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a b s t r a c t

Simulated wide-field images are becoming an important part of observational astronomy, either to
prepare for new surveys or to test measurement methods. In order to efficiently explore vast parameter
spaces, the computational speed of simulation codes is a central requirement to their implementation.
We introduce the Ultra Fast Image Generator (UFig) which aims to bring wide-field imaging simulations
to the current limits of computational capabilities. We achieve this goal through: (1) models of galaxies,
stars and observational conditions, which, while simple, capture the key features necessary for realistic
simulations, and (2) state-of-the-art computational and implementation optimizations. We present the
performances of UFig and show that it is faster than existing public simulation codes by several orders
of magnitude. It allows us to produce images more quickly than SExtractor needs to analyze them. For
instance, it can simulate a typical 0.25 deg2 Subaru SuprimeCam image (10k × 8k pixels) with a 5-σ
limiting magnitude of R = 26 in 30 s on a laptop, yielding an average simulation time for a galaxy of
30 µs. This code is complementary to end-to-end simulation codes and can be used as a fast, central
component of observational methods relying on simulations. For instance, it can be used to efficiently
calibrate high-precision measurements, as recently suggested for cosmic shear.

© 2013 Elsevier B.V.  Open access under CC BY-NC-ND license.
1. Introduction

Image simulations are becoming ubiquitous in observational
astronomy. They are intensively used in topics as diverse as ex-
tragalactic astrophysics (with public codes like Skymaker (Bertin,
2009), SImage (Dobke et al., 2010), Shera (Mandelbaum et al.,
2012), or the simulation package developed by the Large Synop-
tic Survey Telescope (LSST) team(2009)), CMB analysis (e.g. De-
labrouille et al., 2012), or Supernovae (e.g. Bernstein et al., 2012;
Perrett et al., 2010). Simulations aremainly used to forecast the re-
sults of an observation strategy and to test measurementmethods.
Examples are given by the LSST simulations (LSST Science Collab-
orations, 2009; Chang, 2012; Chang et al., 2012), the public Shear
Testing Program (STEP) and Gravitational Lensing Accuracy Test-
ing (GREAT) simulations (Heymans et al., 2006;Massey et al., 2007;
Bridle et al., 2010; Kitching et al., 2012), as well as individual works
(e.g. Bergé et al., 2012; Kacprzak et al., 2012).

In this work, we focus on simulations used for extragalactic
wide-field astronomy. Depending on their aim, such simulations
will either be minimalist, like the GREAT simulations which
simulated simplistic individual galaxies on amesh, or includemost
of, or all relevant cosmology, astrophysics, atmosphere physics
and telescope characterization (LSST). The STEP project (using
Skymaker and SImage) took an intermediate approach, where
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simulations look realistic, but without focusing much on any
particular physics or observational apparatus.

Depending on their emphasis, the speed of simulation codes
can vary greatly, from hours to days to simulate a quarter square
degree ground-based image. However, if a simulation package
is to be used as an integrated part of a method and pipeline
calibration process, its speed becomes a driving parameter: a
fast simulation code, used to calibrate an external measurement
method, allows one to efficiently explore a larger parameter space
for the measurement method or survey.

The aim of this paper is to introduce the Ultra Fast Image
Generator (UFig), a fast simulation C++ code able to simulate real-
istic images on a timescale comparable to that needed by SExtrac-
tor (Bertin and Arnouts, 1996) to analyze similar images (i.e., less
than one minute for a 0.25 sq. deg. image); since it is widely used
in astronomy and is well optimized, we take SExtractor as a ref-
erence. To this end, we adopt simple, yet realistic, models of galax-
ies, stars and observation conditions, that allow us to minimize
the computation load. We also bring our code to the current com-
putation limits by highly optimizing our implementation through
an efficient use of random number generators, parallelization and
vectorization. This fast code is thus complementary to end-to-end
simulation packages aimed at detailed modeling of observational
effects. It can be used for specialized tasks that need high-speed,
such as calibrating a precise measurement. A direct application
can be the calibration of cosmic shear measurements, as suggested
by Kacprzak et al. (2012) and Refregier et al. (2012). In its present
state, UFig can be seen as the core for more complex simulations.

https://core.ac.uk/display/82142717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ascom.2013.01.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ascom.2013.01.001&domain=pdf
mailto:jberge@phys.ethz.ch
mailto:jberge@astro.caltech.edu
http://dx.doi.org/10.1016/j.ascom.2013.01.001
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


24 J. Bergé et al. / Astronomy and Computing 1 (2013) 23–32
Although the code may be used to simulate an image from
various ground-based facilities and observation conditions, in this
paper we use as a practical test case the simulation of a typical
Subaru SuprimeCam (Miyazaki et al., 2002) coadded 10k × 8k
pixels image, processed from four 450-seconds exposures, with a
5-σ (extended) limiting magnitude of Rc = 26, unless otherwise
stated.

Section 2 summarizes the model that we use for galaxies, stars
and noise. Further details about it can be found in the appendices.
Section 3 motivates the strategy used to optimize the simulation
of realistic images, and Section 4 describes the implementation
and the optimizations we use on the computational part of the
problem; in particular, we present how we optimize random
numbers generation and implement multithreading. Section 5
explores the consistency of the UFig simulations with real images.
Section 6 shows the performances of our code; in particular,
we show in this section how the execution time depends on
the image’s size and on the exposure time. We conclude in
Section 7. Further details about UFig, including examples and
information about the distribution of the code, can be found at
http://www.astro.ethz.ch/refregier/research/Software/ufig.

2. Model

The simulations are based on a simple, yet realistic, modeling
of galaxies, stars and noise: the models are summarized in this
section. The appendices expand on the astrophysics and the
methods used to assess our models.

2.1. Galaxies

We assume that galaxy profiles are well described by the Sersic
profile (Sersic, 1968)

I(r) = I(r50) exp


−k


r
r50

1/n

− 1


, (1)

where r50 is the radius of the circle enclosing 50% of the total flux
of the galaxy, n is the Sersic index, and k is a constant satisfying the
equation 2γ (2n, k) = Γ (2n), where γ (x, k) is the lower incom-
plete gamma-function, and Γ (x) is the gamma-function.

We find the probability density function (p.d.f) of Sersic indices
for bright galaxies (magnitude less than 20) to be well represented
by f (n) = exp(N (0.3, 0.5)+N (1.6, 0.4))+0.24,whereN (µ, σ 2)
represents the normal distribution of meanµ and variance σ 2 (see
Appendix A). For faint galaxies (magnitude bigger than 20), we
describe it by f (n) = exp(N (0.2, 1)) + 0.2.

We parametrize the magnitude distribution of galaxies with a
polynomial of the form log10(N < mag) =


i aimagi. Table A.2

summarizes the coefficients ai for different filters.
Finally, we account for the galaxies intrinsic ellipticity distribu-

tion with a 2D Gaussian (of both components of the ellipticity) of
width σ1 = σ2 = 0.15 (see e.g. Bernstein and Jarvis, 2002).

2.2. Stars and point spread function

Weuse aMoffat profile to account for the Point Spread Function
(PSF). The (circular) Moffat profile is defined as (Moffat, 1969):

I(r) = I0


1 +

 r
α

2−β

, (2)

where I0 is the value at the origin (r = 0), and α and β are scale pa-
rameters depending on the observation’s conditions. The width of
the profile, α, is related to its FWHM and to its half-light radius r50.

2.3. Noise

We finally account for noise in the image. We first add Poisson
noise for galaxies and stars. We then add the noise from various
sources, like the sky brightness, the readout noise and the errors
arising during the data processing, such as flat-field inaccuracies.
Following e.g. Grazian et al. (2004); Meneghetti et al. (2008),
we define it as a Gaussian random deviate with zero mean and
standard deviation given by Eq. (C.1).We finally correlate the noise
with a Lanczos resampling (Duchon, 1979).

3. Code requirements

3.1. Requirements

The main requirement of our simulation pipeline is that it
must be fast, while providing realistic images. Since SExtractor
has become the reference software for wide-field image analysis
and is computationally efficient, we use its execution time on
a given image as our unit of time. In that sense, we want the
running time of the cycle simulation creation (UFig)—simulation
analysis (SExtractor) not to be dominated by the execution of
UFig, hence setting the requirement that UFig is not slower than
SExtractor. For instance, UFig should simulate a typical Subaru
SuprimeCam image of 0.25 sq. deg. (made up of approximately
10,000 × 8000 pixels) with a 5-σ limiting magnitude of Rc = 26
under one minute.

Tomeet this goal,wemust define themost efficientway to draw
galaxies and stars, their generation being the most expensive task
of a simulation code.

3.2. Pixel-based or photon-based?

We can think of two ways to simulate 2D objects such as
galaxies and stars in an image from a given light distribution: (1)
pixel-based and (2) photon-based.

In the former case, an analytic description of the object is pix-
elized. The description can be a simple profile, which is simply pix-
elized by taking its value at the center of pixels, or by integrating
it in pixels, or it can be more complex, as in a shapelets model (Re-
fregier, 2003;Massey and Refregier, 2005). Public simulation pack-
ages like Skymaker, SImage or Shera rely on this principle.

In the second approach, an analytical description of the object
is considered as the distribution of the photons that make it up.
Photons are then drawn individually to make up the object. This
approach is used e.g. by the LSST Simulation group(2009).

The choice of the algorithm is determined by the total number
of operations needed to create all the galaxies and all the stars of
the simulation. These are described below.

3.2.1. Number of operations for one elementary building block

Pixel-based approach. In this case, the elementary building block of
an object is one pixel. To simulate one pixel, we first have to draw
its value from the analytical description of the object. The value of
the PSF for that pixel is drawn in the same way, from an analytical
description of the PSF shape. An object should bemade on a refined
grid (i.e., using pixels smaller than those of the final simulations)
in order to minimize approximations of the profile at the center
of pixels; analytically integrating over pixels allows one to get
rid of those approximations, but at the price of a more complex
implementation. Then, Poisson noise must be applied to the pixel.
Finally, the object, once created, is convolvedwith the PSF. This last
step, albeit optimized by using FFTs, is computationally expensive,
even more if the object is refined so that numerical errors are
minimized.

Photon-based approach. In this case, the elementary building block
of an object is one photon. To simulate one photon, we draw its
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position from the analytical description of the object, seen as a
distribution function. The effect of the PSF is simply to displace the
photon; therefore, we just have to draw a random displacement
from the analytical description of the PSF, and apply it to the
position of the photon. Contrary to the pixel-based approach, no
complex task (such as a convolution) has to be done at all. Finally,
since photons are drawn individually, Poisson noise emerges
naturally, with no need to add it eventually. Moreover, the photon-
based approach allows us to elegantly sample a Sersic profile
through the use of the γ -distribution.

Therefore, fewer operations are necessary to simulate a photon
than to simulate a pixel. In the next subsection, we consider the
number of photons and the number of pixels that we need to
simulate to make an extragalactic Subaru SuprimeCam-like image,
before concluding on what approach we choose.

3.2.2. Number of photons vs number of pixels
The number of photons coming from galaxies per square

degree and per magnitude can be computed from the magnitude
distribution of galaxies (Eq. (A.7)) and the relation between the
number of photons and the magnitude of a galaxy (Eq. (A.8)). A
similar approach allows us to estimate the number of photons
coming from stars. Integrating those functions, it is easy to
estimate the number of photons required for a photon-by-photon
simulation. Similarly, assuming that an average galaxy is contained
in a 21 × 21 postage stamp, and that we resample it by a factor
of 5 when simulating it,1 we can estimate the number of sampled
pixels per square degree and per magnitude in a pixel-by-pixel
approach. The same exercise can be done for stars, assuming that
the average postage stamp size is 61 × 61 pixels (stars are on
average brighter and more spread out than galaxies). Fig. 1 shows
the number of photons per square degree and per magnitude
(black thick lines) and the number of (resampled by a factor 5)
pixels required per square degree and per magnitude (green thin
lines). In both cases, dash lines correspond to stars, dash-dot lines
correspond to galaxies, and solid lines show the total number
of photons and pixels. The symbols show photon counts from a
typical Subaru image: squares correspond to stars and diamonds
to galaxies. Note that the star–galaxy separation, performed with
SExtractor, confuses stars and galaxies at magnitudes less than
18, corresponding to saturated objects. Nevertheless, the total
number of photons per square degree and magnitude agrees
extremely well with our expectations (black lines).

The number of photons per square degree and per magnitude
from galaxies remains fairly constant with magnitude, meaning
that adding faint galaxies does not affect the execution time
when simulating galaxies in a photon-based approach. On the
other hand, photons from stars largely dominate the total number
of photons at low magnitudes, and become highly subdominant
for intermediate and high magnitudes. Thus, in a photon-
based approach, the execution time will be dominated by stars
generation. The same comparison between stars and galaxies can
be done for the number of pixels: stars dominate at lowmagnitude,
before becoming largely subdominant. Contrary to the number of
photons, the number of pixels from galaxies per square degree and
per magnitude increases linearly with magnitude, meaning that
going deeper significantly affects the execution time. In the pixel-
by-pixel approach, the execution time is dominated by galaxies.

Table 1 gives the number of photons and pixels that one needs
to sample to simulate a 0.25 deg2 image with an 450 s exposure
time, from magnitude 12 to magnitude 29. These numbers

1 We find that a factor 5 refinement is a bare minimum, and as such, is a lower
bound on what can be used. The bigger this factor, the more precise and expensive
the simulation.
Fig. 1. Number of photons (thick black) and number of pixels (thin green) sampled
per magnitude per square degree. Dash-dot lines represent the contribution of
galaxies, dashed lines show that of stars, and solid lines show the total. Diamonds
and squares are photon counts from galaxies and stars from a typical Subaru-
SuprimeCam image in Rc-band.

Table 1
Number of photons and pixels sampled for one UFig simulation.

Number of sources Number of photons Number of pixels

Galaxies 6 × 105 7 × 109 5.6 × 109

Stars 3 × 103 5.1 × 1010 3.4 × 108

Total 6.03 × 105 5.8 × 1010 6 × 109

confirm the conclusions from Fig. 1: the number of photons is
highly dominated by stars’ photons, and the number of pixels
is dominated by galaxies. Furthermore, the number of photons
needed to simulate galaxies is of the same order than the needed
number of pixels.

3.2.3. Conclusion
The photon-based approach requires less operations per

elementary building block (photons), than needed by the pixel-
based approach. Furthermore, many more photons than pixels
are needed to simulate stars. On the other hand, the numbers of
photons or pixels to be sampled in either approach to simulate
galaxies are similar. Note that according to Fig. 1, wewould have to
simulate fewer pixels than photons, were we to simulate galaxies
up to magnitude Rc ≈ 26 (corresponding to the Subaru telescope
limitingmagnitude); however,weneed to take into account fainter
galaxies, which affect the image’s noise, and we choose Rc = 29 as
our higher magnitude.

For these reasons, we have decided to adopt a hybrid approach:
we simulate galaxieswith a photon-based approach, and starswith
a pixel-based approach. Fig. 2 shows that both approaches are
consistent. In the upper panel, the input analytic Sersic profile of
a galaxy (n = 2.7, r50 = 0.6 pixels, magnitude = 23) is plotted
in black, the red curve shows the profile of the galaxy simulated
with a photon-based approach, and the green curve shows that of
the galaxy simulatedwith a pixel-based approach. The lower panel
shows the fractional difference between the simulated profiles and
the input profile; they are consistent with the input profile at a few
percent level at scales larger than one pixel that are not affected by
the background noise (r 6 6 pixels).
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Fig. 2. Upper panel: profile of a galaxy, simulated with a photon-based approach
(red) andwith a pixel-based approach (green). The black line shows the input Sersic
profile. Lower panel: fractional difference between the simulated profiles and the
input profile. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

4. Implementation

4.1. Galaxies

We simulate a circular Sersic galaxy by sampling the radial
position r of its NΦ photons (Eq. (A.8) links a galaxy’s magnitude
and its number of photons) from a γ -distributed random variable
Y (r = Y nr50/kn), and their angular positions from a uniform
distribution between 0 and 2π (see Appendix A). Then, we
transform the galaxy so that it becomes elliptical with the desired
ellipticity, as shown in the Appendix.

Finally, the galaxy is pixelized by truncating the coordinates of
the photons’ positions. Note that we truncate, and not round the
coordinates because a pixel can be seen as a bucket (e.g., x = 2.8
corresponds therefore to pixel number 2).

4.2. PSF-induced photon displacement and stars

The effect of the PSF on a incident photon is to displace it, the
corresponding displacement following a p.d.f defined by the PSF
profile. This can be seen by considering stars as point-like sources,
which would appear as a Dirac function in the absence of a PSF;
their observed shape (the PSF itself) is therefore the consequence
of the displacement of the photons making up the oncoming Dirac
function. The displacement dX due to the PSF is then obtained by
uniformly sampling the Moffat profile’s cumulative distribution

function (c.d.f) dX = α


[cdf (Y ) − 1]

1
1−β − 1 (see Appendix B).

We use this technique to convolve galaxies with the PSF.
As shown in Section 3, stars account for most of the photons to

be simulated, hence we create them with a pixel-based approach.
To this end, we integrate the Moffat profile numerically in pixels
with a 7th order Legendre–Gauss quadrature rule2, andwe perturb
each pixel’s value with a Poisson deviate. We integrate the profile
from the center outwards, until the probability of detecting one
photon in a pixel is less than one percent. While much faster,
this method is statistically equivalent to drawing photons one by

2 http://mathworld.wolfram.com/Legendre-GaussQuadrature.html.
one. Furthermore, as opposed to a pixel-based approach to galaxy
generation, creating stars pixel by pixel does not involve expensive
numerical convolutionwith the PSF, nor is it impacted by potential
numerical errors coming from the convolution.

4.3. Optimizations

4.3.1. Random number generation
Operations such as drawing the position of galaxies and stars,

drawing galaxies’ photons, or generating the background noise,
imply heavy use of random number generators.

To enable the creation of the ≈3 × 1010 random numbers
needed to simulate galaxies,3 we implemented the lagged
Fibonacci generator xi = (xi−21034 + xi−44497)mod232 (Brent,
1992, 1994), that we initialize with the Mersenne twister
generator implemented in the boost::mt19937 random number
generator (Matsumoto andNishimura, 1998). The lagged Fibonacci
generator is buffered, meaning that we generate a full lag of 44497
numbers at once instead of generating them only when needed.
Finally, another advantage of the lagged Fibonacci generator is that
it allows us to use vectorization (see below) to generate the lag.We
tested our generator with the Test U01 test suite, which consists of
160 tests (L’Ecuyer and Simard, 2007): all tests were passed with
a p-value inside the range [10−4, 1 − 10−4]; tests with a p-value
outside of this range would be considered as failures.

4.3.2. Parallelization
We start by generating a catalog of stars and galaxies, where

astrometry, photometry and shape information is stored. This task
is done with an openmp loop.

Then, we implement multithreading in the following way.
Galaxies are sorted by position (each thread thus dealing with a
well defined region of the full image), in such a way that each
thread gets the same number of photons; in this way, all threads
run in the same time (a very bright galaxy does not impair the
speed of a given thread). Stars are sorted by position, by making
sure that each thread gets the same number of stars to generate.
Since galaxies and stars are sorted by position, each thread works
safely on its own part of the simulation, completely independently
from the other threads. Therefore, we do not need critical section
(openmp locks) to write to the global array making up the image.
Locks are further avoided by forcing each thread to have its own
set of random number generators (independent of other threads’
random number generators).

The remaining tasks (noise generation, magnitude rescaling,
image resampling) are parallelized using openmp.

4.3.3. Other optimizations

Approximation of functions. We use linear interpolations to
common functions such as trigonometric functions or Γ function.
This significantly speeds up our calculations.

Vectorization. Streaming SIMD Extensions (SSE) allows us to
perform four floating point calculations at once: we use it for
galaxy generation, noise generation and image resampling. We
checked that using floating point values instead of double points
value does not impact the precision.

5. Quality assurance

Fig. 3 compares a patch of a UFig simulation (lower panel) with
a patch of a typical Subaru image (upper panel). Both patches

3 This number corresponds to four times the number of photons that must be
generated (see Table 1), since a photon requires four random numbers: position
with respect to the galaxy’s center (radial and angular) and displacement due to
the PSF (radial and angular).
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Fig. 3. Top: typical Subaru image. Bottom: UFig simulation. Both patches have an
area of 400 × 300 pixels2 , or 1.3 × 1 arcmin2 . The dynamic scales are the same for
both panels.

are of the same size, and the dynamic scale is the same in both
panels. Visually, the shape and size of galaxies arewell rendered by
our simulations. Moreover, the granularity and spatial correlation
of the background is comparable to that of the real image. We
simulate correlated noise by resampling the original simulation,
whose background noise is uncorrelated, normally distributed,
with a Lanczos resampling. This resampling is fast (see Section 6),
and allows us to mimic the resampling done in the processing of
real data.

In Fig. 4, we show the distribution of pixels in the real image
(black solid line) and in the simulation (red dashed line). The dis-
tributions agree well, especially for values near zero, correspond-
ing to background pixels, and for high-value pixels, corresponding
to bright objects. Around zero, the distributions are well rendered
by Gaussian distributions, hence confirming that generating the
background noise from a Gaussian deviate is correct. The flat dis-
tribution of negative values for the real image are created when
processing raw data single exposures into a resampled, coadded
image. Although they are not reproduced with the original Gaus-
sian noise model used in UFig (not shown in the figure), we have
checked that they appear when we simulate raw data single expo-
sures that we process to obtain a final coadded image. This con-
firms that they are indeed due to the data processing. Resampling
the (uncorrelatedGaussian noise-) simulated imagewith a Lanczos
resampling allows us to better mimic the data reduction process
and to better reproduce the background noise, while avoiding an
expensive data reduction of simulated raw images.

Fig. 5 shows the distribution of stars and galaxies in the
magnitude-size plane, both for a typical Subaru image (upper
Fig. 4. Pixels distribution. The solid black line is for a typical Subaru image, and the
dashed red line is for a UFig simulation.

panel) and our simulation (lower panel). Magnitudes are given by
SExtractor, and we define the half-light radius ee50 as SExtrac-
tor’s FLUX_RADIUS (note that all SExtractor’s parameters are the
same when running SExtractor on the real image and on the sim-
ulation, preventing any difference from the SExtractor analysis).
We also rely on SExtractor to perform the galaxy–star separation;
to this end,we set SExtractor’s SEEING_FWHMequal to the seeing
input in the simulation (0.6’’ in the case shown by Fig. 5), and we
further set SExtractor’s CLASS_STAR = 0.9. Galaxies are shown
by the black symbols, while stars are shown by the green symbols.
The star branch is narrower in the simulation than in the real image
because we forced the PSF to be constant in the simulation.

Despite the simplemodels used,UFig produces realistic images,
that are consistent with real images.

6. Computational performance

6.1. Execution time

We tested the performance of UFig on a laptop (macBook Pro
with a 2.7 GHz Intel processor, 4 cores and 16 GB RAM). Using eight
threads, UFig provides a 10k × 8k-pixels-image (approximately
the size of a typical Subaru image) in 30 s. This is smaller than the
execution time of SExtractor on a similar image. For comparison,
we created a similar image using Skymaker in two hours and using
Simage in 25 h. However, we note that these two simulation codes
perform more complex tasks than UFig (e.g., they model more
complex galaxy shapes and galaxy redshift distributions); UFig is
notmeant to replace them, but to offer a fast alternative for simpler
simulations.

We further measured that UFig uses 66% of the laptop’s peak
performance (29 Gflops out of 43.2 peak Gflops).

In the remainder of this section, we discuss how the UFig
execution time depends on some input parameters, and how the
time spending is distributed between different tasks. Fig. 6 shows
how the execution time to create an image with exposure time
texp = 450 s depends on the image’s size,whenusing eight threads.
The black thick solid line shows the total execution time. The red
thick short dashed line shows the time spent sampling galaxies,
while the green thick dash-dot line shows that spent simulating
stars. The dash-dot-dot-dot line corresponds to the time needed
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Fig. 5. Magnitude-size distribution for a typical Subaru image (upper panel) and for
a UFig simulation (lower panel). Black points represent galaxies, and green points
represent stars, galaxies and stars being separated by SExtractor.

to generate noise and the long dashed line to the time spent
resampling the image. Diamonds represent the time spent writing
the image and the corresponding catalog to the disk. Finally, the
dotted line shows the overheads (defined as all tasks not directed
directly at creating or writing the simulation). For big enough
images (more than 107 pixels), most of the time is spent drawing
galaxies, then drawing stars. For smaller images, the execution
time is dominated by overheads. Excepted the overheads, that
are expected not to depend strongly on the image size, all tasks’
time-spending show a clearly linear dependence on image size.
This behavior is expected, since the number of photons (for galaxy
generation) and pixels belonging to stars (for star generation)
increase linearly with the image size. Similarly, all other tasks, by
definition, depend linearly on the number of pixels.

Fig. 7 shows the relation between the exposure time used in
the simulations, and the execution time, when using eight threads.
Fig. 6. Execution time vs image size, using eight threads. Black solid line: overall
time. Red short dashed line: galaxy sampling. Green dash-dot line: stars sampling.
Dash-dot-dot-dot line: noise generation. Diamonds: image and catalog writing to
disk. Long dashed line: image resampling. Dotted line: overheads.

Fig. 7. Execution time vs exposure time, using eight threads. Line styles and colors
are the same as in Fig. 6.

Lines have the same meaning as in Fig. 6. The time spent
resampling the image is not shown, since it is less than one second.
For small exposure times (less than 200 s),most of the time is spent
writing to disk, whereas generating galaxies is most expensive
for large exposure times. Generating galaxies and stars both scale
linearly with exposure time. This is expected; the number of
photons that one has to simulate to generate galaxies obviously
depends linearly on the exposure time. So does the flux, and
therefore the number of pixels that one has to drawwhen creating
stars. All other tasks do not depend on the exposure time.

6.2. Parallelization

Fig. 8 shows how the execution time depends on the
number of threads used for the computation, when simulating a
10,000× 8000 pixels imagewith an exposure time texp = 450 s on
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Fig. 8. Execution time vs number of threads. Diamond-solid line: overall execution
time. Thin solid line: overheads.

the same laptop as that used above. The lower curve corresponds
to the overheads, as defined above. When using two threads, we
need half as much time to create a simulation as when using only
one thread. A significant gain in execution time can be seen when
using up to five threads, before the execution time plateaus. This
plateau is due to the fact that Intel hyper-threading is at work,
meaning that when more than four cores are used, threads starts
to compete against each other (our laptop having four physical
cores—corresponding to eight virtual cores). We therefore expect
an optimal parallelization to provide us with a factor of four
improvement in execution time: this is indeed what we measure,
meaning that our parallelization is nearly optimal.

6.3. Memory management

Independently of the number of threads used, a run of the
code uses the amount of RAM memory needed to store one copy
of the simulated image. For instance, for a 10,000 × 8000 pixels
simulation, 300 MB of memory are required.

7. Conclusion and perspective

By introducing the Ultra Fast Image Generator (UFig), we
showed that it is currently possible to implement very fast codes
to simulate wide-field astronomical images. We showed that,
using simple models, we can simulate realistic images which take
observation constraints, including the PSF and various sources of
noise, into account.

Combining analytic simple models with state-of-the-art com-
puting optimizations allows us to produce the mock of a typical
Subaru SuprimeCam image (0.25 sq. deg, 10k × 8k pixels) with a
5-σ (extended) limiting magnitude of Rc = 26, in which we ac-
count for galaxies ofmagnitude up to Rc = 29, in 30 swhen using a
laptop (macBook Pro with a 2.7 GHz Intel processor, 4 cores and 16
GB RAM); thus, an average galaxy is simulated in 30µs. This repre-
sents an improvement of several orders of magnitude in execution
time compared to the public softwares that we are aware of. It is
also comparable with the execution time of SExtractor on a simi-
lar image; given the optimization of its implementation, as well as
its extensive and intensive use, SExtractor can be taken as a stan-
dard, well optimized code in astronomy, thus setting a timescale
for any new software that is used in combination with it. UFig is
thus complementary to end-to-end simulation codes which aim to
model observational effects in great details, but with greater exe-
cution time.

We have presented the implementation of the code, with
an emphasis on the different optimizations that we use. In
particular, we have found that the optimal solution is to adopt
a hybrid approach to generate galaxies and stars, where we
create galaxies with a photon-based approach, and stars with a
pixel-based approach. We have also described how we optimize
random number generation by implementing a lagged Fibonacci
random number generator, how we parallelize the code using
multithreading in which threads are completely independent, and
howwe approximate common functions and use SSE vectorization
to speed up calculations.

Wehave then shown thatUFig’s simulations are consistentwith
real images, using simple standard tests. Finally, we have investi-
gated the performances of the code, where we have checked that
the execution time scales as it should were the code perfectly opti-
mized. In particular, we showed that the parallelization of the code
is nearly optimal. Therefore, the UFig implementation reaches the
limits of the current computation possibilities. This is highlighted
by the usage of 66% of our laptop’s peak performance by UFig.

The current UFig implementation relies on simple models;
although it produces images sufficiently realistic for many
applications, such as testing data processing codes, or calibrating
photometry or astrometry codes, these simplemodelsmay need to
be refined to use UFig for very high-precision analyses. Therefore,
we plan to increase the UFig realism by including more cosmology
in the code. For instance, we will increase the shape complexity of
galaxies, allow them to be spatially clustered, aswell as distributed
in redshift, and we will add weak lensing (either from large-scale
structures or from massive clusters). Using more complex models
will have an impact on the code’s performance, which we will
assess and take into account to keep UFig optimal.

Another application of UFig’s speed is to calibrate a computer
intensive measurement method. For instance, Refregier et al.
(2012) and Kacprzak et al. (2012) showed that a promising
approach to cosmic shear measurement pipelines is to calibrate
themwith image simulations (with observation conditions similar
to those of the real data to analyze) to alleviate systematic
effects. Up to now, such a calibration was time-consuming and
thus limited. Hence, UFig opens a new window to improve on
computational intensive measurement techniques, such as those
used in weak lensing, or in transient searches, for which UFig’s
ability to efficiently simulate time series observations may prove
to be central.

Further details about UFig can be found at http://www.astro.
ethz.ch/refregier/research/Software/ufig.
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Appendix A. Galaxy model

A.1. Sersic profile

We describe galaxies by a Sersic profile (Eq. (1)). To assess the
distribution of the Sersic index for galaxies up to high redshift, we
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Fig. A.9. Distribution of Sersic indices from the ACS-GC catalog (Griffith et al.,
2012), for different magnitude ranges. Histograms are scaled such that their
maximum is 1. The dashed line shows the analytical description input in UFig for
galaxies with magnitude bigger than 20.

use the Advanced Camera for Survey General Catalog (ACS-GC—
Griffith et al., 2012). Fig. A.9 shows the distribution that we extract
from the catalog, as measured in the I-band, for galaxies with good
photometric redshifts and magnitude between 15 and 26. Colors
code for different ranges of magnitudes: black for magnitude
less than 20, red for magnitude between 20 and 22, green for
magnitude between 22 and 24, and blue formagnitude between 24
and 26. For bright galaxies, the distribution is clearly bimodal, as is
well known (see e.g. Driver et al., 2006). This bimodality disappears
for fainter galaxies. Whether this highlights physical processes in
galaxy formation and evolution, or whether it is simply due to a
selection effect, is beyond the scope of this paper: we are only
interested in modeling the distribution of Sersic indices as close to
the observed one as possible.We find that the p.d.f of Sersic indices
for bright galaxies (magnitude less than 20) is well represented by:

f (n) = exp(N (0.3, 0.5) + N (1.6, 0.4)) + 0.2. (A.1)

For faint galaxies (magnitude bigger than 20), we find that the p.d.f
of Sersic indices if well described by:

f (n) = exp(N (0.2, 1)) + 0.2. (A.2)

This analytical description is shown for faint galaxies as a dashed
line in Fig. A.9. We note, however, that the Sersic indices measured
from the data are likely affected by systematics of unknown
amplitude, and therefore the fits (A.1) and (A.2) should be taken
as 1st-order fits.

A.1.1. The circular Sersic profile seen as a γ -distribution
The Sersic profile is given by Eq. (1), and can be normalized to

unity flux as:

I(r) =
k2n

2πnr250Γ (2n)
exp


−k


r
r50

1/n


. (A.3)

This profile can be seen as the p.d.f of the radial position of
photons from a circular galaxy. Then let X be the random variable
describing the position of a photon. The probability of finding the
Table A.2
Fitting coefficients for galaxy cumulative counts.

Filter a0 a1 a2

Rc 4.300 0.383 −0.00766
I 4.579 0.360 −0.0229
Z 4.558 0.410 −0.0248

photon in the shell [X, X + dX] from the center of the galaxy is
given by
fX (X)dX = 2πXI(X)dX . (A.4)

Defining the random variable Y = k


X
r50

1/n
, it can be shown

that it follows a γ -distribution of shape parameter 2n:

fY (Y ) = Y 2n−1 e−Y

Γ (2n)
. (A.5)

A.1.2. From a circular to an elliptical galaxy
We define a galaxy’s ellipticity (ε1, ε2) through its quadrupoles

Jij as ε1 + iε2 = (J11 − J22 + 2iJ12)/(J11 + J22).
A circular galaxy can bemade elliptical through the transforma-

tion (xE , yE ) = A(xC, yC), where (xE , yE ) and (xC, yC) are the pho-
ton’s coordinates in the elliptical and circular galaxy respectively,
and A is the transformation matrix (for ∥ε∥ ≠ 0):

A =
1

√
2

×

sign(ε2)

1 + ∥ε∥


1 +

ε1

∥ε∥
−

1 − ∥ε∥


1 −

ε1

∥ε∥
1 + ∥ε∥


1 −

ε1

∥ε∥
sign(ε2)


1 − ∥ε∥


1 +

ε1

∥ε∥

 .

(A.6)
If ∥ε∥ = 0, A is the identity matrix.

A.2. Magnitude distribution

We parametrize the magnitude distribution of galaxies from
galaxy counts in different surveys, such as the VIRMOS Descartes
(McCracken et al., 2003), COSMOS (Capak et al., 2007), SXDS
(Furusawa et al., 2008), and the Herschel Telescope and Hubble
Deep fields (Metcalfe et al., 2001). We compile the cumulative
counts of these surveys, and fit the resultant overall counts with
a polynomial of the form

log10(N < mag) =


i

ai(mag − 23)i, (A.7)

as shown by Fig. A.10 for counts in the R-band. Table A.2
summarizes the coefficients ai for different filters.

The number of photons making up a galaxy of magnitude mag,
for a single exposure time texp, in the AB-magnitude system, is
given by:

NΦ = 10−26texp∆S
∆λ

hλ
T100.4(8.9+βairmass−mag), (A.8)

where ∆S is the effective telescope’s mirror’s surface, λ is
the filter’s central wavelength, ∆λ the filter’s width, β is the
atmospheric extinction, h is the Planck constant, and T is the
total throughput of the observation system T = TmirrorTcamera
TfilterTcorrector.

This number can be rescaled to simulate a galaxy on a coadded
image with magnitude zero-point mag0:

N ′

Φ = NΦ100.4(mag0−mag(I)
0 −2.5 log(texp)) (A.9)

where mag(I)
0 is the instrument magnitude zero-point, i.e. the

magnitude corresponding to a flux of 1 ADU for a one second
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Fig. A.10. Cumulative distribution of galaxies’ magnitude in the R-band, from
several surveys. The fitting function (dashed line) is defined by Eq. (A.7) and
Table A.2.

exposure time in the same observing conditions,

mag(I)
0 = 8.9 + βairmass − 2.5 log

gain
QE10−26∆S ∆λ

hλ T
, (A.10)

where gain is the CCD’s gain and QE its quantum efficiency.

A.3. Magnitude-size relation

Weuse the ACS-GC catalog to parametrize the relation between
the apparent magnitude and apparent size of galaxies. In this
catalog, galaxies’ r50 are estimated by fitting a Sersic profile.
Since this catalog is shallower than the public data we used to
estimate themagnitude distribution (Appendix A.2), we do not use
it to parametrize the magnitude distribution, but use that derived
above. The ACS-GC data are therefore used only to analytically
describe the relation between the magnitude and the size of
galaxies. We find that in the magr − r50,r plane, where magr
and r50,r are the magnitude and the size rotated such that they
become uncorrelated, and shifted such that they have zero mean,
the distribution of the log of the size r50,r at a given magnitude
magr is well fitted by a Gaussian. Additionally, given that the
correlation angle between the size and the magnitude is small, we
checked that the magnitude distribution derived in Appendix A.2
for the unrotatedmagnitudes is still a good fit to that of the rotated
magnitudes magr .

Thus, we set a galaxy’s magnitude and size such that:
mag
r50


=


cos θ sin θ

− sin θ cos θ


magr
r50,r


+


magp
r50,p


(A.11)

wheremagp and r50,p set the pivot point aroundwhichmagnitudes
and sizes are rotated. They are estimated from the magnitude
and size means of COSMOS, and are set to magp = 25.309 and
log r50,p = −0.796 arcsec. The correlation angle θ is set to 5.7
deg. The rotated magnitude magr is drawn from the distribution
(A.7), and the log of the rotated size r50,r is drawn from a normal
distribution of zero mean and standard deviation 0.19 arcsec.

We checked that the magnitude-size relation does not depend
significantly on the observing band, and therefore, we restrict its
parametrization to what is presented here.
Appendix B. Stars and point spread function models

We use a Moffat profile to account for the PSF. The (circular)
Moffat profile is defined in Eq. (2), where I0 is the value at the
origin (r = 0), and α and β are scale parameters depending on
the observation’s conditions. For instance, for realistic atmospheric
turbulences, β = 4.765 (Trujillo et al., 2001). We use β = 2.6
to account for instrumental effects (especially diffraction). The
profile’s width α is related to its FWHM by α =

FWHM

2
√

21/β−1
and to

its r50 by α =
r50√

21/(β−1)−1
.

Contrary to the case of the Sersic profile, the Moffat profile
cannot be linked to a usual known distribution, from the p.d.f
of which we can easily estimate the displacement to apply to a
given photon in UFig. Therefore, we sample the displacement by
inverting the c.d.f of the profile.

TheMoffat profile, seen as the normalized p.d.f fX (X), where the
random variable X corresponds to the photon’s displacement, is
given by:

fX (X)dX =
2(β − 1)X

α2


1 +


X
α

2
−β

dX . (B.1)

Defining the variable Y = 1 + (X/α)2, so that the p.d.f of Y is
fY (Y ) = (β − 1)Y−β for Y > 1, and integrating it, we obtain the
c.d.f of Y :

cdf (Y ) = 1 − Y 1−β . (B.2)

The displacement due to the PSF is then obtained by inverting
Eq. (B.2), the c.d.f. itself being uniformly sampled:

X = α


[cdf (Y ) − 1]

1
1−β − 1. (B.3)

We parametrize the stars’ magnitude distribution with a
polynomial fit to the Milky Way model derived in Robin et al.
(2003). Given the position in the sky of the image we want to
simulate, we extract the stars’ magnitude distribution from the
corresponding online application4.

Appendix C. Noise model

Poisson noise is automatically and naturally accounted for
when simulating galaxies in a photon-based approach. We add
Poisson noise for stars, and account for the noise from various
sources, like the sky brightness, the readout noise and data
processing, with a Gaussian random deviate with zero mean and
standard deviation (see e.g. Grazian et al. (2004) or Meneghetti
et al. (2008)):

σN =


nexp


RON
gain

2

+
Fsky

nexpgain
+ f 2dp, (C.1)

where RON is the readout noise of the camera, Fsky is the sky
brightness in ADUs, nexp is the number of exposures out of which
the coadded image is assumed to be done and fdp describes the
noise coming from the data reduction (including, but not limited
to, flat-fielding inaccuracies). This Gaussian model for the noise is
applicable for background noise-limited images: this is the regime
for which UFig is set.

It should be noted that independently of the hybrid approach
we use to simulate galaxies and stars, we treat the background
noise at the pixel level, and therefore add it in ADUs to the noiseless

4 http://model.obs-besancon.fr/.

http://model.obs-besancon.fr/
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image. Finally, we resample our simulations with a Lanczos-N
(where N can be freely chosen) filter to better mimic the data
reduction process: the resampling is done by shifting the image
by half a pixel about the – fixed – image’s frame.
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