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In this paper we give explicit factorizations which demonstrate the stable
tameness of all polynomial automorphisms arising from a recent construction of
Hubbers and van den Essen. This is accomplished by two different factorizations of
such an automorphism by triangular automorphisms, one which is concise but
requires a large number of additional dimensions, and one which is more intricate
but requires fewer dimensions. The stable tameness of automorphisms in this
special class aligns with other existing evidence to suggest that all polynomial
automorphisms may be stably tame. � 2001 Academic Press

INTRODUCTION

The most obvious types of polynomial automorphisms are linear auto-
Ž .morphisms and elementary automorphisms see 1.6 and 1.3 . Automor-

phisms which are compositions of these types are called tame. A classical
theorem of Jung and van der Kulk tells us that, over a field, all polynomial

� �automorphisms in dimension 2 are tame 8, 9 . A major unsolved question
asks whether this holds in higher dimensions. There are some partial

� �results; for example, it follows from the main theorem of 13 that three-di-
mensional ‘‘cubic homogeneous’’ automorphisms over a field are tame.
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� �Nagata 10 established that not all automorphisms in dimension 2 are
tame over an integral domain which is not a field, and by taking the
domain to be the polynomial ring in one variable over a field and

Ž .‘‘releasing’’ the variable from the base ring see 1.9 , he produced an
automorphism in dimension 3 which he conjectured to be non-tame. The

� �truth of this conjecture remains unresolved. However, Smith 11 produced
Ža factorization using a key lemma which is also used in this paper�Lemma

.3.14 showing that Nagata’s example becomes tame when ‘‘extended by the
Ž .identity’’ see 1.8 to dimension 4. This raised the question of whether all

Ž .automorphisms perhaps over any base ring are stably tame, i.e., become
tame in some higher dimension. This question has appeared in numerous

Ž� � .places in the literature 1, 7 , for example .
There are very few known methods of constructing automorphisms

which are not obviously tame. One is Nagata’s method in dimension 2,
which makes use of a non-unit in the base ring. All known specific
examples of this type have been shown to be stably tame. Another method
takes an invertible matrix over a polynomial ring over a field in n
variables, with n � 2, and builds a polynomial automorphism of dimension

Ž .n � 2 by releasing the n variables see 1.3 and 1.9 . If the matrix is not the
product of elementary and diagonal matrices, the resulting polynomial
map does not appear to be tame. However, it becomes tame with the

� �adjunction of one new variable, by a theorem of Suslin 12 .
� �In 3 van den Essen and Hubbers produced an intriguing new way to

construct automorphisms. They established that automorphisms produced
by their new construction include recently discovered counterexamples to
some well-known conjectures, such as the discrete Markus�Yamabe prob-

Ž � �.lem see 4 , as well as some of the classes which categorize four-dimen-
sional ‘‘cubic homogeneous’’ automorphisms, for which a complete classifi-

� �cation was given in 6 . The automorphisms in this new class are not
� �obviously tame. Van den Essen and Hubbers established in 5 that certain

two-dimensional examples are in fact not tame. Other examples appear
� �doubtful. They also showed in 5 that all automorphisms in this new class

are stably tame. However, their proof does not provide an explicit factor-
ization and it does not answer the question of how many additional
dimensions are needed to achieve tameness.

This paper resolves these issues, giving algorithms for factoring auto-
morphisms in this new class as products of triangular automorphisms, after
extending the dimension. The first method, given in Section 2, factors such

Žan n-dimensional automorphism after extending the dimension by n n �
.1 �2. The second method, given in Section 3, uses some properties

� �developed in 5 to accomplish a triangular factorization with only n � 1
added dimensions. Section 5 gives algorithms which arise from the proofs
in Sections 2 and 3. The importance of these results lies in the methods of
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the factorizations, as they may provide some hint as to how one might
factor automorphisms of a more general type using stabilization.

1. NOTATION AND TERMINOLOGY

1.1. Polynomial Maps

Throughout this paper A will denote an arbitrary commutative ring and
Ž .X will denote a system of variables indeterminates X , . . . , X . Hence1 n

� � � �A X denotes the polynomial ring A X , . . . , X with A being the base1 n
ring. By an n-dimensional polynomial map we mean an A-endomorphism

n � �of the affine scheme � � Spec A X , . . . , X . Such a map F correspondsA 1 n
� �to an A-algebra endomorphism � of A X , which is given by n polyno-F

� � Ž .mials F , . . . , F 	 A X defined by F � � X , i � 1, . . . , n. Thus the set1 n i F i
� �nof n-dimensional polynomial maps is identified with A X . It is conve-

nient to denote F by the column vector

F1
..F � ,.� 0Fn

Ž . twhich, to save space, will usually be written F � F , . . . , F , where t1 n
denotes transpose. In fact, for any ring A we view elements of An as
column vectors in this discussion. The polynomials F , . . . , F are called1 n
the coordinate polynomials of F. Given another polynomial map G �
Ž . tG , . . . , G , the sum F � G simply denotes column vector addition, and1 n

Ž .the composition F �G, also denoted F G , is given by the column

t
F G , . . . , G , . . . , F G , . . . , G .Ž . Ž .Ž .1 1 n n 1 n

Since we will be dealing with additional variables, we sometimes write
Ž .F X in place of F to indicate that the coordinate polynomials of F are to

be seen as polynomials in X , . . . , X . Note that X, considered as a1 n
column vector, gives the identity polynomial map. We say a polynomial
map F is in�ertible, or is an automorphism, if there exists a polynomial
map G such that F �G � X, in which case it automatically holds that
G� F � X as well. Given a polynomial map F and a matrix T of any

� � � Ž .dimension with entries in A X , we write T , or T F , for the matrixF

obtained by substituting F , . . . , F for X , . . . , X in the entries of T.1 n 1 n
Ž Ž ..Note that a composition of polynomial maps F �G � F G can also be

�expressed as F .G



HUBBERS AND WRIGHT462

1.2. Structure

The set of such n-dimensional polynomial maps forms a monoid with
� �respect to composition, and, following notation introduced in 2 , this

Ž .monoid will be denoted MA A . The invertible polynomial maps aren
Ž . Ž .precisely the units in MA A , and this group is denoted GA A . Sincen n

Ž . � �nMA A is identified with A X as a set, it inherits the additive structuren
� of the latter, with respect to which composition � is ‘‘right-distributive,’’

Ž �. � Ži.e., satisfies F � F �G � F �G � F �G but distributivity on the other
. Ž .side does not hold in general . Note that MA A is anti-isomorphic to then

� �monoid of A-algebra endomorphisms of A X .

1.3. Matrices as Linear Polynomial Maps

Ž .The monoid of n � n matrices with coefficients in A is denoted M A ,n
Ž .and the group of invertible matrices is denoted GL A . The monoidn

Ž . Ž . Ž Ž .M A is naturally contained in MA A with GL A contained inn n n
Ž ..GA A as the ‘‘linear endomorphisms,’’ i.e., those for which the coordi-n

nate polynomials are linear forms. Under this containment a matrix T is
Ž . tidentified with the polynomial map L , . . . , L given by the formula1 n

Ž . Ž .L , . . . , L � T � X . This simply creates linear forms from the rows of1 n
T. We denote this map by TX. Note that a linear endomorphism TX

Ž . Ž . Ž �.satisfies the left distributi�ity property that fails in general : TX � F � F
Ž . Ž . � � Ž .� TX � F � TX � F for all F, F 	 MA A . We will refer to this leftn

distributivity property as LDP.

1.4. Operations

In this paper we will consistently use ‘‘�’’ for the composition of
polynomial maps and ‘‘�’’ for matrix multiplication, the latter of which will
sometimes be omitted. We will also use a non-standard matrix operation
denotes by ‘‘
,’’ which is defined by

S
T � S TX � TŽ .

Ž � �.for S, T 	 M A X . One easily verifies that this operation is associative.n

LEMMA 1.5. The ‘‘
’’ operator has the property

S 
S 
 ��� 
S X � S X � S X � ��� � S XŽ . Ž . Ž . Ž .1 2 k 1 2 k

for all integers k � 1.

Proof. The proof is by induction on k. For k � 1 it is obvious. Note
Ž . Ž Ž . . Ž . Ž . Ž . �that S 
S X � S S X � S � X � S S X � S X � S X �S X1 2 1 2 2 1 2 2 1 2
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Ž . Ž .S X � S X , which proves the case k � 2. For k � 2 we have1 2

S 
S 
 ��� 
S X � S 
 S 
 ��� 
S XŽ . Ž .Ž .1 2 k 1 2 k

� S X � S 
 ��� 
S XŽ . Ž .Ž .1 2 k

� S X � S X � ��� � S X ,Ž . Ž . Ž .1 2 k

which proves the lemma.

1.6. Tame Automorphisms

A polynomial map is called elementary if it has the form

tX , . . . , X , X � f , X , . . . , X ,Ž .1 i�1 i i�1 n

�Ž �where f 	 A X , . . . , X , X , . . . , X . Such a map is clearly invertible.1 i�1 i�1 n
A polynomial map is called tame if it can be written as a composition of
automorphisms, each of which is either linear or elementary. A map is
called triangular, if, up to rearrangement of the variables, it has the form
Ž . � �X � g , . . . , X � g , where g 	 A X , . . . , X , for i � 1, . . . , n. It is1 1 n n i i�1 n
easily seen that triangular automorphisms are tame.

1.7. Translations

Ž . t nGiven a � a , . . . , a 	 A , we form the translation Tr � X � a �1 n a
Ž . tX � a , . . . , X � a , which is obviously triangular. For any linear poly-1 1 n n
nomial map TX, one easily verifies that

TX �Tr � Tr � TX , where b � T � a. 1Ž . Ž . Ž .a b

1.8. Stabilization

Ž . t Ž . � m �Given F � F , . . . , F 	 MA A and m � 1 an integer, we write F1 n n
Ž . t Ž .for the polynomial map F , . . . , F , X , . . . , X of MA A . This1 n n�1 n�m n�m

procedure of ‘‘extending by the identity’’ gives a natural embedding
Ž . Ž .MA A � MA A . It is easily seen that F is an automorphism if andn n�m

only if F � m � is an automorphism. The extension of an n-dimensional
polynomial map to a map in a higher dimension in this way is called
stabilization, a term that comes from K-theory. It is only by stabilizing that
certain automorphisms can be seen to be tame. A polynomial map F for
which F � m � is tame for some m � 1 is called stably tame.

1.9. Releasing of Variables

Often a polynomial map can be viewed as a map in a larger dimension
over a smaller base ring. This is an important concept in the study of
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Ž � �.polynomial maps. We observe that MA A X , . . . , X is naturallyi i�1 n
Ž . � Ž � �.contained in MA A as follows: An element F 	 MA A X , . . . , X ,n i i�1 n
Ž � �. t � � �� �which is given by F , . . . , F with F 	 A X , . . . , X X , . . . , X �1 i i i�1 n 1 i

� � Ž � �A X , . . . , X , is identified with the polynomial map F , . . . , F , X ,1 n 1 i i�1
. t Ž . Ž .. . . , X 	 MA A . If we view these maps anti-isomorphically as ringn n

� � �endomorphisms of A X , . . . , X , this merely considers the A X , . . . ,1 n i�1
� �X -algebra endomorphism F as an A-algebra homomorphism, thus re-n

� �stricting the ring of ‘‘constants’’ from A X , . . . , X to A, i.e., ‘‘releas-i�1 n
ing’’ the variables X , . . . , X from the coefficient ring. We thereforei�1 n
refer to this as releasing of �ariables. Note that this is different from

Ž � �.stabilization. Observe also that a linear map in MA A X , . . . , X isi i�1 n
Ž . Ž � �.not in general linear when considered in MA A X , . . . , X .n 1 n

1.10. The New Class of Automorphisms

� � Ž .In 3 a new class of polynomial maps, denoted by HH A , was intro-n
Ž .duced. We recall the definition of HH A .n

Ž .DEFINITION 1.11. The set of n-dimensional polynomial maps HH A isn
defined inductively as follows:

� Ž . Žn � 1: HH A � A. This makes sense, since an element of A gives1
.a one-dimensional polynomial map.

� Ž . Ž .n � 2: A polynomial map H 	 MA A is in HH A if and only ifn n
Ž . n � Ž � �.there exists T 	 M A , c 	 A , and H 	 HH A X such thatn n�1 n

�HH � adj T . � c. 2Ž . Ž .ž /0 T X

� Ž � � . t Ž � . tIf H is given by H , . . . , H , then H , 0 denotes the column1 n�1
Ž � � . tH , . . . , H , 0 , and everything above makes sense.1 n�1

Ž . Ž � . t �One easily verifies that the column adj T � H , 0 which appearsT X
Ž .in 2 can also be realized as the composition of polynomial maps

ŽŽ . . Ž � . t Ž . Ž .adj T X � H , 0 � TX ; hence 2 can be expressed as

H �

H � adj T X � � TX � c. 3Ž . Ž . Ž .Ž . ž /0

� � Ž .It was shown in 3 that for each H 	 HH A , the polynomial map F � X �n
H is invertible, thus introducing a new class of polynomial automorphisms.

� �It was later established, in 5 , that these automorphisms, while not being
tame in general, are stably tame, although no bound on the integer m for
which F � m � becomes tame is given.

The remainder of this paper will demonstrate two explicit methods for
factoring a polynomial automorphism of the form F � X � H, with H 	
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Ž .HH A , as a composition of triangular automorphisms, thereby giving an
more concrete proof of stable tameness and providing an explicit integer
m for which F � m � becomes tame.

2. THE QUICK METHOD

Ž .For F � X � H with H 	 HH A , this section provides an explicit recipen
to factor F � nŽn�1.�2� by triangular automorphisms, thereby proving:

Ž . � nŽn�1.�2�THEOREM 2.1. Let F � X � H with H 	 HH A . Then F is an
product of triangular automorphisms, and hence is tame.

�The proof will require the following lemma, which is an extension of 3,
�Lemma 2.1 .

Ž . Ž . t nLEMMA 2.2. Let H 	 HH A , d 	 A, and a � a , . . . , a 	 A . Thenn 1 n
Ž . Ž .H dX � a , . . . , dX � a 	 HH A .1 1 n n n

Ž . ŽProof. induction on n . For n � 1 the map H is constant, so H dX1
. Ž . Ž .� a � H 	 HH A . Assume n � 2. Note that H dX � a , . . . , dX � a1 1 1 1 n n

Ž .can be factored in MA A as H�Tr � dX, where Tr is the transla-n a a
Ž . ttion defined in 1.7 and dX is the map dX , . . . , dX . From Definition1 n

Ž . ŽŽ . . Ž � . t Ž . �1.11 and 3 we have H � adj T X � H , 0 � TX � c with H 	
Ž � �.HH A X . Note that the ‘‘�c’’ can be accommodated by composingn�1 n

ŽŽ . . Ž � . t Ž .adj T X � H , 0 � TX on the left with the translation Tr . Hence wec
get

H dX � a , . . . , dX � aŽ .1 1 n n

� H�Tr � dXŽ .a

t�� Tr � adj T X � H , 0 � TX �Tr � dXŽ . Ž . Ž . Ž .Ž .c a

t�� Tr � adj T X � H , 0 �Tr � TX � dXŽ . Ž . Ž . Ž .Ž .c b

where b � T � a see 1Ž . Ž .Ž .
t�� Tr � adj T X � H , 0 �Tr � dX � TXŽ . Ž . Ž . Ž .Ž .c b

t�� Tr � adj T X � H dX � b , . . . , dX � b , 0 � TXŽ . Ž . Ž .Ž . Ž .c 1 1 n n

t�� adj T X � H dX � b , . . . , dX � b , 0 � TX � c.Ž . Ž . Ž .Ž . Ž .1 1 n n

�Ž .We are done if we can show that H dX � b , . . . , dX � b 	1 1 n n
Ž � �.HH A X . Note that X , . . . , X are variables and X is a constant inn�1 n 1 n�1 n
Ž � �. �Ž .HH A X . By induction we have H dX � b , . . . , dX � b , Xn�1 n 1 1 n�1 n�1 n

Ž � �.	 HH A X . To this we apply a base change using the substitutionn�1 n
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� � � �homomorphism of A-algebras A X � A X defined by X � dX � b ,n n n n n
�Ž . � �which yields H dX � b , . . . , dX � b . According to 3, Lemma 2.1 ,1 1 n n

Ž .HH A is stable under base change, so the lemma is proved.n

Here is the main tool for the proof of Theorem 2.1:

Ž . ŽPROPOSITION 2.3. Let F � X � H with H 	 HH A , and let Y � Y ,n 1
. Ž .. . . , Y be a system of �ariables. There exist 2n � 1 -dimensional auto-n�1

morphisms U and V which are products of triangular automorphisms such that
� n�1� Ž . t Ž � �.U� F �V is of the form X, Y � K , where K 	 HH A X , . . . , Xn�1 1 n

Ž .with respect to the �ariables Y , . . . , Y .1 n�1

ŽŽ . . Ž � . t Ž . Ž .Proof. Write H � adj T X � H , 0 � TX � c as in 3 . Observe
ŽŽ . . Ž �Ž . . t Ž .that H can be written as adj T X � H TX , 0 � c. Define 2n � 1 -

Ž .dimensional polynomial maps P, Q, and R in the variables X, Y �
Ž .X , . . . , X , Y , . . . , Y by1 n 1 n�1

t�P � X , Y � H TXŽ .Ž .
tQ � X � c, YŽ . 4Ž .

ttR � X � adj T X � Y , 0 , Y .Ž . Ž ..ž /
Note that P, Q, and R are triangular automorphisms, and the inverse for
each respective automorphism is obtained by replacing ‘‘�’’ by ‘‘�,’’ or
vice versa. Letting U � R�Q and V � P � R�1, we claim that

tt�� n�1�U� F �V � X , Y � H TX � dY , 0 , 5Ž . Ž . Ž .Ž .ž /

where d � det T. This is verified in the calculation below. The under-
braces indicate the next composition to be calculated.

U� F � n�1��V
tt� �1� R� Q� X � adj T X � H TX , 0 � c , Y � P � RŽ . Ž .Ž . Ž .ž /� � �

tt� �1� R� X � adj T X � H TX , 0 , Y � P � RŽ . Ž .Ž . Ž .ž /� � �
tt� � �1� R� X � adj T X � H TX , 0 , Y � H TX � RŽ . Ž . Ž .Ž . Ž .ž /� � �
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tt � �1� X � adj T � Y , 0 , Y � H TX � RŽ . Ž . Ž .Ž .
the above steps uses LDP for adj T�see 1.3Ž .

tt�� X , Y � H T � X � adj T X � Y , 0Ž . Ž .Ž .ž /ž /
tt�� X , Y � H TX � dY , 0Ž . Ž .Ž .ž /

again using LDP, plus the fact that TX � adj T X � dX .Ž . Ž .Ž .Ž .
�ŽŽ . Ž . t.The claim is proved, and, setting K � H TX � dY, 0 , the theorem is

Ž � �.proved if we can show K 	 HH A X , . . . , X , with respect to then�1 1 n
variables Y , . . . , Y .1 n�1

Ž . � �Writing TX � L , . . . , L , with L a linear form in A X , we have1 n i

K � H � dY � L , . . . , dY � L , L .Ž .1 1 n�1 n�1 n

�Ž . Ž � �.We know H X , . . . , X 	 HH A X , where X , . . . , X are viewed1 n n�1 n 1 n�1
as variables and X as a constant. It is innocent to replace X , . . . , Xn 1 n�1

� �by Y , . . . , Y . Furthermore, by making the base change A X �1 n�1 n
� � �Ž .A X , . . . , X defined by X � L , we see that H Y , . . . , Y , L 	1 n n n 1 n�1 n

Ž � �. �HH A X , . . . , X , with respect to the variables Y , . . . , Y 3, Lemman�1 1 n 1 n�1

� �Ž2.1 . Finally, Lemma 2.2 above tells us that H dY � L , . . . , dY �1 1 n�1
. Ž � �.L , L 	 HH A X , . . . , X with respect to the new variablesn�1 n n�1 1 n

Y , . . . , Y , concluding the proof of the theorem.1 n�1

Proof of Theorem 2.1. For n � 1 this is a triviality. Assume n � 2, and
Ž .apply Theorem 2.2 to get 2n � 1 -dimensional automorphisms U and

V which are products of triangular automorphisms such that G �
� n�1� Ž . Ž � �.U� F �V � X, Y � K with K 	 HH A X , . . . , X . By inductionn�1 1 n

we have G�Žn�1.Žn�2.�2� is tame; hence F � n�1�Žn�1.Žn�2.�2� is tame, so the
Ž . Ž .Ž .n n � 1 n � 1 n � 2theorem results from the equality � n � 1 � .2 2

This proof is summarized in 4.2, which derives an algorithm for factoring
Ž . Ž . ŽF � X � H, where H 	 HH A , using the DD A data for H see Defini-n n

.tion 3.2 .

3. THE STRONG METHOD

Here we obtain a sharper upper bound, if n � 3, for the number of
Ž .variables needed to factor F � X � H, H 	 HH A , as a product of trian-n

gular automorphisms.

Ž . � n�1�THEOREM 3.1. Let F � X � H with H 	 HH A . Then F is a prod-n
uct of triangular automorphisms.
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The method in the previous section was based directly on the definition
Ž . Ž .of HH A . The method of this section uses the notion of DD A , which wasn n

� � Ž .introduced in 5 . For n � 2, DD A is a set whose elements providen
explicit data consisting of a sequence of matrices and vectors which

Ž . Ž .determine a polynomial map H 	 HH A . Each H 	 HH A arises fromN n
such data. We now restate the definition.

Ž . Ž .DEFINITION 3.2. Let n � 2. Then DD A is the set of 2n � 1 -tuplesn
having the form1

T ; c � T Ž2. , . . . , T Žn. ; cŽ1. , . . . , cŽn. ,Ž . Ž .
where

Ž i. � �T 	 M A X , . . . , XŽ .i i�1 n

for 2 � i � n and

iŽ i. � �c 	 A X , . . . , Xi�1 n

Ž Žn. Ž . Žn. n .for 1 � i � n. For i � n, these are to be read as T 	 M A , c 	 A .n

Ž . Ž .We will briefly explain how an element E T ; c 	 HH A is constructedn n
Ž . Ž .from an element T ; c 	 DD A . The construction is given inductively. Forn

n � 2 we define

Ž1.cŽ2. Ž2.E T ; c � adj T � � c ,Ž . Ž .2 ž / Ž2.0 T X

�ŽŽ Ž2.. . Ž Ž1. . t Ž Ž2. .� Ž2.which can also be expressed as adj T X � c , 0 � T X � c . For
n � 3, note that the pair of truncated sequences

T � ; c� � T Ž2. , . . . , T Žn�1. ; cŽ1. , . . . , cŽn�1. 6Ž . Ž . Ž .

Ž � �. � Ž � �. 2lies in DD A X . Letting H � E T ; c , we then setn�1 n n�1

�HŽn. Žn.E T ; c � adj T � � cŽ . Ž .n ž / Žn.0 T X

t�Žn. Žn. Žn.� adj T X � H , 0 � T X � c .Ž . Ž .Ž .Ž .
Ž . Ž .This defines a function E : DD A � HH A , for n � 2.n n n

1 � �In 5 the data items are denoted with subscripts. We have chosen to use superscripts here
to avoid confusion with coordinate polynomials.

2 There is a slight ambiguity in the symbol E in that it does not make reference to the ringn
Ž � �. Ž � �.A. Here E must be seen as a map DD A X � HH A X . The same abuse ofn� 1 n�1 n n�1 n

Ž .notation will be tolerated in the definition of E Definition 3.3 .n, p
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Ž .In order to prove certain properties of the polynomial map E T ; cn
Ž .defined above, it is helpful to write it as a summation E T ; c �n

n�2 Ž . Žn.Ý E T ; c � c , where the summands are defined below.p�0 n, p

Ž .DEFINITION 3.3. Let n � 2 and 0 � p � n � 2. Then E : DD A �n, p n

Ž . Ž . Ž .MA A is defined inductively by the following. For T ; c 	 DD A ,n n

� p � 0: We let

Žn�1.cŽn.E T ; c � adj T �Ž . Ž .n , 0 ž / Žn.0 T X

tŽn. Žn�1. Žn.� adj T X � c , 0 � T X .Ž . Ž .Ž .Ž .

�
� � � � �Ž . Ž . Ž .p � 1: Setting H � E T ; c , where T ; c is as in 6 , wen�1, p�1

let

�HŽn.E T ; c � adj T �Ž . Ž .n , p ž / Žn.0 T X

t�Žn. Žn.� adj T X � H , 0 � T X .Ž . Ž .Ž .Ž .

� �This definition is from 5 . An easy induction, left to the reader, shows
that

n�2
Žn.E T ; c � E T ; c � c . 7Ž . Ž . Ž .Ýn n , p

p�0

� � Ž .In 5 this summation is presented as the means to directly construct an
Ž . Ž . Ž . Ž .element of HH A from T ; c 	 DD A , with no mention of E T ; c .n n n

3.4. Extending the Data

Ž .The matrices and columns appearing in T ; c have different dimen-
sions. In some situations it will be necessary to extend all of the data to
dimension n. We do this by ‘‘extending T Ž i. by the identity,’’ i.e., replacing
it by

T Ž i. 0 ,ž /0 In� i

Ž i. Ž Ž i. . tand ‘‘extending c by zero,’’ i.e., replacing it by c , 0 , so that we have
n � n matrices and n-dimensional columns. These extended objects will
again be denoted by T Ž i. and cŽ i.; the context will clarify the intended
dimension.
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The following proposition uses the extended data and the non-standard
Ž .matrix operation defined in 1.4 to express E T ; c more explicitly.n, p

Ž . Ž .PROPOSITION 3.5. Let n � 2, 0 � p � n � 2, and T ; c 	 DD A . Thenn

E T ; c � adj T Žn�p.
T Žn�p�1.
 ��� 
T Žn.Ž . Ž .n , p

Žn�p�1. Žn�p. Žn�p�1. Žn.Ž .� c .T 
 T 
 ��� 
 T XŽ .

� �The reader is referred to 5, Proposition 1.5 .
� �Let � denote the differential operator ��� X on A X . Let � repre-i i

Ž . t Ž . t Ž .sent the column vector � , . . . , � . Given F � F , . . . , F 	 MA A ,1 n 1 n n
the matrix multiplication F t � � makes sense and denotes the derivation

� �F � � ��� �F � on A X .1 1 n n
� �The following result 5, Corollary 3.4 expresses the automorphism

Ž .X � E T ; c as the exponential of a locally nilpotent derivation.n, p

Ž . Ž .PROPOSITION 3.6. Let n � 2, 0 � p � n � 2, and T ; c 	 DD A . Then
Ž . t Ž .deri�ation D � E T ; c � � is locally nilpotent, its exponential exp D isn, p

Ž . Ž .the polynomial map X � E T ; c , and its in�erse is gi�en by exp �D � Xn, p
Ž .� E T ; c .n, p

� �3We now state the main theorem of 5 :

Ž . n�2 Ž .THEOREM 3.7. Let F � X � H, where H � E T ; c � Ý E T ; cn p�0 n, p
Žn. Ž . Ž .� c for some T ; c 	 DD A . Thenn

F � X � cŽn. � X � E T ; c � ��� � X � E T ; c .Ž . Ž . Ž .Ž . Ž .n , 0 n , n�2

Ž .3.8. Notation. We first observe from the realization of E T ; c givenn, p

in Proposition 3.5 that it depends only on the components T Žn�p., . . . , T Žn.

Žn�p�1. Ž .and c of T ; c . For this reason, we discard the other components
Ž . Ž . Ž Žn�p.by introducing the set DD A consisting of all p � 2 -tuples T ,n, p

Žn. . Žn�p. Žn.. . . , T ; f , where T , . . . , T are exactly as in Definition 3.2 and
Ž . � �n�p�1f � f , . . . , f 	 A X , . . . , X . Note that with this shift in1 n�p�1 n�p n

Ž .notation, the inductive realization of E T ; f , given in Definition 3.2,n, p
now reads

�HŽn.E T ; f � adj T �Ž . Ž .n , p ž / Žn.0 T X

t�Žn. Žn.� adj T X � H , 0 � T X , 8Ž . Ž . Ž .Ž .Ž .

3 � �The statement of this theorem in 5 , which appears there as Theorem 4.1, expresses the
Ž .maps X � E T ; c as exponentials.n, p
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� Ž � .for p � 1, where H � E T ; f . This is due to the fact that, for cn�1, p�1
� Ž .and c as in Definition 3.2, the n � p � 1 th component of c coincides

ŽŽ . Ž . . Ž . �with the n � 1 � p � 1 � 1 th � n � p � 1 th component of c .
Ž . Ž . Ž .Note also that for T ; f 	 DD A , E T ; f can be realized by then, p n, p


-formula of Proposition 3.5, with f replacing cŽn�p�1..

An additional observation that will be needed is that for d 	 A and
Ž . Ž .T ; c 	 DD A we haven

d � E T ; f � E T ; df . 9Ž . Ž . Ž .n , p n , p

Ž .This is proved easily using induction and 8 .
In view of the factorization given in the Theorem 3.7 the main goal of

this section, which is the proof of Theorem 3.1, follows from the proposi-
tion below.

Ž . Ž . Ž .PROPOSITION 3.9. Let F � X � E T ; f , where T ; f 	 DD A andn, p n, p

0 � p � n � 2. Then F � p�1� is a product of triangular automorphisms.

The proof will follow from several lemmas. The explicit factorization will
arise from the proof.

Ž . Ž . Ž .THEOREM 3.10. Let T ; f , T ; g 	 DD A . Thenn, p

X � E T ; f � X � E T ; g � X � E T ; f � g .Ž . Ž . Ž .Ž . Ž . Ž .n , p n , p n , p

Ž . Ž . Ž .Proof. It is easy to see that E T ; f � E T ; g � E T ; f � g .n, p n, p n, p

From this it is clear that the equation in the lemma is equivalent to

E T ; f � X � E T ; g � E T ; f , 10Ž . Ž . Ž . Ž .Ž .n , p n , p n , p

which will be proved by induction on p.

� p � 0: By definition,
tŽn. Žn.E T ; f � adj T X � f , . . . , f , 0 �TŽ . Ž .Ž .Ž .n , 0 1 n�1

� � Ž . Ž . twith f , . . . , f 	 A X , and similarly for E T ; g . Writing f , 0 in1 n�1 n n, 0

Ž . t Ž Žn..place of f , . . . , f , 0 and letting d � det T 	 A, we have1 n�1

E T ; f � X � E T ; gŽ . Ž .Ž .n , 0 n , 0

tŽn. Žn.� adj T X � f , 0 � T XŽ . Ž .Ž .Ž .
tŽn. Žn.� X � adj T X � g , 0 � T XŽ . Ž .Ž .Ž .ž /

t tŽn. Žn. Žn.� adj T X � f , 0 � T X � dX � g , 0 � T XŽ . Ž . Ž . Ž . Ž .Ž .Ž . ž /
by LDP see 1.3Ž .

t tŽn. Žn. Žn.� adj T X � f , 0 � T X � dg , 0 � T X . 11Ž . Ž . Ž . Ž . Ž .Ž .Ž . ž /
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Ž . Ž Žn. .We note that the nth coordinate function of dg, 0 � T X is 0, and,
Ž . t ŽŽ Žn. . �Ž . tsince f involves only X , the composition f , 0 � T X � dg, 0 �n

Ž Žn. .�. Ž . t Ž Žn. . Ž .T X is equal to f , 0 � T X . Therefore the composition of 11 is
equal to

tŽn. Žn.adj T X � f , 0 � T X � E T ; fŽ . Ž . Ž .Ž .Ž . n , 0

as desired.
�

Žn. Ž .p � 1: letting d � det T and appealing to 8 we have

E T ; f � X � E T ; gŽ . Ž .Ž .n , p n , p

t�Žn.� adj T X � E T ; f , 0Ž .Ž .Ž . Ž .n�1, p�1

t�Žn. Žn. Žn.� T X � X � adj T X � E T ; g , 0 � T XŽ . Ž . Ž .Ž .Ž . Ž .n�1, p�1ž /� � �
t�Žn.� adj T X � E T ; f , 0Ž .Ž .Ž . Ž .n�1, p�1

t�Žn. Žn.� T X � d � E T ; g , 0 � T XŽ . Ž . Ž .Ž .n�1, p�1� � �
t�Žn.� adj T X � E T ; f , 0Ž .Ž .Ž . Ž .n�1, p�1

t�Žn. Žn.� T X � E T ; dg , 0 � T XŽ . Ž . Ž .Ž .n�1, p�1� � �
by 9Ž .Ž .

� adj T Žn. XŽ .Ž .
t t� � Žn.� E T ; f , 0 � X � E T ; dg , 0 � T XŽ . Ž . Ž .Ž . Ž .n�1, p�1 n�1, p�1� � �

t�Žn. Žn.� adj T X � E T ; f , 0 � T XŽ . Ž .Ž .Ž . Ž .n�1, p�1

by induction on 10Ž .Ž .
� E T ; f by 8 .Ž . Ž .Ž .n , p

Ž .This establishes 10 , and hence the lemma.

A consequence of this lemma is:

Ž . t � �n�p�1COROLLARY 3.11. For f � f , . . . , f 	 A X , . . . , X ,1 n�p�1 n�p n
Ž .the automorphism X � E T ; f is the composition, in any order, of then, p

automorphisms
tX � E T ; 0, . . . , 0, f , 0, . . . , 0 ,Ž .Ž .n , p i
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Žfor i � 1, . . . , n � p � 1. Here f appears in the ith position of the n � p �i
. Ž .1 -tuple 0, . . . , 0, f , 0, . . . , 0 .i

The next technical tool needed is:

LEMMA 3.12. Let e be the ith unit column �ector, and let E �i
Ž . t � �nE , . . . , E 	 A X be defined by1 n

E � adj T Žn�p.
T Žn�p�1.
 ��� 
T Žn. � e . 12Ž . Ž .Ž .i
� �Let D be the deri�ation on A X defined by

D � Et � � � E � � ��� �E � .1 1 n n

� �Furthermore, let h 	 A X be defined by

h � f X , . . . , X . 13Ž .Ž . Žn�p. Žn�p�1. Žn.i n�p n Ž .T 
 T 
 ��� 
 T X

� �Then D is a locally nilpotent deri�ation A X , h is in the kernel of D, and

texp hD � X � E T ; 0, . . . , 0, f , 0, . . . , 0 .Ž . Ž .Ž .n , p i

Ž Ž ..Proof. According to Proposition 3.5, E T ; 0, . . . , 0, f , 0, . . . , 0 cann, p i
be written as

adj T Žn�p.
T Žn�p�1.
 ��� 
T Žn.Ž .Ž .
0 �
...
0

f X , . . . , X� .Ž . Žn�p. Žn�p�1. Žn.i n�p n Ž .T 
 T 
 ��� 
 T X

0
...� �
0

Ž .Here we have extended 0, . . . , 0, f , 0, . . . , 0 to an n-tuple by adding zeros.i
Ž Ž . t.From this it is immediate that E T ; 0, . . . , 0, f , 0, . . . , 0 � hE �n, p i

Ž . thE , . . . , hE , from whence it follows that1 n

thD � hE � � � E T ; 0, . . . , 0, f , 0, . . . , 0 � � .Ž .Ž .n , p i

Ž .According to Proposition 3.6, exp hD is a locally nilpotent derivation and
Ž . Ž Ž ..exp hD � X � E T ; 0, . . . , 0, f , 0, . . . , 0 . So it remains only to shown, p i

Ž . Žthat D h � 0. The local nilpotence of D follows from this and the local
.nilpotence of hD.
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Ž . t Ž Žn�p. Žn..Let H , . . . , H be the map T 
 ��� 
T X, which, according1 n
Ž Žn�p. . Ž Žn. .to Lemma 1.5, can be expressed as T X � ��� � T X . Then h �

Ž .f H , . . . , H and it suffices to show that D kills each of H , . . . , H .i n�p n n�p n

At this point we introduce a new set of matrices which allows us to
express T Žn�p.
 ��� 
T Žn. as an ordinary product of matrices. Viewing
each T Ž j. as an n-dimensional matrix as in 3.4, set

Ž j. Ž j. Ž j�1. Žn.S �T . 14Ž .S ��� S X

Žn. Žn. Ž . Ž j.For j � n this reads S � T ; hence 14 defines S by descending
induction.

LEMMA 3.13. With S Ž j. defined as abo�e, we ha�e T Žn�p.
 ��� 
T Žn. �
S Žn�p. ��� S Žn..

Proof. The proof is by induction on p. The case p � 0 is clear. For
p � 0 we have

T Žn�p.
 ��� 
T Žn.

� T Žn�p.
 T Žn�p�1.
 ��� 
T Žn.Ž .
Žn�p. Žn�p�1. Žn.Žn�p�1. Žn.Ž .�T � T 
 ��� 
TT 
 ��� 
 T X Ž .
Žn�p. Žn�p�1. Žn.Žn�p�1. Žn.�T � S ��� S by inductionŽ . Ž .S ��� S X

� S Žn�p.S Žn�p�1. ��� S Žn. .

Ž .Now we proceed with the task at hand, which is to show D H � 0 forr
n � p � r � n. The proof is by induction on n � r.

�
Žn�p.Ž .D H � 0: Since each of the polynomial maps T X,n

T Žn�p�1.X, . . . , T Žn�1.X fixes X , it is clear that H � a X � ���n n n, 1 1

Ž . Žn.�a X , where a , . . . , a is the bottom row of the matrix T . Thenn, n n n, 1 n, n

D H � Et � � � HŽ .n n

tŽn�p. Žn.� adj T 
 ��� 
T � e � � � HŽ . i n

tŽn�p. Žn.� adj S ��� S � e � � � HŽ . i n

tŽn. Žn�p. Žn�1.� adj S � adj S ��� S � e � � � HŽ .Ž . i n

t tt tŽn�p. Žn�1. Žn.� �� e � adj S ��� S � adj S � a ��� aŽ . Ž . Ž .i n , 1 n , n

t tt Žn�p. Žn�1. Žn.� �� e � adj S ��� S � a , . . . , a � adj SŽ . Ž . Ž .i n , 1 n , n
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t tt Žn�p. Žn�1. Žn.� �� e � adj S ��� S � a , . . . , a � adj TŽ . Ž . Ž .i n , 1 n , n

tt tŽn�p. Žn�1.� �� e � adj S ��� S � 0, . . . , 0, dŽ . Ž .i

where d � det T Žn.

tŽn�p. Žn�1.� 0, . . . , 0, d � adj S ��� S � e .Ž . Ž . i

Ž . Ž j.Note from 14 that for j � n, the S is extended from the lower
Ž Žn�p. Žn�1..dimension j. It follows that adj S ��� S , and hence its transpose,

has the form

� ��� � 0
. . .. . .. . . 15Ž .

� ��� � 0� 0
0 ��� 0 x

and therefore

tŽn�p. Žn�1.D H � 0, . . . , 0, d � adj S ��� S � eŽ . Ž . Ž .n i

t� 0, . . . , 0, dx � eŽ . i

� 0

since i � n � p � 1 � n.
�

tŽ . Ž .D H � 0 for n � p � r � n: Let G , . . . , G be the coordi-r 1 n�1

Ž Žn�p. . Ž Žn�p�1. . Ž Žn�1. .nate functions of the map T X � T X � ��� � T X , con-
Ž � �. Ž . t Ž .sidered as an element of MA A X . Let L � L , . . . , L 	 MA An�1 n 1 n n

denote the linear polynomial map T Žn.. Then

t Žn�p. Žn�1. Žn.H , . . . , H � T X � ��� � T X � T XŽ . Ž . Ž . Ž .1 n

t� G , . . . , G , X � LŽ .1 n�1 n

t� G L , . . . , G L , L ,Ž . Ž .Ž .1 n�1 n

Ž .so H � G L .r r

Žn�p. Žn�p�1. Žn. Ž .Let S � S � S ��� S . According to 12 and Lemma 3.13,
the derivation D can be expressed as

tD � adj S � e � � . 16Ž . Ž .i

Ž . Ž . �Žn�p. �Žn�1.Define the n � 1 � n � 1 -dimensional matrices S , . . . , S by
Ž . Ž . Ž .the n � 1 � n � 1 -dimensional matrices defined according to 14 ,
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replacing n by n � 1, so that S� � S�Žn�p.
��� S�Žn�1. � T Žn�p.
 ��� 


T Žn�1.. Denote this matrix by S�, and note that, upon extending it to an
n � n matrix, we have

S � T Žn�p.
 ��� 
T Žn.

� S� 
T Žn.

� S� L � T Žn. . 17Ž . Ž .

� Ž . �Continuing to view S as an n � n matrix, let s � adj S , and note thatj, k
� Ž .adj S has the form 15 , and in particular,

s � 0 for 0 � k � n � 1. 18Ž .n , k

Ž .Now we compute D H .r

D H � D G LŽ . Ž .Ž .r r

t� adj S � e � � � G L by 16Ž . Ž . Ž .Ž .i r

t�Žn.� adj T � adj S L � e � � � G L by 17Ž . Ž . Ž .Ž . Ž .Ž . i r

t ttt � Žn.� �� e � adj S L � adj T � � G L , . . . , � G LŽ . Ž . Ž . Ž .Ž . Ž .i 1 r n r

� � G L , . . . , � G L � adj T Žn. � adj S� L � e ,Ž . Ž . Ž . Ž .Ž .Ž .1 r n r i

the last step being due to the fact that a 1 � 1 matrix is its own transpose.
Žn. Ž . Ž Žn.. Ž .Let T � a , and let adj T � b . The above is then equal toj, k j, k

n n

� G L b s LŽ . Ž .Ý Ý t r t , u u , i
t�1 u�1

n n n

� � G L � L b s L by the chain ruleŽ . Ž . Ž . Ž . Ž .Ý Ý Ý � r t � t , u u , i
t�1 u�1 ��1

n n n

� � G L a b s LŽ . Ž . Ž .Ý Ý Ý � r � , t t , u u , i
t�1 u�1 ��1

L � a X � ��� �a XŽ .� � , 1 1 � , n n

n n

� � G L d� s LŽ . Ž . Ž .Ý Ý � r � , u u , i
u�1 ��1

where d � det T , � � Kronecker deltaŽ .n � , u
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n

� d � G L s LŽ . Ž . Ž .Ý u r u , i
u�1

n�1

� d � G L s LŽ . Ž . Ž .Ý u r u , i
u�1

because s � 0 by 18 , since i � n � p � 1 � nŽ .Ž .n , i

� d D� G L ,Ž . Ž .Ž .r

� �Ž �. � �t � �Ž Ž �Žn�p. �Žn... � �t � �where D � adj S � e � � � adj S ��� S � e � � , where S isi i
Ž . Ž . � Ž .viewed as an n � 1 � n � 1 matrix, e is the n � 1 -dimensional ithi

� Ž . tunit column vector, and � � � , . . . , � . By induction on n � r, we1 n�1
�Ž . Ž �Ž ..Ž .know that D G � 0; hence D G L � 0 as desired.r r

Ž .Therefore D h � 0.

The final tool needed in the proof of Proposition 3.9 is the often used
� �result of Smith 11 , which is:

Ž .LEMMA 3.14 Smith’s lemma . Let D be a locally nilpotent deri�ation of a
Ž .commutati�e ring R. Let a 	 ker D . Letting Y be a single indeterminate,

� � Ž .extend D to the polynomial ring R Y by setting D Y � 0. Note that aD and
� �YD are locally nilpotent deri�ations of R Y . Let � be the R-automorphism of

� � Ž .R Y defined by � Y � Y � a. Then

exp aD � ��1 �exp �YD � � �exp YD .Ž . Ž . Ž .

We are now prepared for the final step.

Ž .Proof of Proposition 3.4. Our goal is to show that if F � X � E T : f ,n, p

Ž . Ž . � p�1�where T ; f 	 DD A , 0 � p � n � 2, then F is tame. Our proofn, p
will go by induction on p, treating the case p � 0 in the process. So we
fix p, and, if p � 0, we assume Proposition 3.9 holds for lower values

Ž .of p and any commutative ring A . By Corollary 3.11, we may assume
Ž Ž . t.F has the form X � E T ; 0, . . . , 0, f , 0, . . . , 0 , which, according ton, p i

Ž . ŽLemma 3.12, can be written as exp hD where h � f X , . . . ,i n�p

. � Žn�p. Žn. Ž .X , and h 	 ker D . We now apply Lemma 3.14 withT 
 � � �
 T Xn
� �A X and h in the roles of R and a, respectively. Noting that � is a

� �triangular automorphism of A X, Y , we see that we can factor
Ž .� p�1� Ž .� p �exp hD by triangular automorphisms if we can do so for exp YD .

� �Since Y is fixed by the latter, we can consider the base ring to be A Y .
Ž . Ž .We form the n � p � 1 -tuple 0, . . . , 0, Y, 0, . . . , 0 with Y appearing in

Žthe ith position. Lemma 3.12 states that, upon extending 0, . . . , 0, Y, 0,
. Ž Ž . t.. . . , 0 to an n-tuple by adding zeros, X � E T ; 0, . . . , 0, Y, 0, . . . , 0n, p

� � � Žn�p. Žn.� exp h D, where h � Y . Since Y is in the base ring, theT 
 � � �
 T X

substitution of T Žn�p. 
 ��� 
T Žn.X into Y has no effect, so h� � Y and
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we have

texp YD � X � E T ; 0, . . . , 0, Y , 0, . . . , 0 .Ž .Ž .n , p

By Proposition 3.5 we have

E T ; 0, . . . , 0, Y , 0, . . . , 0Ž .Ž .n , p

0�
...
0

Žn�p. Žn.� adj T 
 ��� 
T �Ž . Y
0
...��
0 Žn�p. Žn.Ž .T 
 ��� 
 T X

0�
...
0

Žn�p. Žn.� adj T 
 ��� 
T �Ž . Y
0
...��
0

since the substitution has no effectŽ .

0�
...
0

Žn�p. Žn.� adj S ��� S �Ž . Y
Lemma 3.13 0

...��
0

0�
...
0

Žn�p�1. Žn. Žn�p.� adj S ��� S � adj SŽ . Ž . Y
0
...��
0
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0�
...
0

Žn�p�1. Žn. Žn�p.
Žn�p�1. Žn.� adj S ��� S � adj TŽ . YS ��� S X

0
...��
0

by 14Ž .Ž .

0�
...
0

Žn�p�1. Žn. Žn�p.� adj S ��� S � adj TŽ . Ž . Y
0
...��
0 Žn�p�1. Žn.S ��� S X

� adj T Žn�p�1.
 ��� 
T Žn.Ž .

0�
...
0

Žn�p.� adj T . 19Ž .Ž . Y
0
...��
0 Žn�p�1. Žn.Ž .T 
 ��� 
 T X

�Ž Žn�p.. Ž . t �The inner column adj T � 0, . . . , 0, Y, 0, . . . , 0 can be written as

tŽn�p. Žn�p.adj T Y , . . . , adj T Y , 0, . . . , 0 . 20Ž .Ž . Ž .Ž .n�p , i1, i

� �� �Note that the coordinates lie in A Y X , . . . , X . Now let g be then�p�1 n
� �column of the first n � p entries. If p � 0, then g is an n-tuple over A Y

Ž Ž . t. Ž .and g � E T ; 0, . . . , 0, Y, 0, . . . , 0 see Definition 3.3 . Thereforen, 0

texp YD � X � E T ; 0, . . . , 0, Y , 0, . . . , 0 � X � g ,Ž .Ž .n , 0

� �which is a translation over A Y , and thereby triangular. Thus the original
F has become a product of triangular automorphisms with the adjunction

Ž .of one new variable Y. If p � 0, we extend g to the n-tuple 20 ; appealing
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Ž .to 19 , we write

tE T ; 0, . . . , 0, Y , 0, . . . , 0Ž .Ž .n , p

Žn�p�1. Žn. � Žn�p�1. Žn.� adj T 
 ��� 
T � gŽ . Ž .ŽT 
 � � �
 T X

� E T ; g by Proposition 3.5 .Ž . Ž .n , p�1

� ��The second equality holds because g has coordinates in A Y X ,n�p�1
� � �. . . , X , viewing A Y as the base ring. This is crucial; the argumentn

Ž .would not have worked had we not replaced 0, . . . , 0, f , 0, . . . , 0 by
Ž .0, . . . , 0, Y, 0, . . . , 0 using Smith’s lemma.

Ž Ž . t.According to our induction on p, X � E T ; 0, . . . , 0, Y, 0, . . . , 0n, p
� �becomes a product of triangular automorphisms over A Y , with the

Ž Žaddition of p new variables. Therefore the original F � X � E T ; 0,n, p
. t.. . . , 0, f , 0, . . . , 0 becomes a product of triangular automorphisms withi

the adjunction of p � 1 new variables. This concludes the proof of
Proposition 3.4, and thereby proves Theorem 3.1.

4. THE ALGORITHMS

We will now derive from the proofs of Sections 2 and 3 explicit
Ž . Ž .algorithms, based on the data T ; c 	 DD A , which factor F � X � H,n

Ž .with H � E T ; c , as a product of triangular automorphisms.n
Ž .The ‘‘quick method’’ of Section 2 did not use DD A at all. The basicn

reduction occurs in Proposition 2.3. Note that when H is given by data
Ž .T ; c , then the matrix T and the column c that appear in the proof of

Žn. Žn. Ž . �Proposition 2.3 are entries T and c in T ; c , and the H that appears
Ž � �. Ž Ž ..is constructed from the truncated data T ; c see 6 . The reduction

Ž . treplaces X � H by X, Y � K , where Y is a system of n � 1 variables,
�Ž .K � H dY � L , . . . , dY � L , L , L , . . . , L are the coordinate1 1 n�1 n�1 n 1 n

Žn. Žn. Ž � �.polynomials of T X, and d � det T . This was seen to lie in HH A Xn�1
� Ž � �.by replacing X , . . . , X by Y , . . . , Y in H 	 HH A X , making1 n�1 1 n�1 n�1 n

Ž � � � �.the base change X � L mapping A X to A X , . . . , X , and appeal-n n n 1 n
ing to Lemma 3.2 which allowed Y , . . . , Y to be replaced by dY �1 n�1 1
L , . . . , dY � L . To execute this reduction, it was necessary to know1 n�1 n�1
the matrix T . If n � 2, we are clearly done. If n � 3, then to continue then

Ž � �.reduction we need to know the last matrix in the DD A X data for K ;n
moreover we need to carry along this modified data for use in subsequent

� Ž � �. Žsteps. Since H is given by the truncated data T ; c � T , . . . , T ; c ,2 n�1 1
.. . . , c , it is clear that variable replacement and the base change simplyn�1

Ž � �. Ž � � . Ž � Ž2. � Žn�1. � Ž1. � Žn�1..replace T ; c by T ; c � T , . . . , T ; c , . . . , c , where
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� Ž j. Ž j.Ž . � Ž j. Ž j.Ž .T � T Y , . . . , Y , L , c � c Y , . . . , Y , L . Thus we can1 n�1 n 1 n�1 n
Žcontinue if we can produce the data for the element H dX � a , . . . ,1 1

. Ž . Ž .dX � a 	 HH A of Lemma 2.2, given that H has data T ; c . This isn n n
accomplished below.

Ž . Ž . Ž . Ž .LEMMA 4.1. Gi�en T ; c 	 DD A and H � E T ; c 	 HH A , let d 	 An n n
t n ˆŽn. Žn. Žn. Žn. Žn. tŽ . Ž .and a � a , . . . , a 	 A . Set T � T and let ll � ll , . . . , ll1 n 1 n

ˆŽn. n Žn. � �� T a 	 A , and let W � dX � ll 	 A X . Gi�en r with 1 � r � n,n n nn
Ž j. � � j � �assume inducti�ely that ll 	 A X , . . . , X and W 	 A X , . . . , Xj�1 n j j n

ha�e been defined for r � j � n. Define

rŽ r . Ž r . � �c � c W , . . . , W 	 A X , . . . , X .Ž .ˆ r�1 n r�1 n

ˆŽ r .If r � 2 define T and W asr

ˆŽ r . Ž r . � �T � T W , . . . , W 	 M A X , . . . , XŽ . Ž .r�1 n r r�1 n

and

Ž r . � �W � dX � ll 	 A X , . . . , X ,r r r nr

where

ll Ž r�1.
1

.Ž r . Ž r . .ˆ � �ll � T � 	 A X , . . . , X .r�1 n.
Ž r�1.� 0llr

ˆ ˆŽ2. ˆŽn. Ž1. Žn.Ž . Ž . Ž . ŽThen T ; c � T , . . . , T ; c , . . . , c 	 DD A and H dX � a , . . . ,ˆ ˆ ˆ n 1 1
ˆ. Ž .dX � a � E T ; c .ˆn n n

This is proved without difficulty by using induction and following the
proof of Lemma 2.2. The algorithm for the stable factorization of F by the
quick method is now complete, and is summarized as follows:

4.2. Algorithm for the Quick Method

Ž . Ž .Given F � X � H with H � E T ; c 	 HH A , n � 2, we adjoin vari-n n
ables Y , . . . , Y . Defining U and V as in the proof of Proposition 2.3,1 n

Žn. Žn. � n�1� �1 Žreplacing T and c by T and c , we have F � U � X, Y �
. t �1 Ž . �Ž .K �V , from 5 , where K � H dY � L , . . . , dY � L , L , d �1 1 n�1 n�1 n

Žn. Ž . t Žn.det T , and L , . . . , L � T X. If n � 2 we are done. If n � 2, then1 n
Ž � �.to get the DD A X data for K , we recall from above that the data forn�1

�Ž . Ž � � . � Ž j. Ž j.Ž .H Y , . . . , Y , L is T ; c where T � T Y , . . . , Y , L for1 n�1 n 1 n�1 n
� Ž j. Ž j.Ž .2 � j � n � 1, c � c Y , . . . , Y , L for 1 � j � n � 1. Therefore1 n�1 n
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ˆ� � ˆ� �Ž . Ž .K � E T ; c , where T , c is the data defined in Lemma 4.1ˆ ˆn�1
Ž � � . Žn. Ž . tstarting with T , c , setting d � det T and a � L , . . . , L . If n � 21 n

ˆ� Žn�1. � Žn�1.we proceed to the next step, using T K and c to define a new Uˆ
Ž .and V. This eventually factors F using n n � 1 �2 new variables.

Ž .Since the strong method uses DD A , its algorithm is much moren
apparent from the proof. It goes as follows:

4.3. Algorithm for the Strong Method

Ž . Ž .Given F � X � H with H � E T ; c 	 HH A , n � 2, we factor Fn n
according to Theorem 3.7. Thus it suffices to give an algorithm for

Ž . Ž . Ž .factoring X � E T ; f , where 0 � p � n � 2 and T ; f 	 DD A , us-n, p n, p

Ž .ing p � 1 new variables. Writing f � f , . . . , f , we use Corollary1 n�p�1
Ž . Ž Ž3.11 to factor X � E T ; f as the composition of the X � E T ; 0,n, p n, p

. t.. . . , f , 0, . . . , 0 and proceed to factor each of these components. We nowi
follow the proof of Proposition 3.4, which begins by employing Smith’s
lemma to adjoin one variable Y, and write

� �1tX � E T ; 0, . . . , f , 0, . . . , 0Ž .Ž .ž /n , p i

tt�1� � � X � E T ; � 0, . . . , Y , 0, . . . , 0 , YŽ .Ž .ž /n , p

tt� � � X � E T ; 0, . . . , Y , 0, . . . , 0 , Y ,Ž .Ž .ž /n , p

where

t
� � X , . . . , X , Y � f X , . . . , X .Ž . Žn�p. Žn�p�1. Žn.ž /1 n i n�p n Ž .T 
 T 
 ��� 
 T X

� �We can complete our procedure considering A Y as the base ring and
Ž Ž . t. Žfactoring X � E T ; 0, . . . , Y, 0, . . . , 0 and in similar fashion its in-n, p

.verse using p new variables. Letting

g � adj T Žn�p. Y , . . . , adj T Žn�p. YŽ . Ž .Ž .n�p , i1, i

Ž Ž . t.we have, if p � 0, X � E T ; 0, . . . , Y, 0, . . . , 0 � X � g, which is tri-n, 0
Ž Žangular, finishing the task in this case. If p � 0 we have X � E T ; 0,n, p

. t. Ž .. . . , Y, 0, . . . , 0 � E T , g , to which we apply the algorithm recur-n, p�1
sively.
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