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a b s t r a c t

This paper has three main goals. We start describing a method for computing the
polynomial vector fields tangent to a given algebraic variety; this is of interest, for instance,
in view of (effective) foliation theory. We then pass to furnishing a family of modules of
linear type (that is, the Rees algebra equals the symmetric algebra), formed with vector
fields related to suitable pairs of algebraic varieties, one of them being a free divisor in
the sense of K. Saito. Finally, we derive freeness criteria for modules retaining a certain
tangency feature, so that, in particular, well-known criteria for free divisors are recovered.
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1. Introduction

Throughout, we denote by An
= An

k the n-dimensional affine space over a ground field k, with affine coordinates
t1, . . . , tn. The ring O = OAn of regular functions on An may be realized as the polynomial ring k[t1, . . . , tn], with t1, . . . , tn
viewed as variables over k. For geometric reasons, we assume that k is algebraically closed of characteristic zero.

An ambient vector field is an algebraic vector field defined globally on An, by which we mean an ordered collection ϑ
of polynomial functions hi:An

→ k, i = 1, . . . , n, that to each point p ∈ An associates the vector ϑp with coordinates
h1(p), . . . , hn(p)with respect to the basis {( ∂

∂ti
)p}

n
i=1 of TpAn

≃ An.
One may write ϑ =

∑n
i=1 hi

∂
∂ti

, so that the O-module DAn of all ambient vector fields is simply the (free) module
DAn = ⊕

n
i=1O

∂
∂ti

formed with the k-derivations of O . The singular set of any given ϑ ∈ DAn is

Singϑ = {p ∈ An
| ϑp = 0} =

n
i=1

{hi = 0}.

By a variety we mean an algebraic variety over k. The singular locus of a variety W ⊂ An will be denoted SingW . Its
(embedded) tangent space TpW at a smooth point p ∈ W is viewed, as usual, as the kernel of the k-linear map kn → km

whose matrix in the canonical bases is the Jacobian matrix ( ∂ fi
∂tj
(p)) (evaluated at p), for some (in fact, any) generating set

{f1, . . . , fm} ⊂ O of the vanishing function ideal of W .

The following simple fact will be used several times in this paper.

Proposition 1.1. Let V ⊆ W ⊂ An be reduced varieties with vanishing function ideals IV , IW ⊂ O , respectively. For any
ϑ ∈ DAn such that V * SingW ∪ Singϑ , the following are equivalent:
(i) The restriction of ϑ to V is tangent to W , that is, ϑp ∈ TpW for each point p ∈ V \ (SingW ∪ Singϑ);
(ii) As a k-derivation, ϑ satisfies ϑ(IW ) ⊆ IV , that is, ϑ(f ) ∈ IV , for all f ∈ IW .

In particular, if V * Singϑ , then ϑ is tangent to V if and only if ϑ(IV ) ⊆ IV .
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Proof. Write generators IW = (f1, . . . , fm). The tangent space TpW of the embedding W ⊂ An at a smooth point
p ∈ W is defined by the linear equations

∑n
i=1

∂ fj
∂ti
(p) ti = 0, j = 1, . . . ,m. Given ϑ =

∑n
i=1 hi

∂
∂ti

∈ DAn , set
U = V \ (SingW ∪ Singϑ), which is non-empty by hypothesis. For each point p ∈ U , saying that ϑp ∈ TpW means

n−
i=1

hi(p)
∂ fj
∂ti
(p) = 0, j = 1, . . . ,m,

that is, regarding ϑ as a k-derivation of O , the functions ϑ(fj)’s vanish on U , and hence they must vanish on V since U ⊂ V

is a Zariski dense open subset. This means that ϑ(fj) ∈ IV , for every j, which by Leibniz’s rule is equivalent to ϑ(f ) ∈ IV for
all f ∈ IW . For the particular assertion, take V = W . �

Needless to say, algebraic vector fields play a classical role in Algebraic Geometry, as well as in Commutative and Non-
Commutative Algebra if we realize them as derivations of the base ring. Here, essentially under an algebraic viewpoint, we
are interested in suitable ambient vector fields, mainly those yielding a family of linear type modules, which in turnwill lead
us to the important notion of free divisor (due to K. Saito). Also, as a byproduct of a corollary of a depth-formula obtained,
we recover well-known criteria for a divisor to be free.

In order to be more precise, we pass to a description of the content of the paper.
Section 2 is concerned with Proposition 2.1, which presents a simple method for the computation of all the ambient

vector fields tangent to a given reduced variety V ⊂ An (the projective setup is allowed, so that An may be replaced by a
projective space Pn over k; see Remark 2.2(ii)). Explicitly, one is focused on the set

TAn/k(V ) = {ϑ ∈ DAn | V * Singϑ, ϑp ∈ TpV , ∀ p ∈ V \ (Sing V ∪ Singϑ)},

viewed as an O-module. If ϑ ∈ TAn/k(V ), one says that ϑ leaves V invariant, or that V is ϑ-invariant. The investigation of
this module is of interest, for instance, in view of holomorphic foliation theory (cf., e.g., [2,3]).

At first sight, one is led to think that working first on the coordinate ring of V would be necessary for obtaining a
generating set for TAn/k(V ); here, the operations required within our algorithm may be performed simply over O . Loosely
speaking, if V has defining ideal IV = (f1, . . . , fm) ⊂ O , one first computes free presentations, over O , of suitable ideals
related to IV and to the gradient ideals of the fi’s, in view of obtaining certain modules derived from the presentation
matrices; finally, one computes their intersection (preferably with the aid of an algebraic computer system, e.g. [1]) so that
the resultingmatrix yields thewanted generators. The technique is illustrated in Example 2.3, concerning the elliptic quartic
curve E ⊂ P3 (in particular, we shall reobtain a vector field tangent to E used by M. Soares in order to show that one of his
bounds is attained, in the context of his main contribution to Poincaré’s problem on foliations; cf. [10]). The drawback of
our method is that the steps involved do not carry precise information about the module-theoretic structure of TAn/k(V );
on the other hand, it does not depend on any particular class of ideals.

In Section 3, we produce a family of linear type modules (that is, modules for which the Rees and symmetric algebras
coincide; see [9]) formedwith distinguished vector fields associated to free divisors (cf. [8]). One startswith reduced varieties
V ⊂ F ⊂ An (that once again may be taken projective), where F = {f = 0} is a quasi-homogeneous free divisor with
gradient ideal Gf . In analogy with the module TAn/k(V )written above, let TAn/k(V ,F ) stand for the O-module formed with
the ϑ ∈ DAn such that V * SingF ∪ Singϑ and ϑp ∈ TpF , for all p ∈ V \ (SingF ∪ Singϑ). In this setting, we prove in
Proposition 3.2 that if the ideal Gf ∩ IV ⊂ O is of linear type, then so is TAn/k(V ,F ) as an O-module. The proof makes use of
the technique of (non-generic) Bourbaki ideals, developed in [9] with focus on Rees algebras of finitely generated modules
with rank.

Finally, in Section 4 (where we adopt the projective setup), we derive freeness criteria for the O-module TPn/k(V ,H ),
where V ⊆ H ⊂ Pn are reduced projective varieties, with H a (not necessarily free) hypersurface. This is done
in Corollary 4.2. The reason for characterizing freeness is that the non-free case is the situation of interest into the
preceding section, since clearly free modules are already of linear type. In essence, such criteria will follow from the depth-
formula given in Proposition 4.1. As an immediate byproduct, we recover well-known criteria for H to be a free divisor
(Corollary 4.4).

2. Computing the vector fields tangent to a variety

Given an ambient vector field ϑ ∈ DAn , a classical problem in foliation theory is to describe the algebraic varieties that
ϑ leaves invariant (cf., e.g., [2]). However, as it is well-known, such varieties may not exist in general, even in the case n = 2
(see [3] for a nice algorithm to check whether a given derivation on the plane admits an invariant algebraic curve).

Herewe shall proceed in the opposite direction: given a reduced algebraic variety V ( An, we shall describe an algorithm
that will allow us to compute the ambient vector fields tangent to V (that is, leaving V invariant).

Let IV = (f1, . . . , fm) ⊂ O be the (radical) ideal of the polynomial functions vanishing on V . Given s ∈ {1, . . . ,m}, one
may look at the gradient ideal of fs,

Gs = Gfs =


∂ fs
∂t1
, . . . ,

∂ fs
∂tn


⊂ O.
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Also, consider the ideal JV
s = Gs + IV ⊂ O , together with a fixed free presentation

Ors ψV
s

−→ On+m
−→ JV

s −→ 0,

where rs is a positive integer andψV
s is a (n+m)× rs presentation matrix of JV

s , taken with respect to the canonical bases
of the free modules involved. We emphasize that the (ordered, signed) generating set

∂ fs
∂t1
, . . . ,

∂ fs
∂tn
, f1, . . . , fm


of JV

s is fixed.
A piece of notation: given integers u, v ≥ 1 and a (n + u) × v matrix ϕ with entries in O , we shall denote by I(ϕ) the

submodule of On generated by the column-vectors of the n × v submatrix of ϕ obtained after deletion of its last u rows.
For a reason thatwill be clarified in the proof of the next result,we shall be interested in each generator fs of IV with s ∈ Γ ,

where Γ = {j ∈ {1, . . . ,m} | (Gfj , fj) * IV }. This is indeed just a technicality, since very often one has Γ = {1, . . . ,m}.
Now, once one is able to furnish a free presentation for each of the ideals JV

s ⊂ O , s ∈ Γ , one may also explicit
the modules I(ψV

s ) ⊂ On, and subsequently a computation may be performed in order to obtain generators for their
intersection. This can be done easily with the aid of an algebraic computer system. For instance, by using the well-known
Macaulay of Bayer and Stillman (cf. [1]), each matrixψV

s may be created with the mat command, and the intersection goes
in one step with the intersect command. The output is an explicit matrix ψV (with n rows) fitting into an equality

I(ψV ) =


s∈Γ

I(ψV
s ).

Such matrix will play a crucial role into the effective computation of suitable vector fields. In fact, write

TAn/k(V ) = {ϑ ∈ DAn | V * Singϑ, ϑp ∈ TpV , ∀ p ∈ V \ (Sing V ∪ Singϑ)},

which may be viewed naturally as an O-submodule of DAn ≃ On. Note that the condition V * Singϑ is natural, since
otherwise the vector field ϑ simply vanishes along V . Thus, one obtains the following proposition:

Proposition 2.1. Keeping the preceding notation, one may identify

TAn/k(V ) = I(ψV ).

In other words, a vector field on An is tangent to V if and only if it may be expressed as an O-linear combination of the column-
vectors of ψV .

Proof. Write V = ∩
m
s=1Vs, with Vs = {fs = 0} for reduced fs ∈ O . Saying that s ∈ Γ means V * Sing Vs, and hence, setting

TAn/k(V , Vs) = {ϑ ∈ DAn | V * Singϑ, ϑp ∈ TpVs, ∀ p ∈ V \ (Sing Vs ∪ Singϑ)},

one may apply Proposition 1.1 in order to realize TAn/k(V , Vs) as the module formed with the k-derivations ϑ:O → O such
that ϑ(fs) ∈ IV . We claim that

TAn/k(V ) =


s∈Γ

TAn/k(V , Vs).

Again by Proposition 1.1, the module TAn/k(V ) may be seen as the set of k-derivations of O preserving the ideal IV .
Now, denote by N the intersection on the right-hand side of the proposed equality above, and note that the inclusion
TAn/k(V ) ⊂ N is clear. For the other one, take ϑ ∈ N . It suffices to show that ϑ(fs) ∈ IV , for s ∈ {1, . . . ,m}. This is clear
if s ∈ Γ , by the above algebraic description of the module TAn/k(V , Vs); otherwise, one has ∂ fs

∂ti
∈ IV for every i, and hence

any k-derivation will send fs into IV . This shows the claim.
Now, as I(ψV ) = ∩s∈Γ I(ψV

s ), we only need to show that

TAn/k(V , Vs) = I(ψV
s ).

Pick ϑ ∈ TAn/k(V , Vs) and write ϑ =
∑n

i=1 hi
∂
∂ti

, for certain hi’s in O . One gets

n−
i=1

hi
∂ fs
∂ti

+

m−
t=1

gt ft = 0,

with gt ∈ O , t = 1, . . . ,m. This means that vs = (h1, . . . , hn, g1, . . . , gm) ∈ On+m is a relation, or first-order syzygy,
of the ideal JV

s . Since the module of relations of JV
s is generated by the column-vectors of the (n + m) × rs matrix

ψV
s = (h(s)ij ) (whose (i, j)-entry will be denoted hij for simplicity), there exist polynomial functions q1, . . . , qrs ∈ O such
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that vs =
∑rs

j=1 qjνj, where νj = (h1j, . . . , hnj, hn+1,j, . . . , hn+m,j) is the jth column-vector of ψV
s . Thus

ϑ =

n−
i=1

hi
∂

∂ti
=

n−
i=1


rs−
j=1

qjhij


∂

∂ti
=

rs−
j=1

qj


n−

i=1

hij
∂

∂ti


=

rs−
j=1

qjνj,
where

νj =

n−
i=1

hij
∂

∂ti
, j = 1, . . . , rs.

Therefore,

TAn/k(V , Vs) ⊆

rs−
j=1

Oνj = I(ψV
s ),

where, in the equality, eachνj is being identifiedwith (h1j, . . . , hnj) ∈ On. To show the opposite inclusion, it suffices to check
thatνj conducts fs into IV ⊂ O , for each j. But this is clear from the relations

n−
i=1

hij
∂ fs
∂ti

+

m−
t=1

hn+t,j ft = 0, j = 1, . . . , s,

which may be rewritten as

νj(fs) = −

m−
t=1

hn+t,j ft ∈ IV ,

as needed. �

Remarks 2.2. (i) If V = {f = 0} is already a hypersurface, then a set of generators for the O-module of the ambient vector
fields tangent to V may be derived from the syzygies of the (lifted) Jacobian ideal (Gf , f ) of f , with no need of computing
intersections.

(ii) The proof above remains exactly the same if one takes V to be a projective variety in some projective space Pn over
k; that is, the method works regardless of any grading on the base polynomial ring. Of course, in full analogy with the affine
setup considered up to now, we may naturally describe the set DPn = {polynomial vector fields on Pn

} in terms of the usual
Z-graded derivation module of the standard graded polynomial ring O = ⊕s≥0Os = k[t1, . . . , tn+1]. More precisely, given
s ≥ −1, its sth homogeneous piece may be thought of as

[DPn ]s =

n+1
i=1

Os+1
∂

∂ti
.

One puts [DPn ]s = 0 if s ≤ −2. Given reduced projective varieties V ⊂ W ⊂ Pn, one may also consider the O-submodule
TPn/k(V ,W ) ⊂ DPn (through the same definition as in the affine case), which is easily seen to be homogeneous as it inherits
the grading above.

We illustrate our method determining TP3/C(E ), where E is the elliptic quartic curve in projective 3-space.

Example 2.3 (k = C). The elliptic quartic curve E ⊂ P3 may be viewed as the complete intersection E = V1 ∩ V2, where
V1 and V2 are the hypersurfaces defined respectively by the polynomials

f1 = t21 + t22 + t23 + t24 , f2 = t1 t3 + t2 t4

in O = C[t1, t2, t3, t4]. Let us obtain first the module I(ψE
1 ). Computing the syzygies of the ideal

JE
1 = G1 + IE = (2t1, 2t2, 2t3, 2t4, f1, f2)

and deleting the last two rows from its presentation matrixψE
1 , one sees that I(ψE

1 ) is generated by the column-vectors of
the matrix−t4 0 0 −t3 0 −t2 t1 t3

0 −t4 0 0 −t3 t1 t2 t4
0 0 −t4 t1 t2 0 t3 0
t1 t2 t3 0 0 0 t4 0

 ,
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which, by the proof of Proposition 2.1, furnishes exactly the module TP3/C(E , V1). In the same manner, from the syzygies of
JE
2 = (t3, t4, t1, t2, f1, f2), one obtains I(ψE

2 ) = TP3/C(E , V2) as given by the column-vectors of 0 t2 0 t1 0 −t4 t3 0
0 0 t2 0 t1 t3 t4 0

−t2 0 0 −t3 −t4 0 t1 t3
t1 −t3 −t4 0 0 0 t2 t4

 .
Finally, one computes the intersection I(ψE

1 ) ∩ I(ψE
2 ) – with the aid, for instance, of Macaulay (cf. [1]) – and applies

Proposition 2.1. It follows that a set of generators for the O-module TP3/C(E ) is as displayed in the matrix−t2 −t4 t3 t1 t23 t3t4 t2t3 −t2t4
t1 t3 t4 t2 t3t4 −t23 t2t4 t2t3

−t4 −t2 t1 t3 −t2t4 t2t3 t3t4 t23
t3 t1 t2 t4 t2t3 t2t4 −t23 t3t4

 .
This generating set is minimal, and notice that the standard Euler vector field ε appears in the fourth column. Now, denote
by ϑ1, ϑ2 respectively the ambient vector fields associated to the first 2 columns, and consider

Z = −t24 ϑ1 + t2t4 ϑ2 + (t3t4 − t1t2) ε,

which then must be tangent to E – in other words, it leaves E invariant. Its expression in the open piece U4 where t4 ≠ 0,
in affine coordinates zi = ti/t4, i = 1, 2, 3, is Z = Z|U4 given by

Z = (−z21z2 + z1z3)
∂

∂z1
+ (−z1z22 + 2z2z3 − z1)

∂

∂z2
+ (−z1z2z3 − z22 + z23 + 1)

∂

∂z3
.

This is precisely the vector field exhibited by Soares in [10, Example 2], while showing that one of his bounds (on degrees
of smooth complete intersections invariant by foliations) is attained.

3. Linear type modules related to free divisors

Our goal in this section is to detect a family of linear type modules associated to suitable pairs of varieties V ⊂ F , with
F a free divisor (in the sense of K. Saito). First, we briefly recall the necessary background.

The notion of linear typemodule depends viscerally on the definition of the Rees algebra of amodule. LetAbe a noetherian
commutative ring with identity, and let E be a finitely generated A-module with (generic, constant, positive) rank. Let
S = SymA(E) be the symmetric algebra of E —which is, in some sense, the ancestor of the so-called blowup algebras. Usually,
S is computed by means of some (in fact, any) free presentation of E over A. Let τ ⊂ S be the A-torsion submodule of S ,
which is seen to be an ideal of S . Following [9], one defines the Rees algebra of E to be the residue class ring RA(E) = S /τ .
We point out that an alternative was proposed in generality (for modules possibly with no rank) by Eisenbud et al. [5]. In
spite of these comments, we shall not deal directly with any definition of Rees algebra; instead, for our purposes, it will
suffice to establish a setting in order to apply a crucial auxiliary result (Lemma 3.1 below).

Itmay be difficult, in general, to predict about a presentation of the ringRA(E). An indication of this fact is that its defining
equationsmay have high degrees. Fortunately, there exists a distinguished class of modules for which this situation is under
control. One says that E is of linear type if τ = (0), that is, the defining equations of the Rees algebra are precisely given by
the linear forms defining the symmetric algebraS . Concerning the subject, we quote a result that we shall use as an efficient
tool. Recall that an ideal B of a noetherian ring A is said to be a Bourbaki ideal of a finitely generated A-module E with rank
if there exists a short exact sequence

0 −→ G −→ E −→ B −→ 0,

where G is a free A-module.

Lemma 3.1. Let A be a noetherian ring and let E be a finitely generated A-module with rank. Let B be a Bourbaki ideal of E. If B

is of linear type, then the A-module E is of linear type.

A proof of this fact may be found in [9, Proposition 3.11(b)].

Now, we revisit the previous setting of modules of vector fields with a peculiar tangency feature. To a pair of varieties
V ⊂ W ⊂ An we may associate the O-module

TAn/k(V ,W ) = {ϑ ∈ DAn | V * Singϑ, ϑp ∈ TpW , ∀ p ∈ V \ (SingW ∪ Singϑ)}.

In virtue of the importance of discovering new families of linear type modules, we focus on the task of producing pairs of
varieties V ⊂ W for which the module TAn/k(V ,W ) has this property, that is,

RO ( TAn/k(V ,W ) ) = SymO ( TAn/k(V ,W ) ).
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As it turned out, the investigation led us to K. Saito’s well-known concept of free divisor, originally introduced in the local
complex analytic setup, in his work [8]. Following Saito’s idea, one says that a reduced algebraic hypersurface F ⊂ An (as
well as any f ∈ O defining F ) is free if its module of logarithmic vector fields TAn/k(F )— typically denoted Der(logF ), also
Der(−logF ) — is free, necessarily of rank n (the Krull dimension of O).

In the same paper, Saito established an efficient way to check whether a given divisor is free, provided one has n
vector fields tangent to it. More precisely, consider a reduced, non-constant f ∈ C[t1, . . . , tn] and ambient vector fields
ϑj =

∑n
i=1 gij

∂
∂ti

, j = 1 . . . , n, each of them tangent to F = {f = 0}. Saito’s criterion guarantees that F is a free divisor
if the matrix (gij) has determinant αf , for some non-zero α ∈ C (we shall apply this later into Example 3.4). The subject
has been target of intensive research, within the detection of new classes of free divisors and their connections to complex
singularity theory (cf., e.g., [4,11,12]).

Recall that a polynomial function f ∈ O = k[t1, . . . , tn] is quasi-homogeneous if f becomes homogeneous after certain
degrees are assigned to the ti’s. Hence, in this case, Euler’s identity yields f ∈ Gf (in fact, a classical result of K. Saito states
that the property f ∈ Gf characterizes quasi-homogeneity in the analytic setting; cf. [7]). The hypersurface defined by a
quasi-homogeneous reduced polynomial is also said to be quasi-homogeneous.

We now prove the result of this section, which is stated for suitable pairs of varieties in an affine space, but it is
immediately seen to hold in the projective setup as well.

Proposition 3.2. Let F = {f = 0} ⊂ An be a quasi-homogeneous free hypersurface and let V ⊂ F be a reduced subvariety
such that the ideal Gf ∩ IV ⊂ O is of linear type. Then, the O-module TAn/k(V ,F ) is of linear type.

Proof. First, Proposition 1.1 yields that TAn/k(V ,F ) may be realized as the O-module formed with the k-derivations of O

sending f into IV (note that this module is torsion-free and has rank n).
Now, let v ∈ HomO(TAn/k(V ,F ), O) be given by v(ϑ) = ϑ(f ), forϑ ∈ TAn/k(V ,F ). Clearly, its kernelmay be identified

with the module

Z(Gf ) =


(h1, . . . , hn) ∈ On

|

n−
i=1

hi
∂ f
∂ti

= 0


of first-order syzygies of the gradient ideal of f . As to the image of v, it is easily seen to coincide with the ideal Gf ∩ IV ⊂ O .
It follows a short exact sequence of O-modules

0 −→ Z(Gf ) −→ TAn/k(V ,F ) −→ Gf ∩ IV −→ 0.

Setting G = Z(Gf ), we claim that G is free if f is a free divisor. In fact, put F = TAn/k(F ), which is free by hypothesis. By
Proposition 1.1, it may be realized as the module formed with the χ ∈ DAn such that χ(f ) ∈ (f ). Consider the O-linear map
σ : F → O given by σ(χ) = hχ , for χ ∈ F , where hχ ∈ O is the unique polynomial satisfying

χ(f ) = hχ f .

Of course, ker σ ≃ G. Moreover, σ is surjective, as the quasi-homogeneity of F implies that there exist positive integers
s1, . . . , sn satisfying f =

∑n
i=1

1
si
ti
∂ f
∂ti

, so that

n−
i=1

1
si

ti
∂

∂ti
∈ F , σ


n−

i=1

1
si

ti
∂

∂ti


= 1.

This shows that

F ≃ G ⊕ O

and hence that G is projective if f is a free divisor. Since O is a polynomial ring over a field, G must be free, as claimed. It
follows, from the short exact sequence above, that the linear type ideal Gf ∩IV is a Bourbaki ideal of themodule TAn/k(V ,F ),
which then, by Lemma 3.1, must be of linear type. �

Remarks 3.3. (i) A simple homological observation: keeping notation and hypotheses as in Proposition 3.2, onemay dualize
the short exact sequence

0 −→ G −→ TAn/k(V ,F ) −→ Gf ∩ IV −→ 0,

where G is the free module of syzygies of Gf , in order to compare Ext modules,

ExtiO ( TAn/k(V ,F ),O ) ≃ Exti+1
O


O

Gf ∩ IV
,O


, ∀ i ≥ 1.

(ii) Once one has a quasi-homogeneous free divisorF = {f = 0} and a reduced subvariety V ⊂ F , the proposition above
requires checking whether the ideal Gf ∩ IV is of linear type. In general, one may resort to well-known effective criteria in
order to test such property. A very useful one (in a suitable setup) is given, loosely speaking, in terms of heights of Fitting
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ideals, which in turn is equivalent to bounding number of generators locally at certain primes. Moreover, several classes of
ideals are known to be of linear type. Central instances are complete intersections, ideals generated by d-sequences (see the
comment below), and certain determinantal ideals; for an account and details, we refer to Vasconcelos’ book [13] and its
suggested references on the theme.

We invoke a concept due to C. Huneke. Let {g1, . . . , gt} ⊂ O be a minimal generating set of an ideal J ⊂ O . It is called a
d-sequence if

(g1, . . . , gi): gi+1 gs = (g1, . . . , gi): gs, i = 0, . . . , t − 1, s ≥ i + 1.

In this case, it is known that J is of linear type (see Huneke’s paper [6], also [13, Theorem 2.3.2]). This will be used in the
example below.

Example 3.4 (k = C). Applying Saito’s freeness criterion to the non-smooth quartic hypersurface F = {f = 0} ⊂ P3

defined by

f =
1
2
det

 t1 0 3t3 3t1
t2 t3 3t4 −t2
t3 t1 4t2 t3
t4 t2 0 −3t4

 = 8t1t32 + 9t21 t
2
4 − 18t1t2t3t4 − 3t22 t

2
3 + 6t33 t4,

one sees that F is a free divisor (which probably belongs to a well-structured class of free divisors). Consider the planes
Πi = {ti = 0} ⊂ P3, i = 1, 3, and set

L = Π1 ∩Π3.

Then, L is a line contained in F , and the ideal IL ∩ Gf ⊂ C[t1, t2, t3, t4] is minimally generated by the cubics

g1 = 4t1t22 − t2t23 − 3t1t3t4, g2 = t22 t3 + 3t1t2t4 − 3t23 t4, g3 = 3t1t2t3 − t33 − 3t21 t4.

With the aid ofMacaulay, one verifies that {g1, g2, g3} is a d-sequence; by Huneke’s result quoted above, IL ∩ Gf must be of
linear type, and hence Proposition 3.2 guarantees that so is the module TP3/C(L ,F ) (which is non-free; see the comment
after Corollary 4.4).

4. Freeness criteria

We now adopt the projective setup for convenience, that is, any variety will be defined by a (saturated) homogeneous
ideal in the standard graded polynomial ring O = k[t1, . . . , tn+1], seen as the homogeneous coordinate ring of Pn over k.
See also Remark 2.2(ii).

Since clearly free modules are of linear type, one is interested – in virtue of the preceding section – only in pairs
V ⊂ H ⊂ Pn, with H a hypersurface, such that the O-module TPn/k(V ,H ) is non-free. We shall derive criteria in order
to characterize such pairs, with H non-smooth and not necessarily free. This will follow from the depth-formula observed
below (depth taken with respect to the irrelevant ideal). We denote the coordinate ring of a variety W by OW .

Proposition 4.1. Let V ⊂ H ⊂ Pn be reduced varieties, with H a non-smooth hypersurface and V * SingH . Then,

depth TPn/k(V ,H ) = depth OV ∩ SingH + 2.

Proof. The idea relies on describing the module T = TPn/k(V ,H ) as (isomorphic to) the module of syzygies, over O , of
an explicit ideal in a convenient factor ring of O . If H is defined by a reduced homogeneous equation h = 0, let Gh be its
gradient ideal. Consider the ideal

I =
(IV , Gh)

IV
⊂ OV ,

which is non-zero since V * SingH . Set W = V ∩ SingH . One has depthI = depthOW + 1, in virtue of the structural
exact sequence

0 −→ I −→ OV −→ OW −→ 0.

Now, we claim that

I ≃ coker ( T ↩→ On+1 ).

In fact, the rule

(g1, . . . , gn+1) −→

n+1−
i=1

gi
∂h
∂ti
(mod IV ),
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for gi ∈ O, i = 1, . . . , n + 1, defines an O-linear surjection On+1
→ I with kernel naturally isomorphic to T

(this is easily seen to hold true if T is regarded as the module of the k-derivations conducting h into IV ). It follows that
depth T = depthI + 1, and hence depth T = depthOW + 2. �

It will be useful to notice that codim SingH ≥ 2 whenever the (non-smooth) hypersurface H is reduced. The
codimension n − dimW of a variety W in the fixed ambient space Pn is denoted codimW . Recall that W is said to be
arithmetically Cohen–Macaulay if OW is a Cohen–Macaulay ring.
Corollary 4.2. Let V ⊂ H ⊂ Pn be reduced varieties, with H a non-smooth hypersurface and V * SingH . The following are
equivalent:
(i) TPn/k(V ,H ) is a free O-module;
(ii) depth OV ∩ SingH = n − 1;
(iii) V ∩ SingH is an arithmetically Cohen–Macaulay variety of codimension 2.
Proof. Since O has depth n + 1, the equivalence between (i) and (ii) follows from Proposition 4.1 together with the
Auslander–Buchsbaum formula in the graded case. Set W = V ∩ SingH . If (ii) holds, then dimOW ≥ n − 1, that is,
dimW ≥ n − 2 and hence codimW ≤ 2, which must be an equality since, on the other hand,

codimW ≥ codim SingH ≥ 2.

Thus, dimW = n − 2, yielding dimOW = n − 1 = depth OW , as required. Conversely, if (iii) holds, then dimW = n − 2
and hence dimOW = n − 1, which by Cohen–Macaulayness means that depth OW = n − 1. �

At first sight, one might think that the equivalent conditions dealt with in the corollary above could never be satisfied
in the case V ≠ H , since for instance condition (iii) seems to imply that V ⊆ SingH , a situation that is ruled out by
hypothesis. But this is not true, as the next example shows (which illustrates also that the O-module TP3/k(V ,H ) may be
free even if H is not a free divisor).
Example 4.3 (k = C). Consider the hypersurface H = {h = 0} ⊂ P3, where h = t1t2t3t4(t1 + t2 + t3 + t4), and let V ⊂ P3

be the reduced surface defined by the ideal IV = (t1t2t3, t1t2t4) ⊂ O = C[t1, t2, t3, t4]. Note that V ⊂ H , SingH * V

and V * SingH . Further, the graded ring OSingH = O/Gh has depth zero, so that H is not a free divisor by Corollary 4.4(ii)
below. As to W = V ∩ SingH , its defining ideal may be written as

IW = IV + (t21 t3t4 + t1t23 t4 + t1t3t24 , t22 t3t4 + t2t23 t4 + t2t3t24 ) ⊂ O.

After a calculation with Macaulay, one gets depthOW = 2, and thus Corollary 4.2 yields that the O-module TP3/k(V ,H ) is
free.

As a byproduct of Corollary 4.2, we recover well-known criteria for a non-smooth divisor to be free.
Corollary 4.4. Let F ⊂ Pn be a non-smooth reduced hypersurface. The following are equivalent:
(i) F is a free divisor;
(ii) depth OSingF = n − 1;
(iii) SingF is an arithmetically Cohen–Macaulay variety of codimension 2;
(iv) TPn/k(V ,F ) is a free O-module, for every (in fact, any) reduced variety V ⊂ Pn that satisfies

SingF ( V ⊂ F .

Proof. One obtains the equivalence of (i), (ii) and (iii) immediately by taking V = H = F in the previous corollary. Item
(iv) also follows readily. �

Revisiting Example 3.4, a run with Macaulay [1] yields that the depth of the (Cohen–Macaulay) graded ring OSingF is
2 = n − 1, as it must be since F is free. Now, the reduced variety associated to L ∩ SingF is a single point, to wit,

(L ∩ SingF )red = {(0 : 0 : 0 : 1)}.

It thus has codimension 3 in P3, so that, by Corollary 4.2(iii), the (linear type) O-module TP3/C(L ,F ) is not free. Moreover,
since codim SingF = 2, we must have SingF * L , in accordance with Corollary 4.4(iv).
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