MSC-containing CAF preparations significantly

increased the number of GFP+BMDCs andRFP+MFs in tumors,

in contrast to few GFP+ cells in tumors of mice not given coinjec-

tions (FiguresS6GandS6H). Thus, the recruitment ofBM-derived

CAFs can be accelerated by the presence of MSCs in the tumor

microenvironment. Taken together, BM- and MSC-derived
C

aSMA+ MFs can be recruited to the tumor to stimulate growth,

but the combination of the RFP+ myofibroblastic cells and

RFP� MSCs, which recreate the BM niche at the tumor site, is

a particularly potent stimulant of tumor growth and responsible

for further recruitment of BMDCs (see model: Figure 8G).
CXCR4/SDF1 Contributes to Migration of BM-Derived
MFs to the Tumor, Whereas TGF-b Inhibition Decreases
MF Differentiation In Vivo
Having shown that SDF-1a signaling modulated MF differentia-

tion in vitro, we analyzed the importance of SDF-1a signaling

in vivo. We coinjected GFP-labeled IL-1b-BM-MFs with

MKN45 cells in one flank, and MKN45 cells alone in the other

flank, and then administered a TGF-b receptor 2 (R2) inhibitor

(SB-505124) or CXCR4 inhibitor (AMD3100) for 6 weeks. Mice

given the TGF-bR2 inhibitor developed smaller tumors on both

flanks (Figures 8A and 8B), compared with untreated control

mice (Figure 8A). IHC revealed a decrease in total GFP-labeled

and aSMA+/GFP+ MFs, suggesting less differentiation of

MSCs to CAFs, consistent with the in vitro results. In mice that

were given the CXCR4 inhibitor, we observed a slight decrease

in tumor size on the flank that received coinjection of IL-1b

BM-MFs and MKN45 cells but very small tumors on the flank

only injected with tumor cells (Figures 8A and 8B). IHC revealed

no GFP+ cells with few if any aSMA-expressing MFs on the

contralateral side, and a reduced number of non-GFP aSMA+

cells on the coinjection side (Figure 8A). These findings indicate

that SDF-1a signaling is likely required for the recruitment and

migration of MSCs or MFs to the tumor site.

To extend these findings, we treated H. felis-infected aSMA-

RFP mice (12 months) with the CXCR4 inhibitor (5 mg/kg/day

AMD3100 in four consecutive Alzetª mini pumps) for 4 months

and analyzed the effects on gastric carcinogenesis and aSMA/

RFP+ BMDCs. CXCR4 antagonism resulted in a marked reduc-

tion in aSMA+ cells in the BM of the treated mice, which seemed

to be replaced by fat cells (Figures 8E and 8F); it led to a reduction

in gastric aSMA+ cells (Figure 8C) and inhibited the development

of gastric dysplasia compared to untreated control mice

(Figure 8D). The findings are consistent with the model in which

targeted inhibition of BM aSMA+MF production reduces cancer

progression, although we cannot completely exclude a direct

effect of the CXCR4 antagonist on the development of dysplasia.
DISCUSSION

Although it is widely accepted that tumorigenesis is regulated by

interactions between tumor cells and CAFs, the precise origin

and function of CAFs have been unclear. We show that: (1)

CAFs increase during chronic inflammation and gastric cancer

progression, particularly during the transition to dysplasia; (2)

CAFs are derived from aSMA+ MFs present in the normal BM;

and (3) aSMA+ MFs are generated from MSCs and contribute

to the normal BM niche and MSC self-renewal. During chronic

inflammation and carcinogenesis, these aSMA+ BM niche cells

are expanded in a TGF-b-dependent matter and recruited

through CXCR4/SDF1a signaling together with Gremlin-1-ex-

pressing MSCs to incipient tumors where they contribute to

a tumor niche that promotes and sustains tumor progression.
ancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc. 267



Figure 7. BM-Derived Gastric MFs and Heterogeneous MSCs Promote Xenograft Tumor Growth

(A) For xenograft experiments (from top to bottom), 105 RFP+, RFP+/�, IL-1b-BMMF, and gastric RFP+ CAFs were coinjected with 105 MKN45 cells on the right

flank, and 105 MKN45 cells were injected alone on the left flank of SCID mice. Tumor injection sites and tumor sizes and representative images of staining for

aSMA and RFP or GFP are shown. IHC, orange arrows indicate double staining, and white arrows indicate only GFP expression.

(B) Quantification and statistical analysis of xenograft experiment of 105 fibroblasts (FB), RFP+, RFP�, RFP+/�, and IL-1b-BM MFs after coinjected with 105

MKN45 on the one side, but only tumor cells on the contralateral side. IL-1b-BM MFs were injected at a distant site, and 106 MKN cells were injected into the

contralateral flank. (*p < 0.05 compared to MKN alone, #p < 0.05 compared to RFP+ and RFP+/� cells, and $p < 0.05 compared to RFP� and FB [Dunnett;

all data are represented as mean and measure points].)

(C) RFP+/� cells or IL-1b-BM-CAFs were injected s.c. in a mouse with a tumor of 106 MKN cells growing on the left flank. IHC for aSMA (green) and endogenous

RFP show double staining (orange arrows) or only aSMA expression (white arrow) in the tumor.

See also Figure S6.
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In inflammation-dependent models of gastric cancer, progres-

sion to dysplasia is associated with accumulation of aSMA-ex-

pressing CAFs, compared to collagen-a1-expressing fibro-
268 Cancer Cell 19, 257–272, February 15, 2011 ª2011 Elsevier Inc.
blasts. aSMA-expressing CAFs could in theory originate from

local fibroblasts, endothelial cells, mesenchymal cells, local

epithelial cells during the EMT, or recruited BMDCs. Studies
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using RIPTag transgenic mice showed that BMDCs can give rise

to CAFs and fibroblasts (Direkze et al., 2004), which was

confirmed in other cancer models (Guo et al., 2008). More impor-

tantly, studies in patients with gastric cancer that received

gender-mismatched BMTs have confirmed the BM origin of

CAFs in gastric cancer (Worthley et al., 2009). We demonstrate

through BM reconstitution studies in mice that 20% of aSMA+

fibroblastic cells that accumulate in dysplasia are BM derived

and that BMMSCs are the likely origin of these CAFs (Figure 8G).

In contrast to previous reports (Simmons et al., 1987; Yokota

et al., 2006), we show here that it is indeed possible to transplant

BM MSCs in the mouse. CAFs recruited from the BM are func-

tionally more active as promoters of tumor growth and invasion

compared to normal or resident fibroblasts, and exhibit a previ-

ously reported NF-kB-dependent inflammatory gene expression

signature (Erez et al., 2010), which accounts for higher levels of

pro-inflammatory cytokines in CAFs (Karnoub et al., 2007; Orimo

et al., 2005).

In mouse models of inflammation-induced gastric dysplasia,

aSMA+ CAFs were recruited to the stomach after first accumu-

lating in the peripheral blood and in the BM. Indeed, the accumu-

lation of aSMA+ cells in the BM appeared to correlate with the

development of dysplasia, and suggests that carcinogenesis

involves an early stage of BM remodeling. In the normal BM,

MSCs are able to give rise to aSMA+ cells that morphologically

and functionally behave identically to CAFs isolated from the

dysplastic stomach, and these aSMA+ MF cells appear to be

expanded in cancer.

Previous studies have suggested that MSCs can be induced

to differentiate into CAFs, particularly when exposed to tumor-

conditioned media (Mishra et al., 2008). However, we show

that differentiation of MSCs into aSMA+ cells is a normal pattern

of differentiation in vitro and in vivo, compatible with asymmetric

stem cell division in a broad definition, although more specifica-

tion regarding an intrinsic or extrinsic mechanism would be

needed (Morrison and Kimble, 2006). Moreover, aSMA+ myofi-

broblastic cells represent normal niche cells within the BM that

maintain the self-renewal properties of MSCs. In culture, MSCs

lose their proliferative potential and ability to self-renew when

aSMA+ cells are specifically eliminated, and these capabilities

are restored if aSMA+ cells are added back to the MSC. The

aSMA-RFP transgene has allowed us to sort the heterogeneous,

adherent population of BMmesenchymal cells, revealing that the

true MSC is aSMA—but can give rise to aSMA+ MFs.

Most adult stem cells are extremely difficult to culture in vitro in

the absence of supportive niche cells or defined growth factors,

and the fact that MSCs generate their own aSMA+ niche cells

clarifies the self-renewal abilities of BM MSC cultures. The

concept that a stem cell is able to generate its own niche cell

has precedence (Mathur et al., 2010; Snippert et al., 2010). In

addition the presence of the aSMA+ cells in the BM raises inter-

esting questions regarding the possible role of these cells

beyond support of the MSCs. The BM niche is thought to consist

of osteoblasts (Lo Celso et al., 2009), which only exist in the

bone, but further studies are required to determine if CAF-like

cells support the growth of stem cells beyond the MSCs.

The development of dysplasia and tumors in the stomachs of

mice was associated temporally with an expansion of aSMA+

cells in the BM, which was reproduced by coculture of MSCs
C

with gastric cancer cells, indicating the effect of a soluble,

secreted factor. Previous studies have shown that coculture of

MSCs with cancer cells could result in differentiation into CAFs

(Mishra et al., 2008) and that DNA hypomethylation induced by

5-aza-dC promoted the differentiation of pooled human MSC

cultures into CAFs. We had shown that CAFs become markedly

hypomethylated during early stages of human gastric carcino-

genesis (Jiang et al., 2008). Here, we confirm that hypomethyla-

tion is sufficient to induce differentiation of CAFs and that the

effect is specific for the RFP�MSCs. However, we also demon-

strate that a soluble growth factor often secreted by tumors,

TGF-b, may contribute to the development of CAFs from

MSCs during tumorigenesis. Incubation of RFP� BM-derived

MSCs with TGF-b induced DNA hypomethylation and acceler-

ated their differentiation into aSMA+ CAFs. The promotion by

TGF-b of myofibroblastic differentiation occurs in part through

an SDF-1a-dependent pathway because inhibition of CXCR4

blocked this differentiation process. Thus, although global hypo-

methylation is a well-known feature of malignant tumors, we

demonstrate that TGF-b can induce both fibroblastic differentia-

tion and global DNA hypomethylation rapidly in vitro.

The aSMA+ MF niche cells express a number of factors that

likely contribute to the stem cell niche and also maintain the

self-renewal properties of incipient tumors (Figure 8G). Factors

such as Wnt5a, BMP4, and IL-6 were highly expressed by

RFP+ cells, as well as BM-derived CAFs isolated from gastric

dysplasia. Wnt signaling has been shown in the gut to be impor-

tant both for the maintenance of tissue stem cells and the gener-

ation of cancer stem cells (CSCs) (Brabletz et al., 2009) and

recently was associated with maintaining or inducing stemness

in CSCs (Vermeulen et al., 2010). BMPs have also been linked

to intestinal and hematopoietic stem cell maintenance, control-

ling the stem cell number through regulation of the niche size

(Zhang and Li, 2005). IL-6 appears to be required for the survival

of intestinal epithelial cells and the development of inflammation-

associated cancer of the gut, probably through activation of

STAT-3 pathways in intestinal progenitors (Grivennikov et al.,

2009). However, although the RFP+ CAFs promoted in vitro

proliferation of cancer cells in organotypic models, the RFP+/�
cells, which contained MSCs and CAFs, appeared to be very

important in promoting in vivo tumor growth, particularly when

injected at a distance from the tumor site. These findings indicate

that MSCs are required for the production or migration of CAFs

over time. Our results suggest that SDF-1a is likely produced

by the MSC-containing RFP� population, rather than the RFP+

CAFs; SDF-1a seems to function in an autocrine function to stim-

ulate more niche cells, and a paracrine function to attract and

maintain CAFs in close proximity to tumors. Thus, CXCR4 antag-

onism—in our xenograft studies and our gastric carcinogenesis

studies—appeared to inhibit stromal cell recruitment to the

tumors and also block the production of CAFs in the BM of

mice with cancer.

The two cell types (RFP� MSCs and RFP+ MFs) function

together as stem cell and niche cell and communicate with

each other. A crosstalk between the MSCs and MFs results in

a unique pattern of gene expression characteristic of the niche,

compared to those of each individual cell population. For

example, DKK1 and Shh are significantly upregulated in

heterogeneous RFP+/� cultures, but not in sorted RFP� and
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Figure 8. CXCR4/SDF1 Inhibition Reduced MF and MSC Recruitment and Tumor Growth

(A) Effects of TGF-b or CXCR4 inhibition. Quantification and statistical analysis of xenograft experiment with mice coinjected with IL-1b BM-MF andMKN45 cells

on one flank and MKN45 alone on the other flank. Tumor size in grams after 6 weeks of tumor growth in mice given the TGF-bR2 inhibitor (SB-505124) or CXCR4

inhibitor (AMD3100) (*p< 0.05; Dunnett).

(B) Tumor size (middle) after 6 weeks of tumor growth in mice given the TGF-bR2 inhibitor (upper panel) or CXCR4 inhibitor (lower panel). Representative IHC of

each tumor (right, left) with staining for endogenous GFP and aSMA (orange arrows indicate double staining, and white arrows indicate expression of only GFP).

(C–F) Effect of CXCR4 inhibitor treatment on stomachs of 16-month-old H. felis-infected aSMA/RFP mice after 4 months of AMD3100 treatment.

(C) Representative IHC of (left) untreated control and (right) AMD3100-treated mice and (D) histopathological scoring of the same experiment (*p < 0.05; n = 3).

(E) Representative pictures of (left) untreated control BM and (right) BM of AMD3100-treated mice with aSMA staining and (F) quantification of RFP+ cells in the

BM by FACS (*p < 0.05; n = 3). All data are represented as mean ± SEM.

(G) Schematic drawing that depicts interactions between the BM niche (left) and the gastric cancer stroma (right). A significant portion of CAFs (red) originates

from the BM and is derived from MSCs (green). The normal BM niche consists of self-renewing MSCs that give rise to MFs that resemble CAFs and likely
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RFP+ cells, indicating that these factors can only be expressed

in a functioning stem cell niche. Gremlin-1 was expressed on

RFP� cells, presumably the true MSCs, but mainly under the

conditions when the MSCs were cultured together in a mixed

RFP+/RFP� population. Interestingly, Gremlin-1, an antagonist

of the BMP pathway, is not expressed by normal adult fibro-

blasts or MF from the skin or most solid organs; expression of

Gremlin-1 has been reported to be unique to stromal cells in

the setting of cancer (Sneddon et al., 2006) and was consistently

upregulated in our model of gastric carcinogenesis. Because

Gremlin-1 expression was observed only in cultures that contain

MSCs and MFs/CAFs, it is possible that MSC expression of

Gremlin-1 occurs in response to BMP signals from the aSMA+

myofibroblastic cells. Consistently, high levels of Gremlin-1

have been observed in mouse embryonic fibroblast cells that

are capable of maintaining human embryonic stem cells in

culture (Pera et al., 2004).

In summary, we show that chronic inflammation and epithelial

dysplasia lead to remodeling of the BM and expansion of aSMA+

MFs in a manner that promotes cancer growth and progression.

The CAF-like MFs contribute to the niche for the MSCs, and it is

this fully intact MSC niche that is recruited to the tumor site and

that stimulates malignant progression. The recruitment of the

niche to the tumor site can be blocked by CXCR4 inhibition,

and the differentiation of MSCs can be abrogated by TGF-b inhi-

bition. We propose a model in which during the earliest stages of

inflammation-induced tumor development, the BM undergoes

remodeling, mediated in part by TGF-b, and then the MSC-

CAF stem cell niche promotes tumor progression through

SDF-1a signaling (Figure 8G). These observations have implica-

tions for the early diagnosis and treatment of cancer.
EXPERIMENTAL PROCEDURES

Isolation and Culture of Cells

BM cells were collected by flushing femurs of aSMA-RFP mice. MSCs were

cultured in murine mesenchymal medium with supplements (MesenCult).

Serial cultures of the differentMSCswere performed in 10 cmdishes by plating

105 cells, refeeding the cells every other day, and subculturing every 4–5 days.

The doubling number of each passage was calculated with the formula PD =

(nf/n0)/log2. WT (WT MFs), BM-derived (BM-MFs), and aSMA-RFP MFs

(RFP-MFs) were isolated from the stomach of C57BL/6, IL-1b/aSMA-RFP,

and aSMA-RFP reporter mice. Stomachs were cut into small pieces that

were incubated with collagenase I at 37�C for 1 hr. Cells were filtered with

a cell strainer and washed with PBS. Harvested cells were cultured in RPMI

medium without Glutamine, supplemented with 10% FBS (Hyclone) and

penicillin-streptomycin at 37�C in 5% CO2. Characteristic features of MFs

(abundant myofibrils with dense bodies, indented nucleus, basal lamina-like

structure, capacity to express aSMA, vimentin and laminin) were demon-

strated in both primary and secondary cultures.

Cultured cells were incubated with 35 mg/ml of 5-aza-2-deoxycitidine

(Sigma) for hypomethylation experiments or 10 ng/ml of murine recombinant

TGF-b1 (Invitrogen) or murine recombinant PDGF (Sigma) for growth factor

stimulation experiments.
contribute to the normal stem cell niche in the BM. In their niche,MSCs express bo

through an SDF1a-dependent pathway that involves DNA hypomethylation. MFs

likely induce DKK1 or Shh in the normal, heterogeneous population of MSCs. Wit

and blood. These BM niche cells are expanded in a TGF-b-dependent matter an

pressing MSCs to incipient tumors where they now appear as CAFs.

C

Xenograft Studies in SCID Mice

All mice studies and breeding were carried out under the approval of IACUC of

Columbia University. Six to 8-week-old SCID mice were used for subcuta-

neous injection with a mixture of tumor cells and either RFP+, RFP�, or

RFP+/� aSMA-MSCs (13 105), or GFP-labeled BM-derivedMFs (13 105) iso-

lated from the stomach. Human gastric cancer cell lines MKN45 and AGS or

the mouse Lung Cancer cell line TC-1 was used. Mice were followed for

6 weeks after injection of tumor cells. TGF-b was inhibited in mice with

5 mg/kg of SB-505124 (hydrochloride hydrate; Sigma); CXCR4 was inhibited

in mice with 5 mg/kg of AMD3100 (Sigma), as previously described (Azab

et al., 2009).

ACCESSION NUMBERS

Microarray data were deposited on the Gene Expression Omnibus (GEO) and

can be found under accession number GSE23548.
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