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Abstract

In this paper, we generalize Stein’s method to “infinite-variate” normal approximation that is an infinite-
dimensional approximation by abstract Wiener measures on a real separable Banach space. We first estab-
lish a Stein’s identity for abstract Wiener measures and solve the corresponding Stein’s equation. Then we
will present a Gaussian approximation theorem using exchangeable pairs in an infinite-variate context. As
an application, we will derive an explicit error bound of Gaussian approximation to the distribution of a sum
of independent and identically distributed Banach space-valued random variables based on a Lindeberg–
Lévy type limit theorem. In addition, an analogous of Berry–Esséen type estimate for abstract Wiener
measures will be obtained.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Abstract Wiener measure; Abstract Wiener space; Gaussian approximation; Stein’s method

1. Introduction

In 1972, C. Stein [31] introduced a powerful way of determining the accuracy of normal
approximation to the distribution of a sum of dependent random variables, known as Stein’s
method. So far, the scope of his discovery has expanded rapidly by Chen [6], Barbour [1,2],
and many other authors, which showed that Stein’s method can be adapted to approximation by
a broad class of probability distributions such as the Poisson, compound Poisson, and Gamma
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distributions, as well as extensively applied in a wide range of other fields such as the theory of
random graphs, computational molecular biology, etc. For further details, see [1–3,6,29,30,32]
and references cited therein.

Recently, many authors extended Stein’s method to multivariate (see e.g. the works of Chatter-
jee and Meckes [5], Meckes [20], Goldstein and Rinott [8], Götze [10], and Nourdin et al. [22])
and functional (see e.g. the works of Barbour [2], Nourdin and Peccati [21], Nourdin et al. [23])
settings for normal approximation, inclusive of the Gaussian approximation of vectors of random
variables defined on a fixed Wiener chaos (see [22]). A problem naturally arises: How to extend
Stein’s method to “infinite-variate” normal approximation, by which we mean an approximation
by Gaussian measures on infinite-dimensional Banach spaces?

Since, by applying Kuelbs’s theorem in [15], every non-degenerate Gaussian measure on a
real separable Banach space B with zero mean can be regarded as an abstract Wiener measure,
our study will focus on establishing an infinite-dimensional version of Stein’s method of ex-
changeable pairs for approximation by abstract Wiener measures. There the approximation will
be performed with respect to a distance in the sense of Wasserstein, which measures the distance
between two B-valued random variables X and Y defined by

dω(X,Y ) = sup
‖g‖ULip�1

∣∣E[g(X)
]− E
[
g(Y )
]∣∣,

where g is a real-valued functions on B and ‖g‖ULip ≡ sup{ |g(x)−g(y)|
‖x−y‖ ; x �= y ∈ B}. See also

Corollary 4.11.
We briefly describe Stein’s approach to univariate normal approximation, which was laid out

in his famous monograph [32], as follows. First of all, as a simple application of integration by
parts formula, it was verified that the standard univariate normal distribution μ can be character-
ized by the property that for all sufficiently smooth real-valued functions f ,

∞∫
−∞

(
f ′′(t) − tf ′(t)

)
μ(dt) = 0. (1.1)

The formula (1.1) and the operator J f (t) = f ′′(t) − tf ′(t) are known, respectively, as Stein’s
identity and Stein’s operator for μ, where putting g = f ′ in (1.1) gives Stein’s original charac-
terization (see Stein [32, Lemma 1 in p. 21]). Next, for any h in a class H of test functions, find
a solution fh of the so-called Stein’s equation

h(t) −
∞∫

−∞
h(u)μ(du) = J fh(t). (1.2)

Hence, for any real-valued random variable W , the distance between W and μ can be computed
as differences of expectations of test functions by applying the following formula:

dH(W,μ) := sup
h∈H

∣∣∣∣∣E[h(W)
]−

∞∫
h(t)μ(dt)

∣∣∣∣∣= sup
h∈H

∣∣E[J fh(W)
]∣∣. (1.3)
−∞
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Subsequently, in order to derive an explicit bound of (1.3), Stein introduced a useful method
of exchangeable pairs by constructing an auxiliary random variable W ′ from W on the same
probability space as W such that (W,W ′) is an exchangeable pair, where W ′ is usually given by
making a small random change of W , and is close to W . For example, Stein assumed that W ′ has
the linear regression property E[W ′ − W | W ] = −λW with 0 < λ < 1. Then, applying Taylor’s
theorem to fh(W

′) − fh(W) around W and taking expectations, Stein proved that

dH(W,μ) � 1

λ
sup
h∈H

E
[∣∣f ′′

h (W)
∣∣∣∣(W ′ − W

)2 − λ
∣∣]+ 1

λ
sup
h∈H

E
[∣∣Rh

(
W ′,W

)∣∣], (1.4)

where Rh(W
′,W) is the second-order remainder term. See [32, Lecture III] for thorough treat-

ment of the above estimation.
In this paper, we will devote ourself to establish an infinite-dimensional counterpart of Stein’s

method of exchangeable pairs for Gaussian approximation by abstract Wiener measures along
the line of Stein’s approach from (1.1) to (1.4). We organize this paper as follows. In Section 2,
it will be divided into two parts. In the one part, we will review the background concerning the
concepts of abstract Wiener space. For details, see Gross [11,12] and Kuo [17]. In the other
part, we will discuss the relationship between the notions of Gaussian measure on a Banach
space and abstract Wiener space. As a biproduct, we will show that there is associated a set-
ting of a sequence of countably Hilbert spaces on every abstract Wiener space (i,H,B). Such
a framework will be necessary in our investigation. In Section 3, we present a characterization
of abstract Wiener measures, which is an infinite-dimensional version of Stein’s identity in (1.1)
(see Theorem 3.1). For the associated Stein’s equation as one in (1.2), we will solve it in the
space of scalar-valued uniformly Lip-1 functions and discuss the related estimations concerning
the first and second Gross derivatives of the solution of Stein’s equation in Section 4 (see Theo-
rems 4.8–4.10). An infinite-dimensional version of Stein’s method of exchangeable pairs will be
constructed in Section 5 (see Theorem 5.2). As an application, we will derive an explicit error
bound of Gaussian approximation to the distribution of a sum of independent and identically dis-
tributed Banach space-valued random variables based on a Lindeberg–Lévy type limit theorem
(see Theorem 5.5). In addition, an analogous of Berry–Esséen type estimate for abstract Wiener
measures will be obtained in Theorem 5.8.

Notations. Throughout this paper, we adopt the following notations:

• For a real Banach space U , B(U) denotes the Borel σ -algebra of U .
• For any bounded linear mapping T from U into another Banach space V , we use the symbol

‖T ‖U,V for the operator norm of T . If E is a subspace of U , the restriction of T to E is
denoted by T |E . Denote by U∗ the dual space of U with the ‖ · ‖U∗ -norm, where ‖ · ‖U∗ =
‖ · ‖U,R. For any f ∈ U∗ and x ∈ U , (x, f )U,U∗ means the U–U∗ dual pairing. If U is sepa-
rable, a well-known fact is that B(U) coincides with the σ -algebra generated by all cylinder
sets in U , which are sets of the form {x ∈ U ; ((x, η1)U,U∗ , (x, η2)U,U∗ , . . . , (x, ηn)U,U∗) ∈
D} for any η1, η2, . . . , ηn ∈ U∗, D ∈ B(Rn), and n ∈ N (see [17]).

• Let Σ be a real separable Hilbert space. Then T R(Σ) stands for the Banach space of
all trace-class operators from Σ to itself with ‖ · ‖tr(Σ)-norm, as well as H S(Σ) is the
Hilbert space of all Hilbert–Schmidt operators from Σ to itself with the inner product
〈〈A,B〉〉HS(Σ) = TrΣ(B∗A) and the corresponding Hilbert–Schmidt norm ‖ · ‖HS(Σ), where
TrΣ(S) is the trace of a trace-class operator S on Σ .
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2. Gaussian measure on a Banach space and abstract Wiener space

In this section, we first review some basic notions of abstract Wiener space, introduced by
L. Gross [11], and the related results which will be used in the subsequent study. For further
details, we refer the reader to [1,12,17]. Secondly, combining [27, Theorem 2.7] with the idea
of Kuelbs in [15], we will present a relationship among the notions of Gaussian measure on a
Banach space, reproducing kernel Hilbert space, and abstract Wiener space.

2.1. Abstract Wiener space

Let H be a given real separable Hilbert space with | · |0-norm induced by the inner product
〈·,·〉0, and ‖ · ‖ be another norm defined on H which is weaker than the | · |0-norm. If ‖ · ‖-
norm is measurable on H , introduced by L. Gross (see [11]), then the triple (i,H,B) is called
an abstract Wiener space (AWS, in short), where B is the completion of H with respect to ‖ · ‖-
norm and i is the canonical embedding of H into B . As H is identified as a dense subspace of B ,
we identify B∗ as a dense subspace of H ∗ under the adjoint operator i∗ of i by the following
way: For any x ∈ H and η ∈ B∗, 〈x, i∗(η)〉0 = (i(x), η)B,B∗ . Applying the Riesz representation
theorem to identify H ∗ with H (denoted by H ∗ ≈ H ), we have the continuous inclusion maps
B∗ ⊂ H ⊂ B . In addition, B carries a probability measure pt , known as the abstract Wiener
measure with variance parameter t > 0, which is characterized as the Borel measure on B such
that for any η ∈ B∗,

∫
B

ei(x,η)B,B∗ pt(dx) = e− t
2 |η|20 . (2.1)

Remark 2.1. Let {ηn} ⊂ B∗ be a countable dense subset of B . Obviously, for any r > 0, B =⋃
n N(ηn, r), where N(x, r) is the open ball of radius r > 0 and center x ∈ B . A well-known

fact is that for any t, r > 0 and φ1, φ2 ∈ B∗,

pt

(
N(φ1, r)

)= ∫
N(φ2,r)

exp

{
−|φ1 − φ2|20

2t
− 1

t
(x,φ1 − φ2)B,B∗

}
pt(dx).

Hence pt ’s are all non-degenerate, that is, every nonempty open set of B has positive pt -measure.

From (2.1), (·, η)B,B∗ is a random variable on (B, B(B),pt ) with mean zero and variance
t |η|20. For any h ∈ H , let {ηn} be a sequence in B∗ such that |ηn − h|0 → 0 as n → ∞. Then
{(·, ηn)B,B∗ } forms a Cauchy sequence in L2(B,pt ), the L2(B,pt )-limit of which is denoted by
〈·, h〉0. One notes that 〈·, h〉0 is independent of the choice of {ηn} and distributed by the law of
N(0, t |h|20).

Lemma 2.2. (See Kuo [17].) There exist another AWS (i0,H,B0) and an increasing sequence of
orthogonal projections {Pn} converging strongly to the identity in H such that

(i) ‖h‖ � ‖h‖0 for any h ∈ H , where ‖ · ‖0 denotes the B0-norm,
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(ii) each Pn extends by continuity to a projection P̃n of B0 such that ‖P̃n(x)‖0 � ‖x‖0 for any
x ∈ B0, and

(iii) P̃n converges strongly to the identity in B0 with respect to ‖ · ‖0-norm.

Let p̃t be the abstract Wiener measure on B0 with variance parameter t > 0. For any x ∈ B0,
define ρ(x) = limn→∞ i(ηn) with respect to ‖ · ‖-norm, where {ηn} is a sequence in H such that
‖i0(ηn)− x‖0 → 0, as n → ∞. Note that the definition of ρ is independent of the choice of {ηn}.
Then ρ is a bounded linear operator from B0 into B with ‖ρ‖B0,B not greater than 1. Clearly,
i(h) = (ρ ◦ i0)(h) for any h ∈ H , where “◦” means the composition of functions. Moreover, for
any h ∈ H and η ∈ B∗,

〈
h, i∗(η)

〉
0 = (i(h), η

)
B,B∗ = ((ρ ◦ i0)(h), η

)
B,B∗ = (i0(h), η ◦ ρ

)
B0,B

∗
0

= 〈h, i∗0 (η ◦ ρ)
〉
0.

We thus conclude that i∗(η) = i∗0 (η ◦ ρ) for any η ∈ B∗, which implies that for all nonnegative
measurable or integrable functions f on B ,∫

B

f (x)pt (dx) =
∫
B0

(f ◦ ρ)(x) p̃t (dx). (2.2)

Remark 2.3.

(1) The norms ‖ · ‖ and ‖ · ‖0 are comparable. However, from Kuo’s construction of ‖ · ‖0-norm
in the proof of [17, Chapter I, Corollary 4.2], it is not clear to us whether ‖ · ‖0-norm and
‖ · ‖-norm are compatible or not. In other words, we cannot exclude this possibility that ρ is
not one-to-one. Certainly, if these two norms are compatible, ρ(B0) is a Borel dense subset
of B , since ρ is one-to-one and (B0,‖ ·‖0) and (B,‖ ·‖) are both standard measurable spaces
(see [14,34]). In this case, B0 is identified with ρ(B0), and hence it follows from (2.2) that
pt (B0) = 1.

(2) For those orthogonal projections Pn in Lemma 2.2, Pn(H) is contained in the dual space B∗
0

of B0. In fact, since Pn(H) is finite-dimensional, there is a constant c > 0 such that, for any
h ∈ Pn(H), |h|0 � c‖h‖0. Then, for any x,h ∈ H , we have

∣∣〈x,Pn(h)
〉
0

∣∣= ∣∣〈Pn(x),h
〉
0

∣∣= ∣∣〈P̃n(x), h
〉
0

∣∣
�
∣∣P̃n(x)

∣∣
0|h|0 � c

∥∥P̃n(x)
∥∥

0|h|0 � c‖x‖0|h|0,
implying Pn(h) ∈ B∗

0 and ‖Pn(h)‖B∗
0

� c|h|0.

A test operator T on B is a bounded operator of finite rank from B to B with range in B∗
(see [12]). Then T |H can be regarded as a bounded linear operator from H into itself. The fol-
lowing properties concerning test operators are useful in estimating solutions of Stein’s equation
for abstract Wiener measures.

Proposition 2.4. (See Gross [12].)

(i) The set T (H) of restrictions of test operators to H is dense in the space K(H) of compact
operators on H .
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(ii) Let T be a test operator on B . Then, for any r � 1,∫
B

‖T x‖r pt (dx) � ‖T |H ‖r
H,H

∫
B

‖x‖r pt (dx).

Remark 2.5.

(1) For any test operator T on B , T ∗ = (T |H )∗ on B∗, where T ∗ : B∗ → B∗ is the adjoint
operator of T , and (T |H )∗ is the Hilbert adjoint operator of T |H . In fact, for any η ∈ B∗ and
h ∈ H ,

〈
h, (T |H )∗(η)

〉
0 = 〈T |H (h), η

〉
0 = (T (h), η

)
B,B∗ = (h,T ∗(η)

)
B,B∗ = 〈h,T ∗(η)

〉
0.

(2) T (H) is dense in H S(H). In fact, let {e1, e2, . . .} ⊂ B∗ be an orthonormal basis of H . Take
a sequence of test operators on B , say {Tn}, where Tn(x) =∑n

j=1(x, ej )B,B∗ej , x ∈ B . For
any A ∈ H S(H), set Qn = Tn ◦ A ◦ Tn. Then Qn’s are all test operators and, for any n ∈ N,

‖A − Qn|H ‖HS(H) � ‖A − Tn ◦ A‖HS(H) + ‖Tn ◦ A − Qn|H ‖HS(H)

� ‖A − Tn ◦ A‖HS(H) + ‖Tn|H ‖H,H ‖A − A ◦ Tn|H ‖HS(H)

�
{ ∞∑

j=n+1

∣∣A∗(ej )
∣∣2
0

} 1
2

+
{ ∞∑

j=n+1

∣∣A(ej )
∣∣2
0

} 1
2

,

which approaches to zero as n tends to infinity.

Gross differentiation. In [12], L. Gross introduced the notion of H -differentiation in H -direc-
tion as follows. Let f be a function defined from an open set U of B into a Banach space W .
Then f is said to be H -differentiable at a point x ∈ U if the mapping φ(h) = f (x + h), h ∈ H ,
regarded as a function defined in a neighborhood of the origin of H is Fréchet differentiable
at 0. The Fréchet derivative φ′(0) at 0 ∈ H is called the H -derivative of f at x ∈ B . In notation,
we denote the H -derivative of f at x in the direction h ∈ H by 〈Df (x),h〉. The k-th order H -
derivatives of f at x are defined inductively and denoted by Dkf (x) for k � 2 if they exist. One
notes that Dkf (x) is a bounded k-linear mapping from the Cartesian product H × · · · × H of
k copies of H into W for any k ∈ N. In particular, as f is scalar-valued, Df (x) ∈ H ∗ ≈ H and
D2f (x) is regarded as a bounded linear operator from H into H ∗ ≈ H for any x ∈ U , where
the notation 〈D2f (x)h, k〉 means D2f (x)(h, k), h, k ∈ H . Further, if D2f (x) is a trace-class
operator on H , we define the Gross Laplacian 	Gf (x) of f at x by 	Gf (x) = TrH (D2f (x)).

For an H -derivative Df (x) at x ∈ B , we say Df (x) determines an element in B∗ (abbreviated
in form Df (x) ∈ B∗) if there is a constant C > 0 such that |〈Df (x),h〉| � C‖h‖ for any h ∈ H .
In this case, Df (x) defines an element of B∗ by continuity, and we will still denote this linear
functional by Df (x). Further, if f is twice Fréchet differentiable on B , then Df (x) equals the
first-order Fréchet derivative f ′(x) at x ∈ B and is automatically in B∗. And, D2f (x) equals
the restriction of the second-order Fréchet derivative f ′′(x) to H × H at x ∈ B . In this circum-
stance, since, for any x ∈ B , f ′′(x) is a bounded linear operator from B into B∗, the following
Goodman’s theorem implies that D2f (x) is a trace-class operator on H and then 	Gf (x) is
immediately obtained.
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Theorem 2.6 (Goodman). (See [17, Chapter I, Theorem 4.6].) Let A be a bounded linear oper-
ator from B into itself with range in B∗. Then A is a trace-class operator on H . Moreover,

‖A‖tr(H) � ‖A‖B,B∗
∫
B

‖x‖2 p1(dx).

For each x ∈ B and t > 0, define pt (x,E) = pt(E − x), E ∈ B(B). Then, for each E ∈ B(B),
the mapping x ∈ B �→ pt(x,E) is measurable, and the family {pt(x, ·); t > 0, x ∈ B} forms a
semigroup under the convolution ∗ of measures. In fact,

ps(x, ·) ∗ pt (y, ·) = ps+t (x + y, ·) for any x, y ∈ B and s, t > 0.

Proposition 2.7. (See Lee [19].) Let x ∈ B be fixed and f a real-valued function defined on B .
Assume that f ∈ Lα(B,pt (x, dy)) for some α > 1. Then ptf (x) ≡ ∫

B
f (y)pt (x, dy) is infinitely

H -differentiable at x.

2.2. Gaussian measure on a Banach space

Let B be a real separable Banach space with ‖ · ‖-norm. A Borel measure ν on B is said to
be Gaussian with mean zero if the law of arbitrary η ∈ B∗ considered as a random variable on
(B, B(B), ν) has a normal distribution in R with mean zero.

Let Bs be the intersection of all closed subspaces of B with ν-measure 1. By the separability
of B , ν(Bs) = 1. Hereafter, we restrict the measure ν to (Bs,‖ · ‖). Let | · |−1 be another norm
on Bs , which is induced by an inner product 〈·,·〉−1 and weaker than ‖·‖-norm. Upon completing
Bs with respect to | · |−1-norm, we obtain a separable Hilbert space K with the inner product
〈·,·〉−1. Since (Bs,‖ · ‖) and (K, | · |−1) are both standard measurable spaces and the canonical
embedding iBs ,K from Bs into K is continuous, B(Bs) = B(K) ∩ Bs (see [14,34]).

Set νK(E) = ν(E ∩ Bs) for any E ∈ B(K). For any k ∈ K , there is a unique φk ∈ B∗
s such

that (x,φk)Bs,B∗
s

equals 〈x, k〉−1 for any x ∈ Bs , from which it follows that

∫
K

ei〈x,k〉−1 νK(dx) =
∫
Bs

ei〈x,k〉−1 ν(dx) =
∫
Bs

e
i(x,φk)Bs ,B∗

s ν(dx),

whence 〈·, k〉−1 is normally distributed with mean zero on (K, B(K), νK). So, νK is a Gaussian
measure on K with mean zero. By the Prohorov theorem (see e.g. [17]), the covariance operator
SνK of νK is a nonnegative self-adjoint trace-class operator on K . Moreover, SνK is one-to-one.
In the proof of the Itô theorem in [13], it was shown that the topological support of νK , denoted
by supp(νK), is the orthogonal complement of the kernel of SνK , whence ν(Bs ∩ supp(νK)) = 1.
Since Bs is the least closed subspace of B with ν-measure 1, Bs ∩ supp(νK) = Bs , by which we
see that supp(νK) = K and the injectivity of SνK immediately follows.

Let H = √SνK (K) endowed with | · |0-norm induced by the inner product 〈·,·〉0, where
〈√SνK (x),

√
SνK (y)〉0 = 〈x, y〉−1 for any x, y ∈ K . Note that SνK has the spectral decompo-

sition
∑∞

j=1 λj 〈·, kj 〉−1kj , where λj ’s > 0,
∑

λj < +∞, and {kj ; j ∈ N} is an orthonormal

basis of K , the set {λ 1
2 kj ; j ∈ N} is an orthonormal basis of H , whence H is dense in K and the

restriction of
√

SνK to H is a Hilbert–Schmidt operator from H into itself. Accordingly, we can
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conclude that the triple (iH,K,H,K) forms an AWS, where iH,K is the canonical embedding of
H into K (see [17]).

Let i∗H,K be the adjoint operator of iH,K . For any f ∈ K∗, there is a unique kf ∈ K such that

(x, f )K,K∗ = 〈x, kf 〉−1 = 〈√SνK (x),
√

SνK (kf )〉0 = 〈x,SνK (kf )〉0 for any x ∈ H , from which
it follows that i∗H,K(f ) = SνK (kf ) and

∫
K

ei(x,f )K,K∗ νK(dx) = e− 1
2 〈S

νK (kf ),kf 〉−1 = e− 1
2 |S

νK (kf )|20 = e
− 1

2 |i∗H,K(f )|20 . (2.3)

So, νK is the associated abstract Wiener measure of (iH,K,H,K) with variance parameter 1.
Utilizing the fact that the translation measure of νK by x ∈ K is equivalent to νK if and only
if x ∈ H (see [17]), together with νK(Bs) = 1, we can deduce the following inclusion maps:
H ⊂ Bs ⊂ K .

Remark 2.8. Such a Hilbert space K always exists. See the proof of Lemma 2.1 in [15], where
a general method to construct K from B was presented by J. Kuelbs.

On the other hand, let L be the closure of the linear manifold {(·, η); η ∈ B∗
s } in L2(Bs, ν)

and Hν the linear subspace {∫
Bs

xϕ(x) ν(dx); ϕ ∈ L} of Bs , where the integrals inside the brace
exist as Bs -valued Bochner integrals by using the Fernique theorem [27, Theorem 2.6] and the
Cauchy–Schwarz inequality. Define an inner product on Hν by〈∫

Bs

xϕ(x) ν(dx),

∫
Bs

xψ(x) ν(dx)

〉
ν

:=
∫
Bs

ϕ(x)ψ(x) ν(dx), ∀ϕ,ψ ∈ L.

We remark that such an inner product is meaningful since, for ϕ ∈ L,
∫
Bs

xϕ(x) ν(dx) = 0 if and
only if ϕ = 0 [ν]-a.e. on Bs . In particular, for η ∈ B∗

s ,
∫
Bs

x(x, η)Bs,B∗
s
ν(dx) = 0 if and only if

(x, η)Bs,B∗
s

= 0 everywhere in x ∈ Bs , since every proper closed subspace of Bs has ν-measure
less than 1. Then (Hν, 〈·,·〉ν) is a Hilbert space, and B∗

s can be regarded as a dense subspace of
Hν by identifying arbitrary η ∈ B∗

s with
∫
Bs

x(x, η)Bs,B∗
s
ν(dx).

Denote by | · |ν the norm of Hν . Observe that for any ϕ ∈ L,

∥∥∥∥
∫
Bs

xϕ(x) ν(dx)

∥∥∥∥�
{∫

Bs

‖x‖2 ν(dx)

} 1
2
∣∣∣∣
∫
Bs

ϕ(x) ν(dx)

∣∣∣∣
ν

,

and, for any η ∈ B∗
s , |η|ν � {∫

Bs
‖x‖2 ν(dx)}1/2‖η‖B∗

s
. Therefore, we have the continuous inclu-

sion maps:

K∗ ⊂ B∗
s ⊂ Hν ⊂ Bs ⊂ K,

where K∗ is regarded as a dense subspace of B∗
s by identifying arbitrary f ∈ K∗ with f |Bs .

Moreover, for each η ∈ B∗
s ,

∫
e

i(x,η)Bs ,B∗
s ν(dx) = e

− 1
2

∫
Bs

(x,η)2
Bs ,B∗

s
ν(dx) = e− 1

2 |η|2ν .

Bs
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Consequently, Hν is exactly the unique reproducing kernel Hilbert space (RKHS, in short) for ν

in the sense of [27, Theorem 2.7], and ν is the σ -additive extension of the canonical Gaussian
cylinder set measure νHν to B(Bs), where νHν is a finitely additive nonnegative set function on
(Hν, B(Hν)) such that

νHν

({
x ∈ Hν; 〈x,h〉ν � a

})= 1√
2π |h|ν

a∫
−∞

exp

{
− u2

2|h|ν
}

du, ∀h ∈ Hν.

Applying the result of Dudley, Feldman and LeCam in [7], (iHν,Bs ,Hν,Bs) forms an AWS,
and ν is the associated abstract Wiener measure with variance parameter 1, where iHν,Bs is the
canonical embedding from Hν into Bs . By Remark 2.1, ν is non-degenerate on Bs , implying that
Bs is exactly the topological support of ν on B .

From (2.3) and [27, Theorem 2.7] it follows that H is the unique RKHS for νK . On the other
hand, since Hν is also continuously embedded in K and for any f ∈ K∗,

∫
K

ei(x,f )K,K∗ νK(dx) =
∫
Bs

e
i(x,f |Bs )Bs ,B∗

s ν(dx)

= exp

{
−1

2

∫
Bs

(x, f |Bs )
2
Bs,B∗

s
ν(dx)

}

= e− 1
2 |f |Bs |2ν , (2.4)

Hν is also a RKHS for νK . Consequently, by uniqueness H = Hν .
Summing up the above arguments together with [27, Theorem 2.7], we can conclude the

following theorem.

Theorem 2.9.

(i) Assume that a real separable Banach space B with ‖ · ‖-norm and ν is a Gaussian measure
on B with mean zero. Then the topological support of ν is the least closed subspace of B

with ν-measure 1.
(ii) Assume that a real separable Banach space B with ‖ · ‖-norm is continuously and as a Borel

subset embedded in a real Hilbert space K with | · |−1-norm. Let ν be a non-degenerate
Gaussian measure on B with mean zero and νK a Gaussian measure on K given by νK(E) =
ν(E ∩ B) for any E ∈ B(K).
(a) There is a unique Hilbert space H densely embedded in B as a Borel subset such

that the triple (i,H,B) forms an AWS with the associated abstract Wiener measure ν

with variance parameter 1, where i is the canonical embedding of H into B . More
precisely, H is the Hilbert space {∫

B
xϕ(x) ν(dx); ϕ ∈ L} with the inner product

〈∫
B

xϕ(x) ν(dx),
∫
B

xψ(x) ν(dx)〉ν := ∫
B

ϕ(x)ψ(x) ν(dx) for any ϕ,ψ ∈ L, where L
is the closure of the linear manifold {(·, η); η ∈ B∗} in L2(B, ν).

(b) Let SνK be the covariance operator of νK . Then SνK is one-to-one, and the space
H in (a) is the same as the Hilbert space

√
SνK (K) with the usual inner product
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〈√SνK (x),
√

SνK (y)〉0 := 〈x, y〉−1 for any x, y ∈ K , where the triple (iH,K,H,K)

forms an AWS with the associated abstract Wiener measure νK with variance param-
eter 1, iH,K being the canonical embedding of H into K . Moreover, the space K∗
is isometrically isomorphic to SνK (K) as a Borel dense subset of H through the ad-
joint operator i∗H,K of iH,K , where SνK (K) is a Hilbert space with the inner product
〈SνK (x), SνK (y)〉1 := 〈x, y〉−1, x, y ∈ K , and for any f ∈ K∗ such that f = 〈·, kf 〉−1,
i∗H,K(f ) = SνK (kf ).

Remark 2.10. Let A = √SνK
−1

. Then A is a densely defined, self-adjoint linear operator in
(H, | · |0). Moreover, under the identification in the above theorem, K∗ = {h ∈ H ; |A(h)|0 <

+∞} and 〈f,g〉1 = 〈A(f ), A(g)〉0 for any f,g ∈ K∗, as well as K is the completion of H with
respect to |h|−1 = |A−1(h)|0 for any h ∈ H . In fact, by the standard construction of countably
Hilbert spaces from (H, A) (see e.g. [24]), we can get a sequence of compatible Hilbertian norms
and then obtain the following chain of dense, continuous embeddings:

· · · ⊂ Hn ⊂ · · · ⊂ H1 ⊂ B∗ ⊂ H ⊂ B ⊂ H−1 (= K) ⊂ · · · ⊂ H−n ⊂ · · · ,

where, for any n ∈ N, Hn ≡ {h ∈ H ; |An(h)|0 < +∞} (=√SνK
n
(H)) is a Hilbert space with

the inner product 〈·,·〉n and the induced norm | · |n defined by |h|n := |An(h)|0, as well as H−n is
obtained by completing H with respect to | · |−n-norm associated with the inner product 〈·,·〉−n

defined by 〈h, k〉−n = 〈A−n(h), A−n(k)〉0, h, k ∈ H . Note that {ej ≡ λ
1
2 kj ; j ∈ N} is an or-

thonormal basis of H , whence {λ
r
2
j ej ; j ∈ N} is an orthonormal basis of Hr for any r ∈ Z.

According to the spectral theory, we can extend SνK to the whole H−n for all n ∈ N by the way
that if

∑
j a2

j < +∞,

SνK

(∑
j

aj · λ− n
2

j ej

)
:=
∑
j

(ajλj ) · λ− n
2

j ej .

Consequently, for any n ∈ N, H−n+1 =√SνK (H−n) (H0 ≡ H), as well as H ∗−n is isometrically
isomorphic to Hn as a Borel dense subset of H through the adjoint operator i∗H,H−n

of the canoni-
cal embedding iH,H−n from H into H−n, where, for any f ∈ H ∗−n with f = 〈·, kf 〉−n and h ∈ H ,

〈
h, i∗H,H−n

(f )
〉
0 = (iH,H−n(h), f

)
H−n,H ∗−n

= 〈h, kf 〉−n = 〈h,Sn
νK (kf )

〉
0,

implying i∗H,H−n
(f ) = Sn

νK (kf ), and moreover, ‖f ‖H ∗−n
= |kf |−n = |Sn

νK (kf )|n.

Corollary 2.11. Let B be a real separable Banach space with ‖ · ‖-norm and (H, | · |0) a Hilbert
space densely embedded in B such that the triple (i,H,B) is an AWS, where i is the canonical
embedding of H into B . Then

‖i‖H,B �
{∫

B

‖x‖2 p1(dx)

} 1
2

.
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Proof. For any h ∈ H , we see by Theorem 2.9 that there is a unique ϕh ∈ L such that

h =
∫
B

xϕh(x)p1(dx) with |h|20 =
∫
B

∣∣ϕh(x)
∣∣2 p1(dx). (2.5)

Then the desired inequality is immediately obtained by applying the Cauchy–Schwarz inequality
to (2.5). �
3. Characterization of abstract Wiener measures

Everywhere below B will be assumed to be a real separable Banach space with ‖ · ‖-norm,
and Z a fixed B-valued random variable on some probability space (Ω, F , P ) such that the
distribution μZ of Z is a Gaussian measure in B with mean zero.

We may assume that μZ is non-degenerate; otherwise, by Theorem 2.9, we will replace B by
the topological support of μZ . Let H be the unique RKHS for μZ with the inner product 〈·,·〉0

and the induced norm | · |0. Then it follows by Theorem 2.9 that the triple (i,H,B) forms an
AWS and μZ is the associated abstract Wiener measure on B with variance parameter 1.

In order to establish an infinite-dimensional version of Stein’s method for Gaussian approx-
imation, as mentioned in Section 1, the first step should be to look for a suitable characterizing
operator AZ for μZ . Such an operator is defined on a sufficiently large class D of complex-
valued functions on B such that (1) a B-valued random variable Y has the same distribution as Z

if and only if E[AZ(f (Y ))] = 0 for all f belonging to D; (2) for each test function h, there is a
function fh belonging to D solving the equation AZf = h−E[h(Z)] with unknown function f .
When B is the Euclidean space R

n, AZ is known as a Stein operator for the standard (multivari-
ate) normal distribution. Among many of approaches to find a Stein operator for one-dimensional
distributions, the generator approach developed by Barbour [1,2] seems to be readily extended
to our infinite-variate distribution μZ . Based on Barbour’s idea, we proceed with finding the
characterizing operator AZ as follows.

For each t � 0, let Ot be the mapping from B × B(B) into [0,1] given by

Ot (x,E) ≡ p1−e−2t

(
e−t x,E

)= ∫
B

1E

(
e−t x +

√
1 − e−2t y

)
μZ(dy).

Then, for each E ∈ B(B), the mapping x ∈ B �→ Ot (x,E) is B(B)-measurable, and, for each
x ∈ B , {Ot (x, ·); t � 0} is a family of probability measures on B(B) satisfying the Chapman–
Kolmogorov equations:

∫
B

Os(y,E)Ot (x, dy) = Os+t (x,E), ∀s, t � 0.

Thus {Ot (·,·); t � 0} forms a temporally homogeneous Markov transition family. For a ∈ B , it
associates a family of probability measures {Ot1,t2,...,tn; 0 � t1 < t2 < · · · < tn, n ∈ N}, where
Ot ,...,tn is a probability measures on the product space of n copies of (B, B(B)) given by, for
1
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any E1, . . . ,En ∈ B(B),

Ot1,...,tn (E1 × · · · × En) =
∫
E1

· · ·
∫
En

Otn−tn−1(yn−1, dyn) · · · Ot2−t1(x1, dx2) Ot1(a, dx1).

It is easy to verify that such a family satisfies Kolmogorov’s consistency condition, and, by
the Kolmogorov existence theorem (see [33, Theorem 7.11]), there exists a probability measure
Λa on (Ω, F ) such that Θ = {Θ(t); t � 0} on that space is a B-valued temporally homoge-
neous Markov process having Ot1,...,tn as finite-dimensional distributions, where we take Ω to
be the set of all mappings from [0,∞) to B , F to be the σ -field generated by cylinder sets, and
Θ(t;ω) = ω(t) for any t � 0, ω ∈ Ω . We call such a process Θ a canonical B-valued Ornstein–
Uhlenbeck process starting at the point a. Notice that Λa({Θ(t) ∈ dy}) = Ot (a, dy) and the
transition probability Λa(Θ(t) ∈ dy | Θ(s)) is Ot−s(Θ(s; ·), dy) for any 0 � s � t .

For any t � 0, let Tt be the transition operator of Θ . So, for each B(B)-measurable function
f and x ∈ B , Tt f (x) = E[f (Θ(t)) | Θ(0) = x] with respect to Λa . In fact,

Tt f (x) ≡
∫
B

f (y)Ot (x, dy) =
∫
B

f
(
e−t x +

√
1 − e−2t y

)
μZ(dy), t � 0,

provided that such an integral exists. The family {Tt ; t � 0} yields a strongly continuous con-
traction semigroup on Lα

c (B,μZ) for any 1 � α � ∞ (see [4, Theorem 2.9.1]). Let Lα be the
infinitesimal generator of {Tt ; t � 0} on Lα

c (B,μZ). Since μZ is a unique invariant measure
for {Ot (·,·); t � 0} (see [4]), we see that E[Tt f (Z)] = E[f (Z)] for any f ∈ Lα

c (B,μZ), t � 0,
which implies that

E
[

Lα

(
h(Z)
)]= 0, (3.1)

for any h belonging to certain dense domain Dom(Lα) of Lα in Lα
c (B,μZ).

By using standard results about strongly continuous contraction semigroups, the Bochner in-
tegral
∫ t

0 Tuhdu exists. In fact, it is in Dom(Lα), and satisfies the following equality

Lα

( t∫
0

Tuhdu

)
= Tt h − h, h ∈ Dom(Lα). (3.2)

Formally, limu→∞ Tuh(x) = E[h(Z)] for any x ∈ B , and so letting t approach to infinity on
both sides of (3.2), fh(x) ≡ − ∫∞

0 (Tuh(x) − E[h(Z)]) du, x ∈ B , may serve as a solution of the
following equation (with unknown function f )

Lαf = h − E
[
h(Z)
]
. (3.3)

See e.g. [2,29].
In view of Barbour’s approach, the roles of Stein’s lemma and Stein’s equation for μZ should

be played respectively by (3.1) and (3.2) as well as Lα is a candidate for AZ . As α = 2, −Lα is
known as the number operator. In [26], Piech proved that if f ∈ L2(B,μZ) such that |Df (x)|0
c
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exists for μZ-a.e. x ∈ B and is in L2
c(B,μZ) and the Hilbert–Schmidt norm of D2f (x) is finite

for μZ-a.e. x ∈ B and is in L2
c(B,μZ), then f belongs to Dom(L2), as well as

−L2f (x) = (x,Df (x)
)
B,B∗ − 	Gf (x), x ∈ B, (3.4)

provided that Df (x) ∈ B∗ and D2f (x) is a trace-class operator on H . It is worth noting that
Barbour [2] also derived a representation of −L2 of the form analogous to (3.4). In that paper,
Barbour considered B as the Banach space C[0,1] with the supremum norm ‖ · ‖∞, consisting
of all real-valued functions f (t) in [0,1] with f (0) = 0, and take L ⊂ C[0,1] which is the
Banach space of those continuous functions f : C[0,1] → R for which the norm defined by
supx∈C[0,1]

|f (x)|
1+‖x‖3∞

is finite. Then {Tt ; t � 0} is a strongly continuous semigroup on L and (3.4)

are fulfilled with those twice Fréchet differentiable functions f ∈ L such that the second-order
derivative f ′′ satisfies a uniformly Lipschitz condition.

Being inspired by (3.1) and (3.4), we are ready to present a characterization of the abstract
Wiener measure μZ in the following theorem, which also refines the result in [18, Theorem 2.7].

Theorem 3.1. Let X be a B-valued random variable with the distribution μX .

(i) If B is finite-dimensional, then μX = μZ if and only if the following identity holds:

E
[(

X,Df (X)
)
B,B∗ − 	Gf (X)

]= 0, (3.5)

for any twice differentiable function f on B such that E[‖D2f (Z)‖tr(H)] < +∞.
(ii) If B is infinite-dimensional, then μX = μZ if and only if the identity (3.5) holds for any twice

H -differentiable function f on B such that Df (x) ∈ B∗ for any x ∈ B , E[‖D2f (Z)‖tr(H)] <

+∞, and E[‖Df (Z)‖α
B∗ ] < +∞ for some 1 < α < +∞.

Proof. (The “only if ” part for statements (i) and (ii).) Let (i0,H,B0) and {Pn} be respectively
the AWS and an increasing sequence of orthogonal projections as given in Lemma 2.2, P̃n’s
be the extension of Pn’s to B0, and p̃1 be the abstract Wiener measure on B0 with variance
parameter 1. By Remark 2.3, Pn(H) ⊂ B∗

0 for any n ∈ N, and so there exists an orthonormal
basis {e1, e2, . . .} ⊂ B∗

0 for H such that

P̃n(x) =
kn∑

j=1

(x, ej )B0,B
∗
0
ej , ∀x ∈ B0,

where k1 < k2 < · · · < kn < · · · ↗ +∞.
Let ρ : B0 → B be the mapping as given in (2.2). One notes that ρ is Fréchet differentiable

on B0. Assume that f is a fixed twice H -differentiable function on B with the conditions that
Df (x) ∈ B∗ for any x ∈ B and E[‖D2f (Z)‖tr(H)] < +∞. Since i = ρ ◦ i0, we have for any x ∈
B0 and h, k ∈ H , 〈Df (ρ(x)), h〉 = 〈D(f ◦ρ)(x),h〉 and 〈D2f (ρ(x))h, k〉 = 〈D2(f ◦ρ)(x)h, k〉.
Moreover,

∣∣〈D(f ◦ ρ)(x),h
〉∣∣= ∣∣〈Df

(
ρ(x)
)
, h
〉∣∣� ∥∥Df

(
ρ(x)
)∥∥ ∗
∥∥ρ(h)
∥∥�
∥∥Df
(
ρ(x)
)∥∥ ∗‖h‖0.
B B
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Regarding Df (ρ(x)) and D(f ◦ ρ)(x) as elements in B∗
0 , they are the same and

∥∥Df
(
ρ(x)
)∥∥

B∗
0

= ∥∥D(f ◦ ρ)(x)
∥∥

B∗
0

�
∥∥Df
(
ρ(x)
)∥∥

B∗ , ∀x ∈ B0. (3.6)

In addition, we see by (2.2) that

∫
B0

∥∥D2(f ◦ ρ)(x)
∥∥

tr(H)
p̃1(dx) =

∫
B0

∥∥D2f
(
ρ(x)
)∥∥

tr(H)
p̃1(dx)

= E
[∥∥D2f (Z)

∥∥
tr(H)

]
< +∞. (3.7)

Next, it follows from [12, Remark 2.2] that B0 can be expressed as the direct sum of P̃n(B0)

and (I0 − P̃n)(B0), where I0 is the identity map on B0. Further, the triple (i0|Kn,Kn, (I0 −
P̃n)(B0)) forms an AWS, where Kn is the orthogonal complement of P̃n(B0) in H . Moreover,
p̃1 = p̃

(n)
1 × νn, where p̃

(n)
1 is the abstract Wiener measure on K̃n ≡ (I0 − P̃n)(B0) with variance

parameter 1 and νn is the standard Gauss measure on P̃n(B0). Observe that

∫
B0

TrH
(
P̃nD

2(f ◦ ρ)(x)
)
p̃1(dx)

=
∫
K̃n

∫
P̃n(B0)

TrH
(
P̃nD

2(f ◦ ρ)(x1 + x2)
)
νn(dx1) p̃

(n)
1 (dx2)

=
kn∑

j=1

∫
K̃n

∫
Rn

〈
D2(f ◦ ρ)

(
x2 +

kn∑
i=1

tiei

)
ej , ej

〉
ν̃n

(
d(t1, . . . , tkn)

)
p̃

(n)
1 (dx2), (3.8)

where ν̃n is the standard multivariate normal distribution in R
kn . Fix x2 ∈ K̃n, and set

φx2( �t ) = (f ◦ ρ)

(
x2 +

kn∑
i=1

tiei

)
, ∀�t = (t1, . . . , tkn) ∈ R

kn .

Note that, for any j = 1,2, . . . , kn,

∂2

∂t2
j

φx2( �t ) =
〈
D2(f ◦ ρ)

(
x2 +

kn∑
i=1

tiei

)
ej , ej

〉
.

Therefore, it follows by applying Fubini’s theorem to (3.8) that for any j = 1,2, . . . , kn,

1√
2π

∞∫ ∣∣∣∣ ∂2

∂t2
j

φx2( �t )

∣∣∣∣ · e− 1
2 t2

j dtj < +∞,
−∞
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for p̃
(n)
1 -a.e. x2 ∈ K̃n and a.e. (t1, . . . , tj−1, tj+1, . . . , tkn) ∈ R

kn−1 with respect to Lebesgue mea-
sure. By using Stein’s lemma for univariate normal distributions (see [32]),

(3.8) =
kn∑

j=1

∫
K̃n

∫
Rkn

tj
∂

∂tj
φx2( �t ) ν̃n(d�t ) p̃

(n)
1 (dx2)

=
kn∑

j=1

∫
K̃n

∫
P̃n(B0)

〈x1, ej 〉0
〈
D(f ◦ ρ)(x1 + x2), ej

〉
νn(dx1) p̃

(n)
1 (dx2)

=
kn∑

j=1

∫
K̃n

∫
P̃n(B0)

(x1 + x2, ej )B0,B
∗
0

〈
D(f ◦ ρ)(x1 + x2), ej

〉
νn(dx1) p̃

(n)
1 (dx2),

since (x2, ej )B0,B
∗
0

= 0 for any j = 1,2, . . . , kn,

=
kn∑

j=1

∫
B0

(x, ej )B0,B
∗
0

〈
D(f ◦ ρ)(x), ej

〉
p̃1(dx)

=
∫
B0

(
P̃n(x),D(f ◦ ρ)(x)

)
B0,B

∗
0
p̃1(dx)

=
∫
B0

(
ρ
(
P̃n(x)
)
,Df
(
ρ(x)
))

B,B∗ p̃1(dx). (3.9)

If B is finite-dimensional, then H = B = B0 and there is a sufficiently large n such that
P̃n = Pn = I0 = ρ. As a result of (2.2) and (3.9), E[|(Z,Df (Z))B,B∗ |] < +∞, and then f

satisfies the identity (3.5) if μX = μZ .
If B is infinite-dimensional and f satisfies an extra-hypothesis that E[‖Df (Z)‖α

B∗ ] is finite
for some 1 < α < +∞, then, for any x ∈ B0 and n ∈ N, it follows from (3.6) that

∣∣(ρ(P̃n(x)
)
,Df
(
ρ(x)
))

B,B∗
∣∣� ‖x‖0

∥∥Df
(
ρ(x)
)∥∥

B∗ .

By using the Hölder inequality, the Fernique theorem [27, Theorem 2.6], (2.2), and the above
extra-hypothesis of f , we see that the mapping x ∈ B0 �→ ‖x‖0‖Df (ρ(x))‖B∗ is integrable with
respect to p̃1. In addition,

∣∣TrH
(
P̃nD

2(f ◦ ρ)(x)
)∣∣� ∥∥P̃nD

2(f ◦ ρ)(x)
∥∥

tr(H)
�
∥∥D2f
(
ρ(x)
)∥∥

tr(H)
, ∀x ∈ B0,

where we see by (3.7) that the mapping x ∈ B0 �→ ‖D2f (ρ(x))‖tr(H) is integrable with respect
to p̃1. One notes that P̃n(x) → x and TrH (P̃nD

2(f ◦ ρ)(x)) → TrH (D2f (ρ(x))) as n → ∞ for
any x ∈ B0. Applying the dominated convergence argument to both sides of (3.9) and then by
(2.2), we see that
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E
[
	Gf (Z)

]= ∫
B0

TrH
(
D2f
(
ρ(x)
))

p̃1(dx)

= lim
n→∞

∫
B0

TrH
(
P̃nD

2(f ◦ ρ)(x)
)
p̃1(dx)

= lim
n→∞

∫
B0

(
ρ
(
P̃n(x)
)
,Df
(
ρ(x)
))

B,B∗ p̃1(dx)

=
∫
B0

(
ρ(x),Df

(
ρ(x)
))

B,B∗ p̃1(dx)

= E
[(

Z,Df (Z)
)
B,B∗
]
.

Therefore, if μX = μZ , the identity (3.5) is immediately obtained.

(The “if ” part for statements (i) and (ii).) First, it is easy to see that for f ≡ ei(·,η) with η ∈ B∗,
f is twice Fréchet differentiable on B , Df (x) = i ei(x,η)η ∈ B∗, and ‖D2f (x)‖B,B∗ � ‖η‖2

B∗ for
any x ∈ B . Then, for any 1 � α < +∞, E[‖Df (Z)‖α

B∗ ] = ‖η‖α < +∞. And, by Theorem 2.6
we have

E
[∥∥D2f (Z)

∥∥
tr(H)

]
� ‖η‖2

B∗E
[‖Z‖2]< +∞.

Thus, by the assumption, f satisfies the identity (3.5) and we obtain the following equality:

E
[
(X,η)B,B∗ei(X,η)B,B∗ ]= i|η|20E

[
ei(X,η)B,B∗ ], ∀η ∈ B∗. (3.10)

Now, for any η ∈ B∗, there associates a characteristic function hη given by hη(r) =
E[ei r(X,η)B,B∗ ], r ∈ R. Since, for any s �= r ∈ R, by the mean value theorem for differentiation
there are two real numbers psr , qsr between s and r such that

ei s(x,η)B,B∗ − ei r(x,η)B,B∗ = i(s − r)

2
(x, η)B,B∗Ψs,r;η(x), x ∈ B,

where Ψs,r;η(x) = eipsr (x,η)B,B∗ − e−ipsr (x,η)B,B∗ + eiqsr (x,η)B,B∗ + e−iqsr (x,η)B,B∗ , we see that

hη(s) − hη(r)

s − r
= i

2
E
[
(X,η)B,B∗Ψs,r;η(X)

]
, (3.11)

which converges to −r|η|20hη(r) by applying the equality (3.10) to (3.11) and then letting s

approach to r . So hη(r) satisfies the differential equation: h′
η(r) = −r|η|20hη(r) with the ini-

tial condition hη(0) = 1. Therefore, hη(r) = e− 1
2 r2|η|20 , r ∈ R, from which we conclude that

μX = μZ . The proof is complete. �
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Remark 3.2.

(1) Applying the fact that pt(E) = μZ( 1√
t
E) for any E ∈ B(B) to Theorem 3.1, we immediately

obtain a characterization of pt , in which the identity (3.5) becomes

E
[〈
X,Df (X)

〉− t	Gf (X)
]= 0.

(2) Let B = R
n with the Euclidean inner product 〈·,·〉. Then μZ is a multivariate normal distri-

bution on R
n with the covariance matrix A = [Ai,j ]. In this case,

	Gf (X) =
n∑

i,j=1

Ai,j

∂2

∂ti∂tj
f (X),

and thus the identity (3.5) can be reformulated as

E

[〈
X,∇f (X)

〉− n∑
i,j=1

Ai,j

∂2

∂ti∂tj
f (X)

]
= 0, (3.12)

where ∇f ( �t ) is the gradient of f at �t ∈ Rn. See also [5,20,22], where the same Stein identity
as in (3.12) was derived.

4. Stein’s equation and its solutions for abstract Wiener measures

From (3.3), (3.4), and Theorem 3.1, the role of the Stein equation for the abstract Wiener mea-
sure μZ should be played by the following differential equation (with unknown functional f ):

	Gf (x) − (x,Df (x)
)
B,B∗ = h(x) − E

[
h(Z)
]
, x ∈ B, (4.1)

where h is given in some class of test functionals.
In the case B = C[0,1], Barbour [2] showed that

fh(x) ≡ −
∞∫

0

(
Tt h(x) − E

[
h(Z)
])

dt

= −
∞∫

0

∫
B

(
h
(
e−t x +

√
1 − e−2t y

)− E
[
h(Z)
])

μZ(dy)dt (4.2)

solves Eq. (4.1), where h is given in the space L defined before Theorem 3.1. Recently, Chat-
terjee and Meckes [5] proved that Barbour’s results also hold for standard multivariate normal
distribution on R

k , where, by (3.12), the associated Stein equation is

	f ( �t ) − 〈�t,∇f ( �t )
〉= h( �t ) − E

[
h(Z)
]
, �t ∈ R

k,

in which 	f ( �t ) is the Laplacian of f at �t and h : Rk → R is twice continuously differentiable
having bounded first and second derivatives. See also [22]. In the following, we will show that
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Eq. (4.1) can be solved by fh whenever h is given in the Banach space U Lip-1(B) of those
scalar-valued uniformly Lip-1 functions h on B with the norm |||h||| = ‖h‖ULip + |h(0)|, where

‖h‖ULip ≡ sup
x �=y∈B

|h(x) − h(y)|
‖x − y‖ < +∞.

Remark 4.1.

1. By the Fernique theorem, U Lip-1(B) ⊂ Lα(B,pt (x, dy)) for any 1 � α < +∞, x ∈ B , and
t > 0, implying that ptf (x) is well defined and so is Tt f (x) for any f ∈ U Lip-1(B).

2. One notes that the right-hand double integral in (4.2) exists for any x ∈ B , because

∞∫
0

∣∣∣∣
∫
B

(
h
(
e−t x +

√
1 − e−2t y

)− E
[
h(Z)
])

μZ(dy)

∣∣∣∣dt

�
∞∫

0

∫
B

∣∣h(e−t x +
√

1 − e−2t y
)− h(y)

∣∣μZ(dy)dt

� ‖h‖ULip

∞∫
0

∫
B

e−t
∥∥x + (√e2t − 1 − et

)
y
∥∥μZ(dy)dt < +∞.

3. For any t > 0, Tt (U Lip-1(B)) is contained in U Lip-1(B) and, for any f ∈ U Lip-1(B),
‖Tt f ‖ULip � e−t‖f ‖ULip.

4. In [25], Piech studied properties of the solution for the Cauchy problem:

∂

∂t
u(x, t) = (x,Du(x, t)

)
B,B∗ − 	Gu(x, t) (x ∈ B, t > 0),

lim
t→0

u(x, t) = f (x), uniformly for x ∈ B.

She assumed that f is bounded and uniformly Lip-1 on B , then proved that u(x, t) = Tt f (x)

is the unique solution. So, if h is bounded and uniformly Lip-1 on B , it immediately follows
from Piech’s result that fh in (4.2) is a solution of Eq. (4.1). We will justify in Theorem 4.8
that Piech’s result is still valid without the hypothesis of boundedness on h.

In order to achieve our goals as mentioned in the beginning of this section, we need a series
of lemmas concerning fh and its H -derivatives.

Lemma 4.2. Let f ∈ U Lip-1(B) and x ∈ B .

(i) Tt f (x) is infinitely H -differentiable, and D(Tt f )(x) determines an element λt,x(f ) in B∗,
that is, for any z ∈ H ,

∣∣(z,λt,x(f )
)
B,B∗
∣∣= ∣∣〈D(Tt f )(x), z

〉∣∣� e−t‖f ‖ULip‖z‖; (4.3)
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(ii) Tt f (x) is Gâteaux differentiable at x in the direction y with the Gâteaux derivative λt,x(f )

for any y ∈ B , that is,

(
y,λt,x(f )

)
B,B∗ = lim

s→0
s−1(Tt f (x + sy) − Tt f (x)

)
. (4.4)

Proof. For the assertion (i), it is straightforward by Proposition 2.7 and the following observa-
tion: For any z ∈ H ,

∣∣〈D(Tt f )(x), z
〉∣∣� lim

s→0
s−1
∫
B

∣∣f (y + e−t x + se−t z
)− f
(
y + e−t x

)∣∣p1−e−2t (dy)

� e−t‖f ‖ULip‖z‖.

To show the assertion (ii), fix y ∈ B and take an approximating sequence {zn} ⊂ H such that
‖zn − y‖ → 0 as n → +∞. Then, for any n ∈ N,

∣∣s−1(Tt f (x + sy) − Tt f (x)
)− (y,λt,x(f )

)
B,B∗
∣∣

�
∣∣s−1(Tt f (x + sy) − Tt f (x + szn)

)∣∣+ ∣∣〈zn,λt,x(f )
〉
0 − (y,λt,x(f )

)
B,B∗
∣∣

+ ∣∣s−1(Tt f (x + szn) − Tt f (x)
)− 〈zn,λt,x(f )

〉
0

∣∣
� 2e−t‖f ‖ULip‖y − zn‖ + ∣∣s−1(Tt f (x + szn) − Tt f (x)

)− 〈D(Tt f )(x), zn

〉∣∣.
Letting s → 0 yields that for any n ∈ N,

lim sup
s→0

∣∣s−1(Tt f (x + sy) − Tt f (x)
)− (y,λt,x(f )

)
B,B∗
∣∣� 2e−t‖f ‖ULip‖y − zn‖.

Then we get the desired equality (4.4) as n goes to infinity. �
As mentioned in Section 2, we still use the notation D(Tt f )(x) in place of λt,x(f ).

Remark 4.3. Let f ∈ U Lip-1(B).

1. In general, Tt f (x) is not necessarily Fréchet differentiable at x on B . See [9] and Refs. [1,8]
cited therein.

2. For any h ∈ H ,

〈
D(Tt f )(x), h

〉= lim
s→0

s−1
∫
B

f
(
e−t x + y

)(
e

e−t s√
1−e−2t

〈y,h〉0− 1
2

e−2t s2

1−e−2t
|h|20 − 1

)
p1−e−2t (dy)

= e−t

√
1 − e−2t

∫
〈y,h〉0f

(
e−t x +

√
1 − e−2t y

)
μZ(dy), (4.5)
B
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from which it follows that for any x1, x2 ∈ B ,

∣∣D(Tt f )(x1) − D(Tt f )(x2)
∣∣
0 � e−2t

√
1 − e−2t

‖f ‖ULip‖x1 − x2‖. (4.6)

Hence the mapping from B into H by x �→ D(Tt f )(x) is uniformly continuous.
3. By the same argument as in the proof of Lemma 4.2, D(ptf )(x) also defines an element in

B∗ for any x ∈ B and t > 0, where, for any y ∈ B ,

(
y,D(ptf )(x)

)
B,B∗ = lim

s→0
s−1(ptf (x + sy) − ptf (x)

)
,

implying ‖D(ptf )(x)‖B∗ � ‖f ‖ULip.

Lemma 4.4. For f ∈ U Lip-1(B), y ∈ B , and t > 0, the mapping

x ∈ B �→ (y,D(Tt f )(x)
)
B,B∗

is continuous.

Proof. Let x1, x2 ∈ B and k ∈ H . By Lemma 4.2 and (4.5) we see that

∣∣(y,D(Tt f )(x1) − D(Tt f )(x2)
)
B,B∗
∣∣

� e−2t

√
1 − e−2t

‖f ‖ULip‖x1 − x2‖
∫
B

∣∣〈w,k〉0
∣∣μZ(dw) + 2e−t‖f ‖ULip‖y − k‖

� e−2t

√
1 − e−2t

‖f ‖ULip|k|0‖x1 − x2‖ + e−t‖f ‖ULip‖y − k‖,

where the last inequality is obtained by using the Cauchy–Schwarz inequality and the property
that 〈·, k〉0 ∼ N(0, |k|20) with respect to μZ . Then

lim sup
x1→x2

∣∣(y,D(Tt f )(x1) − D(Tt f )(x2)
)
B,B∗
∣∣� 2e−t‖f ‖ULip‖y − k‖, ∀k ∈ H.

Since H is dense in B , this lemma immediately follows. �
Lemma 4.5. Let f ∈ U Lip-1(B) and x ∈ B . Then D2(Tt f )(x) is a trace-class operator on H .
Moreover,

∥∥D2(Tt f )(x)
∥∥

tr(H)
� e− 3t

2√
1 − e−2t

‖f ‖ULip

∫
B

‖y‖μZ(dy),

and

∥∥D2(Tt f )(x)
∥∥

HS(H)
� e− 3t

2√
1 − e−2t

‖f ‖ULip

{∫
‖y‖2 μZ(dy)

} 1
2

.

B
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Proof. For any z1, z2 ∈ H , we have by the semigroup property of {Tt ; t � 0} that

〈
D2(Tt f )(x)z1, z2

〉
=
∫
B

∂2

∂r1∂r2

∣∣∣∣
r1=r2=0

T t
2
f

(
e− t

2 x +
√

1 − e−t

(
y + e− t

2 r2√
1 − e−t

z2

)
+ r1e

− t
2 z1

)
μZ(dy)

=
∫
B

∂2

∂r1∂r2

∣∣∣∣
r1=r2=0

{
T t

2
f
(
e− t

2 x +
√

1 − e−t y + r1e
− t

2 z1
)
e

e
− t

2 r2√
1−e−t

〈y,z2〉0− 1
2

e−t r2
2

1−e−t |z2|20}
μZ(dy)

= e−t

√
1 − e−t

∫
B

〈y, z2〉0
〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t y
)
, z1
〉
μZ(dy). (4.7)

For an arbitrarily given test operator T on B , we take an orthonormal basis {e1, e2, . . .} ⊂ B∗
for H such that the range T (B) of T is spanned by {e1, e2, . . . , en}. Since, for any x ∈ B ,
T |H ◦ D2(Tt f )(x) is of finite rank, it is a trace-class operator on H . Then we see by (4.7)
and Remark 2.5(1) that for any x ∈ B ,

TrH
(
T |H ◦ D2(Tt f )(x)

)
=

∞∑
j=1

〈
D2(Tt f )(x)ej , (T |H )∗(ej )

〉

= e−t

√
1 − e−t

∞∑
j=1

∫
B

〈
y, (T |H )∗(ej )

〉
0

〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t y
)
, ej

〉
μZ(dy)

= e−t

√
1 − e−t

n∑
j=1

∫
B

(T y, ej )B,B∗
〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t y
)
, ej

〉
μZ(dy)

= e−t

√
1 − e−t

∫
B

〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t y
)
, T (y)
〉
μZ(dy). (4.8)

Also, by Proposition 2.4(ii) and Lemma 4.2,

∫
B

∣∣〈D(T t
2
f )
(
e− t

2 x +
√

1 − e−t y
)
, T (y)
〉∣∣μZ(dy)

� e− t
2 ‖f ‖ULip‖T |H ‖H,H

∫
B

‖y‖μZ(dy).

Hence we have

∣∣TrH
(
T |H ◦ D2(Tt f )(x)

)∣∣� e− 3t
2√

1 − e−t
‖f ‖ULip‖T |H ‖H,H

∫
‖y‖μZ(dy).
B
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Consequently, by Proposition 2.4(i), D2(Tt f )(x) determines an element of the dual space K(H)∗
of K(H). Recall the fact that K(H)∗ is isometrically isomorphic to the Banach space T R(H),
where the pairing between K(H) and T R(H) is given by (A,F ) = TrH (AF) (see [28]). There-
fore, we have shown that D2(Tt f )(x) belongs to T R(H), the trace-class norm of which satisfies
the desired inequality.

On the other hand, by (4.8), Lemma 4.2, and Corollary 2.11 we see that for any x ∈ B ,

∣∣TrH
(
T |H ◦ D2(Tt f )(x)

)∣∣
� e− 3t

2√
1 − e−t

‖f ‖ULip

∫
B

∥∥T (y)
∥∥μZ(dy)

� e− 3t
2√

1 − e−t
‖f ‖ULip

{∫
B

‖y‖2 μZ(dy)

} 1
2
{∫

B

∣∣T (y)
∣∣2
0 μZ(dy)

} 1
2

,

where

∫
B

∣∣T (y)
∣∣2
0 μZ(dy) =

n∑
j=1

∫
B

〈
T (y), ej

〉2
0 μZ(dy)

=
n∑

j=1

∫
B

(
y,T ∗(ej )

)2
B,B∗ μZ(dy)

=
n∑

j=1

∣∣T ∗(ej )
∣∣2
0

=
n∑

j=1

∣∣(T |H )∗(ej )
∣∣2
0

(
by Remark 2.5(1)

)

= ∥∥(T |H )∗
∥∥2

HS(H)
.

Consequently, we conclude by Remark 2.5(2) and the above estimation that D2(Tt f )(x) deter-
mines an element of H S(H), the Hilbert–Schmidt norm of which satisfies the desired inequality.
The proof is complete. �
Remark 4.6.

1. Let f ∈ U Lip-1(B). By the semigroup property of {Tt }, (4.6), and (4.8), we see that for any
test operator T on B and x1, x2 ∈ B ,

∣∣TrH
(
T |H ◦ (D2(Tt f )(x1) − D2(Tt f )(x2)

))∣∣
� e−t

√
1 − e−t

∫ ∣∣〈D(T t
2
f )
(
e− t

2 x1 +
√

1 − e−t y
)

B
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− D(T t
2
f )
(
e− t

2 x2 +
√

1 − e−t y
)
, T (y)
〉∣∣μZ(dy)

� e− 5
2 t

1 − e−t
‖f ‖ULip‖x1 − x2‖

∫
B

∣∣T (y)
∣∣
0 μZ(dy)

� e− 5
2 t

1 − e−t
‖f ‖ULip‖x1 − x2‖

∥∥(T |H )∗
∥∥

HS(H)
.

Consequently, for any x1, x2 ∈ B ,

∥∥D2(Tt f )(x1) − D2(Tt f )(x2)
∥∥

HS(H)
� e− 5

2 t

1 − e−t
‖f ‖ULip‖x1 − x2‖. (4.9)

2. Let f ∈ U Lip-1(B). For any n ∈ N, z1, . . . , zn+1 ∈ H , and x ∈ B ,

Dn+1(Tt f )(x)(z1, . . . , zn+1) = d

dr1

∣∣∣∣
r1=0

Dn(Tt f )(x + r1z1)(z2, . . . , zn+1).

Then, by using the formula in [19, Corollary 3.4(b)], we can establish a generalization of
(4.7) for Dn+1(Tt f ) as follows:

Dn+1(Tt f )(x)(z1, . . . , zn+1) = e− n+1
2 t

(1 − e−t )
n
2

∫
B

{∫
B

n+1∏
j=2

〈y + iw,zj 〉0 μZ(dw)

}

× 〈D(T t
2
f )
(
e− t

2 x +
√

1 − e−t y
)
, z1
〉
μZ(dy). (4.10)

Lemma 4.7. For f ∈ U Lip-1(B) and t > 0, the scalar-valued mapping

x ∈ B �→ TrH
(
D2(Tt f )(x)

)
is continuous.

Proof. Let (i0,H,B0) and {Pn} be given as those in Lemma 2.2, P̃n’s be the extension of Pn’s
to B0, p̃1 be the abstract Wiener measure on B0 with variance parameter 1, and ρ : B0 → B be
the mapping as in (2.2). Observe that, for any x1, x2 ∈ B and n ∈ N,

∣∣TrH
(
D2(Tt f )(x1)

)− TrH
(
D2(Tt f )(x2)

)∣∣
�
∣∣TrH
(
Pn ◦ D2(Tt f )(x1) − D2(Tt f )(x1)

)∣∣
+ ∣∣TrH

(
Pn ◦ D2(Tt f )(x2) − D2(Tt f )(x2)

)∣∣
+ ∣∣TrH

(
Pn ◦ [D2(Tt f )(x1) − D2(Tt f )(x2)

])∣∣. (4.11)
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For any z1, z2 ∈ H , it follows from (2.2) and (4.7) that

〈
D2(Tt f )(x)z1, z2

〉
=
∫
B0

∂2

∂r1∂r2

∣∣∣∣
r1=r2=0

T t
2
f

(
e− t

2 x +
√

1 − e−t ρ

(
y + e− t

2 r2√
1 − e−t

z2

)
+ r1e

− t
2 z1

)
p̃1(dy)

= e−t

√
1 − e−t

∫
B0

〈y, z2〉0
〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t ρ(y)
)
, z1
〉
p̃1(dy). (4.12)

For any test operator T on B0, T ◦ P̃n is also a test operator on B0. By (4.12) and a similar
argument to (4.8) we see that

TrH
(
T |H ◦ Pn ◦ D2(Tt f )(x)

) (
(T ◦ P̃n)|H = T |H ◦ Pn

)
= e−t

√
1 − e−t

∫
B0

〈
D(T t

2
f )
(
e− t

2 x +
√

1 − e−t ρ(y)
)
, T ◦ P̃n(y)

〉
p̃1(dy).

By using this equality together with Proposition 2.4(ii) and Lemma 4.2 it follows that for any
x ∈ B ,

∣∣TrH
(
T |H ◦ [Pn ◦ D2(Tt f )(x) − D2(Tt f )(x)

])∣∣
� e−t

√
1 − e−t

∫
B0

∣∣〈D(T t
2
f )
(
e− t

2 x +
√

1 − e−t ρ(y)
)
, T
(
P̃n(y) − y

)〉∣∣ p̃1(dy)

� e− 3t
2√

1 − e−t
‖f ‖ULip‖T |H ‖H,H

∫
B0

∥∥P̃n(y) − y
∥∥

0 p̃1(dy).

Arguing as in the proof of Lemma 4.5 we see that

∥∥Pn ◦ D2(Tt f )(x) − D2(Tt f )(x)
∥∥

tr(H)

� e− 3t
2√

1 − e−t
‖f ‖ULip

∫
B0

∥∥P̃n(y) − y
∥∥

0 p̃1(dy) → 0 as n → ∞, uniformly for x ∈ B. (4.13)

For any n ∈ N and t > 0, we have by using the Cauchy–Schwarz inequality that

∣∣TrH
(
Pn ◦ [D2(Tt f )(x1) − D2(Tt f )(x2)

])∣∣
�
√

dim
(
Pn(H)

)∥∥D2(Tt f )(x1) − D2(Tt f )(x2)
∥∥

HS(H)
, (4.14)

which tends to 0 as x1 → x2 by (4.9). Finally, by applying (4.13) and (4.14) to (4.11), this lemma
immediately follows. �
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Now, we are in a position to prove the following Theorem 4.8 to Theorem 4.10, which are
the main goals of this section. Let f ∈ U Lip-1(B) be fixed, and set αt (s) = 1 − e−2(t+s) and
βt (s) = e−(t+s), t, s > 0. Then, for any x ∈ B ,

d

dt
Tt f (x) = lim

s→0
s−1{pαt (s)f

(
βt (s)x

)− pαt (0)f
(
βt (0)x

)}
= lim

s→0
s−1{pαt (s)f

(
βt (s)x

)− pαt (0)f
(
βt (s)x

)}
+ lim

s→0
s−1{pαt (0)f

(
βt (s)x

)− pαt (0)f
(
βt (0)x

)}
≡ lim

s→0
(I ) + lim

s→0
(II). (4.15)

It is easy to see that

lim
s→0

(II) = lim
s→0

s−1{pαt (0)f
(
βt (s)x

)− pαt (0)f
(
βt (0)x

)}
= d

ds

∣∣∣∣
s=0

Tt f
(
e−sx
)

= −(x,D(Tt f )(x)
)
B,B∗ . (4.16)

To evaluate lims→0(I ), we observe that

lim
s→0

(I ) = lim
s→0

s−1{pαt (s)f
(
βt (s)x

)− pαt (0)f
(
βt (s)x

)}
= d

ds

∣∣∣∣
s=0

pαt (s)f
(
βt (s)x

)− d

ds

∣∣∣∣
s=0

pαt (0)f
(
βt (s)x

)

= d

du

∣∣∣∣
u=αt (0)

puf
(
βt (0)x

) · α′
t (0)

= 2e−2t lim
s→0

s−1(pαt (0)+sf
(
e−t x
)− pαt (0)f

(
e−t x
))

, (4.17)

where, for any x ∈ B and s, t > 0,

pαt (0)+sf
(
e−t x
)− pαt (0)f

(
e−t x
)

=
∫
B

(
pαt (0)f

(
e−t x + y

)− pαt (0)f
(
e−t x
))

ps(dy)

=
∫
B

1∫
0

(
y,D(pαt (0)f )

(
e−t x + ϑy

))
B,B∗ dϑ ps(dy) (by Remark 4.3)

=
1∫ ∫ (

y,D(pαt (0)f )
(
e−t x + ϑy

))
B,B∗ ps(dy)dϑ. (4.18)
0 B



H.-H. Shih / Journal of Functional Analysis 261 (2011) 1236–1283 1261
The last equality in (4.18) is obtained by applying Fubini’s theorem, since

∫
B

1∫
0

∣∣(y,D(pαt (0)f )
(
e−t x + ϑy

))
B,B∗
∣∣dϑ ps(dy) � ‖f ‖ULip

∫
B

‖y‖ps(dy) < +∞,

by Remark 4.3. Notice that for any x, y ∈ B , t > 0, and ϑ ∈ (0,1],
(
y,D(pαt (0)f )

(
e−t x + ϑy

))
B,B∗ = et

(
y,D(Tt f )

(
x + ϑety

))
B,B∗

= ϑ−1(y,Dφx,ϑ,t (y)
)
B,B∗ , (4.19)

where φx,ϑ,t (y) ≡ Tt f (x + ϑety). By Lemma 4.2, ‖Dφx,ϑ,t (y)‖B∗ � ϑ‖f ‖ULip for any y ∈ B ,
and by Lemma 4.5,

∥∥D2φx,ϑ,t (y)
∥∥

tr(H)
� ϑ2

√
1 − e−2t

‖f ‖ULip

∫
B

‖u‖μZ(du) for any y ∈ B.

So ‖Dφx,ϑ,t (y)‖B∗ and ‖D2φx,ϑ,t (y)‖tr(H) are bounded functions considered as functions of y.
As a result of Theorem 3.1 and Remark 3.2(1),∫

B

(
y,Dφx,ϑ,t (y)

)
B,B∗ ps(dy) = s

∫
B

TrH
(
D2φx,ϑ,t (y)

)
ps(dy)

= sϑ2e2t

∫
B

TrH
(
D2(Tt f )

(
x + ϑety

))
ps(dy),

from which and (4.19) it follows that

(4.18) = se2t

1∫
0

∫
B

ϑ TrH
(
D2(Tt f )

(
x + ϑety

))
ps(dy)dϑ. (4.20)

Combining (4.20) with (4.17), we see that

lim
s→0

(I ) = 2 lim
s→0

1∫
0

∫
B

ϑ TrH
(
D2(Tt f )

(
x + ϑety

))
ps(dy)dϑ

= 2 lim
s→0

1∫
0

∫
B

ϑ TrH
(
D2(Tt f )

(
x + ϑet

√
sy
))

μZ(dy)dϑ. (4.21)

By Lemma 4.7,

TrH
(
D2(Tt f )

(
x + ϑet

√
sy
))→ TrH

(
D2(Tt f )(x)

)
as s → 0,
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and by Lemma 4.5,

∣∣ϑ TrH
(
D2(Tt f )

(
x + ϑet

√
sy
))∣∣� e−2tϑ√

1 − e−2t
‖f ‖ULip

∫
B

‖w‖μZ(dw),

where the right-hand term is integrable considered as a function of (ϑ, y) ∈ [0,1] × B with re-
spect to the product measure dϑ ×μZ . Hence we can apply the dominated convergence argument
to (4.21) and then obtain that

lim
s→0

(I ) = 2

1∫
0

∫
B

ϑ TrH
(
D2(Tt f )(x)

)
μZ(dy)dϑ = 	G(Tt f )(x). (4.22)

Theorem 4.8. Let f ∈ U Lip-1(B). Then, for any x ∈ B and t > 0,

	G(Tt f )(x) − (x,D(Tt f )(x)
)
B,B∗ = d

dt
Tt f (x). (4.23)

Moreover, for any x ∈ B ,

∞∫
0

	G(Tt f )(x) dt −
∞∫

0

(
x,D(Tt f )(x)

)
B,B∗ dt = E

[
f (Z)
]− f (x). (4.24)

Proof. The identity (4.23) is just the combination of (4.15), (4.16) and (4.22). So we only need
to verify (4.24). One notes that those integrals in (4.24) exist by Lemmas 4.2 and 4.5. Then (4.24)
is easily obtained by integrating both sides of (4.23) as functions of t from zero to infinity. �

In the rest of this section, for any h ∈ U Lip-1(B), let fh be given as one in (4.2). It is obvious
that fh ∈ U Lip-1(B) and ‖fh‖ULip � ‖h‖ULip.

Theorem 4.9. Let h ∈ U Lip-1(B). Then we have the following results.

(i) fh is twice H -differentiable at any x ∈ B . Further,

Dfh(x) = −
∞∫

0

D(Tt h)(x) dt (4.25)

as a B∗-valued Bochner integral, as well as

D2fh(x) = −
∞∫

0

D2(Tt h)(x) dt (4.26)

as an L(H,H)-valued Bochner integral, where L(H,H) is the Banach space of all bounded
linear operators from H into itself with the operator norm ‖ · ‖H,H .
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(ii) ‖Dfh(x)‖B∗ � ‖h‖ULip and ‖D2fh(x)‖H,H � π
2 ‖h‖ULip{

∫
B

‖y‖2 μZ(dy)} 1
2 , uniformly for

x ∈ B .
(iii) For any x ∈ B , D2fh(x) is a trace-class operator on H , and

	Gfh(x) = −
∞∫

0

	G(Tt h)(x) dt. (4.27)

(iv) ‖D2fh(x)‖tr(H) � π
2 ‖h‖ULip

∫
B

‖y‖μZ(dy), uniformly for x ∈ B .

(v) ‖D2fh(x)‖HS(H) � π
2 ‖h‖ULip{

∫
B

‖y‖2 μZ(dy)} 1
2 , uniformly for x ∈ B .

Proof. First of all, it follows from Lemma 4.2 and (4.7) that for any x ∈ B

∞∫
0

∥∥D(Tt h)(x)
∥∥

B∗ dt � ‖h‖ULip.

And, by (4.7), Corollary 2.11, and Lemma 4.2 we have

∞∫
0

∥∥D2(Tt h)(x)
∥∥

H,H
dt =

∞∫
0

sup
z1,z2∈H\{0}

|〈D2(Tt h)(x)z1, z2〉|
|z1|0|z2|0 dt

� ‖h‖ULip

{∫
B

‖y‖2 μZ(dy)

} 1
2

∞∫
0

e− 3t
2√

1 − e−t
dt

× sup
z2∈H\{0}

{
|z2|−1

0

∫
B

∣∣〈y, z2〉0
∣∣μZ(dy)

}

� π

2
‖h‖ULip

{∫
B

‖y‖2 μZ(dy)

} 1
2

< +∞.

To show H -differentiability of fh at any x ∈ B , we estimate

|z|−1
0

∣∣∣∣∣fh(x + z) − fh(x) +
∞∫

0

〈
D(Tt h)(x), z

〉
dt

∣∣∣∣∣

� |z|−1
0

{ ∞∫
0

1∫
0

∣∣〈D(Tt h)(x + ϑz) − D(Tt h)(x), z
〉∣∣dϑ dt

}

� ‖h‖ULip‖z‖
∞∫ 1∫

e−2tϑ√
1 − e−2t

dϑ dt
(
by (4.6)

)

0 0
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= 1

2
‖h‖ULip‖z‖ → 0, as |z|0 → 0.

Therefore, fh is H -differentiable and we have shown (4.25). Next, for the second-order H -
differentiability of fh at x ∈ B , we need to prove

lim|z1|0→0
|z1|−1

0

∣∣∣∣∣Dfh(x + z1) − Dfh(x) +
∞∫

0

〈
D2(Tt h)(x)z1, ·

〉
dt

∣∣∣∣∣
0

= 0. (4.28)

Making use of (4.5), we observe that

|z1|−1
0

∣∣∣∣∣Dfh(x + z1) − Dfh(x) +
∞∫

0

〈
D2(Tt h)(x)z1, ·

〉
dt

∣∣∣∣∣
0

� |z1|−1
0

∞∫
0

∣∣D(Tt h)(x + z1) − D(Tt h)(x) + 〈D2(Tt h)(x)z1, ·
〉∣∣

0 dt

=
∞∫

0

Φz1(t) dt,

where

Φz1(t) = |z1|−1
0 sup

z2∈H\{0}

{
|z2|−1

0

∣∣∣∣∣
1∫

0

[〈
D2(Tt h)(x + ϑz1)z1, z2

〉

− 〈D2(Tt h)(x)z1, z2
〉]

dϑ

∣∣∣∣∣
}

dt.

By the infinite H -differentiability of Tt h(x) at every x ∈ B we see that

0 � Φz1(t)

�
1∫

0

∥∥D2(Tt h)(x + ϑz1) − D2(Tt h)(x)
∥∥

H,H
dϑ → 0, as |z1|0 → 0, for any t > 0.

Moreover, by (4.7), Corollary 2.11, and Lemma 4.2,

Φz1(t) � Const. sup
z2∈H\{0}

{
e− 3t

2√
1 − e−t

‖h‖ULip|z2|−1
0

∫
B

∣∣〈y, z2〉0
∣∣μZ(dy)

}

� Const.
e− 3t

2√ −t
∈ L1([0,+∞), dt

)
, uniformly for z1 ∈ H.
1 − e
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Hence the formula (4.28) is an immediate result by the dominated convergence theorem, which
implies (4.26). We have shown the assertions (i) and (ii). To show the assertion (iv), let T be
an arbitrarily chosen test operator on B . Then, by (i) and a similar argument to the proof of
Lemma 4.5, we see that for any x ∈ B ,

∣∣TrH
(
T |H ◦ D2fh(x)

)∣∣�
∞∫

0

∣∣TrH
(
T |H ◦ D2(Tt h)(x)

)∣∣dt

� ‖h‖ULip‖T |H ‖H,H

∞∫
0

e− 3t
2√

1 − e−t
dt

∫
B

‖y‖μZ(dy),

implying that D2fh(x) is trace-class whose trace-class norm has the desired bound as given
in (iv). Imitating the proof of (iv), we thus verify the assertion (v). In order to prove the asser-
tion (iii), we take an orthonormal basis {en; n = 1,2, . . .} for H , consisting of all eigenvectors of
|D2(Tt h)(x)| for some x ∈ B . Then, by (4.26),

	Gfh(x) =
∞∑

n=1

〈
D2fh(x)en, en

〉= − lim
m→∞

∞∫
0

m∑
n=1

〈
D2(Tt h)(x)en, en

〉
dt.

Also, by Lemma 4.5,

∣∣∣∣∣
m∑

n=1

〈
D2(Tt h)(x)en, en

〉∣∣∣∣∣� ∥∥D2(Tt h)(x)
∥∥

tr(H)
� Const.

e− 3t
2√

1 − e−t
,

uniformly for m ∈ N, where the last term is in L1([0,+∞), dt). Therefore (4.27) is immediately
obtained by the dominated convergence theorem. �

Finally, we combine Theorem 4.9 with Theorem 4.8 to get the following

Theorem 4.10. For any h ∈ U Lip-1(B), fh(x) solves the equation

	Gf (x) − (x,Df (x)
)
B,B∗ = h(x) − E

[
h(Z)
]

with unknown function f for any x ∈ B .

Corollary 4.11. Let W be a B-valued random variable with finite first moment, that is, E[‖W‖] <

+∞. Then we have the following bound on the Wasserstein distance dω(W,Z) between W

and Z:

dω(W,Z) ≡ sup
‖h‖ULip�1

∣∣E[h(W)
]− E
[
h(Z)
]∣∣

� sup
ϕ∈F

∣∣E[	Gϕ(W) − (W,Dϕ(W)
)
B,B∗
]∣∣,
μZ
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where FμZ
is the class of twice H -differentiable functions ϕ on B so that Dϕ(x) ∈ B∗ with

‖Dϕ(x)‖B∗ � 1 and D2ϕ(x) ∈ T R(H) with ‖D2ϕ(x)‖tr(H) � π
2

∫
B

‖y‖μZ(dy) for any x ∈ B .

5. Gaussian approximation in abstract Wiener spaces

As assumed in the beginning of Section 3, let Z be a fixed B-valued random variable on some
probability space (Ω, F , P ) such that the distribution μZ of Z is a non-degenerate Gaussian
measure on B with mean zero, and H the unique RKHS for μZ with the inner product 〈·,·〉0
and the induced norm | · |0, where the triple (i,H,B) forms an AWS and μZ associated with
the abstract Wiener measure μZ on B with variance parameter 1. Select another norm | · |−1
on B , which is induced by an inner product 〈·,·〉−1 and weaker than ‖ · ‖-norm. If ‖ · ‖-norm is
Hilbertian, we will set | · |−1 = ‖ · ‖. Let K be the completion of B with respect to | · |−1-norm
and μK

Z the Gaussian measure on K given by μK
Z (E) = μZ(E ∩ B) for any E ∈ B(K). Let SμK

Z

be the covariance operator of μK
Z on K . By Theorem 2.9, SμK

Z
is one-to-one and H =

√
SμK

Z
(K).

In what follows, let {kj ; j ∈ N} be an orthonormal basis of K , consisting of eigenvectors of SμK
Z

with corresponding eigenvalues λj , j ∈ N. Then λj ’s > 0 and
∑

λj < +∞. In addition, by the

standard construction of countably Hilbert spaces from (H,
√

SμK
Z

−1
) as given in Remark 2.10,

we have the following chain of dense, continuous embeddings:

H2 ⊂ H1 ⊂ B∗ ⊂ H ⊂ B ⊂ H−1 = K ⊂ H−2,

where H ∗−n, n = 1,2, is identified with Hn as a Borel dense subset of H from the viewpoint of
Remark 2.10. The inner product and induced norm on Hr , r = ±1,±2, are denoted respectively
by 〈·,·〉r and | · |r .

In this section, we aim to establish an infinite-dimensional version of Stein’s method of ex-
changeable pairs (see e.g. [32, p. 33∼]) along the line of Stein’s idea. Let W and W ∗ be two
B-valued random variables with finite first moment on a probability space (Ω, P ). Suppose fur-
ther that (W,W ∗) is an exchangeable pair by which we mean that

P
({

W ∈ E1, W ∗ ∈ E2
})= P

({
W ∗ ∈ E1, W ∈ E2

})
for any E1,E2 ∈ B(B).

In addition, there is a constant λ ∈ (0,1) such that

E
[(

W ∗ − W,ϕ(W)
)
B,B∗
]= −λE

[(
W,ϕ(W)

)
B,B∗
]
, (5.1)

where ϕ is an arbitrarily given bounded function from B into B∗.
Take a fixed h ∈ U Lip-1(B). Let fh be given as one in (4.2), the first and second H -derivatives

of which satisfy the following uniformly Lipschitz conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sup
x �=y∈B

sup
z∈H\{0}

|〈Dfh(x) − Dfh(y), z〉|
|z|−2|x − y|−2

≡ ‖Dfh‖ULip(H−2) < +∞;

sup sup
|〈(D2fh(x) − D2fh(y))z1, z2〉|

‖z ‖‖z ‖‖x − y‖ ≡ ∥∥D2fh

∥∥
ULip < +∞.

(5.2)
x �=y∈B z1,z2∈H\{0} 1 2
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Consider the function φh : R × B × B → C defined by

φh(r, x, y) = fh

(
rx + (1 − r)y

)
.

Lemma 5.1. Let h ∈ U Lip-1(B) with the property (5.2).

(i) For any x ∈ B , there is a bounded linear operator Th,x from H−2 to H ∗−2 such that the
restriction of Th,x to H × H equals D2fh(x). Moreover,

‖Th,x‖H−2,H
∗−2

� ‖Dfh‖ULip(H−2).

(ii) Fix x, y ∈ B . Then φh(r, x, y) is twice differentiable with respect to r ∈ R. Further,

d

dr
φh(r, x, y) = (x − y,Dfh

(
rx + (1 − r)y

))
B,B∗ ;

d2

dr2
φh(r, x, y) = (x − y,Th,rx+(1−r)y(x − y)

)
B,B∗ .

Proof. (i) For any z1, z2 ∈ H , we see by the second-order H -differentiability of fh and (5.2)
that

∣∣〈D2fh(x)z1, z2
〉∣∣= lim

r→0
|r|−1
∣∣〈Dfh(x + rz1) − Dfh(x), z2

〉∣∣
� ‖Dfh‖ULip(H−2)|z1|−2|z2|−2.

Consequently, by the denseness of H in H−2, we can extend by continuity D2fh(x) to the whole
Cartesian product H−2 × H−2, proving the assertion (i).

(ii) Observe that for any r ∈ R,

∣∣s−1(Tt h
(
y + (r + s)(x − y)

)− Tt h
(
y + r(x − y)

))∣∣� Const. e−t ,

where such a constant depends only on h, x, and y, and the function e−t , t � 0, is in
L1([0,+∞), dt). Then, applying the dominated convergence argument, we see by Lemma 4.2(ii)
and Theorem 4.9(i) that

d

dr
φh(r, x, y) = − lim

s→0
s−1

∞∫
0

(
Tt h
(
y + (r + s)(x − y)

)− Tt h
(
y + r(x − y)

))
dt

= −
∞∫

0

(
x − y,D(Tt h)

(
y + r(x − y)

))
B,B∗ dt

= (x − y,Dfh

(
y + r(x − y)

))
B,B∗ .

To show the second-order differentiability of φh(r, x, y) with respect to r , we take an approxi-
mating sequence {zn} ⊂ H such that ‖zn − (x − y)‖ → 0 as n → +∞. Set a = y + r(x − y).
Then
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∣∣∣∣s−1
{

d

dr
φh

(
a + s(x − y)

)− d

dr
φh(a)

}
− (x − y,Th,a(x − y)

)
B,B∗

∣∣∣∣
= ∣∣s−1((x − y,Dfh

(
a + s(x − y)

)− Dfh(a)
)
B,B∗
)− (x − y,Th,a(x − y)

)
B,B∗
∣∣

�
∣∣(x − y,Th,a(x − y) − Th,a(zn)

)
B,B∗
∣∣

+ ∣∣s−1((x − y,Dfh

(
a + s(x − y)

)− Dfh(a + szn)
)
B,B∗
)∣∣

+ ∣∣s−1((x − y,Dfh(a + szn) − Dfh(a)
)
B,B∗
)− (x − y,Th,a(zn)

)
B,B∗
∣∣

≡ I1 + I2 + I3.

It is clear that I1 → 0, and by (5.2)

I2 � Const.‖x − y‖∣∣zn − (x − y)
∣∣−2 → 0 as n → +∞.

For I3, we see by virtue of (i) and (5.2) that

I3 �
∣∣s−1((x − y − zn,Dfh(a + szn) − Dfh(a)

)
B,B∗
)− (x − y − zn, Th,a(zn)

)
B,B∗
∣∣

+ ∣∣s−1((zn,Dfh(a + szn) − Dfh(a)
)
B,B∗
)− (zn, Th,a(zn)

)
B,B∗
∣∣

� Const. · ‖x − y − zn‖|zn|−2

+ ∣∣s−1((zn,Dfh(a + szn) − Dfh(a)
)
B,B∗
)− (zn, Th,a(zn)

)
B,B∗
∣∣.

Then, by Theorem 4.9,

lim sup
s→0

I3 � Const.‖x − y − zn‖|zn|−2,

which approaches to zero as n → +∞. The proof is complete. �
To avoid the notational complexity, we still use the symbol “D2fh(x)” in place of “Th,x” for

any h ∈ U Lip-1(B) with the property (5.2).
By Lemma 5.1, we can apply Taylor’s theorem to φh(r,W

∗,W) with respect to r , and then
obtain that

fh

(
W ∗)− fh(W) = d

dr

∣∣∣∣
r=0

φh

(
r,W ∗,W

)+ 1

2

d2

dr2

∣∣∣∣
r=0

φh

(
r,W ∗,W

)+ Rh

(
W ∗,W

)
, (5.3)

where Rh(W
∗,W) is the second-order remainder term. Having been seen in the proof of

Lemma 5.1,

d
∣∣∣∣ φh

(
r,W ∗,W

)= (W ∗ − W,Dfh(W)
)
B,B∗ .
dr r=0
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Note that it follows from Theorem 4.9(ii) that the function ‖Dfh(x)‖B∗ , x ∈ B , is bounded by
‖h‖ULip uniformly. Then, by our assumption in (5.1),

E

[
d

dr

∣∣∣∣
r=0

φh

(
r,W ∗,W

)]= −λE
[(

W,Dfh(W)
)
B,B∗
]
. (5.4)

Next, by Lemma 5.1(ii),

1

2

d2

dr2

∣∣∣∣
r=0

φh

(
r,W ∗,W

)= 1

2

(
W ∗ − W,D2fh(W)

(
W ∗ − W

))
B,B∗ . (5.5)

Since Lemma 5.1(i) implies that D2fh(x) is a continuous bilinear map on K ×K for any x ∈ B ,
the right-hand side of (5.5) can be expanded with respect to {kj } as follows:

1

2

∞∑
i,j=1

〈
W ∗ − W,ki

〉
−1

〈
W ∗ − W,kj

〉
−1

(
ki,D

2fh(W)kj

)
K,K∗

= λ

∞∑
i,j=1

〈
SμK

Z
(ki), kj

〉
−1

(
ki,D

2fh(W)kj

)
K,K∗ + λ

∞∑
i,j=1

Ei,j

(
ki,D

2fh(W)kj

)
K,K∗ , (5.6)

where, for any i, j ∈ N,

Ei,j = 1

2λ

〈
W ∗ − W,ki

〉
−1

〈
W ∗ − W,kj

〉
−1 − 〈SμK

Z
(ki), kj

〉
−1.

Since 〈SμK
Z
(ki), kj 〉−1 = λiδi,j for any i, j , the first term in the second line of (5.6) equals

λ

∞∑
i=1

(√
λiki,D

2fh(W)
√

λiki

)
K,K∗ = λ

∞∑
i=1

〈
D2fh(W)

√
λiki,
√

λiki

〉
= λ	Gfh(W),

whence

1

2

d2

dr2

∣∣∣∣
r=0

φ
(
r,W ∗,W

)= λ	Gfh(W) + λ

∞∑
i,j=1

Ei,j

(
ki,D

2fh(W)kj

)
K,K∗ . (5.7)

One notes that fh(W
∗) − fh(W) is integrable with respect to P , because

E
[∣∣fh

(
W ∗)− fh(W)

∣∣]� ‖h‖ULipE
[∥∥W ∗ − W

∥∥]< +∞.

Since (W,W ∗) is an exchangeable pair and the mapping g(x, y) = fh(x) − fh(y), (x, y) ∈
B × B , is anti-symmetric,

E
[
fh

(
W ∗)− fh(W)

]= 0.



1270 H.-H. Shih / Journal of Functional Analysis 261 (2011) 1236–1283
Taking expectation of Eq. (5.3) together with (5.4) and (5.7),

E
[(

W,Dfh(W)
)
B,B∗
]− E
[
	Gfh(W)

]
= E

[ ∞∑
i,j=1

Ei,j

(
ki,D

2fh(W)kj

)
K,K∗

]
+ 1

λ
E
[
Rh

(
W ∗,W

)]
. (5.8)

Therefore, by applying Theorem 4.10 to (5.8), we see that

E
[
h(Z)
]− E
[
h(W)
]= E

[ ∞∑
i,j=1

Ei,j

(
ki,D

2fh(W)kj

)
K,K∗

]
+ 1

λ
E
[
Rh

(
W ∗,W

)]
. (5.9)

For any a, b ∈ K ,

Tλ,a,b,K(x, y) ≡ 1

2λ
〈b − a, x〉−1〈b − a, y〉−1 − 〈SμK

Z
(x), y
〉
−1, x, y ∈ K,

is a continuous bilinear map on K × K . Let H S(K⊗2) denote the collection of Hilbert–Schmidt
type bilinear maps on K × K , that is,

T ∈ H S
(
K⊗2) if and only if

∑
i,j

T (fi, fj )
2 < +∞

for any orthonormal basis {fk} of K . Then H S(K⊗2) is a Hilbert space with the inner product
given by

〈〈S,T 〉〉HS(K⊗2) =
∑
i,j

S(fi, fj )T (fi, fj ),

and the induced norm denoted by ‖ · ‖HS(K⊗2). It is straightforward to see that Tλ,a,b,K ∈
H S(K⊗2) for any a, b ∈ K , and, in the following Remark 5.3, D2fh(x) is also in H S(K⊗2)

for any x ∈ B . Therefore, we have

E

[ ∞∑
i,j=1

Ei,j

(
ki,D

2fh(W)kj

)
K,K∗

]
= E
[〈〈

Tλ,W,W ∗,K,D2fh(W)
〉〉

HS(K⊗2)

]
. (5.10)

For the remainder term 1
λ
E[Rh(W

∗,W)], we apply the mean-value theorem for differentiation
together with Lemma 5.1 and (5.2) to see that there is ϑ ∈ (0,1) such that

1

λ

∣∣Rh

(
W ∗,W

)∣∣= 1

6ϑλ

∣∣∣∣ d2

dr2

∣∣∣∣
r=ϑ

φh

(
r,W ∗,W

)− d2

dr2

∣∣∣∣
r=0

φh

(
r,W ∗,W

)∣∣∣∣
= 1

6ϑλ

∣∣(W ∗ − W,
(
D2fh

(
ϑW ∗ + (1 − ϑ)W

)− D2fh(W)
)(

W ∗ − W
))

B,B∗
∣∣

� 1 ∥∥D2fh

∥∥
ULip

∥∥W ∗ − W
∥∥3,
6λ
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whence

1

λ

∣∣E[Rh

(
W ∗,W

)]∣∣� 1

6λ

∥∥D2fh

∥∥
ULipE
[∥∥W ∗ − W

∥∥3]. (5.11)

To sum up the above argument together with (5.9), (5.10), and (5.18), we have the following

Theorem 5.2. Let (W,W ∗) be an exchangeable pair of B-valued random variables with finite
first moment. Assume that there is a constant λ ∈ (0,1) such that

E
[(

W ∗ − W,ϕ(W)
)
B,B∗
]= −λE

[(
W,ϕ(W)

)
B,B∗
]
,

where ϕ is an arbitrarily given bounded function from B into B∗. Let h ∈ U Lip-1(B) associated
with fh having the properties as given in (5.2). Then

∣∣E[h(W)
]− E
[
h(Z)
]∣∣

�
∣∣E[〈〈Tλ,W,W ∗,K,D2fh(W)

〉〉
HS(K⊗2)

]∣∣+ 1

6λ

∥∥D2fh

∥∥
ULipE
[∥∥W ∗ − W

∥∥3]. (5.12)

Remark 5.3. The Hilbert–Schmidt norm ‖D2fh(x)‖2
HS(K⊗2)

, x ∈ B , can be estimated as follows.

First, since |k|−2 = |
√

SμK
Z
(k)|−1 for any k ∈ K , one notes that the triple (iK,H−2 ,K,H−2) forms

an AWS, where iK,H−2 is the canonical embedding of K into H−2. By Lemma 5.1(i) and using
Kuo’s theorem (see [17, Chapter I, Corollary 4.4]), every D2fh(x), x ∈ B , can be regarded as a
Hilbert–Schmidt operator on K satisfying the following inequality

∥∥D2fh(x)
∥∥

HS(K)
�
∥∥D2fh(x)

∥∥
H−2,K

{ ∫
H−2

|y|2−2 p
(K,H−2)

1 (dy)

} 1
2

,

where p
(K,H−2)

1 is the associated abstract Wiener measure of (iK,H−2 ,K,H−2). Since the covari-

ance operator of p
(K,H−2)

1 is SμK
Z

,

{ ∫
H−2

|y|2−2 p
(K,H−2)

1 (dy)

} 1
2 =
{ ∞∑

j=1

∫
H−2

〈
y,λ

− 1
2

j kj

〉2
−2 p

(K,H−2)

1 (dy)

} 1
2

=
{ ∞∑

j=1

〈
SμK

Z

(
λ

− 1
2

j kj

)
, λ

− 1
2

j kj

〉
−2

} 1
2

=
√

TrK(SμK
Z
).

On the other hand,
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∥∥D2fh(x)
∥∥

H−2,K
= sup

z∈H−2\{0}
|z|−1

−2

{ ∞∑
j=1

(
kj ,D

2fh(x)(z, ·))2
H−2,H

∗−2

} 1
2

� ‖SμK
Z
‖K,K sup

z∈H−2\{0}
|z|−1

−2

{ ∞∑
j=1

(
λ

− 1
2

j kj ,D
2fh(x)(z, ·))2

H−2,H
∗−2

} 1
2

= ‖SμK
Z
‖K,K

∥∥D2fh(x)
∥∥

H−2,H
∗−2

� ‖Dfh‖ULip(H−2)‖SμK
Z
‖K,K, uniformly for x ∈ B.

From the above estimations, it follows that

∥∥D2fh(x)
∥∥

HS(K⊗2)
� ‖Dfh‖ULip(H−2)‖SμK

Z
‖K,K

√
TrK(SμK

Z
), (5.13)

uniformly for x ∈ B .

Application: Error bounds in a Lindeberg–Lévy type limit theorem
As an illustration of Theorem 5.2, we next will derive an explicit error estimate of Gaussian

approximation to the distribution of a sum of independent and identically distributed B-valued
random variables based on a Lindeberg–Lévy type limit theorem (see [33] for multivariate ver-
sion) by the abstract Wiener measure μZ , where the bound is computed for the difference
between the expectations of any one of uniformly Lip-1 functions on B having the condition
(5.2).

Let {X1,X2, . . .} be a sequence of independent, identically distributed B-valued random vari-
ables with finite first moment on the probability space (Ω, P ). Suppose further that they satisfy
the following conditions:

5-(a) X1 has zero mean, that is, the B-valued integral E[X1] equals zero.
5-(b) The distribution μX1 has the same covariance function as μZ . That is,

E
[
(X1, η)B,B∗(X1, φ)B,B∗

]= 〈η,φ〉0, ∀η,φ ∈ B∗.

Remark 5.4.

1. For any f,g ∈ K∗, condition 5-(b) implies that

E
[
(X1, f |B)B,B∗(X1, g|B)B,B∗

]= 〈f,g〉0 = 〈S−1
μK

Z

(f ), g
〉
−1.

2. By condition 5-(a), we see that for any f ∈ K∗,

(
E[X1], f

)
K,K∗ = E

[
(X1, f |B)B,B∗

]= 0

Equivalently, 〈E[X1], x〉−1 = E[(X1, SμK
Z
(x))B,B∗ ] = 0 for any x ∈ K .
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Fix n ∈ N, and set

Wn = 1√
n

n∑
i=1

Xi.

Let {Y1, Y2, . . . , Yn} be an independent copy of {X1,X2, . . . ,Xn}, and I be a random variable
which is uniformly distributed over the index set {1,2, . . . , n}, and also independent of {Xi} and
{Yi}. Define

W ∗
n = Wn + 1√

n
(YI − XI ) = 1√

n

n∑
j=1

(
Yj +
∑
i �=j

Xi

)
1{I=j}.

It is easy to see that, for any η,φ ∈ B∗ and s, t ∈ R,

E
[
ei(t (W ∗

n ,η)B,B∗+s(Wn,φ)B,B∗ )
]= E
[
ei(t (Wn,η)B,B∗+s(W ∗

n ,φ)B,B∗ )
]
,

implying that (Wn,W
∗
n ) is an exchangeable pair of B-valued random variables.

Observe that, for any bounded function ϕ from B into B∗,

E
[(

W ∗
n − Wn,ϕ(Wn)

)
B,B∗
]= 1√

n
E
[(

YI − XI ,ϕ(Wn)
)
B,B∗
]

= 1

n
√

n

n∑
j=1

E
[(

Yj − Xj ,ϕ(Wn)
)
B,B∗
]
. (5.14)

By the independence of Yj ’s and Wn and condition 5-(a), it follows that

E
[(

Yj ,ϕ(Wn)
)
B,B∗
]= ∫

B

E
[(

Yj ,ϕ(x)
)
B,B∗
]
μWn(dx) = 0,

where μWn is the distribution of Wn in B . Combining with (5.14), we see that the assumption
(5.1) holds for the pair (Wn,W

∗
n ) by taking λ = 1

n
.

Let h ∈ U Lip-1(B) associated with fh having the properties as given in (5.2). Then

∣∣E[〈〈Tλ,Wn,W ∗
n ,K,D2fh(Wn)

〉〉
HS(K⊗2)

]∣∣
=
∣∣∣∣∣

n∑
�=1

E
[
1{I=�}
〈〈
T1,X�,Y�,K,D2fh(Wn)

〉〉
HS(K⊗2)

]∣∣∣∣∣
=
∣∣∣∣∣

n∑
�=1

P
({I = �})E[〈〈T1,X�,Y�,K,D2fh(Wn)

〉〉
HS(K⊗2)

]∣∣∣∣∣
� 1

n
E

[∣∣∣∣∣
〈〈

n∑
T1,X�,Y�,K,D2fh(Wn)

〉〉
⊗2

∣∣∣∣∣
]

�=1 HS(K )
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� 1

n

{
E
[∥∥D2fh(Wn)

∥∥2
HS(K)

]} 1
2

{
E

[∥∥∥∥∥
n∑

�=1

T1,X�,Y�,K

∥∥∥∥∥
2

HS(K⊗2)

]} 1
2

, (5.15)

where the last inequality is obtained by applying the Cauchy–Schwarz inequality. Also,

E

[∥∥∥∥∥
n∑

�=1

T1,X�,Y�,K

∥∥∥∥∥
2

HS(K⊗2)

]

=
∞∑

i,j=1

n∑
�=1

E

[(
1

2
〈Y� − X�, ki〉−1〈Y� − X�, kj 〉−1 − 〈SμK

Z
(ki), kj

〉
−1

)2]

= n

∞∑
i,j=1

{
1

4
E
[〈Y1 − X1, ki〉2−1〈Y1 − X1, kj 〉2−1

]− 〈SμK
Z
(ki), kj

〉2
−1

}

= n

4

(
E
[|Y1 − X1|4−1

]− 4‖SμK
Z
‖2

HS(K)

)
� n
(
4E
[|X1|4−1

]− ‖SμK
Z
‖2

HS(K)

)
, (5.16)

where the third and last lines are obtained respectively by the formula

E

[
1

2
〈Y1 − X1, ki〉−1〈Y1 − X1, kj 〉−1 − 〈SμK

Z
(ki), kj

〉
−1

]
= 0, ∀i, j ∈ N

and the inequality

E
[|Y1 − X1|4−1

]
� E
[(|Y1|−1 + |X1|−1

)4]� 16E
[|X1|4−1

]
.

Combine (5.15) with (5.13) and (5.16) to get that

∣∣E[〈〈Tλ,Wn,W ∗
n ,K,D2fh(Wn)

〉〉
HS(K⊗2)

]∣∣
� 1√

n
‖Dfh‖ULip(H−2)‖SμK

Z
‖K,K

{
TrK(SμK

Z
)
(
4E
[|X1|4−1

]− ‖SμK
Z
‖2

HS(K)

)} 1
2 . (5.17)

In addition,

E
[∥∥W ∗

n − Wn

∥∥3]= 1

n
√

n
E
[‖YI − XI‖3]

= 1

n
√

n
E
[‖Y1 − X1‖3]� 8

n
√

n
E
[‖X1‖3]. (5.18)

Consequently, applying (5.17) and (5.18) to (5.12) with (W,W ∗) = (Wn,W
∗
n ) and λ = 1

n
, we

have an explicit error bound in the following infinite-dimensional version of Lindeberg–Lévy
type limit theorem.
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Theorem 5.5. Let {X1,X2, . . .} be a sequence of independent, identically distributed B-valued
random variables with finite first moment on the same probability space. Suppose that X1 has
zero mean and the distribution μX1 has the same covariance function as μZ . Then, for any
h ∈ U Lip-1(B) associated with fh having the properties as given in (5.2),

∣∣∣∣∣E[h(Z)
]− E

[
h

(
1√
n

n∑
i=1

Xi

)]∣∣∣∣∣� M(Z,X1, h)
1√
n
,

where M(Z,X1, h) is a constant depending only on Z, X1, and h. In fact,

M(Z,X1, h) = ‖Dfh‖ULip(H−2)‖SμK
Z
‖K,K

{
TrK(SμK

Z
)
(
4E
[|X1|4−1

]− ‖SμK
Z
‖2

HS(K)

)} 1
2

+ 4

3

∥∥D2fh

∥∥
ULipE
[‖X1‖3].

Multivariate normal approximation. Consider the finite-dimensional case: B = R
k with

k � 2, where ‖ · ‖-norm is the Euclidean norm | · | induced by the Euclidean inner product
〈·,·〉, as well as μZ is a non-degenerate multivariate normal distribution in R

k with mean zero
and the covariance matrix A. Then A is a non-singular, self-adjoint, and positive-definite k × k

matrix over R. In this case, we set B = K and SμK
Z

is the mapping on R
k by SμK

Z
(x) = Ax,

x ∈ R
k . Hence Hr = R

k with | · |r -norm given by |x|r = |√A
−1−r

x| for any x ∈ Hr with
r = 0,±1,±2, . . . .

Let h be a continuously differentiable function on Rk , denoted by h ∈ C1(Rk), with
‖h‖ULip < +∞ and ‖∇h‖ULip < +∞, where

‖∇h‖ULip ≡ sup
x �=y∈Rk

|∇h(x) − ∇h(y)|
|x − y| .

Then it follows from (4.6) and (4.25) that

∣∣∇fh(x) − ∇fh(y)
∣∣� ‖h‖ULip|x − y|, ∀x, y ∈ R

k.

Since, for any z ∈ R
k , ‖z‖ = |z| = |z|−1 � ‖√A

−1‖op|z|−2, we see that

sup
z∈Rk\{0}

|〈∇fh(x) − ∇fh(y), z〉|
|z|−2

�
∥∥√A

−1∥∥
op

∣∣∇fh(x) − ∇fh(y)
∣∣

�
∥∥√A

−1∥∥
op‖h‖ULip|x − y|

�
∥∥√A

−1∥∥2
op‖h‖ULip|x − y|−2, ∀x, y ∈ R

k,

implying

‖Dfh‖ULip(H ) �
∥∥√A

−1∥∥2 ‖h‖ULip,
−2 op
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where ‖√A
−1‖op = sup{|〈√A

−1
z,w〉|; |z| = |w| = 1}. In addition,

∥∥D2fh

∥∥
ULip � 1√

2π

∞∫
−∞

∞∫
0

e− t2
2 −3s |t |√

1 − e−2s
ds dt · ‖∇h‖ULip =

√
2π

4
‖∇h‖ULip,

where the above inequality is obtained by using the formula: for any x, z1, z2 ∈ R
k ,

〈
D2fh(x)z1, z2

〉=
∞∫

0

e−2t

√
1 − e−2t

dt

∫
Rk

〈w,z2〉
〈
Dh
(
e−t x +

√
1 − e−2tw

)
, z1
〉
μZ(dw).

Therefore, by an immediate application of Theorem 5.5, we conclude the following

Theorem 5.6. (Cf. [5, Theorem 7].) Let {X1,X2, . . .} be a sequence of independent, identically
distributed random vectors in R

k . Assume that E[X1] = 0 and E[X1X
t
1] is a non-singular, self-

adjoint, and positive-definite k × k matrix over R, denoted by A, where Xt
1 means the transpose

of X1. Then, for any h ∈ C1(Rk) with ‖h‖ULip < +∞ and ‖∇h‖ULip < +∞, we have

∣∣∣∣∣E[h(Z)
]− E

[
h

(
1√
n

n∑
i=1

Xi

)]∣∣∣∣∣� C(X1,A)√
n

max

{∥∥√A
−1∥∥2

op‖h‖ULip,

√
2π

4
‖∇h‖ULip

}
,

where Z is a random vector in R
k , having multivariate normal distribution with zero mean and

the covariance matrix A, and

C(X1,A) =
{
‖A‖op
{
Tr(A)
(
4E
[|X1|4

]− ‖A‖2
HS

)} 1
2 + 4

3
E
[|X1|3

]}
,

in which Tr(A) =∑k
j=1 Aj,j and ‖A‖2

HS =∑k
i=1
∑k

j=1 A2
i,j for A = [Ai,j ].

A Berry–Esséen type estimate. Let {Zj } be a sequence of independent and identically dis-
tributed real-valued random variables with zero mean. If E[Z2

j ] = σ 2 and E[|Zj |3] = ρ < +∞,
then we can apply the celebrated Berry–Esséen theorem to see that for any a ∈ R,

∣∣∣∣∣P
({

1

σ
√

n

n∑
j=1

Zj � a

})
− 1√

2πσ

a∫
−∞

e
− t2

2σ2 dt

∣∣∣∣∣� 0.4784ρ

σ 3

1√
n
.

As another application of Theorem 5.5, we will establish an analogous of Berry–Esséen type
estimate for Gaussian approximation in abstract Wiener spaces. More precisely, we will obtain
an explicit uniform error bound for

∣∣∣∣∣P
({∣∣∣∣∣ 1√

n

n∑
Xi

∣∣∣∣∣ � a

})
− μZ

({
x ∈ B; |x|−2 � a

})∣∣∣∣∣.

i=1 −2
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To this end, we proceed along with the idea in proving the Wasserstein bounds imply bounds
with respect to the Kolmogorov distance for univariate normal approximation. See e.g. the proof
of [3, Theorem 3.1 in p. 13]. Fix a decreasing sequence {δn} which approaches zero as n tends to
infinity, and will be specified later. Let ω be the cap-shaped function on R, i.e.,

ω(t) = kωe
− 1

1−t2 1(−1,1)(t), t ∈ R,

where kω = 1/
∫ 1
−1 e

− 1
1−s2 ds. For any n ∈ N, set ωn(t) = 3

δn
ω( 3t

δn
), t ∈ R, and gn = φn ∗ ωn,

where ∗ is the convolution of functions, and

φn(t) =

⎧⎪⎨
⎪⎩

1, if t � 1
3δn,

0, if t � 2
3δn,

− 3
δn

t + 2, if 1
3δn � t � 2

3δn.

It is clear that all of gn are infinitely differentiable functions on R with values in [0,1]. For
any a ∈ R, set gn,a(t) = gn(t − a), t ∈ R. Then drgn,a

dtr
= 0 at t ∈ [a + δn,+∞) ∪ (−∞, a], and

‖ drgn,a

dtr
‖∞ � ‖ drωn

dtr
‖∞ = ( 3

δn
)r+1‖ drω

dtr
‖∞ for any r ∈ N, where ‖ · ‖∞ denotes the supremum

norm. Define hn,a(x) = gn,a(|x|−2), x ∈ B , for any n ∈ N and a ∈ R.

Notations. For any Gâteaux differentiable function f on B and x, y ∈ B , let δf (x;y) denote the
Gâteaux derivative of f at x in the direction y; and by induction on r ∈ N, for y1, . . . , yr+1 ∈ B ,
δr+1f (x;y1, . . . , yr+1) is defined by δ(δrf (·;y1, . . . , yr ))(x;yr+1).

Let n ∈ N, a � 0, and r ∈ N. By a direct computation and using the fact drgn,a

dtr
|t=0 = 0,

δrhn,a(x, y1, . . . , yr ) exists for any x ∈ B and y1, . . . , yr ∈ B . Moreover, we have the following
Formulas (1)–(3):

Formula (1).

δhn,a

(
φx(r,0,0);y)=

{
dgn,a

dt
|t=|φx(r,0,0)|−2

A
r,0,0
y

|φx(r,0,0)|−2
, if φx(r,0,0) �= 0,

0, if φx(r,0,0) = 0.

Formula (2).

δ2hn,a

(
φx(r, s,0);y, z

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dgn,a

dt
|t=|φx(r,s,0)|−2

〈y,z〉−2|φx(r,s,0)|2−2−A
r,s,0
y A

r,s,0
z

|φx(r,s,0)|3−2

+ d2gn,a

dt2 |t=|φx(r,s,0)|−2

A
r,s,0
y A

r,s,0
z

|φx(r,s,0)|2−2
, if φx(r, s,0) �= 0,

0, if φx(r, s,0) = 0.
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Formula (3).

δ3hn,a

(
φx(r, s, u);y, z,w

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
d2gn,a

dt2 |t=|φx(r,s,u)|−2 −
dgn,a

dt
|t=|φx (r,s,u)|−2

|φx(r,s,u)|−2
)

× {〈y,z〉−2A
r,s,u
w +〈z,w〉−2A

r,s,u
y +〈w,y〉−2A

r,s,u
z }|φx(r,s,u)|2−2−3A

r,s,u
y A

r,s,u
z A

r,s,u
w

|φx(r,s,u)|4−2

+ d3gn,a

dt3 |t=|φx(r,s,u)|−2

A
r,s,u
y A

r,s,u
z A

r,s,u
w

|φx(r,s,u)|3−2
, if φx(r, s, u) �= 0,

0, if φx(r, s, u) = 0,

where φx(r, s, u) = x + ry + sz+uw, A
r,s,u
y = 〈φx(r, s, u), y〉−2, A

r,s,u
z = 〈φx(r, s, u), z〉−2, and

Ar,s,u
w = 〈φx(r, s, u),w〉−2 for any (r, s, u) ∈ R

3.

Proposition 5.7. Fix n ∈ N and a � 0. Then hn,a ∈ U Lip-1(B) and

‖hn,a‖ULip � 9

δ2
n

CB,H−2

∥∥∥∥dω

dt

∥∥∥∥∞, (5.19)

where CB,H−2 is the operator norm of the canonical embedding of B into H−2. In addition,
let fhn,a be defined as in (4.2). Then fhn,a is twice Fréchet differentiable on B , satisfying the
following uniformly Lipschitz conditions: For any x1, x2 ∈ B ,

∣∣f (1)
hn,a

(x1) − f
(1)
hn,a

(x2)
∣∣
2 � 81

2δ3
n

∥∥∥∥d2ω

dt2

∥∥∥∥∞|x1 − x2|−2; (5.20)

∥∥f (2)
hn,a

(x1) − f
(2)
hn,a

(x2)
∥∥

B,B∗ � 270

δ4
n

C3
B,H−2

∥∥∥∥d3ω

dt3

∥∥∥∥∞‖x1 − x2‖, (5.21)

where f
(r)
hn,a

(x) denotes the r-th order Fréchet derivative of fhn,a at x ∈ B .

Proof. First, it is straightforward by Formulas (1)–(3) that δrhn,a(x), r = 1,2,3 and x ∈ B , is
r-linear on B with

∥∥δhn,a(x; ·)∥∥
B∗ � 9

δ2
n

CB,H−2

∥∥∥∥dω

dt

∥∥∥∥∞, (5.22)

∥∥δ2hn,a(x; ·, ·)∥∥
B,B∗ � 81

δ3
n

C2
B,H−2

∥∥∥∥d2ω

dt2

∥∥∥∥∞, (5.23)

∣∣δ2hn,a(x; ·, ·)∣∣
H−2,H

∗−2
� 81

δ3
n

∥∥∥∥d2ω

dt2

∥∥∥∥∞, (5.24)

∥∥δ3hn,a(x; ·, ·, ·)∥∥
B,L(B,B∗) � 810

4
C3

B,H−2

∥∥∥∥d3ω

3

∥∥∥∥ , (5.25)

δn dt ∞
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where L(B,B∗) is the Banach space of all bounded linear operators from B into B∗ with the
operator norm, and the last three estimates are obtained by using the following two inequalities:

sup
u∈R

∣∣∣∣
drgn,a(u)

dur

u

∣∣∣∣�
∥∥∥∥dr+1gn,a(u)

dur+1

∥∥∥∥∞ (r = 1,2);

sup
u∈R

∣∣∣∣
dgn,a(u)

du

u2

∣∣∣∣= sup
u∈R

∣∣∣∣∣ 1

u2

u∫
0

(u − s)
d3gn,a(s)

ds3
ds

∣∣∣∣∣�
‖ d3gn,a

du3 ‖∞
2

.

Let x1, x2 ∈ B be arbitrarily given. Then, by (5.22) and the mean-value theorem for differentia-
tion, there is ϑ ∈ (0,1) such that

∣∣hn,a(x1) − hn,a(x2)
∣∣= ∣∣δhn,a

(
x2 + ϑ(x1 − x2);x1 − x2

)∣∣
� 9

δ2
n

CB,H−2

∥∥∥∥dω

dt

∥∥∥∥∞‖x1 − x2‖,

which implies (5.19). Next, by (5.22), (5.23), and applying the mean-value theorem for differen-
tiation, fhn,a is a real-valued Fréchet differentiable function on B . Moreover, for any x, z ∈ B ,

(
z, f

(1)
hn,a

(x)
)
B,B∗ =

∞∫
0

∫
B

δhn,a

(
e−t x +

√
1 − e−2t y; e−t z

)
μZ(dy)dt,

and then by (5.24) and applying the mean-value theorem for differentiation,

∣∣(z, f (1)
hn,a

(x1) − f
(1)
hn,a

(x2)
)
B,B∗
∣∣� 81

δ3
n

∥∥∥∥d2ω

dt2

∥∥∥∥∞|x1 − x2|−2|z|−2

∞∫
0

e−2t dt,

which implies (5.20). Similarly, by (5.23), (5.25), and applying the mean-value theorem for dif-
ferentiation, f

(1)
hn,a

is a B∗-valued Fréchet differentiable function on B , and, for any x, z1, z2 ∈ B ,

f
(2)
hn,a

(x)(z1, z2) =
∞∫

0

∫
B

δh2
n,a

(
e−t x +

√
1 − e−2t y; e−t z1, e

−t z2
)
μZ(dy)dt.

Then, by (5.25) and applying the mean-value theorem for differentiation,

∣∣(f (2)
hn,a

(x1) − f
(2)
hn,a

(x2)
)
(z1, z2)

∣∣� 810

δ4
n

C3
B,H−2

∥∥∥∥d3ω

dt3

∥∥∥∥∞‖x1 − x2‖‖z1‖‖z2‖
∞∫

0

e−3t dt,

which implies (5.21). The proof is complete. �
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Let a � 0 and n ∈ N. Observe that

E
[
hn,a(Wn)

]= ( ∫
{|Wn|−2�a}

+
∫

{a<|Wn|−2<a+δn}
+

∫
{|Wn|−2�a+δn}

)
hn,a(Wn)dP

= P
({|Wn|−2 � a

})+ ∫
{a<|Wn|−2<a+δn}

hn,a(Wn)dP ,

as well as ∫
B

hn,a(x)μZ(dx) = μZ

({|x|−2 � a
})+ ∫

{a<|x|−2<a+δn}
hn,a(x)μZ(dx).

If P ({|Wn|−2 � a}) − μZ({x ∈ B; |x|−2 � a}) � 0, then we have

∣∣P
({|Wn|−2 � a

})− μZ

({
x ∈ B; |x|−2 � a

})∣∣
�
∣∣∣∣E[hn,a(Wn)

]− ∫
B

hn,a(x)μZ(dx)

∣∣∣∣
+

∫
{a−δn<|x|−2<a+δn}

hn,a(x)μZ(dx). (5.26)

If P ({|Wn|−2 � a}) − μZ({x ∈ B; |x|−2 � a}) < 0, it follows from

E
[
1 − hn,a−δn(Wn)

]= P
({|Wn|−2 > a

})+ ∫
{a−δn�|Wn|−2�a}

(
1 − hn,a−δn(Wn)

)
dP ,

and∫
B

(
1 − hn,a−δn(x)

)
μZ(dx) = μZ

({|x|−2 > a
})+ ∫

{a−δn�|x|−2�a}

(
1 − hn,a−δn(x)

)
μZ(dx),

that

∣∣P
({|Wn|−2 � a

})− μZ

({
x ∈ B; |x|−2 � a

})∣∣
= P
({|Wn|−2 > a

})− μZ

({
x ∈ B; |x|−2 > a

})
�
∣∣∣∣E[hn,a−δn(Wn)

]− ∫
B

hn,a−δn(x)μZ(dx)

∣∣∣∣
+

∫ (
1 − hn,a−δn(x)

)
μZ(dx). (5.27)
{a−δn�|x|−2�a+δn}
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Combining (5.26) with (5.27) yields that

∣∣P
({|Wn|−2 � a

})− μZ

({
x ∈ B; |x|−2 � a

})∣∣
� sup

b∈R

∣∣∣∣E[hn,b(Wn)
]− ∫

B

hn,b(x)μZ(dx)

∣∣∣∣+ μZ

({
x ∈ B; |x|−2 ∈ [a − δn, a + δn]

})

� sup
b�0

∣∣∣∣E[hn,b(Wn)
]− ∫

B

hn,b(x)μZ(dx)

∣∣∣∣
+ 2μZ

({
x ∈ B; |x|−2 ∈ [0, δn]

})+ μZ

({
x ∈ B; |x|−2 ∈ [a − δn, a + δn]

})
, (5.28)

where the last inequality is obtained by the fact 0 � hn,b � hn,0 � 1 for any b < 0. For any

E ∈ B(H−2), set μ
H−2
Z (E) = μZ(E ∩ B). Then μ

H−2
Z is a Gaussian measure on H−2 with mean

zero, and, for any n ∈ N and α < β in R,

μ
H−2
Z

({
x ∈ H−2; |x|−2 ∈ [α,β]})= μZ

({
x ∈ B; |x|−2 ∈ [α,β]}).

By [16, Lemma 2.1], there exists a constant CμZ
> 0 such that

μZ

({
x ∈ B; |x|−2 ∈ [α,β]})� CμZ

(β − α), ∀α < β,

whence, by applying such an inequality to (5.28), we see that for any a � 0,

∣∣P
({|Wn|−2 � a

})− μZ

({
x ∈ B; |x|−2 � a

})∣∣
� sup

b�0

∣∣∣∣E[hn,b(Wn)
]− ∫

B

hn,b(x)μZ(dx)

∣∣∣∣+ 4CμZ
δn. (5.29)

Set δn = 1
10√n

. By applying Theorem 5.5 and Proposition 5.7 to (5.29), we conclude the following

Theorem 5.8. Let {X1,X2, . . .} be a sequence of independent, identically distributed B-valued
random variables with finite first moment on the probability space (Ω, P ). Suppose that X1 has
zero mean and the distribution μX1 has the same covariance function as μZ . Then, for any n ∈ N

and a � 0,∣∣∣∣∣P
({∣∣∣∣∣ 1√

n

n∑
i=1

Xi

∣∣∣∣∣−2

� a

})
− μZ

({
x ∈ B; |x|−2 � a

})∣∣∣∣∣� M(Z,X1)
1

10
√

n
,

where M(Z,X1) is a constant depending only on Z and X1. In fact,

M(Z,X1) = max

{
270C3

B,H−2

∥∥∥∥d3ω

dt3

∥∥∥∥∞,
81

2

∥∥∥∥d2ω

dt2

∥∥∥∥∞
}

×
{
‖SμK

Z
‖K,K

√
TrK(SμK

Z
)
(
4E
[|X1|4−1

]− ‖SμK
Z
‖2

HS(K)

)+ 4

3
E
[‖X1‖3]}+ 4CμZ

.
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Remark 5.9. Note that the covariance operator of μ
H−2
Z is S2

μK
Z

. From the proof of [16,

Lemma 2.1], such a constant CμZ
can be taken to be

1

π

(
2 + 1

kj1kj2kj3

)(
1 + ‖SμK

Z
‖2

HS(K)

)
,

where kj1 , kj2 , kj3 are any three eigenvalues of SμK
Z

.
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